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ABSTRACT

Semi-supervised learning for LIDAR semantic segmentation often suffers from
error propagation and confirmation bias caused by noisy pseudo-labels. To
tackle this chronic issue, we introduce REPL, a novel framework that enhances
pseudo-label quality by identifying and correcting potential errors in pseudo-
labels through masked reconstruction, along with a dedicated training strategy. We
also provide a theoretical analysis demonstrating the condition under which the
pseudo-label refinement is beneficial, and empirically confirm that the condition
is mild and clearly met by REPL. Extensive evaluations on the nuScenes-lidarseg
and SemanticKITTI datasets show that REPL improves pseudo-label quality a lot
and, as a result, achieves the state of the art in LiDAR semantic segmentation.

1 INTRODUCTION

Outdoor LiDAR semantic segmentation, the task of assigning semantic labels to every point in out-
door 3D scenes, plays a crucial role in diverse applications such as autonomous driving (Pendleton
et al., 2017; [Roriz et al.| [2022; [Geiger et al., |2012) and robotics (Wang et al., 2024; [Serfling et al.,
2025)). Recent progress in this field has been largely driven by supervised learning on large-scale
point cloud datasets (Behley et al.l 2019} |[Fong et al.l 2021)). However, collecting dense annotations
for 3D point clouds is prohibitively costly and time intensive, which limits the scale and class diver-
sity of training data. To alleviate this bottleneck, a large body of research has explored data-efficient
training paradigms such as semi-supervised learning (Jiang et al., [2021; Kong et al.| 2023} |Li et al.,
2023;|L1 & Dongl 2024; [Liu et al.| 2024; 2025)), weakly supervised learning (Liu et al.,|2022; [Unal
et al., 2024)), and unsupervised learning (Zhang et al.| [2023; Nunes et al., [2023). In this work, we
study semi-supervised learning for LIDAR semantic segmentation, where only a subset of 3D scenes
for training is manually labeled and the remainder is unlabeled.

At the core of semi-supervised learning lies the challenge of leveraging unlabeled data effectively
for training. To this end, existing methods for LiDAR semantic segmentation commonly leverage
consistency regularization (Kong et al.| 2023} |Liu et al., [2024} [2025) and contrastive learning (Jiang
et al., [2021; |Li & Dong}, [2024; |Liu et al.| [2024). Consistency regularization encourages stable and
invariant predictions by enforcing similar outputs under different perturbations of the same input,
while contrastive learning promotes feature representations that bring samples of the same pseudo-
labels closer and push those of different pseudo-labels farther apart. Although these approaches
often yield substantial gains, they have a fundamental vulnerability, a confirmation bias towards
erroneous pseudo-labels (Kwon & Kwak| [2022; |Yang et al., 2022)), since they blindly exploit the
model’s predictions as pseudo-labels for training the model with unlabeled data; this could cause
performance to deteriorate as training progresses.

To handle noisy pseudo-labels, recent studies have proposed confidence-based filtering (Kong et al.,
2023} [L1 et al.l [2023; [Liu et al., [2025)), which discards predictions with low confidence under the
assumption that such labels are more error-prone. Loss reweighting methods (Li & Dong, [2024; |Liu
et al., 2024) take a complementary approach by retaining all pseudo-labeled samples but adjusting
their contribution through confidence weighted loss scaling. While both strategies assuage the im-
pact of unreliable labels, they remain post-hoc in nature as they adjust sample utilization only after
pseudo-labels have been assigned, rather than improving their quality at the point of generation.

To tackle this issue, we introduce a novel pseudo-label refinement framework, named
REPL (Refinement of Pseudo-Labels), which is illustrated in Fig.|{l| REPL integrates two key com-
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Figure 1: Overview of REPL. The teacher generates predictions for unlabeled LiDAR scenes, which
are used as pseudo-labels for the student, and is updated via exponential moving average (EMA) of
the student. The pseudo-label refiner detects erroneous pseudo-labels by confidence-based agree-
ment between the teacher and student, and then corrects them through masked reconstruction with
learnable tokens. The final refined pseudo-labels combine reliable teacher predictions with recon-
structed ones, yielding improved supervision for semi-supervised learning of the student.

ponents: teacher-student networks for LIDAR semantic segmentation (Tarvainen & Valpola, [2017)
and a pseudo-label refiner that identifies errors on pseudo-labels and corrects them. The teacher net-
work offers initial predictions for LIDAR scenes, which are in turn used as pseudo-labels for training
the student with unlabeled data; the teacher is then updated by exponential moving average (EMA)
of the student. The pseudo-label refiner identifies potentially unreliable regions in the pseudo-labels
and reconstructs them into cleaner supervisory signals for the student. Specifically, the refiner op-
erates through two stages. First, it estimates potentially erroneous pseudo-labels using a simple
confidence-based agreement between teacher and student predictions. Second, it reconstructs these
pseudo-labels through a process inspired by masked autoencoders (He et al., [2022); in this step,
unreliable areas are replaced with mask tokens, and the refiner reconstructs them to produce refined
predictions. Even with a simple error estimation strategy, REPL achieves significant performance
improvements, while remaining extensible to more sophisticated error detection methods.

The success of our method heavily depends on the ability of the pseudo-label refiner. However,
training the refiner in the semi-supervised learning setting is challenging due to the scarce supervi-
sion: the supervision derived from the discrepancies between predicted and ground-truth labels is
available only for a small subset of data. We address this issue in two ways. First, during training the
refiner, we apply random masking to make its reconstruction more challenging. This forces the re-
finer to develop a better contextual understanding rather than simply memorizing patterns. Second,
we mix 3D scenes, augmenting labeled scenes with unlabeled ones before feeding them to the seg-
mentation networks. This produces strongly augmented segmentation predictions with higher and
diverse error rates, and enables the refiner to partially experience prediction errors for unlabeled im-
ages. We also provide a theoretical analysis demonstrating the condition under which the refinement
is beneficial, and empirically confirm that the condition is mild and clearly met by REPL.

Following the established practice (Kong et al., |2023; [Liu et al., |2024; [2025)), we evaluated our
method on the nuScenes-lidarseg (Fong et al., [2021) and SemanticKITTI (Behley et al., [2019)
benchmarks while varying the ratio of labeled data, where it demonstrated significant performance
improvements over the supervised learning baseline and outperformed latest methods for semi-
supervised learning. In summary, our contribution is three-fold:

* We propose a semi-supervised LIDAR semantic segmentation framework, dubbed REPL, that
refines pseudo-labels via error estimation and masked reconstruction.

