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ABSTRACT

A key challenge for Graph Neural Networks (GNNs) is their reliance on initial
node features, while many real-world graphs lack such attributes due to privacy
constraints or limitations in data collection. Existing adjacency-only approaches
attempt to learn representations directly from topology. However, they often in-
herit the sampling biases of random walks, leading to skewed embeddings. To
address these limitations, we propose FAKER, a diagnosis-driven, model-agnostic
framework that synthesizes artificial node attributes from topology alone. FAKER
first analyzes group-level visit signals from random walks with Power Spectral
Density (PSD) to quantify low-frequency persistence bias and high-frequency
switching bias. The resulting quantified scores then drive an adaptive sampler
that produces a balanced corpus without distributional assumptions by reweight-
ing transitions and allocating additional walks. A lightweight co-occurrence en-
coder trained on this corpus yields dynamic features, which are merged with a
compact structural summary and standardized to form plug-and-play attributes
for any GNN. Across four benchmarks, FAKER establishes state-of-the-art re-
sults among adjacency-only baselines for node classification and link predic-
tion. It also matches or outperforms feature-using methods on three datasets.
Ablation and robustness studies show that the improvements result from the
frequency-domain diagnosis and adaptive allocation, rather than from the number
of walks or sensitive hyperparameter tuning. The code is available at:https:
//anonymous.4open.science/r/FAKER-B41C.

1 INTRODUCTION

When attributes are limited or missing, the appropriate inputs for a Graph Neural Network (GNN)
become unclear. Many methods assume fully specified node features (Wang et al., 2024; Chen et al.,
2020; Tu et al., 2025). In practice that assumption fails to hold in many cases because of privacy
constraints, governance constraints, costly large-scale curation, withheld sensitive data (Xia et al.,
2024; Li et al., 2023; Tu et al., 2024). This mismatch materially limits the practical deployment of
vanilla GNN architectures (Figure 1) (Cui et al., 2022; Chen et al., 2020; Tu et al., 2025).

Under partial absence of node attributes, a large body of work reconstructs unobserved attributes
from observed ones (Chen et al., 2020; Um et al., 2023; Tu et al., 2025; Jin et al., 2022; Peng et al.,
2024; Xia et al., 2024; Tu et al., 2024). For example, SAT matches the distributions of attribute and
structural embeddings to recover missing features (Chen et al., 2020). PCFI assigns channel-wise
confidence so that reliable channels refine uncertain ones (Um et al., 2023). These approaches
typically assume that researchers observe a sufficient fraction of attributes. As the missing rate
increases, their performance degrades markedly (Rossi et al., 2022; Um et al., 2023).

In fully non-attributed graphs, structure-only synthesis is common (Cui et al., 2022). The same
pipeline then trains skip-gram embeddings (Mikolov et al., 2013) and feeds them into a GNN (Cui
et al., 2022). RAHG fuses multiple embeddings, such as Node2Vec and GraphWave (Donnat et al.,
2018), to capture both proximity and structural roles (Li et al., 2023). Separately, Residual2Vec
reduces degree-induced bias via a residual formulation relative to random-graph null models (Kojaku
et al., 2021). Despite this progress, two issues persist in non-attributed graphs. First, random walks
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Figure 1: Comparison of GNN model accuracy under different attribute-missing ratios. A specified
fraction of feature dimensions for every node is replaced with random noise.

Figure 2: Distribution of random-walk visits across four graphs. Bars compare the node ratio with
the corresponding visit ratio for each structural group. Settings: walk length = 20, walks per node =
40.

tend to over-visit hubs and under-visit low-degree nodes, which skews co-occurrences and hurts
generalization (Kojaku et al., 2021; Rahman et al., 2019; Masuda et al., 2017). Second, the pipeline
defers quantitative diagnosis of sampling bias until after embedding learning. That design choice,
in turn, drives dataset-specific tuning of random-walk hyperparameters (Wu et al., 2020).

A standard approach for non-attributed graphs is to generate random walk based embeddings as
the initial inputs to a GNN (Cui et al., 2022). However, random walks exhibit degree bias by
oversampling hubs while undersampling low-degree nodes This bias produces hub-centric, local
co-occurrence statistics (Figure 2). Message passing captures local topological patterns by design,
so features derived from biased random walks impose redundant information on the GNN. As a
result, hub representations grow disproportionately whereas low-degree representations diminish,
which undermines generalization.

In this paper, we propose FAKER, a diagnosis-driven adaptive sampling framework. The core idea
is to synthesize artificial features that complement a GNN’s local aggregation. (i) Power Spectral
Density (PSD) diagnosis quantifies, for each group, the low-frequency power that reflects node per-
sistence and the high-frequency power that reflects group switching in visit signals. PSD separates
these two biases into concise and comparable statistics, even from short sequences. These statistics
map directly to the control variables of the walk strategy. (ii) Adaptive correction sets group-specific
exploration parameters and allocates additional walks. It yields a balanced corpus that mitigates hub
over-representation and low-degree under-representation. (iii) Feature synthesis trains an embed-
ding model on the balanced corpus to obtain dynamic embeddings. It fuses these embeddings with a
static Structural Identity (SI) vector, with the combined matrix standardized columnwise to produce
the final features for the GNN.

