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ABSTRACT

Lattice gauge theory is pivotal in understanding nuclear physics and the strong in-
teraction of quarks and gluons from first principles, shedding light on phenomena
such as confinement and asymptotic freedom, and providing quantitative under-
standing of masses and decay rates of mesons and baryons. Scaling up corre-
sponding Monte Carlo simulations faces challenges such as critical slowing down
and topological freezing. One proposed approach to address these challenges is
through the use of fixed point lattice actions. These actions preserve continuum
classical properties even after discretization, thereby reducing lattice artifacts at
the quantum level, but they can only be defined implicitly. Here, we employ
machine learning, specifically lattice gauge equivariant convolutional neural net-
works (L-CNNs), to learn fixed point actions in a gauge symmetry preserving way.
We obtain a fixed point action for four-dimensional SU(3) gauge theory which is
superior to previous hand-crafted parametrizations. This advancement is crucial
for future Monte Carlo simulations.

1 INTRODUCTION

Lattice regularization is the tool of choice to study nonperturbative properties of quantum field the-
ories starting from first principles (Wilson, 1974). Modern lattice QCD simulations have attained a
high level of precision and for some important Standard Model quantities, e.g., the QCD coupling
at the electroweak scale αS(µ = mZ), they provide the current most accurate determination (Aoki
et al., 2022). Increased precision has amplified systematic issues relevant to any lattice calculation,
such as the extrapolation to the continuum limit. Numerical simulations become rapidly more costly
as the lattice spacing is reduced to zero, not only due to the increased resolution at fixed physical
volume, but also due to the increased autocorrelation times (critical slowing down) in generating
statistically independent samples in Monte Carlo (MC) Markov chains and the related problem of
suppressed tunneling between sectors of different topological charge (topological freezing) (Schae-
fer et al., 2011). For a robust continuum prediction, a range of lattice spacings is necessary, requiring
a delicate balance between the control of discretization artifacts on coarse lattices on the one hand
and the increased cost of simulating on finer lattices on the other.

Here we propose to use a so-called fixed point (FP) action to solve both critical slowing down
and topological freezing. Such an action in principle allows simulations on very coarse lattices
where both problems are absent, while at the same time lattice artifacts can be kept so small that a
solid continuum limit can be taken. FP actions can be implicitly defined via renormalization group
transformations and they can completely remove lattice artifacts at the classical level (Hasenfratz
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Figure 1: An example of a lattice gauge equivariant convolutional neural network (L-CNN), taken
from Favoni et al. (2022). Given a lattice gauge configuration as input, a sequence of layers builds
untraced loops of gauge links of increasing size, with the total number of loops increasing rapidly
with the depth of the network. The loops are traced in the final layer to produce gauge invariant
output. Exact gauge covariance is maintained throughout.

& Niedermayer, 1994). Since they are expected to exhibit suppressed lattice artifacts also at the
quantum level, this approach has been used in various MC simulations (DeGrand et al., 1995b;a;
1996; Bietenholz & Wiese, 1996; Blatter et al., 1996; Blatter & Niedermayer, 1996; Niedermayer
et al., 2001; Gattringer et al., 2004; Hasenfratz et al., 2004; 2005; 2009). However, practical imple-
mentation remains challenging as many FP properties are only implicitly defined, and the FP action
requires infinitely many loop operators to describe gauge link couplings. Effective renormalization
group transformations (RGTs) have been designed to optimize this process, as demonstrated in pre-
vious studies Blatter & Niedermayer (1996). Details on the theoretical setup of the FP action and
on our data generation are presented in Appendix A. One is then still left with the challenging task
of finding a compact and accurate parametrization of the FP lattice action.

Recent advances in machine learning (ML), in particular the construction of lattice gauge equivariant
convolutional neural networks (L-CNNs) by Favoni et al. (2022), now provide a completely new way
to tackle this problem. Rather than committing to a particular ansatz for the lattice action, e.g., in
terms of some of the smaller closed loops like the plaquette and rectangle, one can have a much more
general and expressive neural network architecture, where an optimal set of parameters can be found
using ML techniques once a sufficiently rich training dataset is provided. An essential element is
that gauge symmetry must be exactly preserved in the network architecture. This has been achieved
by starting with the original gauge links and local untraced plaquettes, and creating extended closed
loops of gauge links through successive layers using parallel transport and bilinear products of local
gauge equivariant operators. In this way, a rapidly increasing number of possible loops is generated
with each additional layer. This was shown to be far superior to convolutional neural networks
(CNNs) where gauge symmetry was not built into the architecture. The complete generality of the
L-CNN approach makes it an ideal method to parametrize FP actions. More details on L-CNNs and
the corresponding gauge equivariant neural network model can be found in Appendix B.

2 GAUGE EQUIVARIANT NEURAL NETWORK MODEL

L-CNNs built from multiple bilinear convolutions with a final trace layer at the end of the network
can be used to express a large class of gauge invariant scalar functions on the lattice. As depicted in
Fig. 1, the full architecture can have alternating convolutional and bilinear layers (or combinations
thereof), building up more and more loops of increasing length. In principle, any arbitrary loop can
be generated once sufficiently many layers are combined. The model also has the possibility to add
activation and exponentiation of the variables Wx,a, which are not used in this particular work. As
a final layer, a trace over the variables produces a gauge invariant scalar. Favoni et al. (2022) used
L-CNN models to accurately predict traces of planar Wilson loops of size up to 4 × 4 in SU(2)
gauge theory and found them to be far superior to CNN models which were not constructed with
exact gauge invariance.
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Figure 2: Results of training an ensemble of 130 models, ranging from small to large architectures,
on lattice volume of size 44 with βwil ranging from 5.0 to 10.0. Test data consisted of the same
lattice size and βwil range. All models use the Wilson action as a prefactor action. We show box
plots of the relative errors and derivative errors averaged over all test data. The thick central lines
show the median error. The box extends from the 25% to the 75% quantile and the whiskers denote
the 0% (minimum) and 95% quantile (to remove outliers). The left panels show the dependence of
the errors on the model depth, i.e., the number of bilinear convolutional layers. The middle panels
show the dependence on the model width given by the sum of channels across all layers. The right
panels show the dependence on the size of the receptive field of the models, which we approximate
by the sum of kernel sizes in each layer. We observe that larger models (more layers, more channels,
larger receptive field) typically lead to better approximations of the data.

However, there are a few additional requirements to parametrize gauge invariant actions. The first
requirement is a normalization condition: the output of a parametrization AL-CNN[V ] must ap-
proach the Yang-Mills action SYM[Aµ(x)]/β for sufficiently smooth gauge configurations Vx,µ ≈
exp(iaAµ(x)) with gauge fields Aµ(x). Secondly, one may require that the naive continuum limit
for lattice spacing a → 0 is reached in a particular way such that lattice artifacts of certain ob-
servables are suppressed to some desired order, along the lines of Symanzik improvement. A third
condition is that the parametrized action should be positive for all gauge configurations. Finally,
we require the action to be local, which means that the parametrization should be expressible as a
sum over lattice sites of finite-length Wilson loops and their products. All four requirements can be
explicitly realized by choosing a particular ansatz for the parametrization model:

AL-CNN[V ] =
∑

x

Apre
x [V ]

∞∑

n=0

b(n)(Nx[V ]−Nx[1])
n, (1)

where Apre
x [V ] is the local contribution of a prefactor action, Apre[V ] =

∑
x Apre

x [V ]. The term
Nx[V ] is the local output of an L-CNN and Nx[1] is the network evaluated on a link configuration of
unit matrices. Finally, b(n) are manually chosen coefficients with the constraint b(0) = 1. As we will
show below, the prefactor part is used to control the naive continuum behavior of the action, whereas
the L-CNN provides corrections for coarse configurations. For details about these requirements and
the shape of the prefactor as well as the choice of the loss function, we refer to Appendix B

