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Abstract

Multimodal sarcasm understanding is a high-order cognitive task. Although large language
models (LLMs) have shown impressive performance on many downstream NLP tasks, grow-
ing evidence suggests that they struggle with sarcasm understanding. In this paper, we
propose Commander-GPT, a modular decision routing framework inspired by military com-
mand theory. Rather than relying on a single LLM’s capability, Commander-GPT orches-
trates a team of specialized LLM agents where each agent will be selectively assigned to a
focused sub-task such as context modeling, sentiment analysis, etc. Their outputs are then
routed back to the commander, which integrates the information and performs the final
sarcasm judgment. To coordinate these agents, we introduce three types of centralized com-
manders: (1) a trained lightweight encoder-based commander (e.g., multi-modal BERT);
(2) four small autoregressive language models, serving as moderately capable commanders
(e.g., DeepSeek-VL); (3) two large LLM-based commander (Gemini Pro and GPT-40) that
performs task routing, output aggregation, and sarcasm decision-making in a zero-shot fash-
ion. We evaluate Commander-GPT on the MMSD and MMSD 2.0 benchmarks, comparing
five prompting strategies. Experimental results show that our framework achieves 4.4% and
11.7% improvement in F1 score over state-of-the-art (SoTA) baselines on average, demon-
strating its effectiveness.

1 Introduction

The era of large language models (LLMs) has been propelled by the scaling laws of language models and the
emergence of capabilities with increasing model scale. SoTA LLMs, such as GPT-40 (Achiam et al}, 2023),
Claude 45]7 DeepSeek R1 (DeepSeek-Al et all, 2025), Qwen 3 ([Yang et ali, 2025), et., have demonstrated
remarkable performance across a wide range of downstream natural language processing (NLP) tasks, includ-
ing question answering, machine translation, commonsense reasoning, and code generation. These models
exhibit impressive zero-shot and few-shot generalization abilities, leading to the belief that LLMs may have
reached a critical threshold of general intelligence (Zhang et all, 2025).

Despite these advances, sarcasm understanding remains a significant and unresolved challenge. Sarcasm
is a nuanced linguistic phenomenon that often employs rhetorical devices such as irony, hyperbole, and
contradiction to express sentiments that diverge sharply from the literal meanings of words ([Liu et al), 2023b).
For example, the sentence “Oh great, another meeting that could have been an email.” appears to express
enthusiasm, but in reality, conveys frustration or annoyance, its sarcastic tone hinging on pragmatic context
and emotional subtext. Accurate sarcasm detection requires a combination of contextual reasoning, emotional
inference, and figurative language interpretation, multi-modal interaction, etc., all of which demand high-
order cognitive capabilities.

The growing evidence proves that even state-of-the-art models such as GPT-4, Claude 3.5 often perform
poorly on sarcasm detection, sometimes close to random guessing, as shown in Fig. [I| (Yao et al), 2025). This
observation challenges the prevailing assumption that general-purpose LLMs, by virtue of their scale, can

Lhttps://www.anthropic.com/news/claude-4



Under review as submission to TMLR

Query: Is the input: “Love it when my mans on a THTSemEVaI2018 —==MusARD  =e=IACV1
cleaning spree.. Saves me doingit @B B 90
sarcastic or not?
dﬁ\lz GPT-40: No, this sentence is not sarcastic.
&= The added emojis significantly shift the tone. 70
@ They convey affection, approval, and
playfulness, suggesting the speaker genuinely
appreciates that their partner is cleaning.
50
.@. Llama 3-8B: Yes, this sentence is likely
@y sarcastic. The addition of the thumbs up and
@ multiple hearts emojis makes it even clearer
that the tone is sarcastic. The speaker is not 30
actually happy about their partner's cleaning GPT-40 Claude Llama3- Qwen 2- Rondom
enthusiasm. 35 8B B
(a) An example of using LLMs (b) Comparative results across LLMs and Random

Figure 1: LLM Performance on three sarcasm datasets in prior work.

seamlessly handle high-level pragmatic tasks. This discrepancy reveals a fundamental limitation: current
methods treat sarcasm detection as an undivided, end-to-end task, relying on a single model to implicitly
execute multiple layers of reasoning. These include sentiment recognition, rhetorical structure identification,
contextual interpretation, and visual-textual alignment. Without explicit modeling of these sub-tasks, even
powerful LLMs often fail to capture the complex and composite nature of sarcasm, particularly in multimodal
scenarios.

To this end, we propose Commander-GPT, a structured multi-agent framework that decomposes sarcasm
detection into six cognitively meaningful sub-tasks. They are: context modeling, sentiment analysis, rhetorical
device recognition, facial expression recognition, image summarization, and scene text recognition. Fach sub-
task is handled by an expert LLM or MLLM agent. Rather than invoking all agents for every input, the
commander first analyzes the input and then activates only the agents that are most suitable for handling
the relevant_sub-tasks by introducing the routing scorer. In addition, BLIP-2 (Li et al|, 2022), Vision
Transformerd, and OCR-2.0 (Wei et al), 2024) are selected as vision agents for image summarization, facial
expression_recognition, and scene text recognition, respectively, while Llama 3-8BH, Qwen 2.5—1.5BE, and
RoBERTaH serve as linguistic specialists. Their outputs are then routed back to the commander, which
integrates the information and performs the final sarcasm judgment.

To coordinate these agents, we introduce three types of centralized commanders: (1) a trained lightweight
encoder-based commander (e.g., multi-modal BERT); (2) four small autoregressive language models, serving
as moderately capable commanders (e.g., DeepSeck-VL-7B); (3) two large LLM-based commander (Gemini
Pro and GPT-40) that performs task routing, output aggregation, and sarcasm decision-making. This diverse
commander configuration enables a comprehensive exploration of the trade-offs between performance and
scalability.