The frequency-based design of FAKER offers three key advantages. First, the synthesized attributes
are model-agnostic drop-in features that work with any backbone GNN. Second, the method tackles
sampling bias at its source. The diagnosis of bias occurs during walk generation. The correction
takes place before embedding training. This process yields representations that are stable as well as
informative. Third, across diverse benchmarks FAKER consistently surpasses strong adjacency-only
baselines. It also remains competitive with methods that use partial attributes. Controlled ablations
and robustness checks trace these gains to the PSD-guided diagnosis and control rather than to walk
volume or aggressive hyperparameter tuning.
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2 RELATED WORK

Graph Completion Learning. Recent work in graph machine learning extensively studies imputing
missing node attributes on partially attributed graphs. For instance, GCMmf (Taguchi et al., 2021)
approximates the distribution of latent activations with a Gaussian Mixture Model (GMM), yielding
more informative imputations. SAT (Chen et al., 2020) applies distribution matching in a shared
latent space to recover missing attributes from structural signals. SVGA (Yoo et al., 2022) employs
structured variational inference with a Gaussian Markov random field to model dependencies among
latent variables. PCFI (Um et al., 2023) introduces a channel-wise confidence for each imputed at-
tribute, computed via pseudo-confidence derived from the shortest path distance to the nearest node
with observed attributes. WAGE (Tu et al., 2025) adopts a weight distribution encoder that tightly
couples structure and attributes for reliable reconstruction under missingness. Amer (Jin et al., 2022)
unifies attribute completion and representation learning rather than decoupling them. It maximizes
mutual information to complete attributes, while an adversarial generative objective enforces struc-
ture attribute consistency. MATE (Peng et al., 2024) proposes a Dual Consistency Strategy (DCS)
that jointly optimizes input space attributes and latent space representations by enforcing view wise
consistency between structural and attribute information. AIAE (Xia et al., 2024) addresses noise
and limited expressiveness in graph autoencoder based completion with a dual encoder design and
knowledge distillation. This approach effectively fuses structural and attribute cues. RITR (Tu et al.,
2024) tackles mixed missingness in which the cases of missing and incomplete attributes coexist by
adopting an initialize-then-refine framework with tailored strategies for each type. The approaches
above typically assume that a non trivial subset of attributes is observable, which restricts their appli-
cability to non-attributed graphs where nodes start with no attributes at all. In contrast, our method
FAKER does not attempt to reconstruct unobserved attributes. Instead, it synthesizes informative
artificial attributes from scratch. Because generation is decoupled from GNN training, FAKER can
be plugged into a wide range of GNN architectures without modifying their layers.

Graph Embedding Methods for Non-attributed Graphs. Learning on non-attributed graphs re-
mains challenging because there is a lack of observed attributes for models to rely on. A common
remedy is to synthesize node attributes via graph embeddings. DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, 2016) learn node embeddings by combining random walks
with the skip-gram objective, with node2vec introducing controllable BFS/DFS trade-offs via p and
q. VERSE (Tsitsulin et al., 2018) learns embeddings by minimizing the Kullback–Leibler diver-
gence between a target similarity distribution (e.g., personalized PageRank) and its low-dimensional
approximation. Force2Vec (Rahman et al., 2020) reformulates the objective with linear-algebraic
computations to enable high parallelism. Cui et al. (Cui et al., 2022) show that DeepWalk-based
positional embeddings are strong initial artificial attributes for training GNNs, outperforming alter-
natives such as eigen, PageRank, or degree based attributes in several settings. RAHG (Li et al.,
2023) constructs a role aware hypergraph with attention and residual connections, capturing both
role information and adjacency while mitigating over-smoothing and modeling long range relations.
However, random walk-based embeddings inherit intrinsic structural sampling bias, notably degree
bias, which introduces distortions in synthesized attributes and degrades downstream GNN perfor-
mance. To address this challenge, we propose FAKER. In contrast to prior work, FAKER uses PSD
analysis to quantitatively diagnose sampling bias and adaptively re-parameterize the walk generation
process itself. This yields a more balanced corpus and, in turn, higher-quality artificial attributes for
GNN training.

3 METHODOLOGY

This paper proposes FAKER, a diagnosis-driven methodology for generating artificial attributes
on non-attributed graphs. The workflow proceeds as follows. (i) FAKER converts random walks
into group-wise visit signals by generating random walk sequences. (ii) These signals undergo
analysis with PSD to diagnose exploration bias across groups. (iii) The sampler adapts its strategy
by allocating additional walks to the biased groups according to the diagnosis. (iv) We train SGNS
on the balanced walk corpus to obtain embeddings. Their combination with SI yields a fusion that
forms the synthetic attribute matrix. Figure 3 summarizes the process.
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Figure 3: Overview of FAKER. (A) The framework groups nodes by structural role (hub/leaf/others).
(B) It generates random walk sequences from each node, converting the sequences into per-group
binary visit signals. (C) It applies group-wise PSD, producing LF/HF z-scores that diagnose per-
sistence (LF) and switching (HF) biases. (D) These scores guide the allocation of additional walk
sequences, merging the new sequences into the initial corpus. (E) The model trains SGNS on the
final corpus to obtain XSGNS. (F) Finally, it concatenates XSGNS with structural identity, yielding
XFAKER, which initializes the backbone GNN as H(0)

3.1 PROBLEM DEFINITION

In non-attributed graphs, the node-feature matrix X is absent. The task synthesizes an initial fea-
ture matrix from the adjacency A for exclusive input to the backbone GNN. The formal definition
expresses this process as

XFAKER = h(A; Ψ) ∈ RN×d′
, H(0) = XFAKER.

where h denotes the feature synthesizer (attribute generator). The training procedure fixes h
prior to downstream GNN training. A backbone GNN fθ is then optimized for the task loss
Ltask(fθ(A,XFAKER)).

3.2 NODE GROUP DEFINITION AND VISIT PATTERN SIGNALING

FAKER analyzes random walk bias within node groups Vg ⊆ V , each containing structurally similar
nodes. The model categorizes nodes into three structural roles consistent with prior work Kojaku
et al. (2021); Liu et al. (2021). Vleaf denotes the set of nodes with degree 1. These leaf nodes have
low interconnectedness, resulting in fewer visits by the random walker. Vhub denotes the set of nodes
whose degree falls within the top 10% among all nodes. Vother denotes the set of all remaining nodes
that are not included in either Vleaf or Vhub.