3 RESULTS

We show a summary of the hyperparameter scan in Fig. 2, with 130 L-CNN models used to estimate
the distributions, examining the accuracy in predicting the FP action value and the FP derivatives.
To compare a variety of models, we study their performance in terms of the model depth, the model
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Figure 3: Comparison of different parametrizations of the FP action evaluated on MC ensembles
with values of the bare coupling ranging from βwil = 5.0 to βwil = 20.0 on 44 lattice volumes. The
errors of a particular parametrization are defined as the deviations from the numerical fixed point
data. The top panel shows the relative error L1 computed from action values. The bottom panel
shows the gauge invariant derivative error L2. The error bars are given by the standard deviation
within each ensemble. Our best machine learned model (L-CNN, blue line) has the smallest er-
ror over the whole depicted range of bare couplings, improving results of previous hand-crafted
parametrizations denoted as IIIc-4, APE444, and APE431.

width, and the size of the receptive field. The depth of the model is determined by the number of
layers, while the width is related to the number of channels in each layer. As a simple measure of
the model width, we take the sum of the number of channels in each layer. The size of the receptive
field, which limits the locality of the action, is approximated by the sum of the kernel size for each
layer. A general trend is clear: Increasing the depth, width, or receptive field reduces both the action
and derivative errors, as one might expect.

In Fig. 3 we compare the older FP parametrizations with the best L-CNN model on gauge ensembles
with the bare coupling βwil varied in a range from 5.0 to 20.0. We see that the L-CNN clearly
outperforms the previous parametrizations across this range, with its predicted action value and
derivatives much closer to the ground truth FP values. Even on much smoother gauge ensembles
at βwil = 20.0, the range for which APE444 was designed with small fluctuations, the L-CNN
model is superior in predicting the action and derivatives. Overall, the L-CNN performs well across
the entire range from coarse to fine lattice spacing. Further details on the architecture search, on
extended analysis of the results, on the generalization capabilities from restricted training ranges,
on fine-tuning for different lattice sizes, on fine-tuning with instantons and on checking the lattice
symmetries can be found in Appendix C.
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4 CONCLUSIONS AND OUTLOOK

In this work we focused on describing in detail the challenging step to parametrize an FP action
for the four-dimensional SU(3) gauge theory using L-CNNs and ML techniques. This allows us to
compare with previous studies of the FP parametrization and also serves as a proof of concept that
ML can be accurately used in this task. The end result is that the very expressive nature of L-CNNs
enables us to find a much more accurate parametrization of the SU(3) FP action than previously
possible. This success constitutes the first necessary step toward future Monte Carlo studies and
ultimately toward the construction of a quantum perfect action without any lattice artifacts.
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A FIXED POINT ACTION

Several different approaches are currently being followed to deal with the problems of critical
slowing down and topological freezing. Simulations employing open boundary conditions in time
(Lüscher & Schaefer, 2011) or huge master fields (Francis et al., 2020; Fritzsch et al., 2022) both
circumvent topological freezing, but they do not address critical slowing down. Approaches using
trivializing or normalizing flows (Lüscher, 2010) attempt to solve both problems by finding invert-
ible maps from a simple probability distribution for the lattice configurations, which allows efficient
sampling, to the target one. Recently, the use of machine-learning tools for parametrizing normal-
izing flows has roused anew attention in this approach (Albergo et al., 2019; Kanwar et al., 2020;
Boyda et al., 2021b; Gerdes et al., 2023; Bacchio et al., 2023), however, these attempts are so far
restricted to simple field theories, low dimensions or, in four-dimensional SU(3) gauge theories, to
very small and coarse systems (Abbott et al., 2023). A complementary approach in order to solve
both critical slowing down and topological freezing is by using a lattice action with no or highly
suppressed lattice artifacts.

There is a long history of designing improved lattice actions to reduce discretization effects, bring-
ing simulations at coarser lattice spacing into the scaling regime. One such program, Symanzik
improvement (Symanzik, 1983a;b; Lüscher & Weisz, 1985a;b), removes lattice artifacts in some
physical quantities order by order in the lattice spacing a. In a lattice gauge theory, this can be
achieved, for example, by building a lattice action combining plaquettes and closed six-link loops.
By construction, such an approach involves a perturbative expansion at weak coupling. A radically
different approach makes use of renormalization group (RG) properties to design lattice actions
where artifacts are removed completely to all orders. The construction of such quantum perfect
actions is an extremely ambitious goal and is in general difficult to achieve. In asymptotically free
theories, such as QCD, a constructive method can be designed based on the fixed point (FP) of RG
transformations which yields lattice actions without lattice artifacts at the classical level, i.e., for on-
shell quantities (Hasenfratz & Niedermayer, 1994). These so-called classically perfect actions, or
FP actions in short, are in general expected to show suppressed lattice artifacts even at the quantum
level. The FP action approach was used to study the O(3) nonlinear σ–model, SU(3) pure gauge the-
ory, and full QCD, with promising indications of much-reduced cutoff dependence in Monte Carlo
simulations (DeGrand et al., 1995b;a; 1996; Bietenholz & Wiese, 1996; Blatter et al., 1996; Blatter
& Niedermayer, 1996; Niedermayer et al., 2001; Gattringer et al., 2004; Hasenfratz et al., 2004;
2005; 2009). However, the increased numerical cost of simulating FP gauge actions made it difficult
at that time to draw firm conclusions on the level of improvement. Given the intervening dramatic
increase in computing capability, this is no longer an obstacle and pushing the FP approach to higher
accuracy has in principle become feasible.

The difficulty of implementing the FP program in practice stems from the fact that many of the FP
properties are defined only implicitly without knowing the explicit form of the FP action. Moreover,
the FP action in principle requires infinitely many loop operators in order to describe the infinitely
many gauge link couplings generated through the renormalization group transformations (RGTs).
This is not a problem per se, because reasonable choices of the RGT lead to FP actions which are
local, i.e., for which the couplings decay exponentially with separation, and the RGT can in fact be
designed to optimize this decay. For the SU(3) gauge theory this has been achieved by Blatter &
Niedermayer (1996).

A.1 THEORETICAL SETUP

The role of the Wilsonian renormalization group transformation (RGT) is to reduce the number of
degrees of freedom of a particular physical system by integrating out fluctuations at high-energy
scales while leaving the underlying physics at low-energy scales entirely intact (Wilson, 1971a;b).
For a field theory regularized on a lattice, the lattice spacing is increased with each RGT step. Start-
ing from a very fine lattice close to the continuum, for which any discretized action has negligible
lattice artifacts, one can follow a chain of RGT steps leading to a very complicated lattice action on
a coarse lattice describing the same low-energy physics. For SU(Nc) lattice gauge theory where the
underlying variables on the fine lattice Λ = {n ∈ N4} are the gauge links Un,µ with some lattice
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Figure 4: A sketch of the renormalization group flow and the renormalized trajectory (RT) in the
infinite-dimensional coupling space, with the gauge coupling as the only relevant direction. The
fixed point is on the critical surface β → ∞ where ξ/a = ∞ for any physical scale ξ, with the
values of the critical couplings cFPn determined by the specific form of the RG blocking. The FP
action uses the same coupling values at finite β, tracking the RT very closely at weak coupling.

action A[U ] and gauge coupling β = 2Nc/g
2, the RGT can be defined as

exp(−β′A′[V ]) =

∫
DU exp(−β{A[U ] + T [U, V ]}) (2)

where the blocking kernel T [U, V ] is given by

T [U, V ] = −κ
∑

nB ,µ

{
ReTr(VnB ,µQ

†
nB ,µ)−N β

µ

}
(3)

and defines the coupling between the fine links Un,µ and the coarse links VnB ,µ on the blocked coarse
lattice ΛB = {nB ∈ N4}. The free parameter κ can be optimized. The QnB ,µ variables are blocked
links constructed from the underlying fine links Un,µ. The normalization term N β

µ guarantees that
the partition function is invariant under the RGT, i.e., integrating Eq. (2) over the coarse gauge links
with DV yields Z(β′) = Z(β). The form of the effective coarse action A′[V ] and the couplings
{g′, c′0, c′1, . . .} are determined by the choice of the kernel T [U, V ]. Under infinitesimal RGTs, the
couplings map out a flow in the space of all possible gauge-invariant operators, as illustrated in
Figure 4 by the light red trajectories.