Finally, we conduct empirical evaluations of Commander-GPT on two benchmark datasets: MMSD and
MMSD 2.0. We compare our framework against five state-of-the-art (SoTA) prompting strategies (e.g.,
Chain-of-Thought, Plan-and-Solve, S Agent, etc.). Experimental results highlight three key observations:
(1) Commander-GPT achieves 4.4% and 11.7% improvement in F1 score over strong baselines, demonstrating
the effectiveness; (2) despite advances in large multimodal language models (MLLMs), fine-tuned small
models (such as BERT) still exhibit stronger sarcasm detection capabilities; (3) the Commander-GPT model
demonstrates robust generalization across diverse backbone LLMs and domains.

Our contributions are summarized as follows:

2https://huggingface.co/motheecreator/vit—Facial—Expression—Recognition
Shttps://huggingface.co/meta-1lama/Meta-Llama-3-8B
4https://huggingface.co/THUDM/Qwen2.5-1.5E
Shttps://huggingface.co/SamLowe/roberta-base-go_emotions
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Figure 2: The overall architecture of Commander-GPT.

e We propose Commander-GPT, a modular multi-agent framework for multimodal sarcasm detec-
tion.

o We introduce a set of centralized commanders with varying model capacities and conduct a system-
atic comparison of their orchestration ability in sarcasm detection.

e We present extensive experiments on MMSD and MMSD 2.0, showing that Commander-GPT
achieves 4.4% and 11.7% F1 improvement over SoTA baselines on average.

2 The Proposed Approach

2.1 Problem Formulation

Consider a multimodal sarcasm detection task where we are given a dataset D = (xi7yi)£\;1, where each
instance x; = (t;,v;) consists of a textual component ¢; € T and a visual component v; € V, and y; € 0,1
represents the binary sarcasm label. The objective is to learn a function f : 7 x V — 0,1 that accurately
predicts sarcasm labels.

Traditional approaches employ a single monolithic model M to directly map the multimodal input to the
prediction: f(¢,v) = M(t,v). However, as established in prior work, this paradigm suffers from the inherent
complexity of sarcasm understanding, which requires simultaneous processing of multiple linguistic and
visual cues that may exhibit semantic contradictions. In this work, we propose a fundamentally different
approach inspired by military command structures. We decompose the complex sarcasm detection task into
K specialized subtasks, where each subtask 7, for & € 1,2,..., K focuses on extracting specific types of
information.

We assume access to a collection of expert models A = Ay, Ao, ..., Ay, where each agent A; has varying
capabilities across different subtasks. The capability of agent A; for subtask 7, is characterized by a perfor-
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mance score ;i € [0,1], where higher values indicate better suitability. The core challenge lies in learning
an optimal assignment function « : 1,2,..., K — 1,2,..., M that maps each subtask 75 to the most appro-
priate agent A, ). This assignment should maximize the overall system performance while considering the
complementary strengths of different agents.

Given the assignment function «, each subtask 7 produces an intermediate output zx = ¢ (x;) through the
assigned agent A, ). The final prediction is made by a commander model C that aggregates all intermediate
representations:

Fti,vi) = Clznpey) = C(1(ts), da(ts), ¢3(ti), dal(vs), d5(vi), d6(vs)) (1)

The commander model C serves as the central decision-making unit, analogous to a military command center
that processes intelligence reports from specialized units and makes strategic decisions. This hierarchical
architecture enables specialized processing while maintaining global coordination through the commander’s
integrative reasoning capabilities. The optimization objective is to learn both the assignment function o and
the commander model parameters 6 that minimize the expected sarcasm detection error:

minE(z,y) ~ D[L{y, f(z; 0, 6C))] (2)
where L represents the binary cross-entropy loss function. This formulation captures the essence of our
military-inspired approach: strategic task decomposition, specialized agent deployment, and centralized
command coordination.

2.2 Subtask Division

Sarcasm understanding often involves: (1) understanding the broader context and pragmatic implications,
(2) recognizing the surface-level emotional expression, (3) detecting linguistic markers such as irony and
hyperbole, (4) interpreting visual emotional cues that may contradict textual sentiment, (5) understanding
the visual scene context, and (6) processing any textual information embedded in images, as shown in
Fig. P. Based on this theoretical foundation, we decompose the complex sarcasm detection task into K = 6
cognitively meaningful subtasks, where each subtask 74 focuses on extracting specific types of information
that contribute to sarcasm understanding:

e 71: Context Modeling: Analyze broader conversational context and pragmatic implications from
text t: ¢1(t) — P, where P denotes the pragmatic interpretation space.

o T5: Sentiment Analysis: Extract fine-grained emotional polarity from text t: ¢2(t) — S, where
S € R? represents multi-dimensional emotion categories (e.g., joy, anger, surprise). This identifies
the surface-level emotional expression.

« 73: Rhetorical Device Recognition: Identify linguistic patterns and rhetorical structures in text
t: ¢3(t) — R, where R represents rhetorical markers such as irony, hyperbole, and understatement.

o 74: Facial Expression Recognition: Extract facial emotions from image v: ¢4(v) — &, where
£ € R7 represents basic emotion categories (happy, sad, angry, fear, surprise, disgust, neutral).

o 75: Image Summarization: Generate comprehensive scene description from image v: ¢5(v) — D,
where D represents natural language descriptions of visual content and scene context.

o 75: Scene Text Recognition: Extract textual content embedded in image v: ¢¢(v) — T scene,
where T scene represents text sequences found in the visual scene.

