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ABSTRACT

Attention mechanisms underpin the success of large language models (LLMs),
yet their substantial computational and memory overhead poses challenges for
optimizing efficiency and performance. A critical bottleneck arises as KV cache
and attention computations scale rapidly with text length, challenging deployment
on hardware with limited computational and memory resources. We observe that
attention mechanisms exhibit substantial redundancy, since the KV cache can be
significantly compressed and attention maps across heads display high similarity,
revealing that much of the computation and storage is unnecessary. Leveraging
these insights, we propose Grouped-Head LatenT Attention (GTA), a novel atten-
tion mechanism that reduces memory usage and computational complexity while
maintaining performance. GTA comprises two components: (1) a shared attention
map mechanism that reuses attention scores across multiple heads, decreasing
the key cache size; and (2) a nonlinear value decoder with learned projections
that compresses the value cache into a latent space, further cutting memory needs.
GTA cuts attention computation FLOPs by up to 62.5% versus Grouped-Query
Attention and shrink the KV cache by up to 70%, all while avoiding the extra
overhead of Multi-Head Latent Attention to improve LLM deployment efficiency.
Consequently, GTA models achieve a 2× increase in end-to-end inference speed,
with prefill benefiting from reduced computational cost and decoding benefiting
from the smaller cache footprint.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, driving break-
throughs in text generation, reasoning, and contextual understanding (Brown et al., 2020; Touvron
et al., 2023). The attention mechanism, a core component of these models, enables selective focus
on relevant parts of the input sequence, underpinning their expressive power (Vaswani et al., 2017).
However, the memory and computational demands of attention, particularly the key-value (KV) cache
in autoregressive generation, pose significant challenges for long-context scenarios and resource-
constrained environments (Dao et al., 2022; Liu et al., 2023). These bottlenecks limit the scalability
of LLMs in practical applications, where memory efficiency and low-latency inference are critical.

Prior efforts to mitigate attention-related challenges in large language models (LLMs) have led
to several innovations. Multi-Head Attention (MHA) (Vaswani et al., 2017), the foundation of
modern transformers, projects input sequences into multiple query, key, and value representations to
capture diverse contextual patterns, but its KV cache scales poorly with sequence length, limiting
long-context applicability. Multi-Query Attention (MQA) (Shazeer, 2019) reduces memory usage by
sharing a single key-value pair across heads, yet sacrifices expressivity. Grouped-Query Attention
(GQA) (Ainslie et al., 2023) groups heads to balance efficiency and performance, but compromises
attention granularity. Multi-head Latent Attention (MLA) (Liu et al., 2024a) compresses the KV
cache while preserving representational capacity, but its high computational overhead restricts use
in resource-constrained settings. Other methods, such as differential attention (Ye et al., 2025)
and convolution-augmented attention (Golovneva et al., 2025), improve contextual focus, but often
increase complexity. These approaches are limited by high computational overhead, inefficient
KV cache storage, and compromised model performance, with no method optimizing all three
simultaneously.

To address this limitations, we propose Grouped-head latenT Attention (GTA), a novel attention
framework that optimizes memory usage and computational efficiency while preserving the expressive
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power of MHA. GTA introduces two key innovations, as detailed in our method. First, it employs
a shared attention map mechanism, grouping query and key projections to reuse computations
across heads, thereby reducing computational overhead while maintaining fine-grained attention
patterns. Second, it leverages a nonlinear value decoder that compresses the value cache into a
compact latent space, using a context-adaptive sigmoid gate to dynamically generate head-specific
values (Shazeer, 2020b). This design, illustrated in our architectural diagrams, significantly reduces
memory requirements compared to traditional attention mechanisms, enabling efficient inference
without sacrificing model quality. By combining grouped projections with nonlinear decoding, GTA
achieves robust expressivity, overcoming the trade-offs observed in GQA and MLA.

In this paper, we show the design roadmap of GTA, and present experiments on GTA models ranging
from 160M to 1B parameters. Not only the statistical validation of GTA’s efficiency is provided the
practical evaluations of cache footprint and latency are also carried out. The contributions of this
work are as follows:

• Proposal of GTA, a novel attention mechanism that reduces self-attention computation by up
to 62.5% and KV cache size by up to 70% while preserving expressive power through shared
attention maps and nonlinear decoding.

• Training of GTA models on large-scale corpora and validation of their performance, matching or
surpassing GQA on benchmarks across model scales from 160M to 1B parameters.

• Analysis of GTA’s inference speed in prefill and decode stages, demonstrating 2× throughput
compared to GQA, validating its effectiveness for low-latency LLM deployment. By breaking
the conventional trade-off between efficiency and expressivity, GTA paves the way for scalable,
sustainable, and high-performance LLM deployment in various devices.

• This paper record the attention mechanism design process, including detailed design introduction,
analysis methods, and evaluation procedures, guiding future efficient attention designs.

2 RELATED WORK

Attention mechanisms are central to LLMs, enabling effective modeling of contextual dependen-
cies (Vaswani et al., 2017). However, the KV cache in standard attention mechanisms scales linearly
with sequence length, creating memory and computational bottlenecks (Dao et al., 2022). Recent
research has developed dense attention variants to optimize KV cache usage through sharing or
compression, aligning with GTA. We review these approaches, focusing on methods that share KV
caches across heads or layers and those that use latent compression, positioning GTA’s contributions.

Shared KV cache methods. Several methods reduce memory usage by sharing KV caches across
heads or layers. MHA (Vaswani et al., 2017), the transformer baseline, uses independent KV caches
for each head, resulting in high memory demands. MQA (Shazeer, 2019) shares a single KV pair
across all heads, significantly reducing memory but limiting expressivity. GQA (Ainslie et al., 2023)
groups heads and shares KV pairs within each group, balancing efficiency and performance, as seen
in LLaMA (Touvron et al., 2023). You Only Cache Once (YOCO) (Sun et al., 2024) employs a
decoder-decoder architecture to cache KV pairs once, sharing them across layers via cross-attention,
reducing memory while maintaining global attention. These methods trade off some expressivity for
efficiency, which GTA addresses through its design.

Latent attention mechanisms. Another approach compresses the KV cache using latent representa-
tions. MLA used in DeepSeek-V3 (Liu et al., 2024a) and PLM (Deng et al., 2025), compresses keys
and values into a latent vector, achieving significant memory savings while preserving performance.
Similarly, GTA uses a compressed latent value representation with a nonlinear decoder to generate
head-specific values, enhancing expressivity with low computational costs. GTA’s nonlinear decoding,
inspired by gated mechanisms like GLU (Shazeer, 2020a) and GLA (Yang et al., 2024), distinguishes
it by maximizing information density.

Performance-focused attention. Some methods prioritize performance over efficiency. Multi-Token
Attention (MTA) (Golovneva et al., 2025) uses convolutions to enhance contextual interactions,
and the Differential Transformer (Ye et al., 2025) employs dual softmax maps for sharper focus.
These approaches improve accuracy but often increase computational complexity, unlike GTA’s
efficiency-driven design.
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Comparison with Zadouri et al. (2025) The paper (Zadouri et al., 2025) introduces Grouped
Tied Attention, which reduces cache requirements by sharing key and value components, thereby
increasing arithmetic intensity. Building on this, Grouped Latent Attention is proposed to enhance
model parallelism through grouped operations on latent variables within the MLA framework. In
contrast, Grouped-Head LatenT Attention (GTA) proposed in this paper adopts a novel attention
matrix sharing strategy combined with a nonlinear value decoding process. To our knowledge, this
is the first approach to achieve simultaneous improvements in both the prefill and decode phases
without compromising model quality.