For asymptotically free gauge theories, the only relevant coupling is the gauge coupling g and the
continuum is approached in the weak coupling limit β → ∞. On the critical surface, where ξ/a =
∞, the irrelevant couplings c0, c1, . . . flow into a fixed point as shown in Figure 4. The FP couplings
{cFP

0 , cFP
1 , . . .} are determined once the form of the RG blocking is prescribed. Slightly off the critical

surface, the couplings first flow toward then away from the fixed point, approaching the renormalized
trajectory (RT) which describes the flow starting from the FP in the relevant direction of the gauge
coupling. Along the RT, the lattice theory is quantum perfect, with no lattice artifacts at all, because
it is connected back to the continuum theory on the critical surface. The FP couplings define the so-
called FP action AFP. When it is used at finite values of β, it tracks the RT very closely at sufficiently
weak coupling, cf. Figure 4. The FP action can be shown to be classically perfect (Hasenfratz &
Niedermayer, 1994; DeGrand et al., 1995a), i.e., it has no lattice artifacts of O(a2n) to all orders on
field configurations fulfilling the equations of motions. Artifacts of O(g2a2n) are, however, present
but suppressed for small g.

As pointed out by Hasenfratz & Niedermayer (1994), the FP action AFP is implicitly given by the
β → ∞ limit of Eq. (2), namely by the saddle point equation

AFP[V ] = min
{U}

[
AFP[U ] + T [U, V ]

]
. (4)

9
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Figure 5: The leading couplings ρµν(r) of the perturbative FP action, from Blatter & Niedermayer
(1996). The blocking kernel T [U, V ] is designed to maximize the exponential decay of the cou-
plings, with exp(−3.4r) shown as a visual guide.

For a fixed coarse configuration V , the minimization is over all possible fine configurations U , and
the normalization term in the limit β → ∞ becomes

N∞
µ = max

W∈SU(Nc)

[
ReTr(WQ†

nB ,µ)
]
. (5)

It is easy to see that the FP action has no lattice artifacts for field configurations fulfilling the equa-
tions of motion. It becomes apparent when considering the variation of the FP action using the chain
rule,

δAFP[V ]

δV
=

[
δ

δU
(AFP[U ] + T [U, V ])

δU

δV
+

δT [U, V ]

δV

]

Umin

(6)

where Umin is the configuration minimizing the right-hand side of Eq. (4). For a classical coarse
configuration V one has

δAFP[V ]

δV
= 0 ⇒ δT [U, V ]

δV

∣∣∣∣
Umin

= 0 (7)

since Umin minimizes the sum AFP[U ]+T [U, V ]. Hence T [U, V ] takes its minimum value, namely
zero. This in turn forces

AFP[V ] = AFP[Umin],
δAFP[U ]

δU

∣∣∣∣
Umin

= 0, (8)

meaning the minimizing configuration Umin is also classical and the FP action value is unchanged in
the minimizing step. This can be iterated until one reaches an arbitrarily fine classical solution with
the correct continuum action value. In particular, the FP action allows for exact instanton solutions
at finite lattice spacing (Blatter et al., 1996) and the exact FP equation therefore preserves topology
on the lattice. Note, however, that this is not necessarily true for the RGT step. Starting from a
fine configuration U , which is a classical solution, the resulting blocked configuration V might not
automatically be one as well. In fact, this can directly be seen by blocking analytical instanton
solutions with a small radius in lattice units such that the instanton properties are lost on the coarse
configuration. This process of instantons falling through the lattice is discussed further in Sec. A.2.

A crucial question concerns the locality of the FP action or, more generally, the action A′ in Eq. (2).
In order to guarantee universality, the couplings must fall off exponentially in the separation between
fields. One can design RGTs which force an exponential decay and find the one maximizing it,
so that beyond some separation the couplings are small enough to be negligible and in practical
applications can be omitted. Some guidance for a good choice of blocking kernel can be provided

10
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perturbatively (DeGrand et al., 1995a;b). At weak coupling (and with some gauge fixing), the FP
action can be expanded in terms of the gauge potential Aa

µ(x), only keeping terms up to quadratic
order in the potential. The resulting action can be expressed in terms of couplings ρµν(r) for fields
Aµ(x) and Aν(y) at separation r = |x − y|. An optimal choice of the blocking and the RGT
w.r.t. locality was found in Blatter & Niedermayer (1996). Figure 5 shows the corresponding largest
perturbative couplings which fall off exponentially in magnitude with ∼ exp(−3.4r). It is this RGT
which we employ in our work.

The FP action AFP and its properties are defined only implicitly through the FP Eq. (4), where AFP

appears on both sides. The FP equation is therefore iterative: On the right-hand side of Eq. (4),
the value of AFP[U ] can be determined through a second minimization over even finer gauge con-
figurations U ′, and so on, until we reach a configuration so smooth that any (reasonable) lattice
discretization of the continuum Yang-Mills gauge action can be used to calculate the inception value
of the action. In practice, instead of iterating the FP equation, one can shortcut the procedure and,
for sufficiently smooth fine configurations, make use of existing approximate parametrizations of
AFP[U ]. Previous parametrizations include linear combinations of plaquette, rectangular, and par-
allelogram loops with various powers of their traces (Blatter & Niedermayer, 1996), or combinations
of thin-link and smeared-link plaquette traces ux,µν and wx,µν with various powers of the form

AFP[V ] =
1

Nc

∑

x,µ<ν

∑

k,l

pklu
k
x,µνw

l
x,µν (9)

with optimized coefficients pkl (Niedermayer et al., 2001). While this parametrization ansatz is
already very general and flexible, in practice one is restricted to a rather small set of O(20 − 30)
parameters. In this paper, we take a different approach using L-CNNs and ML in connection with
the FP data from Eq. (4) in order to explore a much larger space of possible actions, with the goal
of finding a more accurate approximation than previously feasible — that is the parametrization
challenge which we address in this paper.

A.2 FIXED POINT DATA

To parametrize the FP action accurately requires a large set of data. In this section we describe how
this data is obtained on the basis of Eq. (4). In this work, most of the FP data stems from Monte
Carlo ensembles generated using the Wilson gauge action at various couplings βwil. As such, βwil

simply serves as a proxy for the size and characteristics of the gauge field fluctuations. For each
coarse configuration V one needs to find the minimizing fine configuration Umin on the right-hand
side of Eq. (4) which then yields the value AFP[V ].