This decomposition is motivated by the observation that sarcasm often emerges from contradictions between
these different information layers. For instance, a text expressing positive sentiment (72) accompanied by a
person’s annoyed facial expression (74) in a chaotic scene (75) may indicate sarcastic intent. By explicitly
modeling these components, our framework can capture the nuanced interplay that previous approaches
often miss.
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2.3 Routing Approach

The routing scorer is a core component in Commander-GPT, enabling the commander to dynamically select
relevant sub-task agents for a given input « = (¢,v). We provide two representative instantiations: a learnable
classifier (e.g., BERT-based commander) and a prompt-based approach for LLMs (e.g., GPT-40, DeepSeek
VL).

Learnable Routing Classifier (Multimodal BERT based Commander). Let K denote the total
number of sub-tasks {7, }5_,. For each input x = (¢,v), we construct K paired samples (z,T}), where
T}, is the descriptor for sub-task 7 (e.g., “sentiment analysis”). The routing scorer outputs an activation
probability for each sub-task:

pe(x) = Po(ri = 1| 2, Ty) = o (wy hows(z, Ti) + by) (3)

where hcors(x,T,) = Fusion(BERT(¢), ViT(v), Ti) denotes the fused multimodal representation obtained
by combining the BERT-encoded text t, the ViT-encoded image v, and the sub-task descriptor T}. Here,
Fusion(-) can be implemented as feature concatenation. The parameters wy, by, are trainable for each sub-
task, and o is the sigmoid function.

To train the routing classifier, we require a labeled routing dataset Dyoute = {(xs, Tk, 7ir) }- We distill agent
activation decisions from a powerful instruction-tuned vision-language model, GPT-40. Specifically, for each
training sample x; = (¢;,v;) and each sub-task descriptor T}, we prompt GPT-4o with a question such as:

Input: <t_i, v_i>
Task: Does this input require the "<T__k>" analysis step?
Answer ”Yes” or "No”.

The binary response is recorded as the activation label r;; € {0,1}. In this work, we distill approximately
5,000 routing supervision instances, enabling scalable and reliable training of the routing classifier.

The routing scorer is trained by minimizing the binary cross-entropy loss:

N K

1
‘Croute = _ﬁ ot [rik Ingk(xz) + (1 - rik) log(l _pk(xz))] (4)

During inference, agent Ay, is activated for x if pi(x) > ay, where ay, € [0, 1] is a tunable threshold.

Prompt-based Routing (LLM Commander). For instruction-tuned LLMs (e.g., GPT-40, DeepSeck
VL), agent routing is formulated as a natural language inference task. For each (x,T}), we construct the
prompt (see App. A3).

The LLM My,m is queried with Z(x, Tx) and returns a textual response, which is mapped to ri(z) € {0,1}
(1 if “Yes”, 0 if “No”). This approach requires no explicit training and leverages the zero-shot or few-shot
abilities of modern LLMs.

2.4 Subtask Execution

Once the routing scorer identifies the relevant sub-task agents for a given input x; = (¢;,v;), each activated
agent Ay € A,, independently processes its assigned sub-task 7. These specialized agents operate in
parallel, leveraging their unique capabilities to extract specific types of information from the textual and
visual components of x;.

Linguistic Specialists. For the textual component ¢; of x;, three linguistic specialist agents are employed:
o Context Modeling Agent (Llama 3-8B): Analyzes broader conversational context and prag-

matic implications via: z; = ¢1(¢;) = Llama 3(“Analyze the contextual implications: ” + ¢;), where
z1 captures deeper meaning and situational context.
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o Sentiment Analysis Agent (RoBERTa): Extracts fine-grained sentiment polarity using a fine-
tuned RoBERTa: z2 = ¢2(t;) = RoBERTaemotions(ti) € R3, a 3D vector representing positive,
neutral, and negative sentiments.

o Rhetorical Device Agent (Qwen 2.5-1.5B): Identifies linguistic patterns and rhetorical struc-
tures (irony, hyperbole, understatement) using: z3 = ¢3(t;) = Qwen-1.5B oionic (i), highlighting
key linguistic markers of sarcasm.

Visual Specialists. For the visual component v;, three visual specialist agents are employed:

o Facial Expression Agent (ViT-FER): Recognizes facial emotions with a Vision Transformer:
24 = ¢4(v;) = ViT-FER(v;) € R, outputting a 7D vector (e.g., happy, sad, angry).

o Image Summarization Agent (BLIP-2): Generates natural language scene descriptions: z5 =
¢5(v;) = BLIP-2(v;) — natural language description, providing high-level understanding.

o Scene Text Agent (OCR-2.0): Extracts embedded text in the image: zs = ¢g(v;) =
OCR-2.0(v;) — extracted text sequence, which may be crucial for sarcasm.

Each activated agent produces a structured output z; (information and confidence scores). Parallel execution
ensures computational efficiency and precise analysis for complex sarcasm understanding.

2.5 Result Integration

After all activated agents have processed their respective sub-tasks, the Commander module C is responsible
for integrating the intermediate outputs {zx }re4,..... and making the final sarcasm prediction.

Lightweight Encoder-Based Commander. For encoder-based commanders (e.g., multi-modal BERT),
we concatenate the outputs of all activated agents and project them through a learned fusion and classification
head:

Ut
~

hysea = concat([zy for k € Aactive)) (
hcontext = BERT([CLS, hfused§ SEP]) (
@ = SOftInaX(Wouthcontcxt + bout)

—
N
AN

where W, € R2Xdniaden and b, € R? are trainable parameters for binary classification.