3 METHOD

In this section, we present our proposed Grouped-Head Latent Attention (GTA) mechanism, which
enhances the efficiency of transformer architectures while retaining their expressive power. We begin
by revisiting Multi-Head Attention (MHA) and introducing our efficiency-driven variants, Grouped-
Value Attention (GVA) and Grouped-Head Attention (GHA). These approaches progressively reduce
memory and computational overheads but introduce trade-offs in expressivity. Building on their
insights, we introduce GTA, which employs a compressed latent representation and a nonlinear
decoder to achieve superior efficiency and performance.

3.1 EVOLVING PATTERNS OF ATTENTION MECHANISMS

Figure 1: Attention Architecture: Comparing MHA with GVA and GHA, highlighting key, query,
and value projection differences. Left-to-right: cache reduction via sharing and compression; top-to-
bottom: attention computation reduction via shared attention maps and non-linearity.

Brief introduction to MHA MHA (Vaswani et al., 2017) underpins modern transformers by
enabling the model to attend to diverse sequence patterns. For an input X ∈ RN×H , where N
denotes sequence length and H the hidden dimension, MHA projects X into queries, keys, and
values:

Q = XWQ ∈ RN×nhdh ,K = XWK ∈ RN×nhdh , V = XWV ∈ RN×nhdh , (1)

where WQ,WK ,WV ∈ RH×nhdh are projection matrices, nh is the number of heads, and dh satisfies
nh · dh = H . Each head computes:

Oi = Softmax
(
QiK

T
i√

dh

)
ViWOi ∈ RN×H , (2)

with WOi ∈ Rdh×H as the output projection, yielding O =
∑nh

i=1 Oi. While effective, MHA’s
key-value (KV) cache grows as O(2HN), posing scalability challenges for long sequences.

To address these inefficiencies, techniques such as Multi-Query Attention (MQA) (Shazeer, 2019)
and Grouped-Query Attention (GQA) (Ainslie et al., 2023) emerged, reducing memory overhead by
sharing keys and values across heads. Building on this foundation, we introduce GVA and GHA as
evolutionary steps toward our novel GTA mechanism.
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Grouping Values to Share Attention Matrix In GVA, the attention weights computed from
queries and keys are shared across groups of heads. This means that multiple heads within a group
apply the same attention distribution but operate on distinct value projections. By reusing the attention
weights, GVA reduces redundant computation while preserving the ability of each head to produce
unique outputs through its own value transformation. This strikes a balance between efficiency and
representational flexibility, though it still requires maintaining a full set of value projections, keeping
memory usage relatively high.

Grouping Heads to Compress Attention GHA extends this idea by sharing query and key
representations within groups of heads, while deriving distinct value representations for each head.
Specifically, multiple heads in a group use the same query and key representations, but their values
are computed separately from a shared source, further compressing the memory footprint of the KV
cache. This sharing mechanism significantly lowers both computational and storage costs, making
GHA well-suited for resource-constrained settings. However, the reduced diversity in query and
key representations can limit the model’s ability to capture fine-grained dependencies, potentially
impacting performance on complex tasks.

The progression from MHA to GVA and GHA illustrates a critical trade-off between efficiency
and expressivity in attention mechanisms. These insights motivate the development of GTA, which
introduces a novel nonlinear decoder to achieve greater efficiency without sacrificing performance,
addressing the limitations of its predecessors.

3.2 GROUPED-HEAD LATENT ATTENTION

GHA mitigates the computational and memory demands of MHA by sharing query, key, and value
representations across heads, but this often compromises expressivity due to fewer unique representa-
tions. To address this limitation, we propose GTA, a novel mechanism that enhances efficiency while
preserving representational power. By integrating a compressed latent value representation with a
nonlinear decoder, GTA dynamically generates head-specific values, achieving robust expressivity
with a reduced memory footprint. This design makes GTA particularly suited for resource-constrained
inference.

Input projections and grouping GTA begins by processing an input sequence X ∈ RN×H , where
N is the sequence length and H is the hidden dimension. It computes queries, keys, and a compressed
latent value representation as follows:

Q = XWQ ∈ RN×nqdh , K = XWK ∈ RN×nkdh , C = XWC ∈ RN×ncdl , (3)

where WQ ∈ RH×nqdh , WK ∈ RH×nkdh , and WC ∈ RH×ncdl are projection matrices. Here, nq,
nk, and nc represent the number of query, key, and value groups, while dh and dl denote the head
and latent dimensions, with dl ≥ dh to ensure expressive projections.

To enhance efficiency, GTA organizes these representations into groups. Queries are divided into
nq groups, with each head i using Qq(i) ∈ RN×dh via a mapping q(i). Keys are partitioned into
nk groups, with head i accessing Kk(i) ∈ RN×dh via a mapping k(i). Values are derived from the
latent representation C, split into nc groups, with head i using Cc(i) ∈ RN×dl from group c(i). This
hierarchical grouping minimizes redundancy, preserves flexible attention patterns, and paves the way
for efficient value generation.

Nonlinear value decoder Building on this grouped structure, GTA generates head-specific value
matrices Vi ∈ RN×dh for each head i:

Vi = Cc(i)WP,i ⊙ Sigmoid(xtWG,i), (4)

where WP,i ∈ Rdl×dh is a head-specific projection matrix, WG,i ∈ RH×dh is a gating matrix, and
xt ∈ RH is the current token’s representation.

The gate Sigmoid(xtWG,i) ∈ Rdh , broadcasting across the sequence, introduces nonlinearity through
element-wise multiplication (⊙). For each head i, GTA generates the value Vi ∈ RN×dh from the
compressed latent representation Cc(i) ∈ RN×dl , where c(i) assigns head i to one of nc value groups.
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The projection is performed using WP,i ∈ Rdl×dh , which combines a direct mapping for a subset
of Cc(i)’s elements—determined by the head and group assignment—with a learnable component
initialized with small random values to enhance diversity. The resulting projection, Cc(i)WP,i, is
then modulated by the gate, introducing nonlinearity and enabling context-adaptive feature selection.
This design ensures full-rank projections, preventing information loss and enhancing the diversity of
the final output across heads within the same group. The nonlinear decoding process thus enables
GTA to produce expressive, context-sensitive values for attention computation.

3.3 EFFICIENT ATTENTION COMPUTATION

Using the dynamically generated values, GTA computes the attention output for each head i:

Oi = Softmax

(
QiK

T
k(i)√
dh

)
ViWO,i, (5)

where WO,i ∈ Rdh×H is the output projection, and the final output is O =
∑nh

i=1 Oi. For efficient
inference, GTA reformulates the computation:

Oi =

(
Softmax

(
QiK

T
k(i)√
dh

)
Cc(i)WP,i

)
⊙ Sigmoid(xtWG,i)WO,i. (6)

GTA caches both the compressed latent values C ∈ RN×ncdl and keys K ∈ RN×nkdh , resulting
in a memory footprint of O((ncdl + nkdh)N). This design reduces memory usage compared to
traditional grouped attention mechanisms, while computing the nonlinear gate on-the-fly using
xt, thereby minimizing computational overhead. Furthermore, GTA’s nonlinear decoder enhances
expressivity over linear projections by combining a compact latent representation with a context-
aware sigmoid gate, improving output diversity, akin to increasing the effective rank (Shazeer, 2020a).
This architecture achieves a robust balance of scalability, expressivity, and efficiency, making GTA a
compelling solution for resource-constrained tasks.

