

000 001 002 003 004 005 006 007 008 009 010 011 012 FAKER: GENERATING FREQUENCY-BASED ARTIFI- CIAL ATTRIBUTES VIA RANDOM WALKS FOR NON- ATTRIBUTED GRAPH REPRESENTATION LEARNING

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 A key challenge for Graph Neural Networks (GNNs) is their reliance on initial
014 node features, while many real-world graphs lack such attributes due to privacy
015 constraints or limitations in data collection. Existing adjacency-only approaches
016 attempt to learn representations directly from topology. However, they often in-
017 herit the sampling biases of random walks, leading to skewed embeddings. To
018 address these limitations, we propose FAKER, a diagnosis-driven, model-agnostic
019 framework that synthesizes artificial node attributes from topology alone. FAKER
020 first analyzes group-level visit signals from random walks with Power Spectral
021 Density (PSD) to quantify low-frequency persistence bias and high-frequency
022 switching bias. The resulting quantified scores then drive an adaptive sampler
023 that produces a balanced corpus without distributional assumptions by reweight-
024 ing transitions and allocating additional walks. A lightweight co-occurrence en-
025 coder trained on this corpus yields dynamic features, which are merged with a
026 compact structural summary and standardized to form plug-and-play attributes
027 for any GNN. Across four benchmarks, FAKER establishes state-of-the-art re-
028 sults among adjacency-only baselines for node classification and link predic-
029 tion. It also matches or outperforms feature-using methods on three datasets.
030 Ablation and robustness studies show that the improvements result from the
031 frequency-domain diagnosis and adaptive allocation, rather than from the number
032 of walks or sensitive hyperparameter tuning. The code is available at: <https://anonymous.4open.science/r/FAKER-B41C>.

034 1 INTRODUCTION

036 When attributes are limited or missing, the appropriate inputs for a Graph Neural Network (GNN)
037 become unclear. Many methods assume fully specified node features (Wang et al., 2024; Chen et al.,
038 2020; Tu et al., 2025). In practice that assumption fails to hold in many cases because of privacy
039 constraints, governance constraints, costly large-scale curation, withheld sensitive data (Xia et al.,
040 2024; Li et al., 2023; Tu et al., 2024). This mismatch materially limits the practical deployment of
041 vanilla GNN architectures (Figure 1) (Cui et al., 2022; Chen et al., 2020; Tu et al., 2025).

042 Under partial absence of node attributes, a large body of work reconstructs unobserved attributes
043 from observed ones (Chen et al., 2020; Um et al., 2023; Tu et al., 2025; Jin et al., 2022; Peng et al.,
044 2024; Xia et al., 2024; Tu et al., 2024). For example, SAT matches the distributions of attribute and
045 structural embeddings to recover missing features (Chen et al., 2020). PCFI assigns channel-wise
046 confidence so that reliable channels refine uncertain ones (Um et al., 2023). These approaches
047 typically assume that researchers observe a sufficient fraction of attributes. As the missing rate
048 increases, their performance degrades markedly (Rossi et al., 2022; Um et al., 2023).

049 In fully non-attributed graphs, structure-only synthesis is common (Cui et al., 2022). The same
050 pipeline then trains skip-gram embeddings (Mikolov et al., 2013) and feeds them into a GNN (Cui
051 et al., 2022). RAHG fuses multiple embeddings, such as Node2Vec and GraphWave (Donnat et al.,
052 2018), to capture both proximity and structural roles (Li et al., 2023). Separately, Residual2Vec
053 reduces degree-induced bias via a residual formulation relative to random-graph null models (Kojaku
et al., 2021). Despite this progress, two issues persist in non-attributed graphs. First, random walks

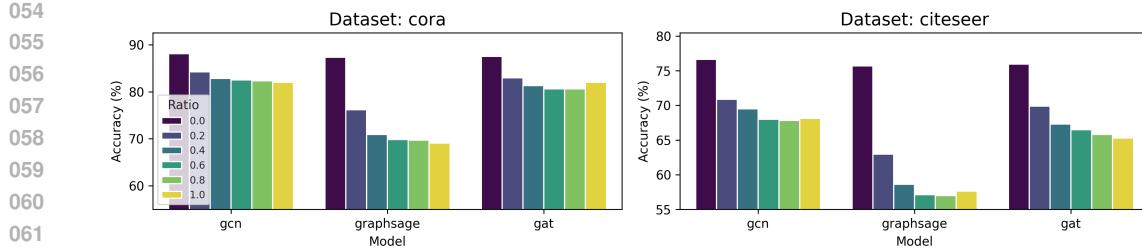


Figure 1: Comparison of GNN model accuracy under different attribute-missing ratios. A specified fraction of feature dimensions for every node is replaced with random noise.

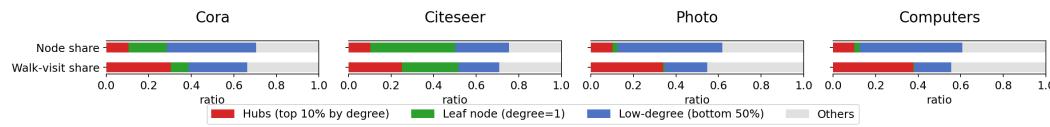


Figure 2: Distribution of random-walk visits across four graphs. Bars compare the node ratio with the corresponding visit ratio for each structural group. Settings: walk length = 20, walks per node = 40.

tend to over-visit hubs and under-visit low-degree nodes, which skews co-occurrences and hurts generalization (Kojaku et al., 2021; Rahman et al., 2019; Masuda et al., 2017). Second, the pipeline defers quantitative diagnosis of sampling bias until after embedding learning. That design choice, in turn, drives dataset-specific tuning of random-walk hyperparameters (Wu et al., 2020).

A standard approach for non-attributed graphs is to generate random walk based embeddings as the initial inputs to a GNN (Cui et al., 2022). However, random walks exhibit degree bias by oversampling hubs while undersampling low-degree nodes. This bias produces hub-centric, local co-occurrence statistics (Figure 2). Message passing captures local topological patterns by design, so features derived from biased random walks impose redundant information on the GNN. As a result, hub representations grow disproportionately whereas low-degree representations diminish, which undermines generalization.

In this paper, we propose FAKER, a diagnosis-driven adaptive sampling framework. The core idea is to synthesize artificial features that complement a GNN’s local aggregation. (i) Power Spectral Density (PSD) diagnosis quantifies, for each group, the low-frequency power that reflects node persistence and the high-frequency power that reflects group switching in visit signals. PSD separates these two biases into concise and comparable statistics, even from short sequences. These statistics map directly to the control variables of the walk strategy. (ii) Adaptive correction sets group-specific exploration parameters and allocates additional walks. It yields a balanced corpus that mitigates hub over-representation and low-degree under-representation. (iii) Feature synthesis trains an embedding model on the balanced corpus to obtain dynamic embeddings. It fuses these embeddings with a static Structural Identity (SI) vector, with the combined matrix standardized columnwise to produce the final features for the GNN.

The frequency-based design of FAKER offers three key advantages. First, the synthesized attributes are model-agnostic drop-in features that work with any backbone GNN. Second, the method tackles sampling bias at its source. The diagnosis of bias occurs during walk generation. The correction takes place before embedding training. This process yields representations that are stable as well as informative. Third, across diverse benchmarks FAKER consistently surpasses strong adjacency-only baselines. It also remains competitive with methods that use partial attributes. Controlled ablations and robustness checks trace these gains to the PSD-guided diagnosis and control rather than to walk volume or aggressive hyperparameter tuning.