With every node as a starting point, the procedure generates r random walks of length L, yielding
M = |V |r sequences Wk = (w

(k)
0 , . . . , w

(k)
L−1).

For any group Vg , Eq. 1 encodes the group-level visit pattern of Wk as a binary signal:

sk,g(t) = 1{w(k)
t ∈ Vg }, t = 0, . . . , L− 1. (1)

The signal summarizes how frequently the walk visits Vg and how long it persistence there versus
switching across groups.

3.3 PSD-BASED BIAS DIAGNOSIS

Given the binary visit signals sk,g(t) from Sec. 3.2, the PSD of these signals quantifies group-
specific exploration bias. For walk sequence k and group g, let PSDk,g(f) denote the power spectral
density of the mean-removed visit signal (i.e., with the zero-frequency/DC component removed).
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Eq. 2 defines the representative spectrum for group g through averaging over all walks.

PSDg(f) =
1

M

M∑
k=1

PSDk,g(f). (2)

Let FLF and FHF denote the sets of the n lowest non-DC and n highest frequency bins, respectively
(the DC bin at f = 0 is excluded). Eq. 3 denotes the corresponding average powers.

PLF(g) =
1

|FLF|
∑

f∈FLF

PSDg(f), PHF(g) =
1

|FHF|
∑

f∈FHF

PSDg(f). (3)

For numerical stability, we then apply a log transform with a small constant ε:

Lg = log
(
PLF(g) + ε

)
, Hg = log

(
PHF(g) + ε

)
. (4)

Finally, we standardize these log-power values across the set of groups G to obtain the final z-scores:

ZLF(g) =
Lg − µL

σL
, ZHF(g) =

Hg − µH

σH
, (5)

where µL = 1
|G|

∑
g∈G Lg and σL is the standard deviation of {Lg}g∈G (defined analogously for

H). Large ZLF(g) indicates prolonged persistence within group g, whereas large ZHF(g) indicates
frequent switching across groups. These statistics guide the adaptive walk strategy in Sec. 3.4.

3.4 ADAPTIVE RANDOM WALKS FROM FREQUENCY CHARACTERISTICS

The walk strategy for each group adapts the z-scores from Sec. 3.3. In Node2Vec, an increase in
the return parameter p discourages immediate backtracking. An increase in the in–out parameter q
biases the walk toward local BFS, while a decrease in q promotes exploratory DFS.

Parameter mapping. Using a threshold τ > 0 and a sensitivity parameter λpq > 0, we define the
piecewise mapping as follows:

ϕ(z;λpq, τ) =


1

|z|λpq
, z < −τ,

1, |z| ≤ τ,

z λpq, z > τ,

(6)

Eq. 7 denotes the node2vec parameters from the LF/HF scores.

p(g) = clip
(
ϕ(ZLF(g), λpq, τ), 0.1, 8

)
, q(g) = clip

(
ϕ(ZHF(g), λpq, τ), 0.1, 8

)
, (7)

where clip(x, a, b) = min{max{x, a}, b}. If |ZLF(g)| ≤ τ then p(g) = 1 (no LF-based correction).
If |ZHF(g)| ≤ τ then q(g) = 1 (no HF-based correction). If both are within the threshold, it does
not schedule any additional walks for g.

Budget allocation. Eq. 8 allocates the additional walks where bias is strongest:

a(g) =
⌊
λtrain max

{
1{|ZLF(g)|>τ} |ZLF(g)|, 1{|ZHF(g)|>τ} |ZHF(g)|

}⌋
, (8)

The scalar λtrain > 0 is a hyperparameter that controls the overall strength of the augmentation.
When both scores exceed the threshold, it computes a(g) with the larger magnitude.

Adaptive sampling and final corpus. For given input graph G = (V,E), N (v) = {x ∈ V :
(v, x) ∈ E} denotes the neighbor set of v. For each g with a(g) > 0, our model generates a(g)
additional random walks W ′

g . Each walk W = (w0, . . . , wL−1) starts from a node drawn uniformly
in the group, w0 ∼ U(Vg). For the first step (i=1), the transition is uniform over the neighbor set
N (w0) = {x ∈ V : Aw0x = 1}. For steps i ≥ 2, Eq. 9 use the second-order node2vec transition
with group-specific (p(g), q(g)), where u = wi−2 and v = wi−1.

P
(
wi = x

∣∣wi−1 = v, wi−2 = u
)
=

αp(g),q(g)(u, x)∑
x′∈N (v) αp(g),q(g)(u, x′)

, x ∈ N (v), (9)
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where the search bias is

αp,q(u, x) =


1/p, dux = 0,

1, dux = 1,

1/q, dux = 2,

(10)

and dux ∈ {0, 1, 2} denotes 0 if x=u, 1 if (u, x) ∈ E, and 2 otherwise. Eq. 11 merges the added
walks with the initial corpus:

Wadd =
⋃
g∈G

W ′
g, Wfinal = Winitial ∪Wadd. (11)

3.5 FAKER-BASED ARTIFICIAL ATTRIBUTE GENERATION AND GNN INTEGRATION

Artificial attribute synthesis. We train a standard skip-gram with negative sampling (SGNS) model
on the balanced walk corpus Wfinal to learn node embeddings. A symmetric window of size T
slides over each walk to form positive center–context pairs D = {(i, j)}, where i = wt and j ∈
{t − T, . . . , t − 1, t + 1, . . . , t + T}. Given a noise distribution p0(·) and k negatives per positive,
SGNS maximizes

max
{ui,vj}

∑
(i,j)∈D

[
log σ(u⊤

i vj) +

k∑
ℓ=1

log σ
(
− u⊤

i vnℓ

)]
, nℓ ∼ p0, (12)

where ui, vj ∈ Rd′
denotes the center and context embeddings, and σ(·) denotes the sigmoid func-

tion. After training, the model outputs the synthetic attribute matrix with row-wise stacking of the
center embeddings.