LLM Commander. For moderately-sized language model commanders (e.g., DeepSeek-VL-7B) and large-
scale LLM-based commanders (e.g., GPT-40 and Gemini Pro), all agent outputs are presented as a compre-
hensive structured prompt, and the LLM predicts both the sarcasm label and explanation:

Pinput = Templa’te({zk}keAactive) (8)
9 = CLm(Pinput) — {Sarcastic, Non-sarcastic} (9)

This three-stage architecture ensures that our Commander-GPT framework maintains both the specialized
expertise of individual agents and the strategic coordination capabilities of military command structures,
leading to more accurate and interpretable sarcasm detection results.

3 Experiments

In this section, we conduct comprehensive experiments on two widely-used multimodal sarcasm detection
benchmarks, MMSD ((Cai et all, 2019) and MMSD 2.0 (Qin et al), 2023).
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Table 1: Statistics of the MMSD and MMSD 2.0 datasets.

Dataset Train Validation Test Sarcastic Non-sarcastic Source
MMSD 19,816 2,410 2,409 10,560 14,075 Twitter
MMSD 2.0 19,816 2,410 2,409 11,651 12,980 Twitter

3.1 Datasets

MMSD: The MMSD dataset is a benchmark for multimodal sarcasm detection, comprising paired tex-
tual and visual data collected from Twitter. Each example consists of a tweet and its associated image,
with ground-truth sarcasm annotations. The textual content frequently features subtle or implicit sarcasm,
while the accompanying images provide additional context, making the task especially challenging for both
unimodal and multimodal models.

MMSD 2.0: MMSD 2.0 is an enhanced and extended version of MMSD, designed to support more robust
evaluation of multimodal sarcasm detection systems. Compared to its predecessor, MMSD 2.0 significantly
increases both the diversity of visual content and the quality of text-image alignment. It introduces more
challenging cases where understanding sarcasm requires reasoning over complex interactions between modal-
ities. Key statistics and properties of the two datasets are summarized in Table m

3.2 Experimental Settings

Implementation Details. All experiments are conducted on a server equipped with two NVIDIA RTX
4090 GPUs and 256GB RAM. The Commander-GPT framework is implemented using PyTorch, Hugging-
Face Transformers, and OpenMMLab toolkits. For models requiring supervised training (e.g., BERT-based
commander and routing classifier), we use a batch size of 64, a maximum sequence length of 512, and the
Adam optimizer with an initial learning rate of 2 x 107°. All hyperparameters are tuned on the valida-
tion set unless otherwise specified. For LLMs, we only perform inference without any parameter tuning or
fine-tuning.

Baselines and Commander Configurations. We compare Commander-GPT against five representative
prompting and reasoning baselines:

o Plan-and-Solve (Wang et al), 2023): A pipeline prompting strategy that first plans the solution
steps and then solves each subproblem sequentially.

o Zero-shot CoT (Kojima et al), 2022): A zero-shot chain-of-thought prompting method that enables
step-by-step reasoning without requiring labeled demonstrations.

o Generated Knowledge Prompting (Liu et all, 2021)): A method that augments the input with
external knowledge generated by a language model to enhance reasoning.

o Automatic Prompt Engineer (Zhou et all, 2022): A technique that automatically searches for
and optimizes prompt templates to maximize downstream task performance.

o S3 Agent (Wang et al), 2024a): A multi-agent coordination framework for complex task decompo-
sition and solution synthesis.

We further evaluate Commander-GPT under seven commander configurations, ranging from lightweight
encoder-based commanders (BERT). to four medium-sized autoregressive LLMs (Yi-VL (6B) ([Young et al,,
2024), DeepSeek-VL-Chat (7B) (Lu et al), 2024), Qwen-VL-Chat (9B) (Bai et all, 2023), and MiniCPM-V-2
(2.8B) (Hu et al), 2024)), and two large instruction-following LLMs (Gemini Pro and GPT-4o0).
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3.3 Main results

Table E summarizes the performance of different commander architectures at three scales: lightweight
encoder-based, small open-source LLMs, and SoTA proprietary LLMs. For all experiments, our routing-
based method achieves the highest F1 scores and provides significant improvements over corresponding
baselines.

Lightweight Encoder-Based Commander. The BERT-+ViT-based commander represents the
lightweight solution with minimal model size (110M parameters). Compared to direct fine-tuning, our
routing method achieves substantial absolute gains: on MMSD, F1 improves from 80.8 to 86.7 (+5.9), and
on MMSD 2.0 from 77.2 to 85.8 (48.6). This corresponds to relative improvements of 7.3% and 11.1%,
respectively. The results indicate that even for parameter-efficient models with limited multimodal reason-
ing ability, our approach enables more effective use of learned features, significantly boosting both overall
accuracy and robustness.

Small Autoregressive LLMs Commander. For the small open-source LLMs group (Yi-VL, DeepSeek-
VL-Chat, Qwen-VL-Chat, MiniCPM-V2), our method consistently outperforms all competitive prompting
and multi-agent baselines. On MMSD 2.0, F1 improvements are especially pronounced: +23.6 (Yi-VL),
+8.5 (DeepSeek-VL-Chat), +10.3 (Qwen-VL-Chat), and +22.8 (MiniCPM-V2). For instance, Qwen-VL-
Chat reaches 68.9 F1 versus 58.6 for the best prior method, and MiniCPM-V2 rises from 49.2 to 72.0 F1.
These results suggest that our approach is highly effective at extracting complementary information from
multiple sub-agents in smaller models, compensating for their individual limitations.