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Graph Completion Learning. Recent work in graph machine learning extensively studies imputing missing node attributes on partially attributed graphs. For instance, GCMMf (Taguchi et al., 2021) approximates the distribution of latent activations with a Gaussian Mixture Model (GMM), yielding more informative imputations. SAT (Chen et al., 2020) applies distribution matching in a shared latent space to recover missing attributes from structural signals. SVGA (Yoo et al., 2022) employs structured variational inference with a Gaussian Markov random field to model dependencies among latent variables. PCFI (Um et al., 2023) introduces a channel-wise confidence for each imputed attribute, computed via pseudo-confidence derived from the shortest path distance to the nearest node with observed attributes. WAGE (Tu et al., 2025) adopts a weight distribution encoder that tightly couples structure and attributes for reliable reconstruction under missingness. Amer (Jin et al., 2022) unifies attribute completion and representation learning rather than decoupling them. It maximizes mutual information to complete attributes, while an adversarial generative objective enforces structure attribute consistency. MATE (Peng et al., 2024) proposes a Dual Consistency Strategy (DCS) that jointly optimizes input space attributes and latent space representations by enforcing view wise consistency between structural and attribute information. AIAE (Xia et al., 2024) addresses noise and limited expressiveness in graph autoencoder based completion with a dual encoder design and knowledge distillation. This approach effectively fuses structural and attribute cues. RITR (Tu et al., 2024) tackles mixed missingness in which the cases of missing and incomplete attributes coexist by adopting an initialize-then-refine framework with tailored strategies for each type. The approaches above typically assume that a non trivial subset of attributes is observable, which restricts their applicability to non-attributed graphs where nodes start with no attributes at all. In contrast, our method FAKER does not attempt to reconstruct unobserved attributes. Instead, it synthesizes informative artificial attributes from scratch. Because generation is decoupled from GNN training, FAKER can be plugged into a wide range of GNN architectures without modifying their layers.

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Graph Embedding Methods for Non-attributed Graphs. Learning on non-attributed graphs remains challenging because there is a lack of observed attributes for models to rely on. A common remedy is to synthesize node attributes via graph embeddings. DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) learn node embeddings by combining random walks with the skip-gram objective, with node2vec introducing controllable BFS/DFS trade-offs via p and q . VERSE (Tsitsulin et al., 2018) learns embeddings by minimizing the Kullback–Leibler divergence between a target similarity distribution (e.g., personalized PageRank) and its low-dimensional approximation. Force2Vec (Rahman et al., 2020) reformulates the objective with linear-algebraic computations to enable high parallelism. Cui et al. (Cui et al., 2022) show that DeepWalk-based positional embeddings are strong initial artificial attributes for training GNNs, outperforming alternatives such as eigen, PageRank, or degree based attributes in several settings. RAHG (Li et al., 2023) constructs a role aware hypergraph with attention and residual connections, capturing both role information and adjacency while mitigating over-smoothing and modeling long range relations. However, random walk-based embeddings inherit intrinsic structural sampling bias, notably degree bias, which introduces distortions in synthesized attributes and degrades downstream GNN performance. To address this challenge, we propose FAKER. In contrast to prior work, FAKER uses PSD analysis to quantitatively diagnose sampling bias and adaptively re-parameterize the walk generation process itself. This yields a more balanced corpus and, in turn, higher-quality artificial attributes for GNN training.

151
152
153
154
3 METHODOLOGY
155156
157
158
159
160
161

This paper proposes FAKER, a diagnosis-driven methodology for generating artificial attributes on non-attributed graphs. The workflow proceeds as follows. (i) FAKER converts random walks into group-wise visit signals by generating random walk sequences. (ii) These signals undergo analysis with PSD to diagnose exploration bias across groups. (iii) The sampler adapts its strategy by allocating additional walks to the biased groups according to the diagnosis. (iv) We train SGNS on the balanced walk corpus to obtain embeddings. Their combination with SI yields a fusion that forms the synthetic attribute matrix. Figure 3 summarizes the process.

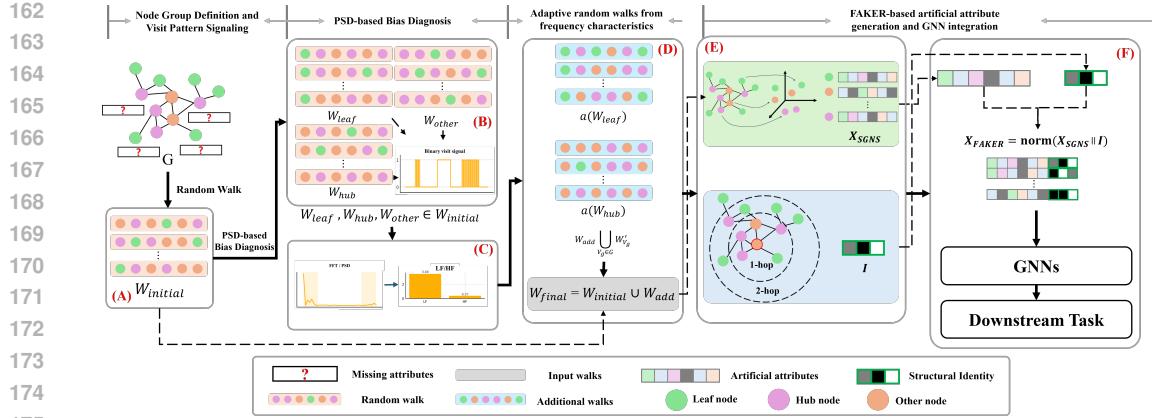


Figure 3: Overview of FAKER. (A) The framework groups nodes by structural role (hub/leaf/others). (B) It generates random walk sequences from each node, converting the sequences into per-group binary visit signals. (C) It applies group-wise PSD, producing LF/HF z -scores that diagnose persistence (LF) and switching (HF) biases. (D) These scores guide the allocation of additional walk sequences, merging the new sequences into the initial corpus. (E) The model trains SGNS on the final corpus to obtain X_{SGNS} . (F) Finally, it concatenates X_{SGNS} with structural identity, yielding X_{FAKER} , which initializes the backbone GNN as $H^{(0)}$.

3.1 PROBLEM DEFINITION

In non-attributed graphs, the node-feature matrix X is absent. The task synthesizes an initial feature matrix from the adjacency A for exclusive input to the backbone GNN. The formal definition expresses this process as

$$X_{FAKER} = h(A; \Psi) \in \mathbb{R}^{N \times d'}, \quad H^{(0)} = X_{FAKER}.$$

where h denotes the feature synthesizer (attribute generator). The training procedure fixes h prior to downstream GNN training. A backbone GNN f_θ is then optimized for the task loss $\mathcal{L}_{\text{task}}(f_\theta(A, X_{FAKER}))$.

3.2 NODE GROUP DEFINITION AND VISIT PATTERN SIGNALING

FAKER analyzes random walk bias within node groups $V_g \subseteq V$, each containing structurally similar nodes. The model categorizes nodes into three structural roles consistent with prior work Kojaku et al. (2021); Liu et al. (2021). V_{leaf} denotes the set of nodes with degree 1. These leaf nodes have low interconnectedness, resulting in fewer visits by the random walker. V_{hub} denotes the set of nodes whose degree falls within the top 10% among all nodes. V_{other} denotes the set of all remaining nodes that are not included in either V_{leaf} or V_{hub} .

With every node as a starting point, the procedure generates r random walks of length L , yielding $M = |V|r$ sequences $W_k = (w_0^{(k)}, \dots, w_{L-1}^{(k)})$.

For any group V_g , Eq. 1 encodes the group-level visit pattern of W_k as a binary signal:

$$s_{k,g}(t) = \mathbf{1}\{w_t^{(k)} \in V_g\}, \quad t = 0, \dots, L-1. \quad (1)$$

The signal summarizes how frequently the walk visits V_g and how long it persists there versus switching across groups.

3.3 PSD-BASED BIAS DIAGNOSIS

Given the binary visit signals $s_{k,g}(t)$ from Sec. 3.2, the PSD of these signals quantifies group-specific exploration bias. For walk sequence k and group g , let $\text{PSD}_{k,g}(f)$ denote the power spectral density of the mean-removed visit signal (i.e., with the zero-frequency/DC component removed).