XSGNS ∈ RN×d′
.

Structural Identity. We define the k-hop shell and its degree multiset as:

Nk(v) = {u ∈ V : dist(u, v) = k }, Dk(v) = { d(u) : u ∈ Nk(v) }. (13)

For k = 1, . . . ,K, we summarize Dk(v) by

stats(Dk(v)) =
[
minDk(v), maxDk(v), meanDk(v), stdDk(v)

]
, (14)

and if Nk(v) = ∅, we set stats(Dk(v)) = [0, 0, 0, 0]. The SI vector is then

I(v) =
[
d(v)

]
⊕ stats

(
D1(v)

)
⊕ · · · ⊕ stats

(
DK(v)

)
∈ R 1+4K , (15)

where ⊕ denotes concatenation, I(v) denotes the structural identity vector that summarizes the local
structural role of each node, and d(v) denotes the degree of v. It yields I ∈ RN×(1+4K) by stacking
I(v) over all nodes . Our experiments set K=2, so I has 1 + 4× 2 = 9 columns.

GNN integration. The procedure constructs the final artificial attributes by concatenating the dy-
namic walk-based attributes with the static structural identity, followed by column-wise standard-
ization:

XFAKER = norm
(
XSGNS ∥ I

)
, H(0) = XFAKER. (16)

We freeze the generator before downstream training. The chosen backbone GNN then uses XFAKER
as its input feature matrix.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Our experimental evaluation is designed to answer the following research questions:

RQ1: On non-attributed graphs, does FAKER outperform structure-only baselines(A) on node clas-
sification and link prediction? How does it compare to X+A methods? RQ2: Which components of
FAKER are responsible for the gains? (ablation) RQ3: How robust is FAKER to group definitions
and hyperparameters?

6
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Table 1: Node-classification accuracy on four benchmarks (%). Conventions: A denotes adjacency-
only. X+A uses observed attributes. E denotes embedding-only. Bold marks the best, and underlined
marks the second best. The symbol “—” indicates results unavailable because the original prepro-
cessing is unreproducible.

method Cora Citeseer Photo Computer

X+A

SAT-GCN 83.27 65.99 91.63 85.19
SAT-GAT 85.79 67.67 92.6 87.66

WAGE 85.9 69.33 92.4 88.67
Amer 80.21 66.95 92.53 88.89
SVGA 84.9 68.44 92.53 88.89
RITR 85.81 69.01 92.24 88.49

AIAE-GCN 85.34 69.15 92.18 87.78
AIAE-GAT 85.75 69.46 92.06 86.68

MATE 85.83 69.19 92.57 89.51
TDAR 85.97 68.9 92.94 90.47
PCFI 84.83 72.86 91.60 84.49

GCN(50%) 78.11±6.83 68.48±5.74 90.53±2.10 87.49±2.41
GAT(50%) 79.40±6.19 68.69±5.50 90.25±2.50 87.22±2.39

GraphSAGE(50%) 73.31±8.98 62.96±7.72 85.40±5.55 79.82±5.27

E

DeepWalk 83.78 66.52 91.83 87.90
VERSE 81.72 59.87 91.70 88.39

Force2Vec 83.24 60.84 — —
Residual2Vec 81.20 56.75 92.71 90.00

FAKER-E 84.91±0.27 72.42±0.64 93.04±0.28 90.19±0.06

A

Cui-GCN 85.93 70.34 92.97 90.53
Cui-GAT 86.28 71.24 93.46 91.48

Cui-GraphSAGE 86.04 69.56 92.46 90.80
RAHG 85.82 72.24 93.33 87.68

FAKER-GCN 87.02±0.33 72.69±0.27 93.41±0.12 91.86±0.05
FAKER-GAT 86.87±0.42 72.56±0.16 93.52±0.09 91.91±0.02

FAKER-GraphSAGE 86.77±0.22 72.53±0.50 92.96±0.12 90.71±0.11

Datasets. We evaluate on four benchmarks spanning two domains citation and recommendation
(co-purchase) networks. See Appendix A.1 for dataset details.

Baselines. We compare our method against three categories of baselines: (i) non-attributed methods
(A), including Cui et al. (2022) and RAHG (Li et al., 2023). (ii) node embedding models (E) Deep-
Walk (Perozzi et al., 2014), VERSE (Tsitsulin et al., 2018), Force2Vec (Rahman et al., 2020) and
Residual2Vec (Kojaku et al., 2021), and (iii) attribute-missing (X+A) methods, such as SAT (Chen
et al., 2020), WAGE (Tu et al., 2025), AMER (Jin et al., 2022), SVGA (Yoo et al., 2022), RITR
(Tu et al., 2024), AIAE (Xia et al., 2024), MATE (Peng et al., 2024), TDAR (Li et al., 2025), and
PCFI (Um et al., 2023). The experiments evaluate FAKER on both node classification and link pre-
diction tasks using three distinct backbone models: GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017), and GraphSAGE (Hamilton et al., 2017). Appendix A.2 offers an introduction to the
compared models.

Implementation Details. Random walk based models (DeepWalk, Cui, RAHG) use the same walk-
token budget as FAKER. Appendix A.4 describes the budget-matching protocol. The hyperparame-
ters used in this paper are listed in Appendix A.3. Our experiments run on a single workstation with
an NVIDIA GeForce RTX 3090 (24 GB) and an Intel Core i9-13900K (24 cores / 32 threads).

