

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GROUPED-HEAD LATENT ATTENTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Attention mechanisms underpin the success of large language models (LLMs), yet their substantial computational and memory overhead poses challenges for optimizing efficiency and performance. A critical bottleneck arises as KV cache and attention computations scale rapidly with text length, challenging deployment on hardware with limited computational and memory resources. We observe that attention mechanisms exhibit substantial redundancy, since the KV cache can be significantly compressed and attention maps across heads display high similarity, revealing that much of the computation and storage is unnecessary. Leveraging these insights, we propose **Grouped-Head LatenT Attention (GTA)**, a novel attention mechanism that reduces memory usage and computational complexity while maintaining performance. GTA comprises two components: (1) a shared attention map mechanism that reuses attention scores across multiple heads, decreasing the key cache size; and (2) a nonlinear value decoder with learned projections that compresses the value cache into a latent space, further cutting memory needs. GTA cuts attention computation FLOPs by up to 62.5% versus Grouped-Query Attention and shrink the KV cache by up to 70%, all while avoiding the extra overhead of Multi-Head Latent Attention to improve LLM deployment efficiency. Consequently, GTA models achieve a 2 \times increase in end-to-end inference speed, with prefill benefiting from reduced computational cost and decoding benefiting from the smaller cache footprint.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, driving breakthroughs in text generation, reasoning, and contextual understanding (Brown et al., 2020; Touvron et al., 2023). The attention mechanism, a core component of these models, enables selective focus on relevant parts of the input sequence, underpinning their expressive power (Vaswani et al., 2017). However, the memory and computational demands of attention, particularly the key-value (KV) cache in autoregressive generation, pose significant challenges for long-context scenarios and resource-constrained environments (Dao et al., 2022; Liu et al., 2023). These bottlenecks limit the scalability of LLMs in practical applications, where memory efficiency and low-latency inference are critical.

Prior efforts to mitigate attention-related challenges in large language models (LLMs) have led to several innovations. Multi-Head Attention (MHA) (Vaswani et al., 2017), the foundation of modern transformers, projects input sequences into multiple query, key, and value representations to capture diverse contextual patterns, but its KV cache scales poorly with sequence length, limiting long-context applicability. Multi-Query Attention (MQA) (Shazeer, 2019) reduces memory usage by sharing a single key-value pair across heads, yet sacrifices expressivity. Grouped-Query Attention (GQA) (Ainslie et al., 2023) groups heads to balance efficiency and performance, but compromises attention granularity. Multi-head Latent Attention (MLA) (Liu et al., 2024a) compresses the KV cache while preserving representational capacity, but its high computational overhead restricts use in resource-constrained settings. Other methods, such as differential attention (Ye et al., 2025) and convolution-augmented attention (Golovneva et al., 2025), improve contextual focus, but often increase complexity. These approaches are limited by high computational overhead, inefficient KV cache storage, and compromised model performance, with no method optimizing all three simultaneously.

To address this limitations, we propose **Grouped-head latenT Attention (GTA)**, a novel attention framework that optimizes memory usage and computational efficiency while preserving the expressive

054 power of MHA. GTA introduces two key innovations, as detailed in our method. First, it employs
 055 a shared attention map mechanism, grouping query and key projections to reuse computations
 056 across heads, thereby reducing computational overhead while maintaining fine-grained attention
 057 patterns. Second, it leverages a nonlinear value decoder that compresses the value cache into a
 058 compact latent space, using a context-adaptive sigmoid gate to dynamically generate head-specific
 059 values (Shazeer, 2020b). This design, illustrated in our architectural diagrams, significantly reduces
 060 memory requirements compared to traditional attention mechanisms, enabling efficient inference
 061 without sacrificing model quality. By combining grouped projections with nonlinear decoding, GTA
 062 achieves robust expressivity, overcoming the trade-offs observed in GQA and MLA.

063 In this paper, we show the design roadmap of GTA, and present experiments on GTA models ranging
 064 from 160M to 1B parameters. Not only the statistical validation of GTA’s efficiency is provided the
 065 practical evaluations of cache footprint and latency are also carried out. The contributions of this
 066 work are as follows:

- 068 • Proposal of GTA, a novel attention mechanism that reduces self-attention computation by up
 069 to **62.5%** and KV cache size by up to **70%** while preserving expressive power through shared
 070 attention maps and nonlinear decoding.
- 071 • Training of GTA models on large-scale corpora and validation of their performance, matching or
 072 surpassing GQA on benchmarks across model scales from **160M to 1B** parameters.
- 073 • Analysis of GTA’s inference speed in prefill and decode stages, demonstrating **2x** throughput
 074 compared to GQA, validating its effectiveness for low-latency LLM deployment. By breaking
 075 the conventional trade-off between efficiency and expressivity, GTA paves the way for scalable,
 076 sustainable, and high-performance LLM deployment in various devices.
- 077 • This paper record the attention mechanism design process, including detailed design introduction,
 078 analysis methods, and evaluation procedures, guiding future efficient attention designs.