* We provide a theoretical analysis establishing the condition under which pseudo-label refine-
ment improves upon teacher-only baseline.

e Our method achieved the state of the art on two public benchmarks.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

LiDAR Semantic Segmentation LiDAR semantic segmentation assigns semantic labels to each
point in large-scale point clouds (Zhu et al.| [2022; [Milioto et al.,[2019). Early work transformed raw
3D scans into 2D representations such as range images or bird’s-eye-view maps to reuse established
2D convolutional backbones. RangeNet++ (Milioto et al., 2019) and SalsaNext (Cortinhal et al.,
2020) demonstrated that simple projection can yield competitive results. Another research stream
discretized 3D space into regular or cylindrical grids, as seen in PolarNet (Zhang et al., 2020), Cylin-
der3D (Zhu et al.l 2022), and sparse convolutional frameworks like MinkowskiNet (Choy et al.,
2019). Meanwhile, methods directly processing raw points gained traction, from PointNet (Qi et al.,
2016) to RandLLA-Net (Hu et al., 2020) and stratified architectures (Jiang et al., 2019; [Lai et al.,
2022), capturing both local details and long-range context. Despite performance gains, these meth-
ods require dense manual annotations, which are costly and not scalable.

Semi-supervised LiDAR Semantic Segmentation To address this annotation bottleneck, semi-
supervised learning leverages limited labeled data along with abundant unlabeled point clouds (Kong
et al.| [2023; [Liu et al, 2024). Earlier work improved pseudo-label reliability: GPC (Jiang et al.,
2021) used confidence thresholds to reduce error propagation, LaserMix (Kong et al., [2023) ex-
ploited spatial priors of LiDAR beams, enforcing prediction consistency through beam mixing
across scans, and Lim3D (L1 et al., 2023) employed a memory bank for contrastive learning to
alleviate class imbalance. Recent methods introduced richer constraints: DDSemi (Li & Dongl
2024) employed density-guided contrastive learning with dual-space hardness sampling for sparse
regions, AlScene (Liu et al.| [2025) addressed intra-scene inconsistency through patch-based mix-
ing at scene and instance levels, and IT2 (Liu et al., 2024) introduced consistency learning across
peer LiDAR representations, treating representation differences as perturbations. These approaches
remain post-hoc, adjusting pseudo-label usage rather than improving their intrinsic quality. REPL
directly enhances pseudo-labels by correcting erroneous pseudo-labels, providing improved super-
vision.

3 METHOD

The main challenge in semi-supervised learning is the confirmation bias of pseudo-labels, which has
often been handled by post-hoc strategies such as confidence filtering or loss reweighting. In this
work, we explore a different direction: instead of discarding unreliable pseudo-labels, we aim to
improve their quality through refinement.

We propose REPL, a refinement-based semi-supervised learning framework for LiDAR semantic
segmentation. The framework consists of two modules: teacher—student segmentation networks
and a pseudo-label refiner. The teacher network generates pseudo-labels for unlabeled data and
is updated by exponential moving average of the student parameters, while the student is trained
with both labeled and pseudo-labeled data. To handle unreliable pseudo-labels, the refiner identifies
uncertain voxels and corrects their pseudo-labels through masked reconstruction. The final pseudo-
labels combine reliable teacher predictions with the refined output on uncertain regions.

The remainder of this section first elaborates on three training steps of REPL: (1) training the stu-
dent network using the standard segmentation objectives on labeled data (Section[3.2)), (2) training
the pseudo-label refiner on both labeled and unlabeled data (Section [3.3), and (3) semi-supervised
learning of the student network with the pseudo-labels improved by the refiner (Section [3.4). Then
a theoretical analysis is presented to establish when the refinement is beneficial and to validate that
REPL operates within this regime (Section [3.3).

3.1 PRELIMINARIES

We consider a segmentation network f trained on a small labeled dataset and a large unlabeled
dataset. Each point cloud is voxelized into a regular grid X; € RE*H*WxL \where C denotes the
number of feature channels and H x W x L is the grid size. The labels are converted into voxel-wise
one-hot tensors Y; € {0, 1}E*HXWxL ‘where K is the number of classes. We denote the voxelized

labeled and unlabeled datasets as Dz, = {(X;, Y;)}Y!, and Dy = {X; };V:’q, respectively.
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3.2 SUPERVISED LEARNING WITH LABELED DATA

Following prior work (Zhu et al., |2022; Kong et al., 2023} [Li et al.l 2023} |Liu et al., [2024), we
train the student network f(-) on labeled data with two complementary segmentation losses: cross-
entropy for voxel-wise classification and Lovasz-Softmax (Berman et al., 2018)) for direct IoU opti-
mization. We denote the set of voxel grid indices as Q@ = {1,..., H} x {1,..., W} x{1,...,L
For input X, the network outputs predictions P; = f(X;) € REXHXWXL 'where [P}, ., denotes
the probability of class & at voxel w € ). The ground-truth label is denoted by Yilkw € {0,1}.

The voxel-wise cross-entropy loss is defined as

LeelPYe) = — 1o Z Z i w log[ P, ()

weN k=1

For Lovasz-Softmax, we first define the one-versus-rest error for each class k:

k
e (W) = (1= [Plrw) - Lyileomt) + [Pliw - Liyieos1)- 2

The multiclass Lovasz extension is then given by:

Lis(P,Y:) = ,|Z nace(€;). 3)

kel

where C] = {k | > cq[Yilkw > 0} and Ay, denotes the Lovdsz extension (Berman et al., 2018)
of the J accard loss. The complete supervised learning objective combines both terms:

N
Lo = > {eutpiyy - neLu(m Yo} @

3.3 TRAINING PSEUDO-LABEL REFINER

We employ the teacher-student framework where the teacher network, fT( ), generates pseudo-
labels for unlabeled data, Q; = f7(X;), and is updated by exponential m0V1ng average of student
parameters (Tarvainen & Valpola, 2017) The pseudo-label refiner network g(+) is designed to iden-
tify and reconstruct unreliable teacher’s predictions given as pseudo-labels for unlabeled scenes.

Unreliable Voxel Identification. Voxels with unreliable pseudo-labels are identified by the agree-
ment between the student’s and teacher’s predictions along with their confidence levels. For each
voxel, we compute the confidence score as the maximum prediction probability across all classes
for each of the two networks. We also establish adaptive confidence thresholds using the (100 — x)-
th percentile of all confidence scores within each scene, where s controls the strictness of the
confidence requirement. A voxel is considered reliable only if the following conditions hold:
(1) the student and teacher predict the same class, (2) the student’s confidence exceeds its adap-
tive threshold, and (3) the teacher’s confidence exceeds its adaptive threshold. All other voxels
are treated as unreliable and marked for refinement. The error candidate mask is then given by
M=1-14 € {0, 1}H XWxL where 1, denotes the reliable mask indicating voxels that satisfy
all the three conditions above. To prevent the refiner from overfitting to error-prone regions and
develop a better contextual understanding rather than simply memorizing patterns, we also apply
additional random masking R ~ Bernoulli(c) and define the final mask as M = M V R.