As described in the previous section, for practical reasons one employs a parametrization of AFP[U ]
for the minimization procedure and the question arises how this approximation affects the true value
AFP[V ]. Since the RG blocking increases the lattice spacing by a factor of two in each RGT step,
the action density on the fine configuration U is at least a factor of 16 smaller than on the coarse
configuration V , and in practice is even smaller, because of the sizable positive contribution from
the blocking kernel T [U, V ]. In Figure 6 we show the two contributions T [U, V ] and AFP[U ] to
AFP[V ] averaged over 44 lattice ensembles generated at the indicated coupling βwil and we find that
for βwil ≳ 5.5 the action density for AFP[U ] is about a factor ≳ 30 smaller than the one for AFP[V ].
(Note that in the figure the action density for AFP[U ] is normalized to the coarse lattice volume.)
Hence, for the very smooth fine configurations, any reasonably good approximation to AFP[U ] can
be used on the right-hand side and in practice we employ the existing APE444 parametrization. This
action is constructed in such a way that the couplings of the FP action in the quadratic approximation
are reproduced (Blatter & Niedermayer, 1996) while explicitly maintaining the Symanzik “on-shell”
conditions to O(a2) (Niedermayer et al., 2001), and it therefore is a very good approximation on
sufficiently smooth configurations. From Figure 6 we can estimate the error on AFP[V ] induced by
using the APE444 parametrization on the right-hand side. Considering the worst case βwil = 5.0,
for the minimizing configurations we find action densities ≲ 0.5 corresponding to βwil ≫ 20.0.
From the top plot in Figure 3 we find that for the APE444 parametrization the relative action error is
≲ 0.3% inducing an error of ≲ 0.17% on AFP[V ] for configurations at βwil = 5.0 and far less than
0.1% already at βwil = 6.0. The accuracy of AAPE444[U ] can of course also be checked by further
minimization over U ′.
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Figure 6: Fixed point action density as a function of βwil on a 44 lattice. We show the ensemble-
averaged FP action AFP[V ], the blocking kernel T [U, V ], and the parametrized FP action AFP[U ]
used on the right-hand side of Eq. (4), normalized to the coarse lattice volume. The mean values are
obtained by averaging over the ensemble at a given βwil. The shaded regions indicate the standard
deviation.

Another potential error on the FP data AFP[V ] may originate from inaccurate minimization of the
right-hand side of Eq. (4). The minimization on each configuration starts from an initial random
fine configuration U and then sequentially updates each link Un,µ with an adaptive rotation in color
space. Each iteration corresponds to a pass through the entire volume. We show two typical exam-
ples of this minimizing procedure in Fig. 7 for two coarse configurations V on 84 volume generated
with βwil = 6.0 (top plot) and βwil = 5.4 (bottom plot). As shown in the figure, on smoother
configurations at βwil = 6.0 the minimization converges quickly, while on rougher configurations
at βwil = 5.4 as expected it takes somewhat longer to reach a similar level of convergence. In any
case, we see from the illustrations that even in those cases, the error on the value of the FP action
AFP[V ] is negligible. Note that the minimization procedure is the most expensive step in generating
the FP data. This is because the update of a single link Un,µ contributes both to AAPE444[U ] and
several blocked links QnB ,ν [U ] in a complicated way which requires the expensive recalculation of
many intermediate quantities and the resulting contributions.

The action value AFP[V ] is only one datum of information for each coarse configuration V . How-
ever, the FP Eq. (4) contains much more information which can be extracted from the derivatives
w.r.t. the gauge links (Niedermayer et al., 2001). Since the first term on the right-hand side of
Eq. (6) vanishes for the minimizing configuration Umin, the derivative can be determined solely from
the blocking kernel evaluated on the minimizing configuration. To be explicit, one has

δAFP[V ]

δV a
x,µ

=
δT [U, V ]

δV a
x,µ

∣∣∣∣
Umin

= −κReTr(itaVx,µQ
†
x,µ), (10)

with ta the generators of SU(3) and the blocked links Qx,µ built from the minimizing configuration
Umin. The derivative notation concretely means

δf(V )

δV a
x,µ

= lim
ϵ→0

1

ϵ

(
f(eiϵXV )− f(V )

)
, X(y, ν) = taδxyδµν (11)

for any scalar function f(V ). Each coarse gauge configuration V on a L4 lattice therefore generates
4× L4 × (N2

c − 1) data of derivatives, one for each link and color index. This is a large amount of
information which is very valuable in the parametrization process as it tightly constrains the form of
the FP action. For later convenience, we combine the derivatives in the form

DFP
x,µ =

∑

a

ta
δAFP[V ]

δV a
x,µ

(12)
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Figure 7: Examples of minimization on 84 lattice configurations with βwil = 6.0 (top) and 5.4
(bottom). The insets show the decrease of A[U ] + T [U, V ] in each iteration.

which makes them independent of the choice of basis for the generators.

Gauge invariance of the FP action means the derivatives DFP
x,µ are not independent, which yields

a very useful consistency check. Under an infinitesimal transformation of the links V ′
x,µ =

RxVx,µR
†
x+µ̂ with Rx = exp(iαa

xt
a), the action being unchanged forces

∑

x,µ

Tr
[
(DF

µαx)D
FP
x,µ[V ]

]
= 0, (13)

with αx = αa
xt

a and the gauge covariant forward finite difference DF
µ αx = Vx,µαx+µ̂V

†
x,µ − αx.

After summation by parts, this is equivalent to the condition
∑

x,µ

Tr
[
αxDB

µ DFP
x,µ[V ]

]
= 0, (14)

with the gauge covariant backward finite difference defined as DB
µ Gx = Gx − V †

x−µ̂,µGx−µ̂Vx−µ̂,µ

for a matrix-valued field Gx. Since Eq. (14) has to be satisfied for all possible αx, this becomes a
local condition

∑

µ

DB
µ DFP

x,µ[V ] = 0 (15)
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Figure 8: Minimization of instanton configurations. In the upper panel, an instanton of size ρ/a =
3.0 on a 164 lattice persists after being blocked to the 84 lattice. The lower panel shows an instanton
with ρ/a = 1.5 which is too small to survive the RG blocking, i.e., the instanton falls through the
lattice.

at each x to be true for exactly gauge invariant actions. We note that Eq. (15) is a consequence of
Noether’s second theorem applied to the FP action.

In our approach, we compute the FP derivatives using Eq. (10), relying on the fact that U is a (local)
minimum of the right-hand side of the FP equation. Since the numerical minimization procedure
to determine the fine configuration U can only yield approximate minima, we may check, for each
coarse configuration V , how closely the numerically obtained FP derivatives satisfy this require-
ment. This allows us to directly assess the quality of the minimizing configuration and the FP action
data. In practice, we find that the consistency check is satisfied up to the accuracy achieved in the
minimization.

In addition to Monte Carlo ensembles generated with the Wilson gauge action, we can also examine
the FP action for instanton lattice configurations. Taking as input a fine instanton configuration with
some chosen value of instanton radius ρ, we produce a coarse configuration V using the RG block-
ing. If the topological properties are intact on the coarse side, the FP action should be unchanged
by minimization, reproducing an instanton solution on the fine side. We see tests of this in Fig. 8.
Starting from a fine instanton solution on a 164 volume, the coarse 84 configuration V is produced
via RG blocking and then fed into the minimization procedure. The upper plot is for an instanton
originally of radius ρ/a = 3.0; under minimization, the action is essentially unchanged, with a very
small contribution from the blocking kernel T [U, V ], meaning the blocked configuration is also an
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instanton solution. The inset shows the rapid convergence of A[U ] + T [U, V ] in the minimization.
The lower plot is for an instanton originally of radius ρ/a = 1.5; once RG-blocked, the instan-
ton is lost, as T [U, V ] becomes much larger during minimization and the minimized total action
A[U ] + T [U, V ] is below the continuum value 4π2, i.e., the topological features are lost because
the instanton can non longer be resolved at the level of the coarse lattice spacing a′ = 2a. Note
that with the RGT-III blocking employed in this work, instantons fall through the lattice for radii
ρ/a′ ≲ 0.85. In order to embrace this specific classical property of the FP action, we generate a set
of coarse configurations through blocking fine instanton configurations with ρ/a ranging from 1.1
to 3.0. The corresponding FP action values and derivatives provided by the minimization form part
of the FP training data set.