4 PERFORMANCE EVALUATION

To evaluate the effectiveness of our proposed GTA approach, we conduct extensive experiments on
language model pretraining with varying model sizes and sequence lengths. We analyze performance
in terms of evaluation loss, parameter count, and memory efficiency of KV cache. Additionally, we
perform ablation studies to investigate the impact of specific design choices.

4.1 VALIDATING GTA EFFECTIVENESS

We train transformer language models on the C4 dataset (Raffel et al., 2023) using sequence lengths
of 2048 and 4096 tokens. Training employs the AdamW optimizer (Loshchilov & Hutter, 2017) with
cosine scheduler and the TinyLlama tokenizer (Zhang et al., 2024). Full training details are provided
in Appendix A.1 and Appendix A.2. To benchmark our GTA, we compare it against the following
attention variants: MHA (Vaswani et al., 2017), GQA (Ainslie et al., 2023) and MLA (Liu et al.,
2024a).

Prior work often adjusts model parameters (e.g., hidden state dimensions) to match total parameter
counts across architectures, but this can confound the analysis of attention mechanisms by altering
MLP capacity. To isolate the impact of attention, we adopt a framework that fixes non-attention
parameters (e.g., hidden state dimensions, MLP sizes) across models, allowing parameter count
variations solely due to attention design. This ensures a controlled comparison, focusing on the
attention mechanism’s contribution to performance and efficiency.

Results for 160M parameter models. Table 1 presents the performance of models with approxi-
mately 160M parameters. At a sequence length of 2048 tokens, GTA (with the GTA2 configuration)
achieves a lower evaluation loss and better Wikitext perplexity (PPL) compared to MHA, GQA, and
MLA. Additionally, GTA (with the GTA1 configuration) records higher downstream task accuracy,
demonstrating a notable improvement. These results are achieved using only 12.5% of MHA’s
KV cache size per layer (192 vs. 1536 dimensions), highlighting GTA’s memory efficiency. At a
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sequence length of 4096 tokens, GTA remains competitive, delivering the lowest evaluation loss and
comparable PPL, alongside the highest average downstream accuracy. This indicates GTA’s ability to
maintain strong performance with reduced memory requirements for longer sequences.

Table 1: Performance of 160M parameter models at sequence lengths of 2048 and 4096. This table
compares models based on total parameter count, KV cache dimensions per layer, evaluation loss,
and average accuracy across a suite of downstream tasks.

Model Params Cache/layer Seq Len Eval Loss Wikitext PPL PIQA HellaSwag ARC-e ARC-c Winogrande Avg

GQA 158.50M 384 (3× 2× 64) 2048 2.719 23.63 65.94 30.70 42.59 19.53 51.38 42.03
MLA 172.54M 288 (256+32) 2048 2.707 22.69 65.01 30.72 40.65 19.19 51.38 41.39
MHA 178.78M 1536 (12× 2× 64) 2048 2.696 23.03 66.26 30.87 42.85 19.49 52.17 42.33
GTA1 160.75M 192 (64+128) 2048 2.712 22.67 66.21 30.62 42.63 19.80 52.80 42.41
GTA2 164.13M 192 (64+128) 2048 2.690 22.41 65.72 31.42 41.58 19.45 53.59 42.35

GQA 158.50M 384 (3× 2× 64) 4096 2.831 26.93 63.71 29.28 39.27 18.26 49.96 40.09
MLA 172.54M 288 (256+32) 4096 2.823 24.98 64.09 29.52 38.89 18.43 50.75 40.33
MHA 178.78M 1536 (12× 2× 64) 4096 2.827 25.16 63.87 29.38 39.56 18.77 49.67 40.25
GTA1 160.75M 192 (64+128) 4096 2.819 24.01 63.82 29.53 39.48 18.60 52.80 40.85
GTA2 164.13M 192 (64+128) 4096 2.812 25.06 63.71 29.30 38.85 20.48 51.30 40.73

Results for 500M parameter models. Table 2 summarizes results for models with approximately
500M parameters. At 2048 tokens, GTA achieves a lower evaluation loss and higher downstream
accuracy, with competitive PPL relative to MHA and GQA. This performance is attained with only
12.5% of MHA’s KV cache size (320 vs. 2560 dimensions). Configurations with smaller caches (e.g.,
192 dimensions, 7.5% of MHA’s) yield comparable results, balancing performance and efficiency. At
4096 tokens, GTA not only matches MHA’s evaluation loss but also provides lower Wikitext PPL and
higher downstream accuracy. Its reduced memory footprint remains a key benefit.

Table 2: Performance of 500M parameter models at sequence lengths of 2048 and 4096. This table
compares models based on total parameter count, KV cache dimensions per layer, evaluation loss,
and average accuracy across a suite of downstream tasks.

Model Params Cache/layer Seq Len Eval Loss Wikitext PPL PIQA HellaSwag ARC-e ARC-c Winogrande Avg

GQA 483.23M 512 (4× 2× 64) 2048 2.508 18.52 68.61 34.31 46.72 20.44 51.62 44.34
MLA 516.00M 342 (320+32) 2048 2.486 16.44 68.77 34.52 45.86 19.45 53.43 44.41
MHA 543.27M 2560 (20× 2× 64) 2048 2.484 17.53 68.44 35.11 47.35 20.73 50.91 44.51
GTA3 486.98M 192 (64+128) 2048 2.503 17.34 68.50 34.22 46.84 19.80 50.28 43.92
GTA4 500.11M 320 (64+256) 2048 2.478 16.82 68.55 34.93 47.05 20.99 53.51 45.01

GQA 483.23M 512 (4× 2× 64) 4096 2.614 19.01 67.41 31.97 43.86 18.43 52.17 42.77
MLA 516.00M 342 (320+32) 4096 2.596 17.99 65.78 32.29 44.28 19.20 52.88 42.89
MHA 543.27M 2560 (20× 2× 64) 4096 2.592 19.87 66.65 32.79 43.98 19.37 51.62 42.88
GTA3 486.98M 192 (64+128) 4096 2.609 18.77 67.25 31.85 44.49 18.26 51.07 42.58
GTA4 500.11M 320 (64+256) 4096 2.592 16.96 66.97 32.45 43.94 18.26 53.18 42.96

4.2 SCALING TO 1B LANGUAGE MODEL

To investigate the impact of scaling model size and training data, we train two models, GTA-1B
and GQA-1B, each with 1 billion parameters, trained on 220 billion tokens from the smollm-
corpus (Ben Allal et al., 2024) dataset, with details in Appendix A.1. GQA-1B adopts the LLaMA-
3.2 (llama team, 2024) framework with MobileLLM’s (Liu et al., 2024b) optimal hyperparameters,
tuned via extensive search. GTA-1B, designed for efficiency, uses only 30% of GQA-1B’s cache size
while maintaining competitive performance.

Figure 2: Loss and gradient norm curves over 50,000 training steps for GTA-1B and GQA-1B,
showing stable convergence with GTA-1B’s reduced cache size.