Masked Reconstruction. Once unreliable voxels are identified through the error candidate mask,
the next step is to correct their predictions through a masked reconstruction process (He et al.,[2022).
The core idea is to mask out these uncertain predictions and train the refiner to reconstruct more
accurate predictions for them. Specifically, unreliable predictions are replaced with a learnable mask
token T: Q = (1—M)®Q+ M & T, where © denotes element-wise multiplication. Then the refiner

takes channel-wise concatenated (X, Q) as input and outputs refined predictions Q= (X, Q).

Training on Labeled Data. On labeled data, the refiner is trained to reconstruct ground-truth
labels of the masked predictions. The loss for training the refiner on labeled data, Ly, is the same
as the supervised learning objective Lqyp in Eq. (@), except that it is applied to only the masked

regions (i.e., Vw € Q) s.t. [MZ] = 1) of the reﬁned predictions Ql, instead of P;.

4
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Training on Unlabeled Data. On unlabeled data, the refiner is further trained with a negative
learning signal (Kim et al., 2019). Rather than enforcing hard pseudo-labels, we suppress predic-
tions on implausible classes by taking the teacher’s top-k predictions as plausible candidates and
encouraging the refiner to assign low probability to the remaining classes. This negative learning
strategy offers reliable supervisory signals even when pseudo-supervision may not be sufficiently ac-
curate on unlabeled data. Formally, the negative learning loss is defined as the average cross-entropy
penalty over unlabeled scenes in Dy;:

Lot = Z|Q|ZW > {—log(1 = [Qjlkw)}s (5)

ke/\/’ (w)
where N (w) denotes the set of implausible classes for voxel w.

Training on Mix of Labeled and Unlabeled Data. Training the refiner benefits from challeng-
ing prediction errors of the teacher, but the limited labeled data restrict the diversity of such errors.
To strengthen the supervision, we mix labeled and unlabeled scenes so that the refiner reconstructs
labels under richer variability in distance, geometry, and density. This produces augmented pre-
dictions with higher error rates, and allows the refiner to partially experience errors on unlabeled
data. We adopt LaserMix (Kong et al.| [2023)) with a single inclination plane to fuse labeled and
unlabeled scans at ratio 7 € (0,1). Let a mix of labeled and unlabeled scenes be indexed by
m € {1,...,Ny}. Given a labeled scene (X;,Y;) and an unlabeled one X; for the m-th mix,
LaserMix generates a selector mask S,,, € {0, 1}*W*ZL and produces the mixed input and output
(X, Yi) = (S © X+ (1= Sp) © X, Sy ©Y;). We then compute student and teacher predic-
tions on X,,,, P,, = f(X,,) and Qm = f7(Xm), respectively. Following the unreliable prediction
identification procedure in Section we construct the error mask M,, restricted to the labeled
prediction. The supervised learning losses are then applied to voxels of the labeled scene marked as
unreliable, i.e., Vw € Q s.t. [Sp]w = [Mp]w = 1:

Lo = 5 Z{ Qo Vi) + M@, Vo)) ©

Total Training Objective. Each iteration optimizes the pseudo-label refiner with the summation
of the three losses, Lrup + Lrunt + Lrmix, Without balancing hyper-parameters.

3.4 SEMI-SUPERVISED LEARNING WITH PSEUDO-LABEL REFINER

The student network leverages the refined pseudo-labels from the refiner to improve the quality of
supervision when learning with unlabeled data.

Pseudo-label Refinement. For an unlabeled input X; € Dy, we obtain predictions from both stu-
dent and teacher (P;, ();) and construct the error mask M) as before but without random masking.

The refined pseudo-label f’ is then generated voxel-wise: reliable voxels follow the teacher’s pre-
diction, while unreliable ones are replaced with the refiner’s output. Spemﬁcally, we form masked

predictions Q; = (1 — M;) ® Q; + M; ® T and obtain refined predictions Q; = g(X;, Q;), which
are combined with teacher predictions on reliable voxels to produce Y;.

Semi-supervised Learning of Student. The student network is trained with three objectives, the
supervised learning objective applied to labeled data (i.e., Lp in Section @, and two additional
objectives for semi-supervised learning with unlabeled data. For the segmentation losses on unla-
beled data, since the refined pseudo-labels are used directly without additional filtering, we adopt the
symmetric cross-entropy (Wang et al., 2019)) instead of the standard cross-entropy to ensure more
stable training. The symmetric formulation is more robust to potential noise in pseudo-labels as it
penalizes over-confident predictions and provides regularization through bidirectional loss computa-
tion. Together with the Lovasz-Softmax loss, this objective is applied to all voxels using the refined
pseudo-labels:

Ny

sunl—NLZ{%( ce )+£ce( )>+)\ls£ls( )} (7)

u G4
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In addition to training with pseudo-labels, we augment training by mixing a labeled scene (X, Y;)
with an unlabeled scene X; paired with pseudo-labels Y;. We employ the LaserMix operator with
a single inclination plane. This strategy combines clean supervision from labeled data with broader
coverage from pseudo-labels, exposing the student to reliable signals and diverse structures. Given
the selector mask .S;,, by LaserMix, the mixed input and target are defined by combining ground-
truth labels in the labeled region and refined pseudo-labels in the unlabeled region:

For the mixed input X,,,, the student network produces predictions P,,, = f(X,,). The loss for the
mixed sample is then computed by

1 N

»Csmix - Ni Z {% (»Cce(Pma ?m) + »Cce(i/ma Pm)) + )\lscls(Pma ?m)} . (9)
m ]:1

Total Training Objective. In each iteration, the student network is optimized with the summation

of the three losses, Lqup + Lount + Lsmix, With no balancing hyper-parameter. The student network is

optimized jointly with the pseudo-label refiner. We stop gradients between their optimization paths

to prevent interference.