Node classification. Experiments use a transductive setup with 5-fold node-level cross-validation
(80/20 per fold, Appendix A.5). Accuracy (mean±std across folds and 10 seeds) is reported. For
X+A baselines, published numbers following each paper’s protocol are cited. These are for context
only and not directly comparable to the non-attributed (A) setting.

Link Prediction. To prevent information leakage, all walk generation, PSD diagnosis, and SGNS
training are restricted to the training graph Gtrain = (V,Etrain). We evaluate with AUC and AP, and
report mean±std over 10 random seeds. Edge partitions follow prior work with a 60/20/20 split
into train/validation/test sets (Chen et al., 2020). Appendix A.6 provides a detailed account of the
safeguards.
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Table 2: Link prediction on four benchmarks (AUC/AP). We compute all walks and embeddings on
the training graph Gtrain, where validation and test edges are removed.

Method Cora Citeseer Photo Computer
AUC AP AUC AP AUC AP AUC AP

X+A

SAT-GCN 0.855 0.850 0.857 0.857 0.947 0.939 0.943 0.937
SAT-GAT 0.893 0.902 0.892 0.914 0.928 0.911 0.910 0.894

Amer 0.913 0.923 0.825 0.867 0.979 0.978 0.964 0.961
PCFI 0.822 0.852 0.800 0.832 0.716 0.649 0.562 0.538

GCN(50%) 0.677±0.011 0.702±0.014 0.786±0.058 0.793±0.068 0.936±0.057 0.931±0.058 0.799±0.017 0.816±0.013

GAT(50%) 0.697±0.041 0.680±0.024 0.812±0.001 0.805±0.003 0.916±0.088 0.915±0.086 0.985±0.001 0.983±0.001

GraphSAGE(50%) 0.893±0.006 0.920±0.005 0.913±0.002 0.939±0.001 0.973±0.002 0.966±0.002 0.973±0.002 0.966±0.002

E DeepWalk 0.728 0.803 0.637 0.744 0.965 0.957 0.940 0.935
Residual2Vec 0.567 0.588 0.566 0.552 0.516 0.575 0.551 0.586

FAKER-E 0.928± 0.004 0.950± 0.002 0.919± 0.001 0.944± 0.001 0.981± 0.001 0.977± 0.001 0.976± 0.001 0.974± 0.001

A

Cui-GCN 0.721± 0.004 0.798± 0.002 0.717± 0.019 0.776± 0.011 0.982± 0.002 0.981± 0.002 0.978± 0.001 0.978± 0.001

Cui-GAT 0.767± 0.014 0.789± 0.013 0.719± 0.004 0.736± 0.037 0.976± 0.003 0.972± 0.004 0.968± 0.003 0.964± 0.004

Cui-GraphSAGE 0.742± 0.020 0.789± 0.013 0.682± 0.022 0.720± 0.024 0.981± 0.001 0.979± 0.001 0.979± 0.001 0.979± 0.001

RAHG 0.789 0.804 0.764 0.796 0.960 0.951 0.947 0.938

FAKER-GCN 0.943±0.002 0.958±0.001 0.935±0.002 0.953±0.001 0.993±0.001 0.992±0.001 0.994±0.001 0.994±0.001

FAKER-GAT 0.939±0.001 0.958±0.001 0.925±0.002 0.949±0.002 0.995±0.002 0.994±0.001 0.993±0.001 0.992±0.001

FAKER-GraphSAGE 0.924±0.021 0.945±0.019 0.949±0.003 0.960±0.002 0.992±0.001 0.990±0.001 0.993±0.001 0.992±0.001

4.2 PERFORMANCE COMPARISON (RQ1)

Node classification (Table 1). FAKER achieves the best non-attributed (A) accuracy on all
four datasets, improving over the strongest A baselines by +0.74 (Cora), +0.45 (Citeseer), +0.06
(Photo), and +0.43 (Computer). The embedding-only variant FAKER-E also outperforms node-
embedding baselines with gains of +1.13, +5.90, +1.21, and +2.29, respectively. Compared with
50% feature-masked GNNs, the best FAKER variant improves Accuracy by +7.62–13.71 on Cora,
+4.00–9.73 on Citeseer, +2.99–8.12 on Photo, and +4.42–12.09 on Computer. Notably, GNN (50%)
baselines that randomly mask nodes show large performance variation depending on which nodes
remain. In contrast, FAKER is highly stable across random seeds. This consistency indicates that
FAKER leverages structural information to synthesize reliable, high-quality artificial attributes for
all nodes. Furthermore, FAKER not only competes with but also outperforms the majority of X+A
methods that have access to partial attributes. Appendix A.5 details the performance comparison
between FAKER and GNN models under varying attribute missing rates.

Link prediction (Table 2). FAKER achieves the best AUC/AP among adjacency-only (A) methods
across four datasets. Performance on the co-purchase graphs (Photo, Computer) is nearly perfect
(AUC/AP≈0.99). On the citation graphs, the gains over the strongest A-only baseline are substan-
tial(+0.154 AUC / +0.154 AP on Cora and +0.185 / +0.164 on Citeseer). On the co-purchase graphs,
the margins are smaller but consistent(+0.013 / +0.013 on Photo and +0.015 / +0.015 on Computer).
Furthermore, the embedding-only variant FAKER-E achieves strong performance independently.
The learning signal for low-degree nodes and inter-group connections improves because PSD-based
correction reduces hub over-sampling and low-degree under-sampling. These results indicate that
PSD-guided walk control and SI-augmented features enable strong link recovery without access to
raw attributes.