216 Eq. 2 defines the representative spectrum for group g through averaging over all walks.
 217

218
$$\overline{\text{PSD}}_g(f) = \frac{1}{M} \sum_{k=1}^M \text{PSD}_{k,g}(f). \quad (2)$$

 219
 220

221 Let \mathcal{F}_{LF} and \mathcal{F}_{HF} denote the sets of the n lowest non-DC and n highest frequency bins, respectively
 222 (the DC bin at $f = 0$ is excluded). Eq. 3 denotes the corresponding average powers.
 223

224
$$P_{\text{LF}}(g) = \frac{1}{|\mathcal{F}_{\text{LF}}|} \sum_{f \in \mathcal{F}_{\text{LF}}} \overline{\text{PSD}}_g(f), \quad P_{\text{HF}}(g) = \frac{1}{|\mathcal{F}_{\text{HF}}|} \sum_{f \in \mathcal{F}_{\text{HF}}} \overline{\text{PSD}}_g(f). \quad (3)$$

 225
 226

227 For numerical stability, we then apply a log transform with a small constant ε :
 228

229
$$L_g = \log(P_{\text{LF}}(g) + \varepsilon), \quad H_g = \log(P_{\text{HF}}(g) + \varepsilon). \quad (4)$$

230 Finally, we standardize these log-power values across the set of groups \mathcal{G} to obtain the final z-scores:
 231

232
$$Z_{\text{LF}}(g) = \frac{L_g - \mu_L}{\sigma_L}, \quad Z_{\text{HF}}(g) = \frac{H_g - \mu_H}{\sigma_H}, \quad (5)$$

 233

234 where $\mu_L = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} L_g$ and σ_L is the standard deviation of $\{L_g\}_{g \in \mathcal{G}}$ (defined analogously for
 235 H). Large $Z_{\text{LF}}(g)$ indicates prolonged persistence within group g , whereas large $Z_{\text{HF}}(g)$ indicates
 236 frequent switching across groups. These statistics guide the adaptive walk strategy in Sec. 3.4.
 237

238 3.4 ADAPTIVE RANDOM WALKS FROM FREQUENCY CHARACTERISTICS

240 The walk strategy for each group adapts the z -scores from Sec. 3.3. In Node2Vec, an increase in
 241 the return parameter p discourages immediate backtracking. An increase in the in-out parameter q
 242 biases the walk toward local BFS, while a decrease in q promotes exploratory DFS.

243 **Parameter mapping.** Using a threshold $\tau > 0$ and a sensitivity parameter $\lambda_{\text{pq}} > 0$, we define the
 244 piecewise mapping as follows:
 245

246
$$\phi(z; \lambda_{\text{pq}}, \tau) = \begin{cases} \frac{1}{|z| \lambda_{\text{pq}}}, & z < -\tau, \\ 1, & |z| \leq \tau, \\ z \lambda_{\text{pq}}, & z > \tau, \end{cases} \quad (6)$$

 247
 248
 249

250 Eq. 7 denotes the node2vec parameters from the LF/HF scores.
 251

252
$$p(g) = \text{clip}(\phi(Z_{\text{LF}}(g), \lambda_{\text{pq}}, \tau), 0.1, 8), \quad q(g) = \text{clip}(\phi(Z_{\text{HF}}(g), \lambda_{\text{pq}}, \tau), 0.1, 8), \quad (7)$$

253 where $\text{clip}(x, a, b) = \min\{\max\{x, a\}, b\}$. If $|Z_{\text{LF}}(g)| \leq \tau$ then $p(g) = 1$ (no LF-based correction).
 254 If $|Z_{\text{HF}}(g)| \leq \tau$ then $q(g) = 1$ (no HF-based correction). If both are within the threshold, it does
 255 not schedule any additional walks for g .

256 **Budget allocation.** Eq. 8 allocates the additional walks where bias is strongest:
 257

258
$$a(g) = \left\lfloor \lambda_{\text{train}} \max\{\mathbf{1}_{\{|Z_{\text{LF}}(g)| > \tau\}} |Z_{\text{LF}}(g)|, \mathbf{1}_{\{|Z_{\text{HF}}(g)| > \tau\}} |Z_{\text{HF}}(g)|\} \right\rfloor, \quad (8)$$

 259

260 The scalar $\lambda_{\text{train}} > 0$ is a hyperparameter that controls the overall strength of the augmentation.
 261 When both scores exceed the threshold, it computes $a(g)$ with the larger magnitude.

262 **Adaptive sampling and final corpus.** For given input graph $G = (V, E)$, $\mathcal{N}(v) = \{x \in V : (v, x) \in E\}$ denotes the neighbor set of v . For each g with $a(g) > 0$, our model generates $a(g)$
 263 additional random walks W'_g . Each walk $W = (w_0, \dots, w_{L-1})$ starts from a node drawn uniformly
 264 in the group, $w_0 \sim \mathcal{U}(V_g)$. For the first step ($i=1$), the transition is uniform over the neighbor set
 265 $\mathcal{N}(w_0) = \{x \in V : A_{w_0 x} = 1\}$. For steps $i \geq 2$, Eq. 9 use the second-order node2vec transition
 266 with group-specific $(p(g), q(g))$, where $u = w_{i-2}$ and $v = w_{i-1}$.
 267

268
$$P(w_i = x \mid w_{i-1} = v, w_{i-2} = u) = \frac{\alpha_{p(g), q(g)}(u, x)}{\sum_{x' \in \mathcal{N}(v)} \alpha_{p(g), q(g)}(u, x')}, \quad x \in \mathcal{N}(v), \quad (9)$$

 269

270 where the search bias is

$$271 \quad \alpha_{p,q}(u, x) = \begin{cases} 1/p, & d_{ux} = 0, \\ 1, & d_{ux} = 1, \\ 1/q, & d_{ux} = 2, \end{cases} \quad (10)$$

275 and $d_{ux} \in \{0, 1, 2\}$ denotes 0 if $x=u$, 1 if $(u, x) \in E$, and 2 otherwise. Eq. 11 merges the added
276 walks with the initial corpus:

$$277 \quad W_{\text{add}} = \bigcup_{g \in \mathcal{G}} W'_g, \quad W_{\text{final}} = W_{\text{initial}} \cup W_{\text{add}}. \quad (11)$$

280 3.5 FAKER-BASED ARTIFICIAL ATTRIBUTE GENERATION AND GNN INTEGRATION

282 **Artificial attribute synthesis.** We train a standard skip-gram with negative sampling (SGNS) model
283 on the balanced walk corpus W_{final} to learn node embeddings. A symmetric window of size T
284 slides over each walk to form positive center–context pairs $\mathcal{D} = \{(i, j)\}$, where $i = w_t$ and $j \in$
285 $\{t - T, \dots, t - 1, t + 1, \dots, t + T\}$. Given a noise distribution $p_0(\cdot)$ and k negatives per positive,
286 SGNS maximizes

$$287 \quad \max_{\{u_i, v_j\}} \sum_{(i, j) \in \mathcal{D}} \left[\log \sigma(u_i^\top v_j) + \sum_{\ell=1}^k \log \sigma(-u_i^\top v_{n_\ell}) \right], \quad n_\ell \sim p_0, \quad (12)$$

290 where $u_i, v_j \in \mathbb{R}^{d'}$ denotes the center and context embeddings, and $\sigma(\cdot)$ denotes the sigmoid function.
291 After training, the model outputs the synthetic attribute matrix with row-wise stacking of the
292 center embeddings.

$$294 \quad X_{\text{SGNS}} \in \mathbb{R}^{N \times d'}.$$

295 **Structural Identity.** We define the k -hop shell and its degree multiset as:

$$297 \quad \mathcal{N}_k(v) = \{u \in V : \text{dist}(u, v) = k\}, \quad D_k(v) = \{d(u) : u \in \mathcal{N}_k(v)\}. \quad (13)$$

299 For $k = 1, \dots, K$, we summarize $D_k(v)$ by

$$300 \quad \text{stats}(D_k(v)) = [\min D_k(v), \max D_k(v), \text{mean } D_k(v), \text{std } D_k(v)], \quad (14)$$

302 and if $\mathcal{N}_k(v) = \emptyset$, we set $\text{stats}(D_k(v)) = [0, 0, 0, 0]$. The SI vector is then

$$303 \quad I(v) = [d(v)] \oplus \text{stats}(D_1(v)) \oplus \dots \oplus \text{stats}(D_K(v)) \in \mathbb{R}^{1+4K}, \quad (15)$$

305 where \oplus denotes concatenation, $I(v)$ denotes the structural identity vector that summarizes the local
306 structural role of each node, and $d(v)$ denotes the degree of v . It yields $\mathbf{I} \in \mathbb{R}^{N \times (1+4K)}$ by stacking
307 $I(v)$ over all nodes. Our experiments set $K=2$, so \mathbf{I} has $1 + 4 \times 2 = 9$ columns.