Figure 2 shows the training curves, with both models converging stably. GTA-1B’s loss trajectory
matches GQA-1B’s, despite its reduced cache, highlighting its memory-efficient architecture. We
leverage lm-evaluation-harness (Gao et al., 2024) to evaluate our models. These evaluation
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datasets can be divide into: general tasks (ARC-e, ARC-c (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019),
TruthfulQA (Lin et al., 2021), SIQA (Sap et al., 2019)); coding task (MBPP (Austin et al., 2021));
instruction following task (IFEval (Zhou et al., 2023)); reasoning tasks (LogiQA (Liu et al., 2020),
BBH (Suzgun et al., 2022));

Table 3: We evaluate our models with several common and domain benchmarks, the vertical line
denotes different few-shot numbers, where the left ones use 5-shot and the right ones use 3-shot.

Model PIQA HellaS. LogiQA SIQA ARC-e ARC-c BoolQ MathQA TQA BBH IFEval MBPP Avg.
GQA-1B 75.03 46.46 24.42 46.26 77.02 42.58 63.89 25.56 40.48 23.01 9.90 12.80 40.62
GTA-1B 74.59 46.47 23.50 44.26 75.63 40.87 62.01 25.93 39.01 21.01 9.80 11.60 39.56

GQA-1B-SFT 74.31 45.52 20.58 42.42 70.45 36.09 63.57 26.26 40.89 22.01 29.76 15.80 40.64
GTA-1B-SFT 74.59 45.20 19.80 45.08 71.30 39.16 65.01 26.47 41.30 25.50 36.04 16.60 42.17

For supervised fine-tuning (SFT), we further train both base models using the tulu3 dataset (Lambert
et al., 2024), a diverse collection of instruction-tuning data designed to enhance model generalization
across tasks. The fine-tuned models, GTA-1B-SFT and GQA-1B-SFT, are evaluated on the same
benchmarks. Table 3 shows that GTA-1B-SFT delivers performance comparable to GQA-1B-SFT
across diverse benchmarks, with a notable improvement in average accuracy. This competitive
performance, combined with GTA-1B’s reduced cache size, highlights its ability to generalize
effectively during fine-tuning under resource constraints.

In summary, GTA-1B achieves comparable performance to GQA-1B in both base and fine-tuned
settings, using only 30% of GQA-1B’s KV cache size and 37.5% of its self-attention computational
cost. These results underscore the potential of memory- and compute-efficient architectures for
scaling large language models, enabling sustainable and resource-efficient AI development.

4.3 ABLATION STUDIES ON GTA COMPONENTS

We perform ablation studies to evaluate the sensitivity of our GTA to critical parameters: attention
matrix sharing, head dimension, and nonlinearity choice. We systematically analyze three key
components: Shared Attention (SA), Nonlinear decoding (NL), and Up-projection (UP).

Figure 3: Performance vs. Total Latency Compari-
son for GTA components.

Figure 3 illustrates the trade-off between aver-
age performance and total latency for various
GTA configurations on 500M parameter models
with 2048 sequence length. From the plot, we
observe that the nonlinear decoding (NL) has a
significant impact on model performance, lead-
ing to substantial gains. The shared attention
mechanism (SA) greatly affects speed by reduc-
ing latency. Meanwhile, the up-projection (UP)
improves model performance with minimal in-
crease in latency. The full GTA configuration
achieves strong performance while optimizing
the latency-performance balance. Key findings
include: (1) sharing attention matrices across
heads reduces parameters and slightly improves
performance when combined with other com-
ponents, suggesting a regularization benefit; (2)
increasing head dimension enhances performance for both GTA and GQA, with GTA consistently
outperforming GQA; and (3) Sigmoid nonlinearity outperforms sparser alternatives (e.g., SiLU,
ReLU²), emphasizing the need for higher-rank value representations. Comprehensive results and
configurations are detailed in Appendix A.4. GTA demonstrates the ability to increase throughput
while preserving modeling capability and overall performance.

5 EFFICIENCY EVALUATION

In this section, we evaluate the computational and memory efficiency of our GTA mechanism against
prominent attention variants: MHA, GQA, MLA, GVA, and GHA. Through theoretical analysis
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and empirical benchmarks, we demonstrate GTA’s ability to achieve high expressivity with reduced
resource demands, positioning it as an efficient solution for modern transformer architectures.

5.1 THEORETICAL EFFICIENCY ANALYSIS

Table 4: Efficiency comparison of attention
mechanisms. Lower numbers indicate better
efficiency.

Attention KV Cache Computation ExpressivityAttention Linear

MHA 6 4 5 Strong
GQA 4 4 2 Moderate
MLA 2 5 6 Strong
GVA 5 3 4 Moderate
GHA 3 1 1 Weak
GTA (Ours) 1 2 3 Strong

Table 4 compares GTA with existing attention mech-
anisms across memory usage, computational com-
plexity, and expressivity, with detailed formulations
in Appendix B. GTA achieves a favorable efficiency-
expressivity trade-off: while GHA has the lowest
overhead, it suffers from weak expressivity. In con-
trast, GTA maintains strong expressivity comparable
to MHA while achieving substantial efficiency im-
provements.

GTA’s KV cache scales as (nkdh+ncdl)N compared
to MHA’s 2nhdhN , where nk ≪ nh and nc ≪ nh, yielding a reduction factor of approximately

2H
nkdh+ncdl

. The attention computation is similarly reduced from 2nhdhN
2 to nq(dh + dl)N

2,
providing proportional inference speedups. While GTA introduces additional linear computation,
this trade-off substantially improves model expressivity, rivaling MHA while maintaining efficiency
comparable to other efficient variants.

5.2 CONDUCTING EMPIRICAL BENCHMARKS

To substantiate the theoretical advantages, we benchmark GTA-1B against GQA-1B and MLA-1B
using the LLM-Viewer (Yuan et al., 2024) framework on an NVIDIA H100 80GB GPU. This
framework simulates optimal inference performance based on hardware specifications and model
configurations. Figure 4 illustrates the prefill and decode times across various configurations. GTA-
1B consistently outperforms both GQA-1B and MLA-1B in compute-bound prefill and I/O-bound
decode phases, demonstrating superior latency characteristics.

We further validate GTA’s effectiveness across diverse settings: (1) Multi-device evaluation on
NVIDIA H100-PCIe, A100, and A100-40G shows consistent efficiency gains; (2) Long-context scal-
ing up to 128K tokens demonstrates that GTA’s advantages become more pronounced with increasing
sequence length; (3) Model scaling to 8B parameters confirms that performance improvements are
maintained at larger model sizes. More hardware configurations and detailed evaluation results are
provided in Appendix C.

Figure 4: Prefill and decode times for GTA-1B, MLA-1B and GQA-1B across configurations on
an NVIDIA H100 80GB GPU. GTA-1B achieves lower latency in both compute-bound prefill and
I/O-bound decode phases, showcasing its enhanced efficiency.

5.3 REAL-WORLD DEPLOYMENT PERFORMANCE

Following PLM (Deng et al., 2025), we evaluate GTA-1B’s real-world performance through inference
experiments using the torch library. We measure prefill and decode times across diverse hardware
platforms: NVIDIA H100 (server-grade GPU), NVIDIA A800 (server-grade GPU), RTX 3060
(consumer-grade GPU), Apple M2 (ARM-based processor), and BCM2712 (mobile processor). This
approach captures hardware-specific optimizations and system-level overheads, providing direct
measurements of real-world inference latency beyond theoretical simulations from LLM-Viewer.

We customize batch sizes to reflect realistic usage scenarios: server-grade GPUs (H100, A800) use
prefill batch size 32 and decode batch size 64 for high-throughput environments; consumer devices

8
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(M2, BCM2712) use batch size 1 for individual users; RTX 3060 uses prefill batch size 4 and decode
batch size 16 for moderate workloads.