4.3 ANALYSIS OF FAKER’S COMPONENTS (RQ2)

Table 3 analyzes the performance contribution of FAKER’s two core components, PSD-based di-
agnosis/correction and SI fusion. Removing the PSD-based bias correction produces the largest
and most consistent drop across all datasets. The declines substantially exceed each setting’s stan-
dard deviation, indicating an effect well beyond stochastic variation. In addition, PSD correction
improves not only the mean performance but also reduces the standard deviation itself, thereby en-
hancing stability. SI fusion yields smaller yet uniform gains on every dataset. This suggests that
SI effectively complements the SGNS embeddings by supplying local, static structural information
that the walk-trained features alone struggle to capture. Detailed ablations for link prediction are
provided in Appendix A.7.
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Table 3: Ablation study on the effectiveness of each component of FAKER. “FAKER w/o PSD”
denotes SGNS embeddings from standard random walks without PSD correction. “FAKER w/o SI”
denotes bias-corrected SGNS embeddings without SI fusion.

Method Cora Citeseer Photo Computer
FAKER-GCN w/o PSD 85.49±0.55 69.73±0.71 92.29±0.25 90.20±0.09
FAKER-GCN w/o SI 86.83±0.36 72.41±0.45 93.18±0.25 91.53±0.07

FAKER-GCN 87.02±0.33 72.69±0.27 93.41±0.12 91.86±0.05

4.4 ROBUSTNESS TO GROUP DEFINITIONS AND HYPERPARAMETERS (RQ3)

This section assesses the sensitivity of FAKER to how node groups are defined and to key train-
ing/diagnosis hyperparameters.

Group-definition variants. We vary (i) hub thresholds Vhub ∈ {1%, 3%, 5%, 10%, 20%}, (ii) leaf
rules with degree cutoffs Vleaf ∈ {2, 3, 5} and ranges [1-2], [1-3], [1-5], and (iii) equal-size partitions
by betweenness/eigen vector/PageRank.

Findings-group definitions. Expanding the hub fraction to 20% produces the largest performance
drop. An overly broad hub set blurs role boundaries across groups, which blocks effective cor-
rection of the high-degree exploration bias we target. In contrast, changing the leaf rule (cutoffs
or ranges) has only minor effects. Even after widening the leaf range (increases walk tokens) ac-
curacy decreases slightly. This pattern suggests that the visit-signal/PSD diagnosis already cap-
tures low-degree regions well, and that naive range expansion adds noise rather than useful signal.
Across these group-definition scenarios, FAKER consistently and clearly outperforms the Cui-GCN
baseline. The gains thus stem from the core PSD-guided bias-correction mechanism, not from a
hand-picked group definition. Appendix B reports additional sensitivity analyses and robustness
checks over hyperparameters.

Figure 4: Robustness to group definitions. The red dashed line marks the default FAKER–GCN.

5 CONCLUSION

This paper introduces FAKER, a diagnosis-driven framework that synthesizes balanced artificial
attributes for non-attributed graphs. By analyzing group-level visit signals in the PSD, FAKER
quantifies persistence and switching biases. It adapts the random-walk strategy accordingly to
build a balanced corpus. The resulting features integrate with standard GNNs without architectural
changes. Across four benchmarks and under matched walk-token budgets, FAKER consistently
leads adjacency-only baselines on node classification and link prediction. It also rivals feature-using
methods in many cases. Ablation and robustness studies trace the gains to frequency-guided alloca-
tion rather than walk volume or delicate hyperparameter tuning. These results position FAKER as a
simple and reliable tool for feature-scarce settings.
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A EXPERIMENTS

A.1 DATASETS

The datasets used in our experiments are standard benchmarks provided by the PyTorch Geometric
package. Statistics are summarized in Table 4.

Table 4: Statistics of the benchmark datasets, where “Avg Hot Num” denotes the average number of
active entries in the multi-hot node attributes.

Dataset Nodes Edges Attribute Dim Avg Hot Num Classes
Cora 2,708 5,278 1,433 18.17 7
Citeseer 3,327 4,228 3,703 31.60 6
Photo 7,650 119,081 745 258.81 8
Computer 13,752 245,861 767 267.23 10

• Cora, Citeseer. These are citation networks where nodes represent academic publications
and edges represent citations. Node features are sparse, binary bag-of-words vectors indi-
cating the presence or absence of keywords. The node labels represent the publication’s
research area.
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• Amazon Computers, Photo. These are co-purchase networks where nodes represent prod-
ucts. An edge between two nodes indicates that they are frequently bought together.The
node labels are derived from product categories.

A.2 INTRODUCTION OF BASELINES

Attribute-completion (X+A).

• SAT Chen et al. (2020): This is a distribution-matching framework that aligns structure-
derived and attribute-derived embeddings in a shared latent space to impute missing node
features while remaining plug-and-play with common GNN backbones.

• WAGE Tu et al. (2025): This is a weight-distribution encoder that tightly couples topology
and attributes to reconstruct node features reliably under high missingness.

• AMER Jin et al. (2022): This is a joint learning scheme that completes attributes and
learns representations together, using mutual-information maximization with an adversarial
consistency objective.

• SVGA Yoo et al. (2022): This is a structured variational approach that employs a Gaus-
sian Markov random field prior to model inter-feature dependencies and complete missing
attributes.

• RITR Tu et al. (2024): This is an initialize-then-refine pipeline tailored for mixed miss-
ingness, applying distinct strategies to attribute-missing and attribute-incomplete cases.

• AIAE Xia et al. (2024): This is a dual-encoder design with knowledge distillation that
fuses structural and attribute cues to denoise inputs and enhance imputation expressiveness.

• MATE Peng et al. (2024): This is a dual-consistency method that jointly optimizes
input-space attributes and latent codes by enforcing view-wise (structure/attribute) agree-
ment.

• TDAR Li et al. (2025): This is a topology-guided denoising and attribute reconstruction
framework that regularizes both structure and features to yield robust completions.