308 **GNN integration.** The procedure constructs the final artificial attributes by concatenating the dynamic
309 walk-based attributes with the static structural identity, followed by column-wise standardization:

$$311 \quad X_{\text{FAKER}} = \text{norm}(X_{\text{SGNS}} \parallel \mathbf{I}), \quad H^{(0)} = X_{\text{FAKER}}. \quad (16)$$

313 We freeze the generator before downstream training. The chosen backbone GNN then uses X_{FAKER}
314 as its input feature matrix.

315 4 EXPERIMENTS

317 4.1 EXPERIMENT SETTINGS

319 Our experimental evaluation is designed to answer the following research questions:

321 RQ1: On non-attributed graphs, does FAKER outperform structure-only baselines(A) on node clas-
322 sification and link prediction? How does it compare to X+A methods? RQ2: Which components of
323 FAKER are responsible for the gains? (ablation) RQ3: How robust is FAKER to group definitions
and hyperparameters?

324
 325 Table 1: Node-classification accuracy on four benchmarks (%). Conventions: A denotes adjacency-
 326 only. **X+A** uses observed attributes. E denotes embedding-only. **Bold** marks the best, and underlined
 327 marks the second best. The symbol “—” indicates results unavailable because the original prepro-
 328 cessing is unreplicable.

	method	Cora	Citeseer	Photo	Computer
X+A	SAT-GCN	83.27	65.99	91.63	85.19
	SAT-GAT	85.79	67.67	92.6	87.66
	WAGE	85.9	69.33	92.4	88.67
	Amer	80.21	66.95	92.53	88.89
	SVGA	84.9	68.44	92.53	88.89
	RITR	85.81	69.01	92.24	88.49
	AIAE-GCN	85.34	69.15	92.18	87.78
	AIAE-GAT	85.75	69.46	92.06	86.68
	MATE	85.83	69.19	92.57	89.51
	TDAR	85.97	68.9	92.94	90.47
	PCFI	84.83	72.86	91.60	84.49
GraphSAGE(50%)	GCN(50%)	78.11 ± 6.83	68.48 ± 5.74	90.53 ± 2.10	87.49 ± 2.41
	GAT(50%)	79.40 ± 6.19	68.69 ± 5.50	90.25 ± 2.50	87.22 ± 2.39
	GraphSAGE(50%)	73.31 ± 8.98	62.96 ± 7.72	85.40 ± 5.55	79.82 ± 5.27
E	DeepWalk	83.78	66.52	91.83	87.90
	VERSE	81.72	59.87	91.70	88.39
	Force2Vec	83.24	60.84	—	—
	Residual2Vec	81.20	56.75	92.71	90.00
A	FAKER-E	84.91 ± 0.27	72.42 ± 0.64	93.04 ± 0.28	90.19 ± 0.06
	Cui-GCN	85.93	70.34	92.97	90.53
	Cui-GAT	86.28	71.24	93.46	91.48
	Cui-GraphSAGE	86.04	69.56	92.46	90.80
	RAHG	85.82	72.24	93.33	87.68
	FAKER-GCN	87.02 ± 0.33	72.69 ± 0.27	93.41 ± 0.12	91.86 ± 0.05
	FAKER-GAT	86.87 ± 0.42	72.56 ± 0.16	93.52 ± 0.09	91.91 ± 0.02
	FAKER-GraphSAGE	86.77 ± 0.22	72.53 ± 0.50	92.96 ± 0.12	90.71 ± 0.11

353
 354 **Datasets.** We evaluate on four benchmarks spanning two domains citation and recommendation
 355 (co-purchase) networks. See Appendix A.1 for dataset details.

356 **Baselines.** We compare our method against three categories of baselines: (i) non-attributed methods
 357 (A), including Cui et al. (2022) and RAHG (Li et al., 2023). (ii) node embedding models (E) Deep-
 358 Walk (Perozzi et al., 2014), VERSE (Tsitsulin et al., 2018), Force2Vec (Rahman et al., 2020) and
 359 Residual2Vec (Kojaku et al., 2021), and (iii) attribute-missing (X+A) methods, such as SAT (Chen
 360 et al., 2020), WAGE (Tu et al., 2025), AMER (Jin et al., 2022), SVGA (Yoo et al., 2022), RITR
 361 (Tu et al., 2024), AIAE (Xia et al., 2024), MATE (Peng et al., 2024), TDAR (Li et al., 2025), and
 362 PCFI (Um et al., 2023). The experiments evaluate FAKER on both node classification and link pre-
 363 diction tasks using three distinct backbone models: GCN (Kipf & Welling, 2016), GAT (Veličković
 364 et al., 2017), and GraphSAGE (Hamilton et al., 2017). Appendix A.2 offers an introduction to the
 365 compared models.

366 **Implementation Details.** Random walk based models (DeepWalk, Cui, RAHG) use the same walk-
 367 token budget as FAKER. Appendix A.4 describes the budget-matching protocol. The hyperparam-
 368 eters used in this paper are listed in Appendix A.3. Our experiments run on a single workstation with
 369 an NVIDIA GeForce RTX 3090 (24 GB) and an Intel Core i9-13900K (24 cores / 32 threads).

370 **Node classification.** Experiments use a transductive setup with 5-fold node-level cross-validation
 371 (80/20 per fold, Appendix A.5). Accuracy (mean \pm std across folds and 10 seeds) is reported. For
 372 X+A baselines, published numbers following each paper’s protocol are cited. These are for context
 373 only and not directly comparable to the non-attributed (A) setting.

374 **Link Prediction.** To prevent information leakage, all walk generation, PSD diagnosis, and SGNS
 375 training are restricted to the training graph $G_{\text{train}} = (V, E_{\text{train}})$. We evaluate with AUC and AP, and
 376 report mean \pm std over 10 random seeds. Edge partitions follow prior work with a 60/20/20 split
 377 into train/validation/test sets (Chen et al., 2020). Appendix A.6 provides a detailed account of the
 378 safeguards.

378
 379 Table 2: Link prediction on four benchmarks (AUC/AP). We compute all walks and embeddings on
 380 the training graph G_{train} , where validation and test edges are removed.
 381

382	Method	Cora		Citeseer		Photo		Computer	
		AUC	AP	AUC	AP	AUC	AP	AUC	AP
383	SAT-GCN	0.855	0.850	0.857	0.857	0.947	0.939	0.943	0.937
	SAT-GAT	0.893	0.902	0.892	0.914	0.928	0.911	0.910	0.894
	Amer	0.913	0.923	0.825	0.867	0.979	0.978	0.964	0.961
	PCFI	0.822	0.852	0.800	0.832	0.716	0.649	0.562	0.538
	GCN(50%)	0.677 ± 0.011	0.702 ± 0.014	0.786 ± 0.058	0.793 ± 0.068	0.936 ± 0.057	0.931 ± 0.058	0.799 ± 0.017	0.816 ± 0.013
	GAT(50%)	0.697 ± 0.041	0.680 ± 0.024	0.812 ± 0.001	0.805 ± 0.003	0.916 ± 0.088	0.915 ± 0.086	0.985 ± 0.001	0.983 ± 0.001
387	GraphSAGE(50%)	0.893 ± 0.006	0.920 ± 0.005	0.913 ± 0.002	0.939 ± 0.001	0.973 ± 0.002	0.966 ± 0.002	0.973 ± 0.002	0.966 ± 0.002
	E	DeepWalk	0.728	0.803	0.637	0.744	0.965	0.957	0.940
		Residual2Vec	0.567	0.588	0.566	0.552	0.516	0.575	0.551
	FAKER-E	0.928 ± 0.004	0.950 ± 0.002	0.919 ± 0.001	0.944 ± 0.001	0.981 ± 0.001	0.977 ± 0.001	0.976 ± 0.001	0.974 ± 0.001
	Cui-GCN	0.721 ± 0.004	0.798 ± 0.002	0.717 ± 0.019	0.776 ± 0.011	0.982 ± 0.002	0.981 ± 0.002	0.978 ± 0.001	0.978 ± 0.001
	Cui-GAT	0.767 ± 0.014	0.789 ± 0.013	0.719 ± 0.006	0.736 ± 0.037	0.976 ± 0.003	0.972 ± 0.004	0.968 ± 0.003	0.964 ± 0.004
391	A	Cui-GraphSAGE	0.742 ± 0.020	0.789 ± 0.013	0.682 ± 0.022	0.720 ± 0.024	0.981 ± 0.001	0.979 ± 0.001	0.979 ± 0.001
		RAHG	0.789	0.804	0.764	0.796	0.960	0.951	0.947
	FAKER-GCN	0.943 ± 0.002	0.958 ± 0.001	0.935 ± 0.002	0.953 ± 0.001	0.993 ± 0.001	0.992 ± 0.001	0.994 ± 0.001	0.994 ± 0.001
	FAKER-GAT	0.939 ± 0.001	0.958 ± 0.001	0.925 ± 0.002	0.949 ± 0.002	0.995 ± 0.002	0.994 ± 0.001	0.993 ± 0.001	0.992 ± 0.001
	FAKER-GraphSAGE	0.924 ± 0.021	0.945 ± 0.019	0.949 ± 0.003	0.960 ± 0.002	0.992 ± 0.001	0.990 ± 0.001	0.993 ± 0.001	0.992 ± 0.001