Figure 5: Comparison of prefill (top row) and decode (bottom row) times for GTA-1B and GQA-
1B across various configurations on NVIDIA H100, NVIDIA A800, RTX 3060, Apple M2, and
BCM2712. Prefill plots (top) display input text length on the x-axis and time required on the y-axis.
Decode plots (bottom) show starting generation length on the x-axis and time to generate 128 tokens
on the y-axis.
As shown in Figure 5, GTA-1B (blue solid line) consistently outperforms GQA-1B (orange dashed
line) across all platforms. The performance advantage is particularly pronounced at longer input
lengths (e.g., 2k tokens) and during extended generation phases, demonstrating GTA-1B’s robustness
across diverse hardware configurations.

Figure 6: Performance comparison of GTA-1B and GQA-1B with cache offload enabled, showing
prefill (top row) and decode (bottom row) times across different hardware configurations. Cache
offload transfers the key-value cache to CPU memory to alleviate GPU memory constraints, resulting
in I/O-bound conditions due to frequent data transfers.

Figure 6 demonstrates performance with cache offload enabled. GTA-1B maintains its advantages
in I/O-bound scenarios where frequent data transfers occur between GPU and CPU memory, with
particularly notable improvements in decode times across all platforms.

GTA-1B consistently surpasses GQA-1B in both prefill and decode performance across all hard-
ware platforms, with significant advantages at longer input lengths. Its superior performance in
both standard and I/O-bound conditions demonstrates practical applicability for server-grade and
consumer-grade deployments, enhancing attention mechanism efficiency through reduced compu-
tational complexity and memory demands. Further experimental details, including comprehensive
hardware specifications, are provided in Appendix C.4.

6 CONCLUSION

We present Grouped-head Latent Attention (GTA), which shares attention maps across heads and
encodes values in a learned latent space to exploit redundancy. GTA reduces attention FLOPs by up
to 62.5% and reduce KV cache size by up to 70% compared to GQA, matching perplexity while
doubling inference speed on commodity hardware. By seeking the trade-off between efficiency and
expressivity, GTA enables efficient LLM design and deployments across a wide range of real-world
scenarios. The limitation stems from our lack of engineering-focused optimization efforts, which
prevents us from achieving the theoretical upper bound of efficiency gains.
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A TRAINING DETAIL

A.1 PRETRAIN DETAIL

This section provides a comprehensive overview of the pretraining configurations and procedures
employed in our experiments. We detail the model hyperparameters, data settings, and training
specifics to ensure reproducibility and provide further insights into our methodology. The experiments
were conducted on 4 nodes, each equipped with 8 NVIDIA A800 GPUs (80GB memory), totaling 32
GPUs for distributed training.

Hardware Configuration Our training infrastructure consisted of 4 computing nodes, with each
node containing 8 NVIDIA A800 GPUs (80GB memory). The distributed training setup allowed
flexible allocation of GPU resources, scaling from single-node (8 GPUs) to full-cluster (32 GPUs)
configurations depending on model size and training requirements.

Model hyperparameters The key architectural hyperparameters for our models are summarized
in Table 5 and Table 6 . We present configurations for 160M, 500M, 1B and 8B parameter models,
highlighting the variations across different attention mechanisms: MHA, MLA, GQA, and our
proposed GTA variants.

Table 5: Model hyperparameters for 160MB and 500MB
160M 500M

MHA MLA GQA GTA1 GTA2 MHA MLA GQA GTA3 GTA4
Number of layers 24 24 24 24 24 24 24 24 24 24

Hidden Dimension 768 768 768 768 768 1280 1280 1280 1280 1280
Intermediate Size 1920 1920 1920 1920 1920 3584 3584 3584 3584 3584

Number of Attention Heads 12 12 12 12 12 20 20 20 20 20
Number of Q Heads 12 12 12 3 6 20 20 20 5 10
Numbern of V Heads 12 1 3 1 1 20 1 4 1 2
Numbern of K Heads 12 1 3 1 1 20 1 4 1 1

KV Lora Rank — 256 — — — — 320 — — —
Compressed V Head Dimension — — — 128 128 — — — 128 128

Vocabulary Size 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000
Activation Function silu silu silu silu silu silu silu silu silu silu

Tie Embeddinng TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
Params(M) 178.78 172.54 158.50 160.75 164.13 543.27 516.00 483.23 486.98 500.11

Table 6: Model hyperparameters for 1B and 8B
1B 8B

MLA-1B GQA-1B GTA-1B MLA-8B GQA-8B GTA-8B
Number of layers 54 54 54 32 32 32

Hidden Dimension 1280 1280 1280 4096 4096 4096
Intermediate Size 3584 3584 3584 14336 14336 14336

Number of Attention Heads 20 20 20 32 32 32
Number of Q Heads 20 20 5 32 32 8
Numbern of V Heads 1 5 1 1 8 2
Numbern of K Heads 1 5 1 1 8 1

KV Lora Rank 320 - - 512 - -
Compressed V Head Dimension - - 128 - - 256

Vocabulary Size 128256 128256 128256 128256 128256 128256
Activation Function silu silu silu silu silu silu

Tie Embeddinng TRUE TRUE TRUE FALSE FALSE FALSE

Data and hyperparameters Table 7 details the key hyperparameters used in our pretraining
experiments. We employed two different scaling configurations, referred to as ”Validation” and
”Scaling”, to assess the impact of model and data scaling on performance. These configurations differ
primarily in global batch size, learning rate, and certain Adam optimizer settings.
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Table 7: Experiments hyperparameters.
Hyperparameter Validation Scaling SFT

Global Batch Size 800 2048 96
Learning Rate 2.00E-04 1.00E-03 2.00E-5

Learning Rate Scheduler cosine consine cosine
Warm up rate 0.01 0.01 0.1
Weight Decay default(0.0) 0.1 0.1

Adam β1 default(0.9) 0.9 0.9
Adam β2 default(0.999) 0.95 0.95
Clip Grad 1.0 1.0 1.0

Rms Norm Eps default(1e-06) 1e-5 1e-5
Attention Dropout 0 0 0
Hidden Dropout 0 0 0

Epoch 1 1 4

A.2 LOSS CURVE

To provide insights into the training dynamics, we present the loss curves for various model configura-
tions. Figure 7, Figure 8, Figure 9 and Figure 10 illustrate the training and evaluation loss trajectories
for the 160M and 500M models across different sequence lengths. Notably, the evaluation loss is
slightly lower than the training loss, which can be attributed to the evaluation being conducted on a
subset of the data for efficiency, potentially comprising a simpler distribution.

Figure 7: Loss Curve for 160M with 2048 sequence length

Figure 8: Loss Curve for 160M with 4096 sequence length

A.3 SFT DETAIL

In the SFT stage, we trained our model using the tulu-3-sft-mixture Lambert et al. (2024)
dataset. We utilized the LlamaFactory Zheng et al. (2024) framework with nearly all default hyperpa-
rameters. Additional training details are available in Table 7.
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Figure 9: Loss Curve for 500M with 2048 sequence length

Figure 10: Loss Curve for 500M with 4096 sequence length

Figure 11: Loss curve for SFT
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A.4 SENSITIVITY ANALYSIS RESULT

Ablation study on GTA components We provide comprehensive results and configurations for the
ablation studies on the GTA components. All experiments were conducted on models with 500M
parameters and a sequence length of 2048. The base configuration uses a standard transformer
architecture, with variations introduced by enabling or disabling the Shared Attention (SA), Nonlinear
decoding (NL), and Up-projection (UP) components.