3.5 THEORETICAL ANALYSIS

This section rigorously analyzes if the pseudo-label refinement is truly helpful. We first show
whether the pseudo-label refinement is easier than generating high-quality pseudo-labels from
scratch in Proposition [I]

Proposition 1 (Task Difficulty). Consider two segmentation tasks, the original task Z : X — 'Y
and the refinement task Z' : (X, T) — Y, where X denotes input 3D LiDAR point data, Y denotes
segmentation labels, and T represents additional information such as teacher predictions f(X).
The difficulties of the two tasks D(Z) and D(Z') hold the following inequality:

D(Z') = H(Y | X,T) < H(Y | X) = D(2). (10)

This result implies that the refinement may have potential for improving pseudo-label quality. Next,
we derive a practical condition required for net performance gains in Proposition 2]

Proposition 2 (Improvement Condition). For the j-th scene, an error-candidate mask M; divides
the voxel grid into an unreliable region E; and a reliable region C;. Let m; denote the precision of
this mask, which is the fraction of voxels misclassified by the leacher in E;. The refiner operates on
E;, where q; and r; denote the rates at which it corrects mmclasazﬁcanons and incorrectly changes
correct predictions, respectively. Then, if g; + r; > 0, the refinement improves the accuracy for
scene j if and only if
T

4G +7j

Cj =T (1])

This proposition characterizes the trade-off between error correction and error introduction, and
its conclusion is a condition that is mild and easily satisfied by REPL even with the simple error
estimation method in Section as will be demonstrated below. The proofs for the two propositions
are presented in Appendices @and A2

Empirical Analysis on the Improvement Condition. To examine the practical implication of
the condition in Eq. (TI), we analyze the relationship between the averaged correction rate ¢ and
the averaged error introduction rate r using experimental results on the SemanticKITTI dataset. We
consider two scenarios: labeling 1% of training data yielding 7 = 0.917, and labeling 50% achieving
7 = 0.983. Figure [2] visualizes combinations of ¢ and r where the refinement yields a net benefit
(¢ > 0) versus those where it does not (( < 0). The results suggest that the refinement remains
beneficial across a broad range of ¢ and r. For instance, in the case of m = 0.917, the refinement
remains beneficial as long as the error introduction rate stays below approximately eleven times
the correction rate (r < 11.05 - q), allowing the refinement to be effective across a broad range
of performance levels. In both experimental cases, REPL falls within the benefit regions (¢ > 0),
demonstrating that it satisfies the theoretical condition for the improvement of pseudo-label quality
despite employing a simple error estimation strategy.
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Figure 2: Visualization of the improvement condition from Eq. on the SemanticKITTI dataset
given 7. The two values of m were derived during the actual experiments on the dataset: 1% labeled
data (7 = 0.917) and 50% labeled data (m = 0.983). Green areas indicate combinations of ¢ and r
where the refinement yields a net benefit (( > 0), while red areas show such combinations leading
to detriment ({ < 0). The results suggest that the refinement remains beneficial across a broad range
of ¢ and r, and that REPL clearly helps improve the quality of pseudo-labels.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We trained and evaluated our model on two outdoor LiDAR semantic segmentation bench-
marks: nuScenes-lidarseg and SemanticKITTI (Behley et all,[2019). nuScenes-
lidarseg is a large-scale outdoor LiDAR dataset with point-wise annotations for 16 classes. We
adopted the official split of 700 sequences for training and 150 for validation, which resulted in
28,130 training and 6,019 validation point cloud scenes. SemanticKITTI is a LiDAR segmentation
benchmark with 19 classes. It consists of 22 sequences, of which 10 were used for training, and 1
for validation, yielding 19,130 training and 4,071 validation scenes.

Network Architecture. Following previous work (Kong et al., 2023} [Liu et all, 2024} 2023), we
used Cylinder3D (Zhu et al.,2022) for both the segmentation models and pseudo-label refiner, fixing

the intermediate layer at 16 dimensions as specified by Kong et al.[(2023) and [Liu et al.| (2024).

Implementation Details. Our method was implemented in PyTorch (Paszke et al) 2017), and
trained on 8 NVIDIA RTX 6000 Ada GPUs with AdamW (Loshchilov & Hutter|2019) and weight
decay of le-3. The batch size was 8 on nuScenes-lidarseg and 4 on SemanticKITTI. The learning
rate was Se-3 with cosine annealing for both the segmentation network and pseudo-label refiner.
The weight update ratio o was 0.994. Following [Liu et al.| (2024), the loss coefficient \;; was set to
3.0. We set the confidence percentile x to 40%, k of top-k classes for negative learning to 3, random
masking probability o to 0.15, and mixed data at a mixing ratio r of 0.7 in the selector mask S. Note
that all hyper-parameters except the batch size were set identically across the two benchmarks.

4.2 COMPARISON WITH STATE OF THE ART

REPL was compared with latest methods using Cylinder3D as the backbone, namely AlScene
letall2025)), IT2 (Liu et al.| 2024), FrustrumMix (Xu et al|[2025), and conventional semi-supervised
methods (Tarvainen & Valpolal [2017 [Zou et al] 2018} [Chen et al] 2021}, [Kong et al 2023} [2025)).
For a more comprehensive comparison, we further evaluated against Seal (Liu et al.| [2023)), Super-
Flow [2024), and SLidR [2022), which leverage external sources or addi-
tional representation learning, and Lim3D 2023)), which uses a distinct backbone based
on Cylinder3D. Table [T] summarizes the results on the validation sets of nuScenes-lidarseg
[2021)) and SemanticKITTI (Behley et al] [2019) with various ratio of labeled data: 1%, 10%,
20%, and 50%. Sup-only denotes the baseline performance of training only with labeled data. On
nuScenes-lidarseg, REPL outperformed all competing methods. Compared to IT2, the second-best,
it achieved an average gain of +2.0 in mIoU. On SemanticKITTI, REPL also showed strong results,
achieving the best performance at 1% and 50%, and the second-best at 10% and 20%. Overall,
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Table 1: Comparison of different semi-supervised learning methods on nuScenes-lidarseg and Se-
manticKITTI while varying the ratio of labeled data. The best results in each column are shown
in bold, and the second best are underlined. Backbones marked with an asterisk (*) indicate that
additional representation learning or knowledge distillation from external sources has been applied.