392 4.2 PERFORMANCE COMPARISON (RQ1)

400
 401 **Node classification (Table 1).** FAKER achieves the best non-attributed (A) accuracy on all
 402 four datasets, improving over the strongest A baselines by +0.74 (Cora), +0.45 (Citeseer), +0.06
 403 (Photo), and +0.43 (Computer). The embedding-only variant FAKER-E also outperforms node-
 404 embedding baselines with gains of +1.13, +5.90, +1.21, and +2.29, respectively. Compared with
 405 50% feature-masked GNNs, the best FAKER variant improves Accuracy by +7.62–13.71 on Cora,
 406 +4.00–9.73 on Citeseer, +2.99–8.12 on Photo, and +4.42–12.09 on Computer. Notably, GNN (50%)
 407 baselines that randomly mask nodes show large performance variation depending on which nodes
 408 remain. In contrast, FAKER is highly stable across random seeds. This consistency indicates that
 409 FAKER leverages structural information to synthesize reliable, high-quality artificial attributes for
 410 all nodes. Furthermore, FAKER not only competes with but also outperforms the majority of X+A
 411 methods that have access to partial attributes. Appendix A.5 details the performance comparison
 412 between FAKER and GNN models under varying attribute missing rates.

413 **Link prediction (Table 2).** FAKER achieves the best AUC/AP among adjacency-only (A) methods
 414 across four datasets. Performance on the co-purchase graphs (Photo, Computer) is nearly perfect
 415 (AUC/AP≈0.99). On the citation graphs, the gains over the strongest A-only baseline are substan-
 416 tial(+0.154 AUC / +0.154 AP on Cora and +0.185 / +0.164 on Citeseer). On the co-purchase graphs,
 417 the margins are smaller but consistent(+0.013 / +0.013 on Photo and +0.015 / +0.015 on Computer).
 418 Furthermore, the embedding-only variant FAKER-E achieves strong performance independently.
 419 The learning signal for low-degree nodes and inter-group connections improves because PSD-based
 420 correction reduces hub over-sampling and low-degree under-sampling. These results indicate that
 421 PSD-guided walk control and SI-augmented features enable strong link recovery without access to
 422 raw attributes.

423 4.3 ANALYSIS OF FAKER’S COMPONENTS (RQ2)

424 Table 3 analyzes the performance contribution of FAKER’s two core components, PSD-based di-
 425 agnosis/correction and SI fusion. Removing the PSD-based bias correction produces the largest
 426 and most consistent drop across all datasets. The declines substantially exceed each setting’s stan-
 427 dard deviation, indicating an effect well beyond stochastic variation. In addition, PSD correction
 428 improves not only the mean performance but also reduces the standard deviation itself, thereby en-
 429 hancing stability. SI fusion yields smaller yet uniform gains on every dataset. This suggests that
 430 SI effectively complements the SGNS embeddings by supplying local, static structural information
 431 that the walk-trained features alone struggle to capture. Detailed ablations for link prediction are
 432 provided in Appendix A.7.

432
433
434
435

Table 3: Ablation study on the effectiveness of each component of FAKER. “FAKER w/o PSD” denotes SGNS embeddings from standard random walks without PSD correction. “FAKER w/o SI” denotes bias-corrected SGNS embeddings without SI fusion.

436
437
438
439
440

Method	Cora	Citeseer	Photo	Computer
FAKER-GCN w/o PSD	85.49±0.55	69.73±0.71	92.29±0.25	90.20±0.09
FAKER-GCN w/o SI	86.83±0.36	72.41±0.45	93.18±0.25	91.53±0.07
FAKER-GCN	87.02±0.33	72.69±0.27	93.41±0.12	91.86±0.05

441

442

443

444 4.4 ROBUSTNESS TO GROUP DEFINITIONS AND HYPERPARAMETERS (RQ3)

445

446 This section assesses the sensitivity of FAKER to how node groups are defined and to key training/diagnosis hyperparameters.
447448
449
450**Group-definition variants.** We vary (i) hub thresholds $V_{\text{hub}} \in \{1\%, 3\%, 5\%, 10\%, 20\%\}$, (ii) leaf rules with degree cutoffs $V_{\text{leaf}} \in \{2, 3, 5\}$ and ranges [1-2], [1-3], [1-5], and (iii) equal-size partitions by betweenness/eigen vector/PageRank.451
452
453
454
455
456
457
458
459
460**Findings-group definitions.** Expanding the hub fraction to 20% produces the largest performance drop. An overly broad hub set blurs role boundaries across groups, which blocks effective correction of the high-degree exploration bias we target. In contrast, changing the leaf rule (cutoffs or ranges) has only minor effects. Even after widening the leaf range (increases walk tokens) accuracy decreases slightly. This pattern suggests that the visit-signal/PSD diagnosis already captures low-degree regions well, and that naive range expansion adds noise rather than useful signal. Across these group-definition scenarios, FAKER consistently and clearly outperforms the Cui-GCN baseline. The gains thus stem from the core PSD-guided bias-correction mechanism, not from a hand-picked group definition. Appendix B reports additional sensitivity analyses and robustness checks over hyperparameters.

461

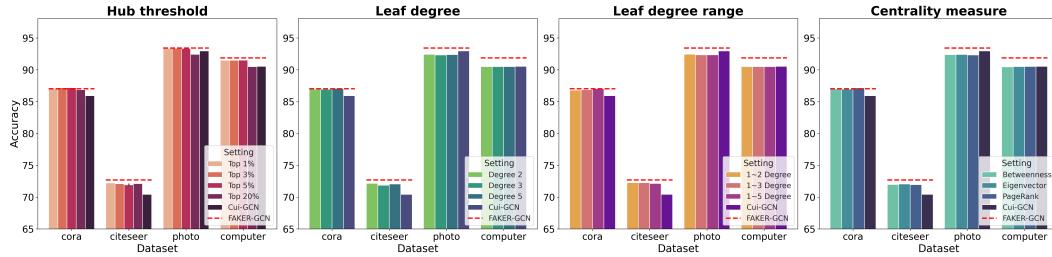
471
472

Figure 4: Robustness to group definitions. The red dashed line marks the default FAKER-GCN.

473

474

475

476

5 CONCLUSION

477

478
479
480
481
482
483
484
485

This paper introduces FAKER, a diagnosis-driven framework that synthesizes balanced artificial attributes for non-attributed graphs. By analyzing group-level visit signals in the PSD, FAKER quantifies persistence and switching biases. It adapts the random-walk strategy accordingly to build a balanced corpus. The resulting features integrate with standard GNNs without architectural changes. Across four benchmarks and under matched walk-token budgets, FAKER consistently leads adjacency-only baselines on node classification and link prediction. It also rivals feature-using methods in many cases. Ablation and robustness studies trace the gains to frequency-guided allocation rather than walk volume or delicate hyperparameter tuning. These results position FAKER as a simple and reliable tool for feature-scarce settings.

486 REFERENCES
487

488 Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning
489 on attribute-missing graphs. *IEEE transactions on pattern analysis and machine intelligence*, 44
490 (2):740–757, 2020.