B MACHINE LEARNING MODEL

Machine learning is being applied across a vast array of fields (LeCun et al., 1998; 2015; Mehta
et al., 2019; Feickert & Nachman, 2021; Boyda et al., 2022; Shanahan et al., 2022). Focused more
specifically on lattice field theory, it has been used to in a range of topics, including the identification
of phase transitions and their underlying critical exponents (Bachtis et al., 2020), the generation
of decorrelated Markov chains through normalizing (Kanwar et al., 2020) or trivializing (Bacchio
et al., 2023) flow transformations, inverting renormalization group transformations in scalar field
theory (Bachtis et al., 2022), the finite-temperature deconfinement phase transition in SU(2) and
SU(3) pure gauge theory (Boyda et al., 2021a; Gerasimeniuk et al., 2022), preconditioning of lattice
Dirac operators (Lehner & Wettig, 2023a;b), and the connection between machine learning diffusion
models and stochastic quantization of field theories through Langevin dynamics (Wang et al., 2023).
A recent review of some of this work can be found in Kanwar (2024). In our context, we need a
tool to parametrize a lattice action in a highly general form, maintaining exact gauge invariance.
The necessary architecture has already been developed by Favoni et al. (2022) with the lattice gauge
equivariant convolutional neural network (L-CNN).

B.1 GAUGE EQUIVARIANT NETWORK LAYERS

The input to the L-CNN network (Favoni et al., 2022) is a set of gauge configurations Ux,µ, which
under a gauge transformation change as U ′

x,µ = ΩxUx,µΩ
†
x+µ̂, with Ωx ∈ SU(3). From the gauge

links, we build untraced plaquette variables

Ux,µν = Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν = , (16)

which gauge transform locally as U ′
x,µν = ΩxUx,µνΩ

†
x. We refer to generic variables with local

gauge transformations as Wx,a with channel index 1 ≤ a ≤ Nch. Gauge equivariant convolutions
of these variables (the “channels”) are built through parallel transport via gauge links:

Wx,a →
∑

b,µ,k

ωa,b,µ,kUx,k·µ̂Wx+k·µ̂,bU
†
x,k·µ̂, (17)

with ωa,b,µ,k the convolution weights, channel indices 1 ≤ a ≤ Nch,out and 1 ≤ b ≤ Nch,in, and
−(K − 1) ≤ k ≤ (K − 1) with K the kernel size. The parallel transporters Ux,k·µ̂, which start at x
and end at x+ k · µ̂, are the products of consecutive gauge links along the path. Products of locally
transforming variables are constructed in a bilinear layer

Wx,a →
∑

b,c

αa,b,cWx,bW
′
x,c (18)

with parameters αa,b,c and channel indices in the ranges 1 ≤ b ≤ Nin,1, 1 ≤ c ≤ Nin,2 and
1 ≤ a ≤ Nout, a crucial point being that gauge covariance is maintained exactly as the product is of
variables at the same lattice site. For the L-CNN models used in this work, we use a combination of
the convolutional and bilinear layer (a bilinear convolution), which can be expressed as

Wx,a →
∑

b,c,k,µ

ωa,b,c,k,µWx,bUx,k·µ̂Wx+k·µ̂,cU
†
x,k·µ̂, (19)
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where ωa,b,c,k,µ are real-valued weights and 1 ≤ a ≤ Nout (output channels), 1 ≤ c, b ≤ Nin

(input channels) and −(K − 1) ≤ k ≤ (K − 1). We also note that each bilinear convolutional
layer considers both orientations of a particular input variable (e.g. both Wx,i and W †

x,i), which
effectively doubles the number of input channels, and a residual term. The number of trainable
parameters associated with Eq. (19) is given by (2D(K−1)Nin+1) · (2Nin+1) ·Nout with D the
dimension of the lattice.

B.2 PARAMETRIZING ACTIONS USING L-CNNS

The parametrization of the action uses the ansatz presented in Eq. (1). We consider prefactor actions
of the form

Apre
x [V ] =

1

Nc

∑

C

M∑

m=1

c
(m)
C [ReTr(1− Ux,C)]

m
, (20)

where we sum over a set of Wilson loops Ux,C (specifically plaquettes, rectangles, chairs, and par-
allelograms) starting at the lattice site x and c

(m)
C are real-valued coefficients. By construction, the

prefactor action in Eq. (20) is ultralocal, with zero coupling beyond some separation. Addition-
ally, there are constraints on the coefficients c

(m)
C which ensure positivity. Particular choices for

the coefficients guarantee that the prefactor action approaches the Yang-Mills action smoothly (nor-
malization) and is optionally improved to some particular order (Symanzik improvement). Suitable
choices for the prefactor action are the Wilson action (which only consists of the linear plaquette
term) or the Symanzik improved action (linear plaquette and rectangle contributions). The spe-
cific form of Eq. (20) also allows for the fixed point action parametrizations considered in Blatter
& Niedermayer (1996), specifically the type IIIa, IIIb and IIIc parametrizations, which include all
terms except chairs up to order M = 4. If the set of Wilson loops includes plaquettes, rectangles,
parallelograms, and chairs, the normalization condition is

c
(1)
pl + 8c

(1)
rt + 8c(1)pg + 16c

(1)
ch = 1, (21)

while the Symanzik conditions that can be imposed are Lüscher & Weisz (1985a)

c
(1)
rt − c(1)pg − c

(1)
ch = − 1

12
, c(1)pg = 0. (22)

The most frequently used Symanzik improved gauge action sets c(1)ch = 0, combining only plaquettes
and rectangles with c

(1)
rt = −1/12 and c

(1)
pl = 5/3. Note that the parametrized FP action of Blatter &

Niedermayer (1996) set c(1)ch = 0, but included parallelogram loops as well. While the prefactor part
of AL-CNN[V ] is designed to provide a good approximation to AFP[V ] for smooth gauge fields, we use
the term Nx[V ] to deal with coarse configurations. We represent Nx[V ] as the real trace of a stack
of Nlayer ≥ 1 bilinear convolutional layers. The output of the L-CNN is thus a linear combination
of Wilson loops of various sizes and therefore local. We regularize the output of the model such
that the difference Nx[V ] − Nx[1] vanishes in the vacuum for Vx,µ = 1.1 Furthermore, since the
L-CNN can be written as a linear combination of Wilson loops, a naive continuum expansion using
Vx,µ = exp(iaAµ(x)) yields

Nx[V → 1]−Nx[1] ≃ O(a2). (23)

The leading order term of the parametrized action is thus

AL-CNN[V → 1] ≃ Apre[V ](1 + b(1)O(a2)). (24)

Our chosen ansatz therefore guarantees the correct continuum behavior of the action.

The positivity requirement is realized if the prefactor action is positive everywhere and if the coeffi-
cients b(n) are chosen appropriately. For example, we may use b(n) = 1/n! which allows us to write
the parametrized action as

AL-CNN
(exp) [V ] =

∑

x

Apre
x [V ] exp(Nx[V ]−Nx[1]), (25)

1This also holds for gauge equivalent vacuum configurations Vx,µ = ΩxΩ
†
x+µ̂.
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which is positive for all gauge configurations. Another simple choice is to truncate at order n = 1:

AL-CNN
(lin) [V ] =

∑

x

Apre
x [V ](1 +Nx[V ]−Nx[1]). (26)

We note however that this ansatz is not manifestly positive.