SoTA LLMs Commander. For the strongest closed-source models (Gemini Pro, GPT-40), the routing
approach continues to yield improvements, though the margins are reduced compared to smaller models
due to the high baseline performance. On MMSD 2.0, Gemini Pro improves from 67.4 to 71.9 F1 (+4.5),
and GPT-4o increases from 73.2 to 76.5 F1 (43.3). This demonstrates that even state-of-the-art models,
which already possess advanced multi-modal capabilities, benefit from structured subtask decomposition and
information routing.

Summary. In conclusion, our method consistently improves F1 performance across all commander types,
with the most dramatic relative gains observed in lightweight and small open-source models. The gap
in improvement narrows as the model scale increases, suggesting diminishing returns for extremely strong
baselines. Nevertheless, the overall trend validates the generality and scalability of our routing architecture,
establishing its effectiveness across a wide range of model sizes and types.

3.4 Comparison of Commander Models

Fig. B (see App. A4) presents the F1 scores of various commander models on the MMSD and MMSD 2.0
datasets. The results reveal significant performance differences among LLM backbones. BERT achieves
the highest F1 scores (86.7 on MMSD, 85.8 on MMSD 2.0), primarily due to its fine-tuned nature on
the sarcasm detection task. In contrast, mainstream vision-language models, such as Yi-VL (59.1/55.3)
and DeepSeek-VL (61.1/60.5), perform substantially worse, likely due to their weaker language modeling
capability or suboptimal adaptation to sarcasm-rich domains. Larger multimodal models like Qwen-VL,
MiniCPM-V2, Gemini Pro, and GPT-40 show a clear performance hierarchy: GPT-40 delivers the strongest
results among MLLMs (81.4/76.5), benefiting from both superior language modeling and robust multi-modal
reasoning. Overall, these results highlight the importance of both model architecture and scale for effective
sarcasm detection, and demonstrate that Commander-GPT can flexibly leverage a wide range of LLMs, with
significant performance gain observed as model quality improves.

3.5 Ablation Study

Table E and Table H present the ablation results on the MMSD and MMSD 2.0 datasets, respectively.
Across all models, removing any single sub-task module leads to a noticeable drop in both F1 and accuracy
(%), confirming the necessity of each component. For all three models, the largest relative performance
degradation occurs when either Rhetorical Device Recognition or Context Modeling is ablated. For example,
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Table 2: Main Experimental Results. The bolded numbers indicate the best performance. Additionally, we
calculated the increase in the F1 score.

MMSD MMSD 2.0
Model Parameters  Method F1 Acc. Pre. Rec. F1 Acc. Pre. Rec.
Lightweight Encoder-Based Commander
. BERT (Fine-tuned 80.8 82.6 81.2 80.1 7.2 79.7 774 758
BERT+VIT 110M Ours ( ) 86.7 (5.91) 90.1 87.4 86.1 85.8 (8.67) 87.4 86.1 853
Small Autoregressive LLMs Commander

Zero-shot CoT 45.8 59.2 51.4 41.4 6.1 16.2 6.0 6.3

Automatic Prompt Engineer 49.4 53.3 45.0 54.7 4.3 14.2 4.2 4.5

ViV, 6B Plan-and-Solve 51.3 62.6 56.2 47.2 44 9.2 4.0 4.8
Generated Knowledge Prompting 52.7 55.7 47.5 59.2 4.3 11.2 4.0 4.6

S3 Agent 52.3 414 39.6 77.0 31.7 54.3 44.4 24.6
Ours 59.1 (6.47) 70.8 71.2 50.5 55.3 (23.61) 67.9 69.0 46.1

Zero-shot CoT 54.4 65.3 60.1 49.8 48.8 62.8 59.8 41.3

Automatic Prompt Engineer 55.1 68.0 66.4  47.6 46.6 62.3 59.7 38.2

Plan-and-Solve 54.9 61.9 54.3 55.5 48.3 63.0 60.5 40.2

DeepSeek-VL-Chat B Generated Knowledge Prompting 55.6 56.8 48.7  65.0 27.5 58.1 53.8 18.5
53 Agent 59.7 45.3  43.1  59.7 52.0 64.9 63.3 44.1
Ours 61.1 (1.47) 69.4 649 577  60.5 (8.57) 467 444 947

Zero-shot CoT 66.4 66.0 56.5  80.7 33.6 40.0 320 353

Automatic Prompt Engineer 64.5 60.5 51.6 86.0 33.3 40.4 32.1 34.5

Plan-and-Solve 59.4 64.8 57.2 61.8 34.8 38.7 32.1 38.0

Qwen-VL-Chat 9B Generated Knowledge Prompting 50.9 67.1  64.7 409 28.0 389 384 376
S3 Agent 68.1 67.5 57.6 83.3 58.6 63.3 57.0 60.4
Ours 69.3 (1.21) 68.2 580 86.2 68.9 (10.31) 67.7 58.8 83.2

Zero-shot CoT 61.4 68.1 621  60.7 33.0 51.6  40.9 27.7

Automatic Prompt Engineer 63.2 69.2 63.1 63.4 31.2 48.0 36.2 274

.. Plan-and-Solve 60.9 66.0 585  63.5 37.7 46.8 380 374
MiniCPM-V2 2.88 Generated Knowledge Prompting 63.2 675 599  66.8 475 473 416 553
S3 Agent 60.8 66.6 59.6 62.0 49.2 62.9 60.0 41.8