Method Backbone nuScenes-lidarseg (Fong et al. 2021 SemanticKITTI (Behtey et at.}2019]

etho 1% 10% 20% 50% Avg. | 1% 10% 20% 50%  Avg.
Sup-only | Cylinder3D | 509 659 666 712 637 | 454 56.1 57.8 587 545 |
Seal (Liu et al.}2023) MinkUNet" 45.8 63.0 - - - 46.6 - - - -
SuperFlow (xuet a1 2024) MinkUNet" 48.1 64.5 - - - 48.4 - - - -
SLidR {sautier et al. 12022 Cylinder3D* | 39.0 588 - - - 44.6 - - - -
Lim3D (Li et at.2023) ‘ LiM3D ‘ - - - - - ‘ 58.4 59.5 63.1 63.6 61.2 ‘
MT {Tarvainen & Valpola 2017} Cylinder3D 51.6 660 67.1 717 64.1 454  57.1 59.2 60.0 554
CBST Zou etal.2018] Cylinder3D 530 665 696 71.6 652 | 488 583 594 597 56.6
CPS chen et al. 2021 Cylinder3D 529 663 70.0 725 654 | 467 587 59.6  60.5 56.4
LaserMixX (kong et a1.}2023) Cylinder3D 553 699 718 732 676 | 506 60.0 619 623 58.7
IT2 (Liu et al. J2024] Cylinder3D 575 721 73.5 74.1 69.3 | 520 614 62.1 62.5 59.5
AlScene {Liu etal.|2025) Cylinder3D 56.6 702 728 739 684 | 545 633 637 64.3 61.5

FrustrumMIXx (xu et a1. 2025 Cylinder3D 60.0 70.0 726 741 69.2 | 557 625 63.0 649 615
LaserMiX-++ {Kong et al.}2025) Cylinder3D 585 711 72.8 740 69.1 562 623 629 634 612

REPL (Ours) Cylinder3D | 60.0 744 750 758 713 | 547 625 632 659 61.6 |

Table 2: Impact of the losses for the pseudo- Table 3: Impact of the losses for learning the Li-
label refiner. Each row shows the average im- DAR semantic segmentation network. In Lgy,
provement condition { and mean IoU when A denotes the omission of the symmetric cross-

training with different subsets of the losses. entropy.
»Crsup »Crun] »Crmix ‘ € ‘ mloU »Cssup »Csunl »Csmix ‘ mloU
| - ] 509 v | 50.9
v 0.327 ] 57.2 v v 58.1
4 v 0.353 | 58.7 v A v 58.0
v v v 10430]| 60.0 v v v 60.0

Table 4: Sensitivity to the quality of the error Table 5: Impact of the random masking strategy
candidate mask in LiDAR semantic segmenta- for training the pseudo-label refiner in the seg-
tion accuracy. Different error mask generation mentation quality of the final model.

strategies were compared at inference time.

: Settin mloU

Setting | Baseline % Oracle | Ours & ‘
2% 0% 1% w/o Random Masking | 57.7
mloU | 570 576 582 587 67.3 |60.0 w/ Random Masking | 60.0

REPL achieved the highest average mloU. Figure [3] qualitatively compares pseudo-labels before
and after the refinement by REPL at the end of training on the unlabeled data of nuScenes-lidarseg.

4.3 IN-DEPTH ANALYSIS

This section studies the contribution of each component of REPL, and investigates the aspects of
the pseudo-label refinement in details. All experiments were conducted on the validation set, except
for the pseudo-label refinement analysis, which used the unlabeled training data.

Ablation Study on Loss Components. We assessed the contribution of individual loss terms by
incrementally adding them for the refiner and segmentation network. For the refiner (Table 2, the
supervised-only baseline yielded 50.9 mloU. Adding L., improved performance to 57.2 mloU, and
including L, further raised it to 58.7 mloU. With all three objectives, including L., accuracy
reached 60.0 mloU, confirming their complementary effect. The averaged improvement condition
( also consistently increased as each loss component is added. For the segmentation network (Ta-
ble §), the supervised-only baseline also scored 50.9 mloU. Adding the semi-supervised loss, Lguni
, improved performance to 58.1 mloU, while its variant without symmetric cross-entropy (A) with
Limix gave 58.0 mloU. Using all three training objectives yielded the best result of 60.0 mloU,
highlighting the benefit of jointly optimizing supervised learning on labeled data, semi-supervised
learning with refined pseudo-labels, and mixed scene training.
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mIoU 27.38 mIoU 37.21

i

scene dlef352d ' " aTou 27.23 aTou 30,79
(a) Ground-truth (b) Initial Pseudo-labels (c) Refined Pseudo-labels

Figure 3: Qualitative results of refined pseudo-labels and their initial predictions on the unlabeled
set of nuScenes-lidarseg, at the end of training. Correct and incorrect predictions are shown in green
and red, respectively. The model was trained with a 1% label ratio.

Table 6: Sensitivity analysis of a hyper- Table 7: Computational cost analysis on

parameter . nuScenes-lidarseg.
x  mloU Method Latency (s) Memory (MB) mloU
0.2 55.1 Baseline 0.43 1231 50.9
04 60.0 Baseline + Refiner 0.68 1627 60.0

0.6 584 A +0.25 +396 +9.1

Sensitivity to the Quality of Error Candidate Mask. We analyzed how the quality of the error can-
didate mask influences inference performance by replacing our heuristic error mask with different
alternatives on the validation set. As shown in Table @] random masks yielded modest improve-
ments over the baseline (no refinement) of the teacher. Our heuristic error mask provided a clear
gain, while an oracle error mask derived from ground-truth labels further improved performance to
67.3 mloU. These results indicate that even a simple heuristic achieves competitive improvements,
with more accurate error mask offering substantial room for further gains.

Impact of the Random Masking Strategy. We investigated whether training with random masking
improves performance on the validation set. As shown in Table [5] incorporating random masking
yielded higher performance (60.0 mIoU) compared to training without it (57.7 mIoU). This indicates
that random masking serves as a regularizer, helping the network handle erroneous predictions more
effectively and improving performance during inference.

Analysis on Computational Cost. To quantify the additional overhead by the refiner, we measured
the latency and memory usage during inference on the validation set using a single batch. As shown
in Table[7} the refiner adds approximately 0.25 seconds of latency and 396 MB of memory, while
providing a substantial improvement of +9.1 mloU from the supervised-only baseline. These results
demonstrate that the added computational cost is moderate relative to the significant accuracy gains.

Ablation Study on Unreliable Voxel Identification. We analyzed the sensitivity of an unreliable
voxel identification in REPL on the validation set. As shown in Table[f] the confidence percentile
r = 0.4 yields the best performance at 60.0 mloU, while x = 0.2 and x = 0.6 result in suboptimal
performance at 55.1 and 58.4 mIoU, respectively.
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Figure 4: Failure cases on the unlabeled set of nuScenes-lidarseg at the end of training with a 1%
label ratio. Correct and incorrect predictions are shown in green and red, respectively.

Analysis on Pseudo-label Quality Improve-
ment throughout Training. We report the
trend of pseudo-label quality improvement
throughout training for different labeled data ra-
tios (1%, 10%, 20%, 50%) on the unlabeled
data of nuScenes-lidarseg in Figure [5] During
early stage of training, the improvement was rel-
atively low across all ratios as the refiner learns
error correction from scratch. As training pro-
gresses, the improvement increased as the re-
finer learns to correct errors more effectively.
However, the improvement gradually declined
nuScenes-1% —— nuScenes-20% in later stages as the segmentation network it-
—— nuScenes-10%  —— nuScenes-50% self becomes accurate, leaving less room for the
Y o o & & m [refiner to provide meaningful corrections to the

Learning Progress (%) already high-quality predictions. REPL showed
effectiveness across all labeled data ratios, with
better performance and scalability at higher ra-
tios.