B.3 TRAINING

In the present context, we train the L-CNN using ensembles of gauge configurations {Vi}, for which
the values of the fixed point action and associated derivatives have been obtained through minimiza-
tion as in Eqs. (4) and (10). The output of the L-CNN is AL-CNN[Vi]. The predicted derivatives
DL-CNN

x,µ [V ] =
∑

a t
aδAL-CNN[V ]/δV a

x,µ (analogous to Eq. (12)) are calculated exactly through back-
propagation: instead of varying the output of the neural network with respect to the parameters of
the model to minimize a loss function, we calculate the derivative of the network output with respect
to the input variables, the gauge links. With this information, the loss function L for the L-CNN is
a combination of

L1 =
1

L4Ncfg

Ncfg∑

i=1

|AFP[Vi]−AL-CNN[Vi]|,

L2 =
1

32L4Ncfg

Ncfg∑

i=1

∑

x,µ

Tr
[
(DFP

x,µ[Vi]−DL-CNN
x,µ [Vi])

2
]
,

L = w1L1 + w2L2, (27)

where Ncfg is the number of configurations in the data set. The weights w1,2 for the loss function
are hyperparameters of the model. Typically, we use w1 = 0.1 and w2 = 1. The model is trained by
minimizing L using the AdamW optimizer. Note that L2 contains the group derivatives DL-CNN

x,µ of
the model which we compute by relating them to matrix-valued Wirtinger derivatives (see Appendix
D for details). Unless stated otherwise, we use single precision for floating-point arithmetic during
training and testing.

The data used to train and evaluate the network are SU(3) gauge ensembles on volumes 44, 64, and
84 with the Wilson gauge action and bare gauge couplings βwil ranging from 5.0 to 100.0, with more
dense spacing in βwil at the stronger coupling end. Each member of these ensembles represents a
possible coarse configuration V in Eq. (4), the minimization procedure begins with a random starting
fine configuration U and a parametrization of AFP[U ] appropriate for smooth gauge links. Here, we
use the APE444 parametrization (Blatter & Niedermayer, 1996). Minimizing AFP[U ] + T [U, V ]
by adaptively updating of the links U produces sets of fine configurations with matching volumes
84, 124 and 164. Each ensemble consists of 200 saved configurations equally spaced from Markov
chains of length 106, the ensembles are split into 80% training, 10% validation, and 10% test data.

C FURTHER DETAILS ON RESULTS

C.1 ARCHITECTURE SEARCH

The flexibility of the L-CNN architecture allows for a large variation of the network hyperparame-
ters, namely the number of bilinear convolution layers, the number of channels, and the kernel size
for convolutions. To gain some insight as to the optimal choices for these hyperparameters, we train
a large set of models on the same data set, gauge ensembles with lattice volume 44 generated with
the Wilson gauge action and bare coupling βwil from 5.0 to 10.0, for which minimization was first
done to find the corresponding values of the FP action and derivatives. In the L-CNN models, we
use the local Wilson action density as the prefactor Apre

x [V ]. Details about the various architectures
are shown in Table 1, where we list the number of bilinear convolutional layers, and their associated
kernel sizes and output channels. We also provide the number of trainable parameters. As detailed at
the end of Section B.1, the number of parameters for each bilinear convolution grows quickly with
the number of channels, the kernel size, and the number of dimensions. For each unique architecture
of the thirteen listed in the table, we use both Eqs. (25) and (26) and train each architecture five times
using random initial weights. This amounts to a total of 130 unique models.
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Table 1: Architecture details of the hyperparameter scan. All architectures use the Wilson action
density as a prefactor action and use clover leaf plaquettes (24 input channels). After the last convo-
lution, we take the real part of the trace and use a final linear layer to map the remaining channels to
a single real number.

Layers Kernel Sizes Channels Parameters

1
1 4 9.61K
2 8 170K
2 16 340K

2
1, 1 4, 8 10.3K
2, 1 8, 16 174K
2, 2 16, 12 454K

3

2, 1, 1 4, 4, 8 85.8K
2, 2, 1 8, 8, 16 194K
2, 2, 1 12, 24, 24 443K
2, 2, 1 16, 16, 32 527K

4
2, 1, 1, 1 8, 8, 16, 32 212K
2, 2, 1, 1 16, 16, 16, 32 544K
2, 2, 2, 1 16, 24, 24, 32 1.15M

The firm indication is that L-CNN models with three layers, cumulative kernel sizes of five, and
cumulative number of channels approximately 60, are highly accurate, predicting the FP action with
an error well below 1%. Although not explicitly shown in Fig. 2, we remark that we find little
difference in the choice of function that is used to combine the prefactor action with the regularized
L-CNN: Both the exponential and linear functions in Eqs. (25) and (26) show virtually the same
performance across all tested architectures. Since the exponential function is manifestly positive
and thus more likely to produce strictly positive parametrizations, we deem it the more suitable
choice for further studies. We note that results for models with up to three layers were obtained
using 400 training epochs, whereas models with four layers required 1000 epochs for convergence.
During the training phase of models with four layers, we encountered a single outlier, which did not
converge.

The broad scan allows us to narrow the search for the optimal L-CNN, for which training can be
extended to a larger number of epochs to ensure convergence. We can also avail of previous studies
of the FP action for SU(3) gauge theory, where the accuracy of those parametrizations provides
a baseline. The older study (Blatter & Niedermayer, 1996) used the ansatz as in Eq. (20), with
plaquette, rectangle and parallelogram loops, and powers up to M = 4, with the coefficients c

(m)
C

determined through χ2 minimization. Borrowing their nomenclature we refer to this parametrization
as IIIc-4 in the figures. The later study (Niedermayer et al., 2001) used a very different ansatz as in
Eq. (9), with powers of plaquettes of original and smeared gauge links, with the smearing sensitive
to the local fluctuations of the gauge links. This yielded two parametrizations, one designed to be
accurate on smooth gauge configurations close to the continuum (denoted APE444 in our figures)
and a second to be used on rough configurations with a lattice spacing as large as 0.35 fm (referred
to as APE431).

Motivated by the hyperparameter scan, we decide on training architectures with three bilinear con-
volutional layers, using kernel sizes {2, 2, 1} and output channels {12, 24, 24} respectively. To
improve the behavior in the continuum βwil → ∞ we opt for a prefactor action of type IIIc-4 and
extend the range of training data to 5.0 ≤ βwil ≤ 20.0 on 44 lattices. Furthermore, we may consider
the parameters of the prefactor in Eq. (20) to be adjusted during training while ensuring that the nor-
malization and Symanzik conditions remain satisfied. Instead of using random initialization, we set
the coefficients c(m)

C to the values originally found in Blatter & Niedermayer (1996). Thus, both the
prefactor coefficients and the weights of the L-CNN are optimized during training. We train these
models using multiple random initializations for 800 epochs. Results of employing finetuning to
further improve our models are discussed in Appendix C.5. Figures 3 to 12, which we discuss in de-
tail in the following section, are produced with our best model found through this training procedure
including finetuning on instantons.
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Figure 9: Comparison of different parametrizations of the FP action evaluated on MC ensembles
from βwil = 5.0 to βwil = 7.0 on a 44 lattice. We plot the relative linear deviations from the numer-
ical fixed point action data for our best L-CNN model and the APE431 parametrization.
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Figure 10: Ratio of our best L-CNN model AL-CNN[U ] and its associated prefactor action Apre[U ]
(in this case, a learned IIIc action) as a function of βwil on a 44 lattice. By construction, the L-CNN
model approaches the prefactor in the limit of smooth configurations βwil → ∞.

C.2 DETAILED RESULTS

To amplify the superiority of the trained network, we show in Fig. 9 the difference between predicted
and actual FP action values for APE431 (designed for coarse lattices) and L-CNN in the range
5.0 ≤ βwil ≤ 7.0. The difference changes sign for APE431 as we scan across bare coupling, the
L-CNN model gives a visibly much more accurate prediction. The effect of the model can be drawn
out as shown in Fig. 10 through the ratio of the L-CNN output AL-CNN[V ] to the prefactor Apre[V ],
which varies up to ∼ 30% on the coarsest gauge ensembles, approaching 1 in the continuum limit
βwil → ∞.