491 Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neu-
492 ral networks on non-attributed graphs. In *Proceedings of the 31st ACM International Conference*
493 *on Information & Knowledge Management*, pp. 3898–3902, 2022.

494 Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
495 dings via diffusion wavelets. In *Proceedings of the 24th ACM SIGKDD international conference*
496 *on knowledge discovery & data mining*, pp. 1320–1329, 2018.

497 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings*
498 *of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*,
499 pp. 855–864, 2016.

500 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
501 *Advances in neural information processing systems*, 30, 2017.

502 Di Jin, Rui Wang, Tao Wang, Dongxiao He, Weiping Ding, Yuxiao Huang, Longbiao Wang, and
503 Witold Pedrycz. Amer: A new attribute-missing network embedding approach. *IEEE Transac-
504 tions on Cybernetics*, 53(7):4306–4319, 2022.

505 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
506 works. *arXiv preprint arXiv:1609.02907*, 2016.

507 Sadamori Kojaku, Jisung Yoon, Isabel Constantino, and Yong-Yeol Ahn. Residual2vec: Debiasing
508 graph embedding with random graphs. *Advances in Neural Information Processing Systems*, 34:
509 24150–24163, 2021.

510 Kunhao Li, Zhenhua Huang, and Zhaohong Jia. Rahg: A role-aware hypergraph neural network for
511 node classification in graphs. *IEEE Transactions on Network Science and Engineering*, 10(4):
512 2098–2108, 2023.

513 Mengran Li, Junzhou Chen, Chenyun Yu, Guanying Jiang, Ronghui Zhang, Yanming Shen, and
514 Houbing Herbert Song. Topology-driven attribute recovery for attribute missing graph learning
515 in social internet of things. *IEEE Internet of Things Journal*, 2025.

516 Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
517 *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp.
518 1109–1119, 2021.

519 Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on networks.
520 *Physics reports*, 716:1–58, 2017.

521 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
522 tations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

523 Xin Peng, Jieren Cheng, Xiangyan Tang, Bin Zhang, and Wenxuan Tu. Multi-view graph imputation
524 network. *Information Fusion*, 102:102024, 2024.

525 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
526 tations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge*
527 *discovery and data mining*, pp. 701–710, 2014.

528 Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. Force2vec: Parallel force-directed
529 graph embedding. In *2020 IEEE International Conference on Data Mining (ICDM)*, pp. 442–451.
530 IEEE, 2020.

531 Tahleen Rahman, Bartłomiej Surma, Michael Backes, and Yang Zhang. Fairwalk: Towards fair
532 graph embedding. 2019.

540 Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
 541 and Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning
 542 on graphs with missing node features. In *Learning on graphs conference*, pp. 11–1. PMLR, 2022.

543 Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
 544 missing features. *Future Generation Computer Systems*, 117:155–168, 2021.

545 Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph
 546 embeddings from similarity measures. In *Proceedings of the 2018 world wide web conference*,
 547 pp. 539–548, 2018.

548 Wenxuan Tu, Bin Xiao, Xinwang Liu, Sihang Zhou, Zhiping Cai, and Jieren Cheng. Revisiting ini-
 549 tializing then refining: An incomplete and missing graph imputation network. *IEEE Transactions*
 550 *on Neural Networks and Learning Systems*, 2024.

551 Wenxuan Tu, Sihang Zhou, Xinwang Liu, Zhiping Cai, Yawei Zhao, Yue Liu, and Kunlun He. Wage:
 552 Weight-sharing attribute-missing graph autoencoder. *IEEE Transactions on Pattern Analysis and*
 553 *Machine Intelligence*, 2025.

554 Daeho Um, Jiwoong Park, Seulki Park, and Jin Young Choi. Confidence-based feature imputation
 555 for graphs with partially known features. *arXiv preprint arXiv:2305.16618*, 2023.

556 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 557 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

558 Yu Wang, Kaize Ding, Xiaorui Liu, Jian Kang, Ryan Rossi, and Tyler Derr. Data quality-aware graph
 559 machine learning. In *Proceedings of the 33rd ACM International Conference on Information and*
 560 *Knowledge Management*, pp. 5534–5537, 2024.

561 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 562 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
 563 *learning systems*, 32(1):4–24, 2020.

564 Riting Xia, Chunxu Zhang, Anchen Li, Xueyan Liu, and Bo Yang. Attribute imputation autoen-
 565 coders for attribute-missing graphs. *Knowledge-Based Systems*, 291:111583, 2024.

566 Jaemin Yoo, Hyunsik Jeon, Jinhong Jung, and U Kang. Accurate node feature estimation with
 567 structured variational graph autoencoder. In *Proceedings of the 28th ACM SIGKDD Conference*
 568 *on Knowledge Discovery and Data Mining*, pp. 2336–2346, 2022.

574 A EXPERIMENTS

576 A.1 DATASETS

578 The datasets used in our experiments are standard benchmarks provided by the PyTorch Geometric
 579 package. Statistics are summarized in Table 4.

581 Table 4: Statistics of the benchmark datasets, where “Avg Hot Num” denotes the average number of
 582 active entries in the multi-hot node attributes.

584 Dataset	585 Nodes	586 Edges	587 Attribute Dim	588 Avg Hot Num	589 Classes
Cora	2,708	5,278	1,433	18.17	7
Citeseer	3,327	4,228	3,703	31.60	6
Photo	7,650	119,081	745	258.81	8
Computer	13,752	245,861	767	267.23	10

590 • **Cora, Citeseer.** These are citation networks where nodes represent academic publications
 591 and edges represent citations. Node features are sparse, binary bag-of-words vectors indi-
 592 cating the presence or absence of keywords. The node labels represent the publication’s
 593 research area.

594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

- **Amazon Computers, Photo.** These are co-purchase networks where nodes represent products. An edge between two nodes indicates that they are frequently bought together. The node labels are derived from product categories.

A.2 INTRODUCTION OF BASELINES

Attribute-completion (X+A).

- **SAT Chen et al. (2020):** This is a distribution-matching framework that aligns structure-derived and attribute-derived embeddings in a shared latent space to impute missing node features while remaining plug-and-play with common GNN backbones.
- **WAGE Tu et al. (2025):** This is a weight-distribution encoder that tightly couples topology and attributes to reconstruct node features reliably under high missingness.
- **AMER Jin et al. (2022):** This is a joint learning scheme that completes attributes and learns representations together, using mutual-information maximization with an adversarial consistency objective.
- **SVGA Yoo et al. (2022):** This is a structured variational approach that employs a Gaussian Markov random field prior to model inter-feature dependencies and complete missing attributes.
- **RITR Tu et al. (2024):** This is an initialize-then-refine pipeline tailored for mixed missingness, applying distinct strategies to attribute-missing and attribute-incomplete cases.
- **AIAE Xia et al. (2024):** This is a dual-encoder design with knowledge distillation that fuses structural and attribute cues to denoise inputs and enhance imputation expressiveness.
- **MATE Peng et al. (2024):** This is a dual-consistency method that jointly optimizes input-space attributes and latent codes by enforcing view-wise (structure/attribute) agreement.
- **TDAR Li et al. (2025):** This is a topology-guided denoising and attribute reconstruction framework that regularizes both structure and features to yield robust completions.
- **PCFI Um et al. (2023):** This is a pseudo-confidence–driven imputer that assigns channel-wise reliabilities so that confident feature channels refine uncertain ones.

Node-embedding (E).

- **DeepWalk Perozzi et al. (2014):** This is a random-walk–based method that trains skip-gram on node sequences to produce unsupervised node embeddings widely used as synthetic attributes.
- **VERSE Tsitsulin et al. (2018):** This is a similarity-preserving embedder that minimizes KL divergence between a chosen target similarity (e.g., PPR) and its low-dimensional approximation.
- **Residual2Vec Kojaku et al. (2021):** This is a debiasing framework that models and subtracts random-walk biases via a null-graph baseline, yielding residual (degree/structure-agnostic) embeddings that improve link prediction and clustering.

Adjacency-only (A).

- **RAHG Li et al. (2023):** This is a role-aware hypergraph encoder with attention and residual connections that captures both proximity and structural roles while mitigating over-smoothing and enabling long-range interactions.
- **Cui Cui et al. (2022):** This is a practice-oriented pipeline showing that random-walk embeddings used directly as initial node features provide strong, general-purpose inputs for downstream GNNs.