Ours 72.5 (9.31) 74.5 65.9 80.8 72.0 (22.87) 73.9 66.8 78.1

SoTA LLMs Commander

Zero-shot CoT 67.2 714 628 705 59.4 61.1  53.9 66.1

Automatic Prompt Engineer 68.7 72.8 64.1 73.9 60.0 60.4 53.1 68.1

Gemini Pro 600B Plan-and-Solve 66.3 70.2 625 718 53.7 56.5  49.6  58.5
Generated Knowledge Prompting 69.5 73.6 66.3 74.2 65.1 61.7 53.6 82.8

S3 Agent 70.1 74.9 67.8 75.7 67.4 66.5 58.0 80.3

Ours 73.8 (3.71) 76.2 70.1 78.3 71.9 (4.57) 73.8 68.4 T6.7

Zero-shot CoT 74.2 785 713 774 68.9 742 65.8 726

Automatic Prompt Engineer 75.8 79.1 72.9 78.9 70.3 75.6 67.1 73.8

Plan-and-Solve 73.6 77.8 70.2 77.1 67.4 73.1 64.2 71.0

GPT-do 3008 Generated Knowledge Prompting 76.3 79.7 73.5 79.2 71.8 76.4 68.9 75.1
S3 Agent 77.9 80.2 74.6 81.5 73.2 77.8 70.3 76.4
Ours 81.4 (3.51) 83.1 78.9 84.2 76.5 (3.31) 79.7 74.6 79.4

on MMSD, removing Rhetorical Device Recognition results in a 24.7% F1 decrease for DeepSeek-VL (from
61.1% to 27.9%), a 7.2% drop for MiniCPM-V2, and a 5.2% decrease for GPT-40. Removing Context
Modeling leads to a 6.9% F1 drop for DeepSeek-VL, 0.1% for MiniCPM-V2, and 2.5% for GPT-40. On
MMSD 2.0, similar trends are observed, with the ablation of Rhetorical Device Recognition causing up to
29.1% relative F1 drop for DeepSeek-VL, and 3.5% for GPT-4o.

For other sub-tasks such as Sentiment Analysis, Facial Expression Recognition, Image Summarization, and
Scene Text Recognition, the impact is present but less pronounced, with typical F1 reductions ranging
from 0.2% to 1.1% for GPT-4o, and 0.5% to 1.3% for MiniCPM-V2. All models achieve their best F1
and accuracy when all six modules are integrated, validating the effectiveness and complementarity of the
full routing strategy. Overall, these results demonstrate that multi-dimensional sub-task collaboration is
critical for robust multi-modal sarcasm detection, with context and rhetorical information providing the
most substantial performance gains.

3.6 Subtask Invocation Frequency Analysis

Fig. E shows the invocation frequency for each subtask agent. Context Modeling, Sentiment Analysis,
and Image Summarization are triggered in all cases (2,409 times each), reflecting their necessity for every
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Table 3: Ablation study on the MMSD dataset.

MiniCPM-V2 ‘ DeepSeek-VL ‘ GPT-40

Ablation Setting

F1 Acc. | F1 Acc. | F1 Acc.
w/o Context Modeling 72.4 73.9 56.9 70.9 78.9  81.2
w/o Sentiment Analysis 71.3 72.2 60.2 71.9 79.1 814

w/o Rhetorical Device Recognition  66.0 72.4 27.9 63.9 77.2 79.8
w/o Facial Expression Recognition  71.2 72.2 41.7 66.8 785  81.0

w/o Image Summarization 71.4 73.1 43.8 67.3 78.8 81.3
w/o Scene Text Recognition 69.4 71.5 28.8 63.4 77.8 80.1
Full Model 72.5 74.5 61.1 69.4 81.4 83.1

Table 4: Ablation study on the MMSD 2.0 dataset.

MiniCPM-V2 | DeepSeek-VL | GPT-40

Ablation Setting

F1 Acc. | FI Acc. | F1 Acc.
w/o Context Modeling 72.1 73.6 59.4 43.1 74.1 7.2
w/o Sentiment Analysis 71.2 71.6 59.0 42.9 74.3 774

w/o Rhetorical Device Recognition  67.9 72.3 60.0 42.5 73.8 77.0
w/o Facial Expression Recognition 71.5 72.4 59.7 43.2 74.0 7.1

w/o Image Summarization 71.9 73.3 59.5 43.0 74.2 77.3
w/o Scene Text Recognition 67.9 62.2 60.2 43.1 73.2 76.4
Full Model 72.0 73.9 60.5 46.7 76.5 79.7

input. By contrast, Rhetorical Device Recognition, Facial Expression Recognition, and Scene Text
Recognition are conditionally invoked, with call counts of 1,479, 1,285, and 935, respectively. The lower
frequencies for the latter agents are due to the absence of rhetorical devices, facial expressions, or scene text
in a significant proportion of samples.

This distribution highlights two important findings. First, the frequency of subtask invocation is closely
linked to the nature of the input data (i.e., whether textual or visual clues are present). Second, agents
such as Facial Expression Recognition and Scene Text Recognition—though not always activated—capture
critical cues for sarcasm detection when relevant. These results further support the rationality of designing
dedicated subtasks and specialized agents, as each contributes unique information to the overall multi-agent
sarcasm understanding framework.

3.7 Out-of-Distribution Results

To evaluate the robustness and generalization of Commander-GPT, we conducted out-of-distribution sarcasm
detection experiments on the SemEval 2018 Task 3 dataset. We selected two LLMs as the commander: the
open-source MiniCPM-V2, and the SoTA model Claude-3.5 (serving as a new commander).