Because the FP derivatives represent a volume-sized amount of information for each gauge config-
uration, the distributions of the error DFP

x,µ,a[V ]−Dmodel
x,µ,a[V ] are an additional probe of the accuracy

of each model used for parametrization. As shown in Fig. 11, the distributions narrow with re-
duced error going to finer lattices, with all parametrizations becoming more accurate. The L-CNN
model has the sharpest distributions of all across all bare couplings, even at βwil = 20.0, the range
where the APE444 parametrization was optimally designed. The superiority of the L-CNN model
at βwil = 6.0 is particularly interesting, as this corresponds to a lattice spacing a ∼ 0.1 fm in the
range of coarsest lattice spacings used in current large-scale simulations.
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Figure 11: Histograms of the local deviations ∆x,µ,a = DFP
x,µ,a −Dmodel

x,µ,a of the model derivative
Dmodel

x,µ,a and the derivative of the fixed point action DFP
x,µ,a. Here, the model can refer to an L-CNN

or a different parametrization of the FP action. We show the same parametrizations as in Fig. 3 for
specific values of βwil. The horizontal axes have been rescaled by the standard deviation of DFP

x,µ,a.

According to arguments of universality, locality of the discretized theory guarantees the correct
continuum limit. While the exact FP action has infinitely many couplings, it is still a local action
because the couplings decrease exponentially with the separation r = |x − y| of the gauge links at
positions x and y, as shown for the perturbative couplings ρµν(r) in Fig. 5. To test if the optimal
L-CNN model shares this feature beyond the perturbative regime, we look at a quantity analogous
to the perturbative coupling, namely the variation of the action AL-CNN[V ] with respect to gauge
links at locations x and y and in directions µ and ν. A gauge invariant observable ρ̂µν(r) can be
built from the square of this second-order derivative. The behavior of this coupling for the L-CNN
model is shown in Fig. 12, measured on 64 volumes at βwil = 6.0 and normalized by ρ̂00(0). The
couplings do indeed decrease rapidly with separation, with a relative change of 10−5 by separation
r/a = 4. From this, we deduce that the L-CNN network does not significantly couple fields at
large separation and that the finite extent of the model does not lead to poor accuracy. We note that
the numerical evaluation of the locality measure requires double-precision arithmetic to resolve the
small couplings at large distances.

C.3 RESTRICTED TRAINING RANGES

We also investigate how the selection of training data affects the performance of the L-CNN to make
accurate predictions. To do so, we split the training data into low β values βwil ∈ [5, 7] and high
values βwil ∈ [7, 20], and train multiple models with random initializations on the low, high and
original βwil ranges. The results are shown in Fig. 13 and Table 2. We find that each model gen-
erally performs well on the data it has been trained on. Surprisingly, the model trained on the full
range performs best on coarse configurations. This might be due to the fact that this full model has
been trained with the most data. On the other hand, the high model works best on high β values.
Comparing the low and high models, these results might suggest a lack of generalization of our

20



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 1 2 3 4 5

distance |r|/a

10−6

10−5

10−4

10−3

10−2

10−1

100

ρ̂
µ
ν
(r

)/
ρ̂

0
0
(0

)

µ = ν

µ 6= ν

exp (−3.13 r)

Figure 12: Locality measure ⟨ρ̂µν(r)⟩ as a function of distance |r| of our best L-CNN model. The
expectation value has been evaluated on five configurations at βwil = 6.0 on a 64 lattice. Blue
crosses show parallel couplings ρ̂µµ, whereas orange circles correspond to orthogonal couplings
ρ̂µν with µ ̸= ν. An exponential fit is shown as a red dashed line. Couplings beyond rmax ≈ 4.3 a
are zero due to the finite receptive field of the L-CNN.

Table 2: Effect of training data selection on model performance. The left column denotes the range
of βwil used for evaluation, whereas the first row shows the range for training. We report the relative
error of the predicted action with respect to numerical FP data, averaged over all configurations
within the respective βwil-range. The smallest error in each column is highlighted in bold. It is
apparent that the model performance strongly depends on the training range and that there is a trade-
off between accuracy on particular ensembles and generality across many ensembles.

test data range
training data range [5,7] [7,20] [5,20]

[5, 7] 0.298 % 1.787 % 0.827 %
[7, 20] 2.432 % 0.033 % 1.702 %
[5, 20] 0.217 % 0.138 % 0.195 %

models to data outside the original training range. Models only trained on very coarse configura-
tions tend to make less accurate predictions for smooth configurations and vice versa. In a sense, this
suggests that despite overall good performance, the L-CNN does not truly learn the FP action that
underlies the training data. However, it is unlikely that this would hinder the practical use of an FP
parametrization based on L-CNNs or that this is a problem affecting only L-CNN models. Similarly,
parametrizations based on simple loops as in Eq. (20) and even more sophisticated approaches using
asymmetrically smeared links such as APE431 and APE444 require data from a large range of βwil

in order to determine suitable coefficients with good accuracy for both coarse and smooth configura-
tions. From a practical viewpoint, especially concerning the use of FP parametrizations in a Monte
Carlo simulation, it might not even be necessary to have a model that generalizes to all values of
βwil. If one intends to perform a simulation at a particular β, it is sufficient to use a parametrization
that works well on a specific level of coarseness. Much coarser and much smoother configurations
are both unlikely to occur during the simulation and thus less than optimal performance outside a
particular β-range does not pose a problem in practice. We also stress that the L-CNN models ap-
proach the continuum limit by construction, i.e., for sufficiently smooth fields our models reproduce
the Yang-Mills action.

C.4 FINETUNING FOR DIFFERENT LATTICE SIZES

Up until now, we have only considered models trained and tested on 44 lattices. We employ transfer
learning to our best type IIIc L-CNN model obtained in the last section (before finetuning on in-
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Figure 13: Effect of data selection on trained models. We show the average relative error on 44

lattices of three different models for each MC ensemble from βwil = 5 to βwil = 20. The models
have been trained on different data: low (βwil ∈ [5, 7], light blue region), high (βwil ∈ [7, 20], light
orange region), and the full range (βwil ∈ [5, 20]). The averages across all βwil are reported in Table
2.

stantons) by additional training with data from larger lattices. Specifically, we finetune on 64 and 84

in the range βwil ∈ [5, 20] for 400 epochs, starting from our previous best model. For better com-
parison, we also finetune our previous best model on 44 with the same number of epochs. Through
experimentation, we found that it is beneficial to change the loss function during this finetuning
procedure. In contrast to Eq. (27), which optimizes the absolute errors of the action values and
derivatives, we opt for a new loss function based on relative errors:

L′
1 =

∑

i

|AFP[Vi]−AL-CNN[Vi]|
AFP[Vi]

,

L′
2 =

∑

i

∑
x,µ Tr

[
(DFP

x,µ[Vi]−DL-CNN
x,µ [Vi])

2
]

∑
x,µ Tr

[
(DFP

x,µ[Vi])2
] ,

L′ = w′
1L′

1 + w′
2L′

2, (28)

with typical choices w′
1 = w′

2 = 1.

The performance of these three finetuned models can then be compared across different lattice sizes.
The results are summarized in Table 3, where we list the relative error measured by the action values
and the gauge invariant derivative error for each lattice size. Remarkably, we find that the perfor-
mance improves only slightly with additional transfer learning and is consistent for all considered
lattice sizes. This suggests that training on small lattice sizes is sufficient to obtain FP parametriza-
tions with high accuracy, which generalize beyond the original training data in terms of lattice size.
This is highly advantageous because training on small lattices is much more efficient: a typical
model trained for 100 epochs requires approximately 4 hours on 44, 7 hours on 64, and 22 hours on
84 on an NVidia 3090 RTX GPU.