Backbone GNNs.

- **GCN Kipf & Welling (2016):** This is a seminal architecture that integrates node attributes with graph structure through localized, diffusion-style spectral convolutions.

648

- 649 • **GAT Veličković et al. (2017)**: This is an attention-based GNN that learns edge-specific
650 importance weights to adaptively aggregate neighborhood information.
- 651 • **GraphSAGE Hamilton et al. (2017)**: This is a scalable neighborhood-sampling frame-
652 work that aggregates sampled neighbors with learnable functions to update node represen-
653 tations.

654 **A.3 HYPERPARAMTERS**

655 Table 5 lists the hyperparameter settings for our experiments.

656 **Table 5: Hyperparameter settings.**

659 Hyperparameter	660 Symbol (in paper)	661 Value
<i>GNN Training Parameters</i>		
GNN Layers		2
Weight Decay		5×10^{-4}
Learning Rate		0.01
Learning Epochs		1000
Early Stopping Patience		25
Number of GNN Layers		2
GNN Hidden Size		256
Optimizer		Adam
Dropout Rate		0.5
GAT Attention Head		4
Activation Function		ReLU
<i>FAKER-specific Parameters</i>		
Random Walk Epochs	r	40
Walk Length	L	20
SGNS Embedding Dimension	d'	256
SGNS Training Epochs		10
SGNS Window Size	T	10
SGNS Negative Samples	k	5
Negative Sampling Exponent		0.75
SGNS Batch Size (tokens)		128
Structural Identity Max Hops	K	2
PSD Frequency Bins	n	3
(p,q) Sensitivity	λ_{pq}	5
Additional Walk Weight	λ_{train}	8
Frequency Threshold	τ	0.7

687 **A.4 RANDOM-WALK BUDGET PARITY**

688 For a fair comparison, FAKER and all random walk based baselines (e.g., DeepWalk, Residual2Vec,
689 RAHG) use the same number of walks per node on each dataset. We always generate complete walks
690 of fixed length L without truncation. The budget depends on walks per node rather than tokens; with
691 L fixed across methods, matching walks naturally matches tokens. We apply this procedure to the
692 final corpus after the augmentation-and-merge in Eq. 11.

693 **Notation.** $N = |V|$ denotes the number of nodes, L denotes the walk length, and r_0 denotes the
694 initial walks-per-node. We denote the number of additional walks by ΔW after FAKER generates
695 additional walks, merging them as in Eq. 11. Then final number of walks of FAKER is
696

$$697 |W_{\text{FAKER}}| = Nr_0 + \Delta W.$$

698 **Quotient–Remainder Decomposition.** We decompose the additional walks by dividing ΔW by
699 N :

$$700 \Delta W = qN + \rho, \quad q = \left\lfloor \frac{\Delta W}{N} \right\rfloor, \quad 0 \leq \rho < N.$$

702 **Baseline Augmentation Protocol.** Suppose each baseline’s initial corpus contains Nr_0 length- L
 703 walks. We add exactly ΔW complete walks in two steps: Each baseline starts with an initial corpus
 704 of Nr_0 walks of length L . We then augment the corpus by adding exactly ΔW complete walks in
 705 two steps:

- 707 1. **Full-node passes.** We perform q additional full passes, where each pass generates one
 708 length- L walk per node, yielding additional qN walks in total.
- 709 2. **Residual pass.** We then sample ρ nodes from V uniformly without replacement, with one
 710 length- L walk generated from each to produce ρ additional walks.

711 The final number of walks in baselines then becomes

$$713 |W_{\text{baseline}}| = Nr_0 + qN + \rho = Nr_0 + \Delta W = |W_{\text{FAKER}}|,$$

714 which is exactly equal to that of FAKER.

716 A.5 NODE CLASSIFICATION

718 The evaluation uses five-fold node-level cross-validation with an 80%/20% train/test split per fold.
 719 All methods are implemented in a unified codebase and executed under the same protocol to ensure
 720 a fair comparison. Each configuration is run with 10 random seeds, and results are reported as the
 721 mean. For the attribute-missing (X+A) setting, we follow the protocol from (Chen et al., 2020). In
 722 this protocol, nodes with observed attributes are split into 40% for training, 10% for validation, and
 723 50% for testing. Baseline results for this setting are cited from their original papers.

724 While GNN models such as GCN, GAT, and GraphSAGE suffer from a sharp performance drop
 725 as attribute features are missing, FAKER maintains performance comparable to GNNs that utilize
 726 all attributes, despite not using any attribute information (Figure 5 Cora, Photo, Computer). This
 727 advantage manifests strongly for models sensitive to attribute quality, such as GraphSAGE. The
 728 performance of GraphSAGE collapses as features degrade, whereas FAKER performance remains
 729 high. These results show that the artificial attributes generated by FAKER possess quality sufficient
 730 to rival fully observed raw features. Consequently, FAKER is not only effective in non-attributed
 731 settings but also a reliable alternative in typical attribute-missing scenarios where observed features
 732 are sparse or noisy.

733 A.6 LINK PREDICTION PROTOCOL AND LEAKAGE SAFEGUARDS

735 We follow the 60/20/20 edge split with fixed seeds: $E = E_{\text{train}} \cup E_{\text{val}} \cup E_{\text{test}}$ and $G_{\text{train}} = (V, E_{\text{train}})$.

- 737 • Training E_{train} : used to build the message-passing graph and to train models.
- 738 • Validation E_{val} : used only for hyperparameter selection and early stopping; never added to
 739 the training graph.
- 740 • Test E_{test} : used only for final evaluation.

742 We also sample disjoint negative edges (non-links) for each split, with $|N_S| = |E_S|$ for $S \in \{\text{train, val, test}\}$. This strict separation guarantees that links evaluated at validation or test time
 743 are never observed during feature construction or training.

746 A.7 ABLATION VARIANT DEFINITIONS

748 **Ablation study on node classification.** In Table 6, the PSD-based bias correction exerts the most
 749 decisive influence on FAKER’s performance. FAKER w/o PSD exhibits the largest and most
 750 consistent performance drop across all datasets. FAKER w/o SI shows a consistent yet relatively small
 751 decline across all datasets. This result demonstrates that SI complements the structural information
 752 lost during bias correction.

753 **Ablation study on link prediction.** In Table 7, the importance of PSD-based bias correction be-
 754 comes more pronounced in link prediction. With a GCN backbone, w/o PSD shows an AUC drop
 755 of -0.177 on Cora and -0.205 on Citeseer. Results on Photo and Computer suggest that PSD-
 based correction substantially improves overall performance, although the additional gain can be