Fig. H reports the F1 and Acc. scores of all methods. On MiniCPM-V2, Commander-GPT achieves an F1 of
73.6% and an Acc. of 72.6%, outperforming all prompt-based and agent-based baselines. Specifically, com-
pared to the strongest baseline (S Agent, F1 69.5%, Acc. 67.5%), Commander-GPT brings improvements
of 4.1% and 5.1%, respectively.

When using Claude 3.5 as the commander, Commander-GPT still maintains the leading performance, achiev-
ing 62.1% F1 and 51.7% Acc. This exceeds the best baseline (Zero-shot CoT, F1 59.8%, Acc. 46.8%) by 2.3%
and 4.9%, respectively. It is worth noting that the performance boost remains consistent even when switching
to a more powerful closed-source model as the commander, demonstrating the flexibility and model-agnostic
nature of our framework.

Overall, these results confirm that Commander-GPT can robustly generalize to new domains and leverage
the advantages of different backbone LLMs. Whether with open-source or SOTA commercial models as the
commander, our framework consistently delivers state-of-the-art results in sarcasm detection.

3.8 The Impact of The Number of Subtasks

From the experimental results in Fig. E, it can be seen that as the number of submodules increases, the
model’s F1 score on the MMSD and MMSD 2.0 datasets follows a three-stage trend of “slow start, rapid
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Figure 3: Agent call frequency on the MMSD 2.0 dataset.
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Figure 4: The experimental results of MiniCPM-V-2 and Claude-3 on SemEval 2018 Task 3 were statistically
evaluated.

rise, then gentle plateau with a final slight boost.” The first two basic modules—Context Modeling and
Sentiment Analysis—bring only limited gains until the introduction of Image Summarization and Scene
Text Recognition triggers a substantial jump, with Scene Text Recognition especially filling the gap between
textual and visual information. Adding Rhetorical Device Recognition and Facial Expression Recognition
thereafter still yields improvements, but with diminishing marginal returns. On MMSD 2.0, thanks to higher
data quality, the modules cooperate more smoothly and deliver steadier performance gains. Therefore, under
resource constraints, priority should be given to Image Summarization and Scene Text Recognition, followed
by Rhetorical Device Recognition and Facial Expression Recognition, while cross-modal fusion strategies can
be explored to further unlock the potential of later modules.

3.9 Routing Score Visualization

To further interpret the decision mechanism of Commander-GPT, we visualize the routing scores assigned to
each subtask agent for representative samples from the MMSD 2.0 dataset. Fig. f presents a heatmap where
each column corresponds to an input sample and each row corresponds to one of the six subtask agents. The
color intensity indicates the routing score (i.e., the normalized weight assigned by the router to each agent).

The heatmap reveals clear patterns in the agent assignment. For samples containing explicit rhetorical
devices, the router assigns high scores to the Rhetorical Device Recognition agent. Samples with prominent
facial expressions or scene text result in higher weights for the Facial Fzpression Recognition and Scene

11
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Figure 5: F1 score variation curves for the MMSD and MMSD 2.0 datasets with varying numbers of sub-
modules, where the modules are added in the following order: Context Modeling, Sentiment Analysis, Image
Summarization, Scene Text Recognition, Rhetorical Device Recognition, and Facial Expression Recognition.

Text Recognition agents, respectively. In contrast, samples lacking such cues rely more on the Context
Modeling and Sentiment Analysis agents. This dynamic and adaptive score distribution demonstrates that
the router effectively identifies and leverages the most relevant subtasks for each input, thereby improving
interpretability and robustness.

Overall, the routing score visualization provides direct evidence that the proposed multi-agent architecture
can selectively integrate different information sources based on the input characteristics, supporting both
the transparency and effectiveness of our approach.

Scene Text Recognition

Sentiment Analysis

e NN |

Image Summarization

ST

Context Modeling

1 241 481 721 961 1201 1441 1681 1921 2161 2401

Figure 6: Heatmap of subtask agent counts on the MMSD 2.0 dataset.

4 Conclusion

In this paper, we proposed Commander-GPT, a novel multi-agent routing framework for multimodal sar-
casm detection. Our approach decomposes the complex sarcasm detection task into cognitively meaningful
subtasks, dynamically routing each input to the most suitable specialist agent. The central commander inte-
grates information from all subtask agents, enabling adaptive and fine-grained reasoning across both textual
and visual modalities. Extensive experiments on multiple benchmarks demonstrate that Commander-GPT
consistently achieves state-of-the-art performance. Further analyses confirm the effectiveness, robustness,
and strong generalization ability of our framework. We believe this work offers new insights into explainable
and modular design for sarcasm and sentiment analysis.

Limitations. Despite its advantages, Commander-GPT relies on the quality and diversity of available
subtask agents; limited agent expressiveness may restrict performance in highly novel or ambiguous scenarios.
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A Appendix

A.1 Related Work

A.1.1 Multimodal Large Language Models

Multimodal large language models (MLLMs) aim to unify language and vision understanding through joint
pretraining and alignment across modalities. Early frameworks such as CLIP (Radford et ali, 2021) and
BLIP (LLi et alf, 022) align vision and text representations through contrastive learning or caption supervision.
These models laid the groundwork for subsequent generative MLLMs like Flamingo (Alayrac et al), 2022),
MiniGPT-4 (Zhu et al), 2023), and LLaVA (Liu et al), 2023a), which integrate vision encoders with pretrained
LLMs via lightweight adapters or projection layers. These models support open-ended visual question
answering and caption generation. Qwen-VL (Bai et all, 2023), InternVL (Chen et al], 2024), and Emu2 (Sun
et al), 2024) further explore multi-granular alignment, spatial grounding, and tool-augmented multimodal
reasoning.