Table 8 presents detailed results, including evaluation loss, perplexity on Wikitext, and accuracy on
downstream tasks such as PIQA, HellaSwag, ARC-easy (ARC-e), ARC-challenge (ARC-c), and
Winogrande. The average (Avg) is computed across the downstream tasks.

Table 8: Ablation study on GTA components.
Model Eval Loss Wikitext PPL PIQA HellaSwag ARC-e ARC-c Winogrande Avg
MHA 2.486 17.58 68.64 35.11 47.85 20.83 50.98 44.68
GTA 2.475 16.87 68.51 34.98 47.45 21.07 53.31 45.06
GTA w/o UP 2.483 17.13 68.44 34.28 46.88 21.85 52.22 44.73
GTA w/o SA & UP 2.479 16.51 68.68 34.96 47.95 22.46 52.96 45.40
GTA w/o NL & UP 2.521 19.05 67.56 34.12 45.44 19.05 51.42 43.52
GQA (GTA w/o SA & NL & UP) 2.508 18.52 68.61 34.31 46.72 22.44 51.62 44.73

From the results, the full GTA achieves the lowest evaluation loss and a balanced improvement across
metrics. Removing NL leads to the most significant degradation, highlighting its importance for
performance. SA provides efficiency benefits (as seen in latency reductions in the main text), while
UP offers minor gains without substantial overhead. These findings validate the synergistic effects of
the GTA components.

Impact of Shared Attention Matrix To understand the importance of sharing attention matrix
across heads in our GTA architecture, we conduct an ablation study comparing shared vs. non-shared
attention matrix. As shown in Table 9, while sharing attention matrix reduces the parameter count
from 511.37M to 492.61M, it actually improves performance slightly (2.4995 vs. 2.496). This
suggests that our approach not only saves memory and computation but also provides a beneficial
regularization effect, supporting the hypothesis that traditional attention mechanisms may be over-
parameterized.

Table 9: Ablation study on the effect of sharing attention matrix in GTA models (500M parameter
range).

Configuration Parameters Eval Loss Cache/layer Seq Length
GTA with 5 attention matrix groups 486.98M 2.5031 192 (64+128) 2048
GTA with 10 attention matrix groups 492.61M 2.4995 192 (64+128) 2048
GTA without attention matrix groups 511.37M 2.4960 192 (64+128) 2048

Effect of Head Dimension We also investigate the effect of increasing the head dimension while
keeping the total parameter count similar. Table 11 compares models with head dimensions of 64 and
128. Doubling the head dimension improves performance in both GQA and GTA models, with GTA
consistently outperforming GQA. Notably, GTA with doubled head dimensions achieves our best
performance (2.492), suggesting that allocating more capacity to each head while sharing attention
matrixs is an effective design choice for attention mechanisms.

Table 10: Ablation study on the effect of head dimension in GQA and GTA models (500M parameter
range).

Model Head Dim Parameters Head Dim Eval Loss Cache/layer Seq Length
GQA 64 483.23M 64 2.5079 512 (4×2×64) 2048
GTA 64 492.61M 64 2.4995 192 (64+128) 2048

GQA 128 483.23M 128 2.5038 512 (2×2×128) 2048
GTA 128 498.24M 128 2.4844 384 (128+256) 2048
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Choice of Nonlinearity We explored different nonlinear activation functions for the gating mecha-
nism, including ReLU2, Silu, and Sigmoid, and observed that performance degrades as the sparsity
of the activation increases. Sigmoid, with its smooth and bounded output, consistently outperformed
sparser alternatives like Silu and ReLU2, which introduce more zeros and reduce the effective rank
of the value representation. This behavior contrasts with typical MLP architectures, where sparse
activations like ReLU often enhance performance by promoting feature selectivity. In GTA, however,
the reduced rank caused by sparsity impairs the expressivity of value, underscoring the importance of
maintaining a higher rank in the value representation for effective attention computation.

Table 11: Ablation study on the effect of activation function in GTA models (500M parameter range).
Model Parameters Activation Eval Loss Cache/layer Seq Length
GTA 492.61M Sigmoid 2.4995 192 (64+128) 2048
GTA 492.61M Silu 2.5314 192 (64+128) 2048
GTA 492.61M ReLU2 2.5502 192 (64+128) 2048
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B COMPUTATIONAL ANALYSIS

B.1 THEORETICAL EFFICIENCY ANALYSIS

Table 12 compares the key-value (KV) cache size and computational complexity across attention
mechanisms. GTA achieves a KV cache size of (nkdh + ncdl)N , significantly smaller than MHA’s
2nhdhN . Its attention computation, nq(dh + dl)N

2, is also lower than MHA’s 2nhdhN
2, enhancing

inference efficiency. While GTA introduces additional linear computation, this trade-off substantially
improves model expressivity, rivaling MHA while maintaining efficiency comparable to GVA and
GHA.

Table 12: Comparison of computational complexity and memory requirements for different attention
mechanisms. H is the hidden dimension, N is the sequence length, nq, nk, nv, nc are the number of
query, key, value, and latent value heads, respectively, dh is the per-head dimension, and dl is the
latent dimension.

Attention KV Cache per Layer Computation per Layer ExpressivityAttention Linear

MHA 2nhdhN 2nhdhN
2 4NH2 Strong

GQA 2nkdhN 2nhdhN
2 2NH2 + 2nkdhNH Moderate

MLA (dc + drope)N nh(drope + 2dnope)N
2

(
(dc + drope)H + nh(drope + dnope)H + 2nhdldnope +H2

)
N Strong

GVA (H + nkdh)N (nqdh + nhdh)N
2 2NH2 + 2nkdhNH Moderate

GHA (nkdh + nvdh)N (nqdh + nhdh)N
2 NH2 + nqdhNH + nkdhNH + nvdhNH Weak

GTA (Ours) (nkdh + ncdl)N nq(dk + dl)N
2 2NH2 + (nqdh + nkdh + ncdl + dl)NH Strong

As shown in Table 12, GTA achieves substantial efficiency gains in both computation and memory
usage. The KV cache size is reduced from 2HN in MHA to (nkdh + ncdl)N , where nk ≪ nh and
nc ≪ nh,. This translates to a reduction factor of approximately 2H

nkdh+ncdl
, which can be significant

for large models. The attention computation is also reduced from 2nhdhN
2 to nq(dh + dl)N

2,
offering proportional speedups during inference.

B.2 GTA

B.2.1 DEFINITION

Let ht ∈ RH represent the input hidden state for the t-th token in the attention mechanism. The
grouped key and compressed value for the j-th head are denoted by kt,j ∈ Rdh and ct,j ∈ Rdc ,
respectively. The position-independent query for the k-th head is represented as qt,k ∈ Rdh . The
computations for the attention mechanism proceed as follows:

kt,j = RoPE (WK,jht) ,

qt,k = RoPE (WQ,kht) ,

vC
t,j = WV,jht,

where WK,j ∈ Rdh×d and WC,j ∈ Rdh×d are the up-projection matrices for grouped key and
compressed value for the j-th kv head, and WQ,k ∈ Rdh×d for the k-th head, respectively.

The attention outputs {ot,i} are calculated as follows:

ot,i =
( t∑

k=1

Softmaxk

(
q⊤
t,Q(i)kk,K(i)√

dh

)
vk,V (i)

)
WP,i,

where WP,i ∈ Rdh×dc is the attention projection matrix.