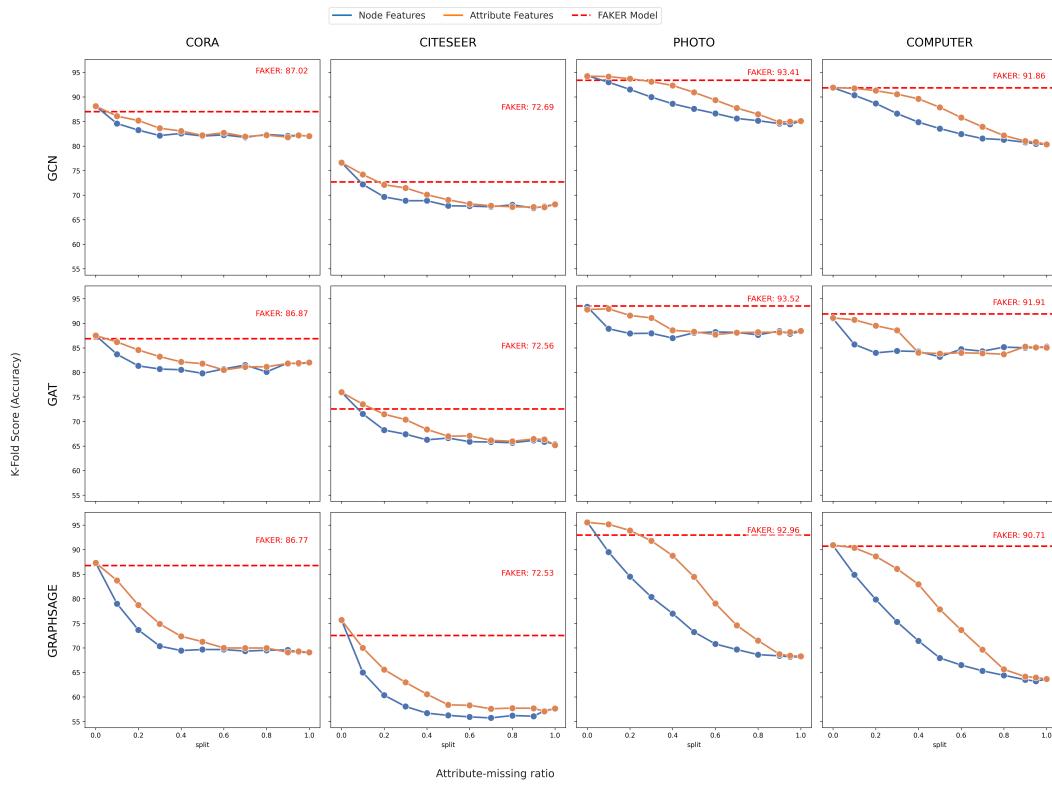


Figure 5: Accuracy comparison between GNN models and FAKER under different attribute-missing rates, where “-Node” replaces a ratio of nodes’ feature vectors with noise and “-Attribute” replaces a ratio of feature dimensions with noise.

limited when the backbone model approaches saturation. The presence or absence of SI exerts only a marginal effect on link prediction. This finding indicates that in a topology-focused task such as link prediction, bias-corrected dynamic walk embeddings already capture most of the necessary information.

Table 6: Ablation study on node classification (Accuracy).

Method	Cora	Citeseer	Photo	Computer
FAKER-GAT w/o PSD	85.49 ± 0.55	70.52 ± 0.88	92.53 ± 0.04	91.62 ± 0.17
FAKER-GAT w/o SI	86.76 ± 0.35	72.37 ± 0.39	93.34 ± 0.06	91.11 ± 0.11
FAKER-GAT	86.87 ± 0.42	72.56 ± 0.16	93.52 ± 0.09	91.91 ± 0.02
FAKER-GraphSAGE w/o PSD	84.81 ± 0.40	68.05 ± 1.33	91.90 ± 0.27	89.98 ± 0.23
FAKER-GraphSAGE w/o SI	86.37 ± 0.21	72.02 ± 0.59	92.66 ± 0.07	90.02 ± 0.16
FAKER-GraphSAGE	86.77 ± 0.22	72.53 ± 0.50	92.96 ± 0.12	90.71 ± 0.11

B HYPERPARAMETER SWEEPS

Setup. We fix all hyperparameters to the defaults in Appendix A.3 and vary one hyperparameter at a time: SGNS epochs (learning_epoch), SGNS embedding size (n2v_d), GNN hidden size (gnn_d), GNN epochs (epoch), (p, q) sensitivity λ_{pq} (pq), allocation weight λ_{train} (train_weight), the threshold τ (freq_val), and walk length L (walklen). All runs use FAKER-GCN under a fixed walk-token budget, and we report mean \pm std over 10 seeds.

810

811

812

813

Table 7: Ablation study on link prediction (AUC/AP).

Method	Cora		Citeseer		Photo		Computer	
	AUC	AP	AUC	AP	AUC	AP	AUC	AP
FAKER-GCN w/o PSD	0.766 \pm 0.017	0.791 \pm 0.021	0.730 \pm 0.014	0.778 \pm 0.011	0.981 \pm 0.001	0.979 \pm 0.001	0.977 \pm 0.001	0.977 \pm 0.001
FAKER-GCN w/o SI	0.939 \pm 0.002	0.958 \pm 0.001	0.917 \pm 0.011	0.933 \pm 0.014	0.987 \pm 0.001	0.985 \pm 0.001	0.993 \pm 0.001	0.988 \pm 0.001
FAKER-GCN	0.943 \pm 0.001	0.958 \pm 0.001	0.935 \pm 0.002	0.953 \pm 0.001	0.993 \pm 0.001	0.992 \pm 0.001	0.994 \pm 0.001	0.994 \pm 0.001
FAKER-GAT w/o PSD	0.763 \pm 0.016	0.799 \pm 0.016	0.722 \pm 0.016	0.774 \pm 0.011	0.976 \pm 0.002	0.972 \pm 0.003	0.976 \pm 0.001	0.979 \pm 0.001
FAKER-GAT w/o SI	0.938 \pm 0.001	0.958 \pm 0.001	0.917 \pm 0.001	0.944 \pm 0.001	0.990 \pm 0.001	0.985 \pm 0.001	0.990 \pm 0.001	0.988 \pm 0.001
FAKER-GAT	0.939 \pm 0.001	0.958 \pm 0.001	0.925 \pm 0.002	0.949 \pm 0.002	0.995 \pm 0.002	0.994 \pm 0.001	0.993 \pm 0.001	0.992 \pm 0.001
FAKER-GraphSAGE w/o PSD	0.719 \pm 0.096	0.738 \pm 0.111	0.704 \pm 0.021	0.747 \pm 0.027	0.982 \pm 0.003	0.982 \pm 0.003	0.980 \pm 0.001	0.979 \pm 0.001
FAKER-GraphSAGE w/o SI	0.928 \pm 0.001	0.945 \pm 0.001	0.917 \pm 0.001	0.944 \pm 0.001	0.991 \pm 0.001	0.989 \pm 0.001	0.993 \pm 0.001	0.992 \pm 0.001
FAKER-GraphSAGE	0.924 \pm 0.021	0.945 \pm 0.019	0.949 \pm 0.003	0.960 \pm 0.002	0.992 \pm 0.001	0.990 \pm 0.001	0.993 \pm 0.001	0.992 \pm 0.001

814

815

816

817

818

819

820

821

Result. (1) **Model dimension.** Increasing $n2v_d$ and gnn_d yields small, monotonic gains up to typical sizes, then plateaus. (2) **Diagnosis & control.** Within broad ranges, λ_{pq} and τ have mild effects. mid-range settings work best across datasets. Using small values for the allocation weight (train_weight) resulted in performance degradation on certain datasets. (3) **Walk length.** Larger L improves accuracy up to $L=40$. beyond that, returns diminish under a fixed token budget. (4) **Overall robustness.** Curves change smoothly and exhibit wide plateaus, indicating a low tuning burden. Unlike pipelines that require fragile, fine-grained hyperparameter search, FAKER remains stable across SGNS/GNN training knobs and diagnosis/actuation parameters.

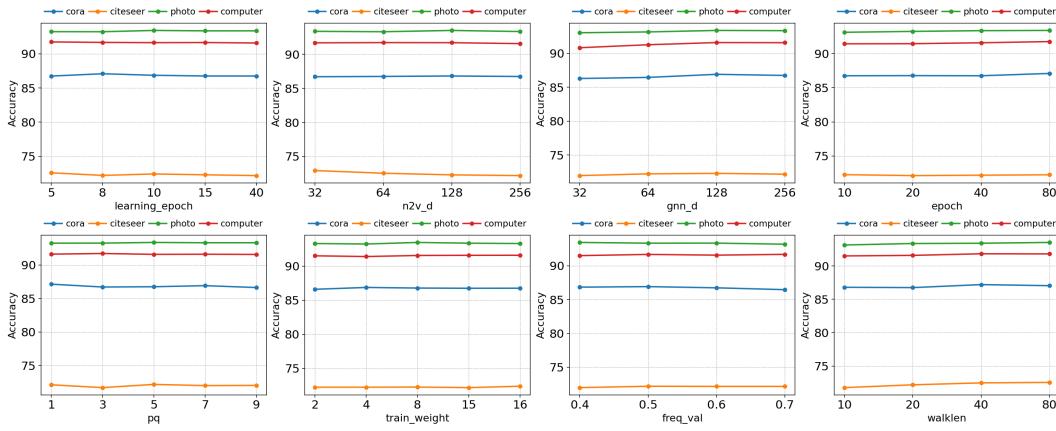


Figure 6: Robustness of our model under variations of training and bias-diagnosis hyperparameters.

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863