C.5 FINETUNING WITH INSTANTONS

We have seen that the performance of a trained model strongly depends on the properties of the
training configurations. The largest effect stems from the coarseness of equilibrated configurations,
controlled by βwil, as demonstrated in Sec. C.3. We may extend our training procedure to also
include nonequilibrium configurations, for example instanton solutions. One might expect that an
L-CNN trained to sub-percent accuracy within βwil ∈ [5, 20] would also produce similarly accurate
predictions for instantons, but we find that this is not necessarily the case. If instantons are absent
during training, then predictions for their FP action values appear to be mostly determined by the
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Table 3: Effect of transfer learning with different lattice sizes. Starting from our previous best
model, we use transfer learning to obtain models that have been finetuned to 44, 64, and 84 data.
The left column denotes three different models and we report the relative error and derivative error
on various lattice sizes for βwil ∈ [5, 20]. The smallest errors in each column are highlighted in bold.
The lattice size appears to have a negligible effect on model performance.

relative error (test data)
finetuned model 44 64 84

44 0.178 % 0.201 % 0.181 %
64 0.185 % 0.196 % 0.177 %
84 0.191 % 0.202 % 0.176 %

derivative error (test data)
finetuned model 44 64 84

44 7.63× 10−2 8.19× 10−2 8.22× 10−2

64 7.39× 10−2 7.93× 10−2 7.96× 10−2

84 7.36× 10−2 7.91× 10−2 7.93× 10−2
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Figure 14: Evaluating different parametrizations of the FP action on instanton configurations with
radii ρ/a on an 84 lattice. The black points show the numerical fixed point data. The L-CNN model
is a type IIIc-inspired action with Symanzik-constrained trainable parameters. As detailed in the
main text, it has been finetuned on instanton configurations.

prefactor action Apre[V ]. In the case of the IIIc-4 prefactor action, we find a relative error of ∼ 10%
for instanton radii between ρ/a = 0.5 and ρ/a = 1.5.

Predictions for instantons can be drastically improved by including them as training configurations in
the finetuning procedure. Starting from our best 44 model found in Sec. C.4, we extend the training
data set from equilibrated configurations within βwil ∈ [5, 20] to include 20 different instantons and
perform transfer learning with a reduced learning rate and increased batch size for 1000 additional
epochs with w′

1 = 1 and w′
2 = 0.1. This parameter choice puts more weight on accurate action

values at the cost of slightly more inaccurate predictions for derivatives. To avoid data imbalance,
the instantons are included multiple times such that we obtain effectively 200 training instantons.

We test our finetuned model on instantons of various sizes. The results are shown in Fig. 14, where
we plot the predicted action as a function of the instanton radius. We see that our model predicts the
numerical FP data much better than the IIIc-4 action and even the APE431 action. The predictions
closely follow the FP data, except for the kink around ρ/a = 0.85. Moreover, we find that our
finetuning procedure does not lead to a loss of performance on equilibrated configurations. Our
finetuned model has a relative error of 0.12% and a gauge-invariant derivative error L2 = 8.731 ·
10−2 within βwil ∈ [5, 20]. We note that this finetuned model is the one presented in Sec. C.2.
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Figure 15: Relative error due to breaking of rotational and reflection symmetry as a function of βwil.
We also show the relative prediction error for comparison (black dots).

C.6 APPROXIMATE LATTICE SYMMETRIES

Finally, we may check the trained model for discrete lattice symmetries. The L-CNN used in this
work is, by construction, equivariant with respect to lattice translations. As a result, if U and U ′

(shift)

are two gauge configurations which are the same up to a shift on the lattice, then the predictions will
agree exactly

AL-CNN[U ′
(shift)] = AL-CNN[U ]. (29)

On the other hand, other lattice symmetries such as rotations and reflections are not implemented
exactly. A rotated gauge configuration U ′

(rot) is generally assigned a different action value

AL-CNN[U ′
(rot)] ̸= AL-CNN[U ]. (30)

In principle, the L-CNN architecture can be extended to include such discrete lattice symmetries
exactly (Aronsson et al., 2023), but only at considerable computational cost. Thus, with the goal in
mind to use the trained model in a future Monte Carlo study, we only consider the more efficient
translationally-equivariant L-CNNs and test symmetry properties after training.

For rotational invariance, we consider all 90◦ rotations about a single origin on the lattice. Taking
into account both clockwise and counter-clockwise rotations, these amount to D(D − 1) transfor-
mations in D lattice dimensions. The choice of origin is arbitrary due to translational equivariance.
Given a particular gauge configuration U(0) from the test set, we generate the set of rotated con-
figurations U(j) with j ∈ {1, 2, . . . , D(D − 1)}. For each of these configurations, we compute the
predicted action A(j) = AL-CNN[U(j)]. We then define the relative error due to broken rotational
invariance as the standard deviation of the set {A(j)} normalized to the mean value. A similar
measure can be defined for reflections along lattice axes.

We present our results in Fig. 15, where we evaluate the measures for broken symmetry on equili-
brated configurations on a 44 lattice from βwil = 5.0 to 8.0. We observe that the variance between
predictions due to symmetry transformations (either rotations or reflections) is much smaller than
the prediction error for coarse configurations (βwil < 6). For smoother configurations, the errors
become comparable. Overall, we conclude that sufficiently well-trained models exhibit approxi-
mate rotation and reflection symmetry. These symmetries are a priori not present in the L-CNN
architecture and have been learned during training.

D AUTOMATIC GROUP DIFFERENTIATION

Training parametrized actions, i.e., minimizing the loss function in Eq. (27), requires efficient meth-
ods to compute exact group derivatives of actions as defined in Eq. (11). In this appendix, we show

24



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

how group derivatives are related to Wirtinger derivatives, which can be computed using backprop-
agation.

Given a complex scalar function f : C → C, the Wirtinger derivatives are defined by

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, (31)

where z = x + iy, x, y ∈ R and z̄ is the complex conjugate. Extending this definition to scalar
functions of complex matrices U we use

(
∂f

∂U

)

ij

=
1

2

(
∂f

∂Re(U)ji
− i

∂f

∂Im(U)ji

)
, (32)

(
∂f

∂U†

)

ij

=
1

2

(
∂f

∂Re(U)ij
+ i

∂f

∂Im(U)ij

)
. (33)

Using these definitions, we obtain a compact expression for the Taylor expansion of f around U ′ =
U + ϵδU up to linear order in ϵ ≪ 1:

f(U + ϵδU) = f(U) + ϵ Tr

[
∂f

∂U
δU +

∂f

∂U† δU
†
]
+O(ϵ2). (34)

In the context of functions on SU(Nc), the group derivative is understood as varying the matrix U
along the group manifold via

δ

δUa
f(U) ≡ lim

ϵ→0

1

ϵ

(
f(eiϵt

a

U)− f(U)
)

=
d

dϵ
f(eiϵt

a

U)
∣∣
ϵ=0

. (35)

By expanding the matrix exponential in ϵ, we find that this corresponds to a variation matrix δU =
itaU . Inserting this into Eq. (34), we find

f(eiϵt
a

U) ≈ f(U + iϵtaU) (36)

= f(U) + iϵTr

[(
U

∂f

∂U
− ∂f

∂U†U
†
)
ta
]
+O(ϵ2). (37)

Thus, Eq. (35) becomes

δ

δUa
f(U) = iTr

[(
U

∂f

∂U
− ∂f

∂U†U
†
)
ta
]
. (38)

A relevant example is the function

f(U) = ReTr[UW ] =
1

2

(
Tr[UW ] + Tr[W †U†]

)
, (39)

for which the Wirtinger matrix derivatives are

∂f

∂U
=

1

2
W,

∂f

∂U† =
1

2
W †. (40)

Insertion into Eq. (38) yields

δ

δUa
f(U) =

i

2
Tr

[(
UW −W †U†) ta

]
= ReTr [iUWta] (41)

analogous to the FP action derivative and its connection to the blocking kernel as in Eq. (10). This
result enables the use of exact group derivatives of parametrized actions, because the automatic
differentiation engine of PyTorch is able to compute matrix-valued Wirtinger derivatives of arbitrary
differentiable functions.
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