The i-th head gate gt,i ∈ Rdh×H is proceed as follows:

gt,i = WG,iht,
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The final output is obtained by combining the attention results from all heads through a linear
projection:

ut = WO [ot,1 ⊙ gt,1;ot,2 ⊙ gt,2; . . . ;ot,nh
⊙ gt,nh

] ,

where WO ∈ Rd×dnopenh is the output projection matrix and nh is the number of attention heads.

B.2.2 PREFILL

For an input sequence of length N , the computational complexity begins with the projection operations
for keys kt,j and compressed values ct,j , requiring O(dhNH) and O(dcNH) operations. The query
projection qt,k further contributes O(dhNH). The gate projection requires O(NH2) and the attention
projection for each head requires O(dhdcN). The output projection requires O(NH2).

Respectively. Aggregating these components, the total linear projection cost becomes:

O
(
2NH2 + (nqdh + nkdh + nvdc + dc)NH

)
.

The attention mechanism’s computational complexity arises from pairwise interactions between
sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
scores QKT has a complexity of O(nqdhN

2). Generating the attention output by values V adds
O(nqdcN

2). The total complexity is thus O(nq(dh + dc)N
2).

Combining all terms, the total computational complexity for the prefill phase is:

PrefillGTA = O
(
2NH2 + (nqdh + nkdh + nvdc + dc)NH + nq(dh + dc)N

2
)
.

B.2.3 DECODE

For an input sequence of length N − 1, the decoder phase computes the N -th token’s representations
through successive transformations. Key and value projections kN,j and cN,j require O(dhH) and
O(dcH) operations, while the query projection qN,i incurs O(dhH). The gate projection requires
O(H2) and the attention projection for each head requires O(dhdc). The output projection requires
O(H2). The total computational linear projection cost:

O
(
2H2 + (nqdh + nkdh + nvdc + dc)H

)
.

The attention mechanism, operating over cached historical states, scales as O(2nhdhN), reflecting
linear dependence on sequence length N . Aggregating all components, the total computational cost
is:

GenerateGTA = O
(
2H2 + (nqdh + nkdh + nvdc + dc)H + 2nhdhN

)
.

Caching historical keys {kt,j} and values {vt,j} for t = 1, . . . , N − 1 demands memory:

CacheGTA = (nkdh + nvdc)N,

B.3 MLA

B.3.1 DEFINITION

Let ht ∈ RH represent the input hidden state for the t-th token in the attention mechanism. The
low-rank key-value joint compression state is denoted as cKV

t ∈ Rdc , while the decompressed
key and value for the i-th head are denoted by kC

t,i ∈ Rdnope and vC
t,i ∈ Rdnope , respectively. The

position-independent query for the i-th head is represented as qC
t,i ∈ Rdnope . The computations for the

attention mechanism proceed as follows:
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cKV
t = WDKVht,

kC
t,i = WUK,ic

KV
t ,

kR
t = RoPE (WKRht) ,

kt,i =
[
kC
t,i;k

R
t

]
,

qC
t,i = WQ,iht,

qR
t,i = RoPE (WQR,iht) ,

qt,i =
[
qC
t,i; q

R
t,i

]
,

vC
t,i = WUV,ic

KV
t ,

where WDKV ∈ Rdc×H is the down-projection matrix for key-value compression, WUK,i ∈ Rdnope×dc

and WUV,i ∈ Rdnope×dc are the up-projection matrices for decompressed key and value for the i-th
head, WKR ∈ Rdrope×H generates the shared positional key component via RoPE Su et al. (2024), and
WQ,i ∈ Rdnope×H and WQR ∈ Rdrope×H generate the position-independent and RoPE-enhanced query
components for the i-th head.

The attention outputs {ot,i} are calculated as follows:

ot,i =

t∑
j=1

Softmaxj

(
q⊤
t,ikj,i√
dh

)
vC
j,i,

where dh = dnope + drope represents the total head dimension. The final output is obtained by
combining the attention results from all heads through a linear projection:

ut = WO [ot,1;ot,2; . . . ;ot,nh
] ,

where WO ∈ RH×dnopenh is the output projection matrix and nh is the number of attention heads.

B.3.2 PREFILL

Let the input sequence length be N . The computational complexity for projecting the context
vector cKV

t is O(dcNH). Subsequent projections for content-based keys kC
t,i and values vC

t,i require
O(2dcdnopeN) operations, while the query projection qC

t,i incurs O(dnopeNH). For rotary position
embeddings (RoPE), the projections for kR

t and qR
t,i each demand O(dropeNH). The output projection

further adds O(NH2).

The total computational linear projection cost for generating keys {kt,i}, queries {qt,i}, values {vt,i}
and outputs ot combines these components:

O
(
(dc + drope)NH + nh(dnope + drope)NH + 2nhdcdnopeN +NH2

)
.

The attention mechanism’s computational complexity arises from pairwise interactions between
sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
scores QKT has a complexity of O(nh(drope + dnope)N

2). Generating the attention output by values
V adds O(nhdnopeN

2). The total complexity is thus O(nh(drope + 2dnope)N
2).

Aggregating all terms, the overall computational complexity becomes:

Prefillmla =

O
(
(dc + drope)NH + nh(dnope + drope)NH + 2nhdcdnopeN +NH2 + nh(drope + 2dnope)N

2
)
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B.3.3 DECODE

Consider an input sequence of length N − 1. The computational complexity to generate the N -th
token’s joint compression state cKV

N is O(dcH). Subsequent projections for the rotary position
embedding (RoPE)-based key kR

N and query qR
N,i each require O(dropeH), while the content-based

query qC
N,i incurs O(dnopeH). For historical tokens t = 1, . . . , N , the projections of content-based

keys {kC
t,i} and values {vC

t,i} scale as O(2dcdnopeN), while the output projection requires O(H2).
The total computational linear projection cost:

O
(
(dc + drope)H + nh(dnope + drope)H + 2nhdcdnopeN +H2

)
.

The attention mechanism’s computational complexity arises from pairwise interactions between
sequence elements. Computing attention scores QKT has a complexity of O(nh(drope + dnope)N).
Generating the attention output by values V adds O(nhdnopeN). The total complexity is thus
O(nh(drope + 2dnope)N). Combining these components, the total computational cost is:

Generatemla =

O
(
(dc + drope)H + nh(dnope + drope)H + 2nhdcdnopeN +H2 + (nh(drope + 2dnope)N

)
.

Caching mechanisms store the joint compression states {cKV
t }t=1,...,N−1 and RoPE keys

{kR
t }t=1,...,N−1, with memory footprint:

Cachemla = (drope + dc)N.

B.4 GQA

B.4.1 DEFINITION

Let ht ∈ RH represent the input hidden state for the t-th token in the attention mechanism. The
grouped key and value for the j-th kv head are denoted by kt,j ∈ Rdh and vt,j ∈ Rdh , respectively.
The position-independent query for the i-th head is represented as qt,i ∈ Rdh . The computations for
the attention mechanism proceed as follows:

kt,j = RoPE (WK,jht) ,

qt,i = RoPE (WQ,iht) ,

vC
t,j = WV,jht,

where WK,j ∈ Rdh×H and WV,j ∈ Rdh×H are the up-projection matrices for grouped key and value
for the j-th kv head, and WQ,i ∈ Rdh×H for the i-th head, respectively.