While MLLMs such as GPT-40 and Gemini have achieved strong performance in visual grounding and factual
question answering, they consistently underperform on high-level pragmatic tasks like sarcasm and irony ([Yac
et all, 2025; Yang et all, 2024). Sarcastic expressions often rely on rhetorical contradiction and contextual
incongruity, which current models struggle to capture. Notably, [Yao et al] (R025) proposed advanced
prompting strategies, i.e., graph-of-cue and bagging-of-cue to improve sarcasm detection, but found them
less effective than standard input—output approach. This suggests that increasing prompt complexity alone
cannot overcome the reasoning limitations of monolithic models. In contrast, our proposed Commander-GPT
framework explicitly decomposes sarcasm detection into specialized sub-tasks, each handled by expert agents
under centralized coordination, enabling more effective and interpretable multimodal sarcasm understanding.
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A.1.2 Multimodal Sarcasm Detection

Multimodal sarcasm detection is a complex task that requires the integration of linguistic, visual, and
contextual information to resolve non-literal intent and pragmatic ambiguity. In recent years, researchers
have explored a variety of neural architectures and multimodal fusion strategies to address the inherent
challenges of this task.

Recent work has shifted toward more advanced architectures that better capture the nuanced interplay
between modalities. For example, Wang et al| (20244) proposed the S3 Agent framework, which employs
visual large language models and integrates multi-perspective analysis to enhance zero-shot multimodal
sarcasm detection. Similarly, [Tang et al] (2024) utilized generative MLLMs equipped with instruction
templates and demonstration retrieval to improve the understanding of complex sarcastic cues. Aggarwal et
al. (Aggarwal et al|, 024) designed a framework capable of processing multimodal input triples—including
text, images, and descriptive captions—highlighting the benefit of incorporating multiple contextual sources.

To further enhance semantic understanding, researchers have explored the integration of external knowledge
bases. KnowleNet (Yue et all, 2023), for instance, leverages ConceptNet to inject prior knowledge and
assesses cross-modal semantic similarity at both sample and word levels. Other recent models, such as
RCLMuFN (Wang et al), 2024b), introduce relational context learning and multi-path fusion networks to
improve generalization and robustness in sarcasm detection.

Despite these advances, most existing methods either rely on monolithic model architectures or simple cross-
modal fusion, which often fail to capture the composite and context-dependent nature of sarcasm. In this
context, our proposed Commander-GPT addresses these challenges by decomposing multimodal sarcasm
detection into cognitively meaningful sub-tasks, each handled by a specialized agent under centralized coor-
dination. This design aims to improve the performance of multimodal sarcasm detection.

A.2 Algorithm

The algorithm is shown in Alg. E

Algorithm 1 Commander-GPT: Modular Multimodal Sarcasm Understanding

1: Input: Multimodal input = = (¢, v)
2: Output: Sarcasm prediction g

3: 1. Agent Routing:
4: Obtain agent activation vector [r1(z),...,rk(x)] using routing scorer.

5: Ay +— {Ak | rk(x) = 1}

6: 2. Subtask Execution:

7. for all activated agent Ay € A, in parallel do
8: Compute subtask output z = ¢ ()

9: end for

10: Collect all outputs z = [z | Ax € Ay]

11: 3. Result Integration and Final Decision:

12: if commander is encoder-based then

13: Fuse outputs: hgyseq ¢ concat(z)

14: Compute hidden: heoptext  BERT([CLS; htysea; SEP))
15: Predict: § = softmax(Woutheontext + Pout)

16: else

17: Format prompt pinpus from all 2
18: Predict: § = Crim (pinput)

19: end if
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Figure 7: Comparison of commander models on the MMSD and MMSD 2.0 dataset.

A.3 Prompt Construction

For instruction-tuned LLMs (e.g., GPT-4o, DeepSeek VL), agent routing is formulated as a natural language
inference task. For each (z,T}), we construct the prompt:

System: You are a military commander analyzing intelligence to deploy specialized units for sarcasm
detection.

Input: Text: "{<t_i>}”, Image: {<v_i>}

Task: Determine which of the following units should be deployed:

e “context_modeling”: Analyze broader conversational context
e ”sentiment_ analysis”: Extract emotional polarity

e “rhetorical device”: Identify irony, hyperbole, etc.

o "facial_expression”: Analyze facial emotions in image

e ”image summarization”: Describe visual content

e ”scene_text”: Extract text from image

Output: {”context_modeling”: 0/1, ”sentiment_ analysis”: 0/1, ...}

\ J

A.4 Comparison of Commander Models

Fig. H (App. A4) presents the F1 scores of various commander models on the MMSD and MMSD 2.0
datasets. The results reveal significant performance differences among LLM backbones. BERT achieves
the highest F1 scores (86.7 on MMSD, 85.8 on MMSD 2.0), primarily due to its fine-tuned nature on
the sarcasm detection task. In contrast, mainstream vision-language models, such as Yi-VL (59.1/55.3)
and DeepSeek-VL (61.1/60.5), perform substantially worse, likely due to their weaker language modeling
capability or suboptimal adaptation to sarcasm-rich domains. Larger multimodal models like Qwen-VL,
MiniCPM-V2, Gemini Pro, and GPT-40 show a clear performance hierarchy: GPT-40 delivers the strongest
results among MLLMs (81.4/76.5), benefiting from both superior language modeling and robust multi-modal
reasoning. Overall, these results highlight the importance of both model architecture and scale for effective
sarcasm detection, and demonstrate that Commander-GPT can flexibly leverage a wide range of LLMs, with
significant performance gain observed as model quality improves.
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