Improvement in mIoU (%)

Figure 5: Pseudo-label quality improvement by
the refiner during training on nuScenes-lidarseg.

Analysis on Failure Cases. Despite overall improvements, REPL occasionally introduces errors
by over-correcting initially accurate predictions. Figure[d]shows representative failure cases (purple
boxes). Nevertheless, the mIoU gain indicates that successful corrections outweigh these localized
failures, leading to overall enhancement of the pseudo-labels.

5 CONCLUSION

We presented REPL, a semi-supervised learning framework for LiDAR semantic segmentation that
refines pseudo-labels through a two-stage mechanism of error estimation and masked reconstruc-
tion. The framework integrates a teacher-student segmentation network with a pseudo-label re-
finer to identify unreliable predictions and reconstruct them into cleaner supervision signals. We
also provided theoretical analysis establishing the mathematical conditions under which refinement
improves pseudo-label quality. With this design, our method achieved state-of-the-art results on
nuScenes-lidarseg and SemanticKITTI across various label ratios.

10



Under review as a conference paper at ICLR 2026

REFERENCES

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. SemanticKITTI:
A Dataset for Semantic Scene Understanding of LiDAR Sequences. In Proc. IEEE International
Conference on Computer Vision (ICCV), 2019.

Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovasz-softmax loss: A tractable
surrogate for the optimization of the intersection-over-union measure in neural networks. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic segmen-
tation with cross pseudo supervision. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021.

Yujun Chen, Xin Tan, Zhizhong Zhang, Yanyun Qu, and Yuan Xie. Beyond the label itself: Latent
labels enhance semi-supervised point cloud panoptic segmentation. In Proc. AAAI Conference on
Artificial Intelligence (AAAI), 2024.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.

Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Salsanext: Fast, uncertainty-aware se-
mantic segmentation of lidar point clouds. In George Bebis, Zhaozheng Yin, Edward Kim, Jan
Bender, Kartic Subr, Bum Chul Kwon, Jian Zhao, Denis Kalkofen, and George Baciu (eds.),
Advances in Visual Computing, 2020.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, Hobo-
ken, NJ, 2nd edition, 2006.

Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lubing Zhou, Holger Caesar, Oscar Beijbom,
and Abhinav Valada. Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation
and tracking. arXiv preprint arXiv:2109.03805, 2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, and Jiaya Jia. Hierarchical
point-edge interaction network for point cloud semantic segmentation. In Proc. IEEE Interna-
tional Conference on Computer Vision (ICCV), October 2019.

Li Jiang, Shaoshuai Shi, Zhuotao Tian, Xin Lai, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Guided
point contrastive learning for semi-supervised point cloud semantic segmentation. In Proc. IEEE
International Conference on Computer Vision (ICCV), 2021.

Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim. NInl: Negative learning for noisy
labels. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), October
2019.

Lingdong Kong, Jiawei Ren, Liang Pan, and Ziwei Liu. Lasermix for semi-supervised lidar semantic
segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2023.

Lingdong Kong, Xiang Xu, Jiawei Ren, Wenwei Zhang, Liang Pan, Kai Chen, Wei Tsang Ooi, and
Ziwei Liu. Multi-modal data-efficient 3d scene understanding for autonomous driving. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025.

11



Under review as a conference paper at ICLR 2026

Donghyeon Kwon and Suha Kwak. Semi-supervised semantic segmentation with error localization
network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia.
Stratified transformer for 3d point cloud segmentation. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Jianan Li and Qiulei Dong. Density-guided semi-supervised 3d semantic segmentation with dual-
space hardness sampling. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

Li Li, Hubert PH Shum, and Toby P Breckon. Less is more: Reducing task and model complexity
for 3d point cloud semantic segmentation. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

Chuandong Liu, Xingxing Weng, Shuguo Jiang, Pengcheng Li, Lei Yu, and Gui-Song Xia. Explor-
ing scene affinity for semi-supervised lidar semantic segmentation. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2025.

Minghua Liu, Yin Zhou, Charles R. Qi, Boqing Gong, Hao Su, and Dragomir Anguelov. Less:
Label-efficient semantic segmentation for lidar point clouds. arXiv preprint arXiv:2210.08064,
2022.

Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wenwei Zhang, Liang Pan, Kai Chen, and
Ziwei Liu. Segment any point cloud sequences by distilling vision foundation models. Proc.
Neural Information Processing Systems (NeurIPS), 2023.

Yuyuan Liu, Yuanhong Chen, Hu Wang, Vasileios Belagiannis, Ian Reid, and Gustavo Carneiro.
Ittakestwo: Leveraging peer representations for semi-supervised lidar semantic segmentation. In
Proc. European Conference on Computer Vision (ECCV), 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. International
Conference on Learning Representations (ICLR), 2019.

A. Milioto, 1. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast and Accurate LIDAR Semantic
Segmentation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019.

Lucas Nunes, Louis Wiesmann, Rodrigo Marcuzzi, Xieyuanli Chen, Jens Behley, and Cyrill Stach-
niss. Temporal consistent 3d lidar representation learning for semantic perception in autonomous
driving. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In AutoDiff, NIPS Workshop, 2017.

Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani, You Hong
Eng, Daniela Rus, and Marcelo H. Ang. Perception, planning, control, and coordination for
autonomous vehicles. Machines, 2017.

C. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Ricardo Roriz, Jorge Cabral, and Tiago Gomes. Automotive lidar technology: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2022.

Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei Bursuc, and Renaud Marlet.
Image-to-lidar self-supervised distillation for autonomous driving data. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

Benjamin Serfling, Hannes Reichert, Lorenzo Bayerlein, Konrad Doll, and Kati Radkhah-Lens.
Lidar based semantic perception for forklifts in outdoor environments, 2025.

12



Under review as a conference paper at ICLR 2026

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In Proc. Neural Information Pro-
cessing Systems (NeurlPS), 2017.

Ozan Unal, Dengxin Dai, Lukas Hoyer, Yigit Baran Can, and Luc Van Gool. 2d feature distilla-
tion for weakly- and semi-supervised 3d semantic segmentation. In Proc. IEEE Winter Conf. on
Applications of Computer Vision (WACV), January 2024.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

Neng Wang, Ruibin Guo, Chenghao Shi, Ziyue Wang, Hui Zhang, Huimin Lu, Zhigiang Zheng,
and Xieyuanli Chen. SegNet4D: Efficient Instance-Aware 4D Semantic Segmentation for LIDAR
Point Cloud. arXiv preprint, 2024.