The attention outputs {ot,i} are calculated as follows:

ot,i =

t∑
k=1

Softmaxk

(
q⊤
t,ikk,i mod nk√

dh

)
vk,i mod nk ,

The final output is obtained by combining the attention results from all heads through a linear
projection:

ut = WO [ot,1;ot,2; . . . ;ot,nh
] ,

where WO ∈ RH×dnopenh is the output projection matrix and nh is the number of attention heads.
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B.4.2 PREFILL

For an input sequence of length N , the computational complexity begins with the projection operations
for keys kt,j and values vt,j , each requiring O(2dhNH) operations. The query projection qt,i further
contributes O(dhNH). The output projection requires O(H2).

Respectively. Aggregating these components, the total linear projection cost becomes:

O
(
2NH2 + 2nkdhNH

)
.

The attention mechanism’s computational complexity arises from pairwise interactions between
sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
scores QKT has a complexity of O(nhdhN

2). Generating the attention output by values V adds
O(nhdhN

2). The total complexity is thus O(2nhdhN
2).

Combining all terms, the total computational complexity for the prefill phase is:

Prefillgqa = O
(
2NH2 + 2nkdhNH + 2nhdhN

2
)
.

B.4.3 DECODE

For an input sequence of length N − 1, the decoder phase computes the N -th token’s representations
through successive transformations. Key and value projections kN,j and vN,j require O(2dhH)
operations, while the query projection qN,i incurs O(dhH). The total computational linear projection
cost:

O
(
2H2 + 2nkdhH

)
.

The attention mechanism, operating over cached historical states, scales as O(2nhdhN), reflecting
linear dependence on sequence length N . Aggregating all components, the total computational cost
is:

Generategqa = O
(
2H2 + 2nkdhH + 2nhdhN

)
.

Caching historical keys {kt,j} and values {vt,j} for t = 1, . . . , N − 1 demands memory:

Cachegqa = 2nkdhN,
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C EFFICIENCY ANALYSIS

C.1 LONG-CONTEXT PERFORMANCE EVALUATION

To assess GTA’s scalability for long-context applications, we evaluate performance across extended
sequence lengths ranging from 4K to 128K tokens. As illustrated in Figure 12, our experiments on
NVIDIA H100 80GB demonstrate that GTA’s efficiency advantages become increasingly pronounced
with longer sequences. The performance gap between GTA-1B and GQA-1B widens substantially
as sequence length increases, with GTA showing superior latency characteristics across all tested
configurations.

This scaling behavior aligns with our theoretical analysis, as the computational and memory efficiency
improvements of GTA become more significant for longer sequences. The results confirm that
GTA maintains its architectural benefits even under the demanding memory and computational
requirements of extended context processing, making it particularly well-suited for applications
requiring long-context understanding.

Figure 12: Performance comparison between GTA-1B, GQA-1B and MLA-1B across extended
sequence lengths (4K-128K tokens) on NVIDIA H100 80GB GPU. GTA demonstrates increasing
efficiency advantages as sequence length grows.

C.2 MODEL SIZE SCALING EVALUATION

To validate that our approach scales beyond the 1B parameter regime, we conduct additional experi-
ments with 8B parameter models. As shown in Figure 13, the GTA-8B model maintains the efficiency
gains observed at smaller scales, demonstrating consistent performance improvements compared to
GQA-8B across various configurations. This demonstrates that our architectural innovations remain
effective as model capacity increases, suggesting promising applicability to larger language models.
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Figure 13: Performance comparison between GTA-8B, GQA-8B and MLA-8B across different
configurations, demonstrating maintained efficiency advantages at larger model scales.

C.3 MULTI-DEVICE EVALUATION

To comprehensively evaluate the robustness of GTA-1B’s performance across diverse hardware
platforms, we conducted extensive benchmarks using the LLM-Viewer framework, consistent with
our main evaluation methodology. These experiments were performed on various NVIDIA GPUs,
including NVIDIA A100 40GB, NVIDIA A100 80GB, NVIDIA H100 80GB, NVIDIA H100 PCIe
80GB. As presented in Figure 15, Figure 14, Figure 16, and Figure 17. The results consistently
demonstrate GTA-1B’s performance advantages over GQA-1B across all tested configurations.

These findings align with our primary results (e.g NVIDIA A100 80GB GPU), further reinforcing
GTA-1B’s scalability and adaptability across various hardware platforms. Notably, the I/O-bound
decode phase shows significant benefits owing to GTA-1B’s optimized memory access patterns.
Collectively, these results provide robust evidence for the practical utility of GTA-1B in diverse
real-world deployment scenarios.

C.4 ADDITIONAL PRACTICAL INFERENCE DEPLOYMENTS

In this appendix, we provide detailed information about our experimental setup and present additional
benchmark results for GTA-1B, GQA-1B and MLA-1B under half-precision computations.

We conducted comprehensive benchmarks using the transformers library (version 4.36.0) to
evaluate the practical performance of our models across various hardware platforms. The experimental
setup included the following specifications:

• Hardware: NVIDIA H100 80GB, NVIDIA A800 80GB, NVIDIA RTX 3060 12GB, Apple
M2, and BCM2712

• Precision: Both full-precision (FP32, main text) and half-precision (FP16/BF16, this
appendix)

• Input Lengths: 128, 512, 1024 and 2048 tokens
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Figure 14: Prefill and decode times across configurations on an NVIDIA A100 80GB GPU.

Figure 15: Prefill and decode times across configurations on an NVIDIA A100 40GB GPU.
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Figure 16: Prefill and decode times across configurations on an NVIDIA H100 80GB GPU.

Figure 17: Prefill and decode times across configurations on an NVIDIA H100 PCIe 80GB GPU.
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Figure 18: Half-precision prefill and decode times for GTA-1B and GQA-1B across configurations
on NVIDIA H100, NVIDIA A800, RTX 3060.

Figure 19: Half-precision prefill and decode performance of GTA-1B and GQA-1B models with
cache offload, evaluated on diverse hardware platforms across various test configurations.

For KV cache implementation, we used two approaches:

• Standard benchmarks: DynamicCache (default in transformers)
• Offload benchmarks: OffloadedStaticCache (allocates fixed memory, pre-caches

two layers on GPU)

All results represent the average of three stable runs after a warm-up phase.

While the main text presented full-precision results, here we provide complementary half-precision
benchmarks that demonstrate similar performance patterns but with overall improved efficiency
across all hardware platforms.

Figure 18 shows half-precision performance without cache offload. Similar to full-precision results
in the main text, GTA-1B (blue solid line) consistently outperforms GQA-1B (orange dashed line).
The performance advantage becomes more pronounced at longer sequence lengths, with GTA-1B
demonstrating improved efficiency in both prefill and decode phases.

Figure 19 presents the half-precision results with cache offload enabled. GTA-1B’s efficiency
advantage is further enhanced in this memory-constrained scenario, especially on the NVIDIA A800
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80GB at longer sequence lengths. This confirms that GTA-1B’s optimized memory access patterns
are particularly effective in I/O-bound scenarios, consistent with the full-precision findings reported in
the main text. These half-precision benchmarks demonstrate that GTA-1B maintains its performance
advantages over GQA-1B across different precision settings, validating the architecture’s practical
efficiency for real-world deployment scenarios.
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D THE USE OF LARGE LANGUAGE MODELS

We used large language model (LLM) solely for grammar and spelling checking. The LLM did not
generate, refine, or select research ideas, hypotheses, methods, analyses, results, or conclusions, and it
did not write substantive content. All scientific contributions, experiment design, data interpretation,
and writing decisions are the authors’ own. The authors take full responsibility for any remaining
errors.
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