• PCFI Um et al. (2023): This is a pseudo-confidence–driven imputer that assigns
channel-wise reliabilities so that confident feature channels refine uncertain ones.

Node-embedding (E).

• DeepWalk Perozzi et al. (2014): This is a random-walk–based method that trains
skip-gram on node sequences to produce unsupervised node embeddings widely used as
synthetic attributes.

• VERSE Tsitsulin et al. (2018): This is a similarity-preserving embedder that minimizes
KL divergence between a chosen target similarity (e.g., PPR) and its low-dimensional ap-
proximation.

• Residual2Vec Kojaku et al. (2021): This is a debiasing framework that mod-
els and subtracts random-walk biases via a null-graph baseline, yielding residual
(degree/structure-agnostic) embeddings that improve link prediction and clustering.

Adjacency-only (A).

• RAHG Li et al. (2023): This is a role-aware hypergraph encoder with attention and
residual connections that captures both proximity and structural roles while mitigating
over-smoothing and enabling long-range interactions.

• Cui Cui et al. (2022): This is a practice-oriented pipeline showing that random-walk em-
beddings used directly as initial node features provide strong, general-purpose inputs for
downstream GNNs.

Backbone GNNs.

• GCN Kipf & Welling (2016): This is a seminal architecture that integrates node attributes
with graph structure through localized, diffusion-style spectral convolutions.
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• GAT Veličković et al. (2017): This is an attention-based GNN that learns edge-specific
importance weights to adaptively aggregate neighborhood information.

• GraphSAGE Hamilton et al. (2017): This is a scalable neighborhood-sampling frame-
work that aggregates sampled neighbors with learnable functions to update node represen-
tations.

A.3 HYPERPARAMTERS

Table 5 lists the hyperparameter settings for our experiments.

Table 5: Hyperparameter settings.
Hyperparameter Symbol (in paper) Value
GNN Training Parameters
GNN Layers 2
Weight Decay 5× 10−4

Learning Rate 0.01
Learning Epochs 1000
Early Stopping Patience 25
Number of GNN Layers 2
GNN Hidden Size 256
Optimizer Adam
Dropout Rate 0.5
GAT Attention Head 4
Activation Function ReLU

FAKER-specific Parameters
Random Walk Epochs r 40
Walk Length L 20
SGNS Embedding Dimension d′ 256
SGNS Training Epochs 10
SGNS Window Size T 10
SGNS Negative Samples k 5
Negative Sampling Exponent 0.75
SGNS Batch Size (tokens) 128
Structural Identity Max Hops K 2
PSD Frequency Bins n 3
(p,q) Sensitivity λpq 5
Additional Walk Weight λtrain 8
Frequency Threshold τ 0.7

A.4 RANDOM-WALK BUDGET PARITY

For a fair comparison, FAKER and all random walk based baselines (e.g., DeepWalk, Residual2Vec,
RAHG) use the same number of walks per node on each dataset. We always generate complete walks
of fixed length L without truncation. The budget depends on walks per node rather than tokens; with
L fixed across methods, matching walks naturally matches tokens. We apply this procedure to the
final corpus after the augmentation-and-merge in Eq. 11.

Notation. N = |V | denotes the number of nodes, L denotes the walk length, and r0 denotes the
initial walks-per-node. We denote the number of additional walks by ∆W after FAKER generates
additional walks, merging them as in Eq. 11. Then final number of walks of FAKER is

|WFAKER| = Nr0 +∆W.

Quotient–Remainder Decomposition. We decompose the additional walks by dividing ∆W by
N :

∆W = qN + ρ, q =
⌊
∆W
N

⌋
, 0 ≤ ρ < N.
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Baseline Augmentation Protocol. Suppose each baseline’s initial corpus contains Nr0 length-L
walks. We add exactly ∆W complete walks in two steps: Each baseline starts with an initial corpus
of Nr0 walks of length L. We then augment the corpus by adding exactly ∆W complete walks in
two steps:

1. Full-node passes. We perform q additional full passes, where each pass generates one
length-L walk per node, yielding additional qN walks in total.

2. Residual pass. We then sample ρ nodes from V uniformly without replacement, with one
length-L walk generated from each to produce ρ additional walks.

The final number of walks in baselines then becomes

|Wbaseline| = Nr0 + qN + ρ = Nr0 +∆W = |WFAKER|,

which is exactly equal to that of FAKER.

A.5 NODE CLASSIFICATION

The evaluation uses five-fold node-level cross-validation with an 80%/20% train/test split per fold.
All methods are implemented in a unified codebase and executed under the same protocol to ensure
a fair comparison. Each configuration is run with 10 random seeds, and results are reported as the
mean. For the attribute-missing (X+A) setting, we follow the protocol from (Chen et al., 2020). In
this protocol, nodes with observed attributes are split into 40% for training, 10% for validation, and
50% for testing. Baseline results for this setting are cited from their original papers.

While GNN models such as GCN, GAT, and GraphSAGE suffer from a sharp performance drop
as attribute features are missing, FAKER maintains performance comparable to GNNs that utilize
all attributes, despite not using any attribute information(Figure 5 Cora, Photo, Computer). This
advantage manifests strongly for models sensitive to attribute quality, such as GraphSAGE. The
performance of GraphSAGE collapses as features degrade, whereas FAKER performance remains
high. These results show that the artificial attributes generated by FAKER possess quality sufficient
to rival fully observed raw features. Consequently, FAKER is not only effective in non-attributed
settings but also a reliable alternative in typical attribute-missing scenarios where observed features
are sparse or noisy.

A.6 LINK PREDICTION PROTOCOL AND LEAKAGE SAFEGUARDS

We follow the 60/20/20 edge split with fixed seeds: E = Etrain ∪Eval ∪Etest and Gtrain = (V,Etrain).