P Wang and W Yao. Weakly supervised pseudo-label assisted learning for als point cloud semantic
segmentation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2:43-50, 2021.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross en-
tropy for robust learning with noisy labels. In Proc. IEEE International Conference on Computer
Vision (ICCV), pp. 322-330, 2019. doi: 10.1109/ICCV.2019.00041.

Xiang Xu, Lingdong Kong, Hui Shuai, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu, and Qing-
shan Liu. 4d contrastive superflows are dense 3d representation learners. In Proc. European
Conference on Computer Vision (ECCV), 2024.

Xiang Xu, Lingdong Kong, Hui Shuai, and Qingshan Liu. Frnet: Frustum-range networks for
scalable lidar segmentation. IEEE Transactions on Image Processing (TIP), 2025.

Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao. ST++: Make self-training work better
for semi-supervised semantic segmentation. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Yasuhiro Yao, Katie Xu, Kazuhiko Murasaki, Shingo Ando, and Atsushi Sagata. Pseudo-labelling-
aided semantic segmentation on sparsely annotated 3d point clouds. IPSJ Transactions on Com-
puter Vision and Applications, 12(1):2, 2020.

Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi, Boging Gong, and Hassan
Foroosh. Polarnet: An improved grid representation for online lidar point clouds semantic seg-
mentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Zaiwei Zhang, Min Bai, and Erran Li. Implicit surface contrastive clustering for lidar point clouds.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Wei Li, Yuexin Ma, Hongsheng Li, Ruigang
Yang, and Dahua Lin. Cylindrical and asymmetrical 3d convolution networks for lidar-based
perception. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training. In Proc. European Conference on
Computer Vision (ECCV), September 2018.

13



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THEORETICAL ANALYSIS ON TASK DIFFICULTY

We investigate Proposition[I] describing the relationship between two tasks: the segmentation task
and the refinement task, which refines pseudo-labels generated by another segmentation model.

Definition 1 (Segmentation and Refinement Tasks). Let X denote the input 3D LiDAR point data
and Y the segmentation labels. The segmentation task Z can be expressed as:
Z:X =Y, (12)

which predicts segmentation labels from the input data. Likewise, let T' represent additional fea-
tures including segmentation predictions predicted by another network. The refinement task Z' is
formulated as:

7' (X, T) =Y, (13)

which predicts segmentation labels from the input data and additional features.

Lemma 1 (Conditional Entropy Quantifying Task Difficulty). Assume the hypothesis spaces Hz
and H z have comparable complexity with similar VC-dimensions (Vapnik, |[1998)). Under this as-
sumption, the difficulty D(-) of a supervised task can be quantified using conditional entropy (Cover
& Thomas, [2006)). We obtain the difficulty of the two tasks from Definition[I|as:

D(Z)=H(Y | X), D(Z')=H(Y | X,T). (14)
The proof of Proposition [Iis directly induced from Lemmal]

Proof. By the chain rule of conditional entropy:

D(Z)-D(Z)=H(Y | X)- HY | X,T) (15)
— H(Y | X) - (H(Y | X) - I(Y;T | X)) (16)
— [(V;T | X). (17)

Since the mutual information I(Y;T | X) > 0 by definition, we obtain D(Z') < D(Z) from
Proposition|[I] with equality if and only if 7" provides no information about Y beyond what is already
contained in X (Cover & Thomas), [ 20006)). O

Implication. In a semi-supervised setting, however, T" conveys semantic cues such as tentative class
assignments or boundary structures that are not directly available from X. Such signals make T’
a valuable source of information. Empirical evidence confirms that incorporating pseudo-labels as
additional inputs or supervision improves performance across various semi-supervised settings (Yao
et al., [2020; Wang & Yao, 2021} (Chen et al., [2024). Thus, the additional features 1" can reduce
the uncertainty in predicting Y, potentially lowering the difficulty of the refinement task compared
to the original segmentation task. Under the conditions where pseudo-labels provide meaningful
semantic information, the refinement task would be less challenging than the original segmentation
task.

A.2 THEORETICAL ANALYSIS ON IMPROVEMENT CONDITION

We investigate Proposition [2} which characterizes the condition under which refinement improves
the quality of pseudo-labels.

Definition 2 (Voxel Partitions and Metrics). For the j-th scene with voxel grid Q = {1,... H} x
{1,..., W} x {1,...,L} of size N = |Q], let Qj(w), Q;(w), and [Y}]., denote the teacher pre-
diction, refiner prediction, and ground truth at voxel w € ), respectively. An error-candidate mask
M; € {0, 1}H>XWXL partitions Q into

Ej={w:[Mjlo =1}, G5 ={w:[M;], =0} (18)

We further split E; into misclassified voxels by the teacher:
Ejerr ={w € Ej : Qj(w) # [Yjlu}, (19)
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and correctly classified voxels still marked as unreliable:

Ejcor ={w € Ej : Qj(w) = [Yj]u} = Ej \ Ejen- (20)
On these partitions, we introduce the following quantities:
| Ejerr] |1 E;]
- : e 21
Ty |Ej | ’ pJ N ’ ( )

where T; is the fraction of unreliable voxels that the teacher misclassifies, while p; is the relative
size of the unreliable region compared to the entire scene.

We also define the correction and the error introduction rates, which measure the refiner’s perfor-
mance on the unreliable region F;. The correction rate q; represents the fraction of voxels in Fj o,
that the refiner successfully correcz‘v to match the ground truth. Conversely, the error introduction
rate r; is the fraction of voxels in E; .o that the refiner mistakenly changes away from the ground
truth:

. = {w € Ejer : Qj(w) = [V} o e B Qj(w) # Vil
! |Ejerr] n |Ejcor

(22)

Definition 3 (Accuracy of Predictions). The baseline accuracy of the teacher on the j-th scene is
defined as the fraction of correctly predicted voxels:

ACCbase - Z 1{QJ(W) Y] e (23)
wGQ

With the refinement, predictions for voxels in C; remain unchanged, while those in E; are replaced
with the refiner’s outputs. The refined accuracy is:

1
Actrep (1) = 3 | D H@s =1} T D Lo, =) | - 4
wel; wekE;

We now show Proposition[2]follows from the difference between these two accuracies by calculating
on each partition in Definition 2]

Proof. We compute the relative accuracy improvement by subtracting the baseline from the refined
accuracy:

Aj = AcCrepi(J) — Acchase(J) (25)
1
=N Z 14Q,w)=1v;l. + Z Lo, =it | — Zl{QJ(w) [Y;]u}- (26)
UJEC wEE wEQ