• Training Etrain: used to build the message-passing graph and to train models.
• Validation Eval: used only for hyperparameter selection and early stopping; never added to

the training graph.
• Test Etest: used only for final evaluation.

We also sample disjoint negative edges (non-links) for each split, with |NS | = |ES | for S ∈
{train, val, test}. This strict separation guarantees that links evaluated at validation or test time
are never observed during feature construction or training.

A.7 ABLATION VARIANT DEFINITIONS

Ablation study on node classification. In Table 6, the PSD-based bias correction exerts the most
decisive influence on FAKER’s performance. FAKER w/o PSD exhibits the largest and most con-
sistent performance drop across all datasets. FAKER w/o SI shows a consistent yet relatively small
decline across all datasets. This result demonstrates that SI complements the structural information
lost during bias correction.

Ablation study on link prediction. In Table 7, the importance of PSD-based bias correction be-
comes more pronounced in link prediction. With a GCN backbone, w/o PSD shows an AUC drop
of −0.177 on Cora and −0.205 on Citeseer. Results on Photo and Computer suggest that PSD-
based correction substantially improves overall performance, although the additional gain can be
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Figure 5: Accuracy comparison between GNN models and FAKER under different attribute-missing
rates, where “-Node” replaces a ratio of nodes’ feature vectors with noise and “-Attribute” replaces
a ratio of feature dimensions with noise.

limited when the backbone model approaches saturation. The presence or absence of SI exerts only
a marginal effect on link prediction. This finding indicates that in a topology-focused task such
as link prediction, bias-corrected dynamic walk embeddings already capture most of the necessary
information.

Table 6: Ablation study on node classification (Accuracy).

Method Cora Citeseer Photo Computer
FAKER-GAT w/o PSD 85.49±0.55 70.52±0.88 92.53±0.04 91.62±0.17
FAKER-GAT w/o SI 86.76±0.35 72.37±0.39 93.34±0.06 91.11±0.11

FAKER-GAT 86.87±0.42 72.56±0.16 93.52±0.09 91.91±0.02
FAKER-GraphSAGE w/o PSD 84.81±0.40 68.05±1.33 91.90±0.27 89.98±0.23
FAKER-GraphSAGE w/o SI 86.37±0.21 72.02±0.59 92.66±0.07 90.02±0.16

FAKER-GraphSAGE 86.77±0.22 72.53±0.50 92.96±0.12 90.71±0.11

B HYPERPARAMETER SWEEPS

Setup. We fix all hyperparameters to the defaults in Appendix A.3 and vary one hyperparameter at
a time: SGNS epochs (learning epoch), SGNS embedding size (n2v d), GNN hidden size (gnn d),
GNN epochs (epoch), (p, q) sensitivity λpq (pq), allocation weight λtrain (train weight), the thresh-
old τ (freq val), and walk length L (walklen). All runs use FAKER–GCN under a fixed walk–token
budget, and we report mean±std over 10 seeds.
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Table 7: Ablation study on link prediction (AUC/AP).

Cora Citeseer Photo Computer
Method AUC AP AUC AP AUC AP AUC AP

FAKER-GCN w/o PSD 0.766± 0.017 0.791± 0.021 0.730± 0.014 0.778± 0.011 0.981± 0.001 0.979± 0.001 0.977± 0.001 0.977± 0.001

FAKER-GCN w/o SI 0.939± 0.002 0.958± 0.001 0.917± 0.011 0.933± 0.014 0.987± 0.001 0.985± 0.001 0.993± 0.001 0.988± 0.001

FAKER-GCN 0.943±0.001 0.958±0.001 0.935±0.002 0.953±0.001 0.993±0.001 0.992±0.001 0.994±0.001 0.994±0.001

FAKER-GAT w/o PSD 0.763± 0.016 0.799± 0.016 0.722± 0.016 0.774± 0.011 0.976± 0.002 0.972± 0.003 0.976± 0.001 0.979± 0.001

FAKER-GAT w/o SI 0.938± 0.001 0.958± 0.001 0.917± 0.001 0.944± 0.001 0.990± 0.001 0.985± 0.001 0.990± 0.001 0.988± 0.001

FAKER-GAT 0.939±0.001 0.958±0.001 0.925±0.002 0.949±0.002 0.995±0.002 0.994±0.001 0.993±0.001 0.992±0.001

FAKER-GraphSAGE w/o PSD 0.719± 0.096 0.738± 0.111 0.704± 0.021 0.747± 0.027 0.982± 0.003 0.982± 0.003 0.980± 0.001 0.979± 0.001

FAKER-GraphSAGE w/o SI 0.928± 0.001 0.945± 0.001 0.917± 0.001 0.944± 0.001 0.991± 0.001 0.989± 0.001 0.993± 0.001 0.992± 0.001

FAKER-GraphSAGE 0.924±0.021 0.945±0.019 0.949±0.003 0.960±0.002 0.992±0.001 0.990±0.001 0.993±0.001 0.992±0.001

Result. (1) Model dimension. Increasing n2v d and gnn d yields small, monotonic gains up to
typical sizes, then plateaus. (2) Diagnosis & control. Within broad ranges, λpq and τ have mild
effects. mid-range settings work best across datasets. Using small values for the allocation weight
(train weight) resulted in performance degradation on certain datasets. (3) Walk length. Larger
L improves accuracy up to L=40. beyond that, returns diminish under a fixed token budget. (4)
Overall robustness. Curves change smoothly and exhibit wide plateaus, indicating a low tuning
burden. Unlike pipelines that require fragile, fine-grained hyperparameter search, FAKER remains
stable across SGNS/GNN training knobs and diagnosis/actuation parameters.

Figure 6: Robustness of our model under variations of training and bias-diagnosis hyperparameters.
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