Since C; and E; form a partition of (2, we have:

1 1
¥ 2 Hew-mia = 5 | 2o Hew=-mia+ X gw=-ml |- @D
weN weCy wEE;

Thus, the improvement simpliﬁes to:
Ay = -N Z { (@@=l ~ HQ =1yl }} (28)
weEl;

Further partitioning F; into F; ¢, and E; co;:

B _N > {L@ = ~ L@t ) (29)
UJEEJ err
Z {1{Qj(w):[Yj]w}_1{Qj(w):[Yj]w}}- (30)
weEj,C(,r
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By DeﬁnitionEI, forw € Ej,err: l{Qj (W)=[Yjlu} = 0, and for w € Ej,cor: 1{Qj(w):[yj]w} = 1. This
yields:

1 1
Aj=% D Lgw-mr Ty 2 {1{Qj<w>:[m} - 1} 3D
WEE; err wWEE; cor
1 A 1 A
= & [0 € By : Q) = Vil = 5 Hw € Bjeor: Q@) £ ViLH (32
=pj TG —pi - (L=m;)-r; (33)
= pj (mjq; — (L=m;)r;). (34)
For accuracy improvement, we require A; > 0. Since p; > 0, this is equivalent to:
quj—(l—ﬂ'j)Tj>0 = 7Tj((]j+7"j)—7"j>0. 35)
When g; + r; > 0, we obtain:
r
(i i=m; — J > 0, (36)
T gty
where (; defines the improvement condition. O

A.3 EXPERIMENTS ON IMPROVEMENT CONDITIONS

We empirically validated the improvement condition ¢ in Eq. (36), using values averaged over the
validation sets of nuScenes-lidarseg and SemanticKITTI (Behley et al., 2019),
as reported in Table 8] As shown in the table, ¢ remained strictly positive across all experimental
settings, confirming that refinement consistently operates in a regime where accuracy improvements
are guaranteed. Notably, the results further suggest that even a simple error estimation strategy can
satisfy the condition, enabling REPL to reliably improve pseudo-label quality.

Table 8: Improvement conditions on nuScenes-lidarseg and SemanticKITTI under varying the ratio
of labeled data (1%, 10%, 20%, 50%).

Method nuScenes-lidarseg Fo;g ot aLS ‘ SemanticKITTI

1% 10% 20 1% 10%
Improvement condition { | 0.43 039  0.41 040 | 0.65 075 0.78  0.67

A.4 A COMPARISON OF PSEUDO-LABEL QUALITY BETWEEN TEACHER AND TEACHER WITH
REFINER OVER TIME.

We additionally report the trends in pseudo-label quality for the teacher model and the teacher-with-
refiner model during training on each unlabeled set of nuScenes-lidarseg in Figure [f] Across all
label ratios in nuScenes-lidarseg (1%, 10%, 20%, 50%), we observe a consistent pattern; the refiner
provides additional improvements over the EMA teacher throughout training. This suggests that the
gains are not solely due to EMA updates but also reflect the contribution of the refinement process.

A.5 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results on the unlabeled data of nuScenes-lidarseg
and SemanticKITTI (Behley et al.,[2019) with the ratio of labeled data 1%. We show com-
parisons between refined pseudo-labels and their initial versions in Figure [8] and Figure 0] The
results demonstrate that the refinement process effectively reduces noise and corrects errors in the
initial pseudo-labels. We also visualize results on the validation set of each dataset in Figure [I0]
and Figure [IT] Additionally, Figure [T2] and Figure [[3] provide detailed comparisons focusing on
long-range regions, where the refinement process shows particularly significant improvements in
handling challenging scenarios with reduced noise and error correction.

A.6 DISCLOSURE OF THE USE OF LARGE LANGUAGE MODELS
We used Large Language Models (LLMs) solely to aid and polish the writing of this paper. LLMs

did not contribute to research ideation, experimental design, or analysis. The authors take full re-
sponsibility for all content.
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Figure 6: Comparison of pseudo-label quality between the teacher model and the teacher-with-
refiner model during training on each unlabeled set of nuScenes-lidarseg.

A.7 ADDITIONAL ANALYSIS ON PSEUDO-LABEL QUALITY IMPROVEMENT THROUGHOUT

TRAINING.
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Figure 7: Pseudo-label quality improvement by
the refiner during training on SemanticKITTI.
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We additionally illustrate the pseudo-label qual-
ity improvement throughout training on Se-
manticKITTI across different labeled data ra-
tios (1%, 10%, 20%, 50%) in Figure [7] Ini-
tially, improvements were modest across almost
all settings since the refiner has limited knowl-
edge for effective error correction. As training
progresses, the refiner developed stronger er-
ror correction capabilities, leading to more sub-
stantial improvements. However, these gains
gradually diminished in later training stages as
the base model becomes increasingly accurate,
leaving fewer errors to correct. REPL consis-
tently delivered benefits across all label ratios,
though the improvements on SemanticKITTI
show greater variability compared to nuScenes-
lidarseg, likely due to inherent dataset charac-
teristics and complexity differences.
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(a) Ground-Truth (b) Initial Pseudo-Labels (c) Refined Pseudo-Labels

Figure 8: Qualitative results of refined pseudo-labels and their initial predictions on the unlabeled
data of SemanticKITTI. Correct and incorrect predictions are shown in green and red, respectively.
The model was trained with a 1% label ratio.
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Figure 9: Qualitative results of refined pseudo-labels and their initial predictions on the unlabeled
data of nuScenes-lidarseg. Correct and incorrect predictions are shown in green and red, respec-
tively. The model was trained with a 1% label ratio.
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(a) Ground-Truth (b) Initial Pseudo-Labels (c) Refined Pseudo-Labels

Figure 10: Qualitative results of refined pseudo-labels and their initial predictions on the validation
set of SemanticKITTI. Correct and incorrect predictions are shown in green and red, respectively.
The model was trained with a 1% label ratio.
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Figure 11: Qualitative results of refined pseudo-labels and their initial predictions on the validation
set of nuScenes-lidarseg. Correct and incorrect predictions are shown in green and red, respectively.
The model was trained with a 1% label ratio.
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(a) Ground-Truth (b) Initial Pseudo-Labels (c) Refined Pseudo-Labels

Figure 12: Qualitative results of refined pseudo-labels and their initial predictions on the unlabeled
set of SemanticKITTI. Correct and incorrect predictions are shown in green and red, respectively.
The model was trained with a 1% label ratio.
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Figure 13: Qualitative results of refined pseudo-labels and their initial predictions on the unlabeled
set of nuScenes-lidarseg. Correct and incorrect predictions are shown in green and red, respectively.
The model was trained with a 1% label ratio.
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