080 2 RELATED WORK

082 Attention mechanisms are central to LLMs, enabling effective modeling of contextual dependen-
 083 cies (Vaswani et al., 2017). However, the KV cache in standard attention mechanisms scales linearly
 084 with sequence length, creating memory and computational bottlenecks (Dao et al., 2022). Recent
 085 research has developed dense attention variants to optimize KV cache usage through sharing or
 086 compression, aligning with GTA. We review these approaches, focusing on methods that share KV
 087 caches across heads or layers and those that use latent compression, positioning GTA’s contributions.

088 **Shared KV cache methods.** Several methods reduce memory usage by sharing KV caches across
 089 heads or layers. MHA (Vaswani et al., 2017), the transformer baseline, uses independent KV caches
 090 for each head, resulting in high memory demands. MQA (Shazeer, 2019) shares a single KV pair
 091 across all heads, significantly reducing memory but limiting expressivity. GQA (Ainslie et al., 2023)
 092 groups heads and shares KV pairs within each group, balancing efficiency and performance, as seen
 093 in LLaMA (Touvron et al., 2023). You Only Cache Once (YOCO) (Sun et al., 2024) employs a
 094 decoder-decoder architecture to cache KV pairs once, sharing them across layers via cross-attention,
 095 reducing memory while maintaining global attention. These methods trade off some expressivity for
 096 efficiency, which GTA addresses through its design.

097 **Latent attention mechanisms.** Another approach compresses the KV cache using latent representa-
 098 tions. MLA used in DeepSeek-V3 (Liu et al., 2024a) and PLM (Deng et al., 2025), compresses keys
 099 and values into a latent vector, achieving significant memory savings while preserving performance.
 100 Similarly, GTA uses a compressed latent value representation with a nonlinear decoder to generate
 101 head-specific values, enhancing expressivity with low computational costs. GTA’s nonlinear decoding,
 102 inspired by gated mechanisms like GLU (Shazeer, 2020a) and GLA (Yang et al., 2024), distinguishes
 103 it by maximizing information density.

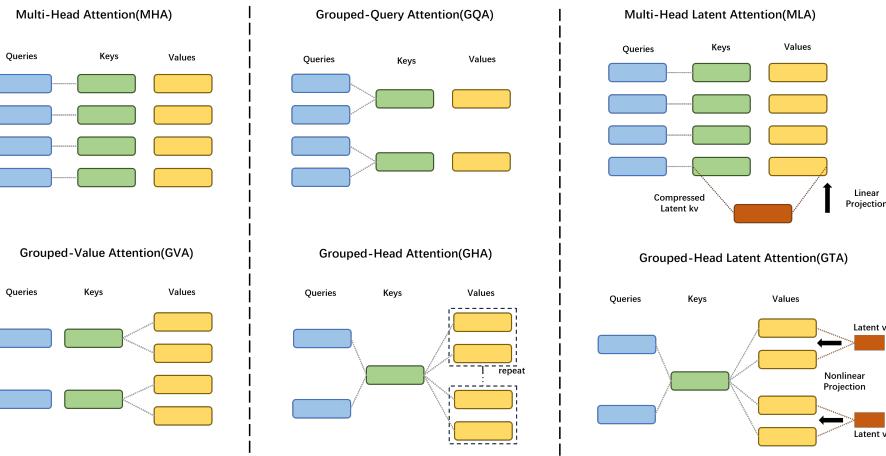
104 **Performance-focused attention.** Some methods prioritize performance over efficiency. Multi-Token
 105 Attention (MTA) (Golovneva et al., 2025) uses convolutions to enhance contextual interactions,
 106 and the Differential Transformer (Ye et al., 2025) employs dual softmax maps for sharper focus.
 107 These approaches improve accuracy but often increase computational complexity, unlike GTA’s
 efficiency-driven design.

108 **Comparison with Zadouri et al. (2025)** The paper (Zadouri et al., 2025) introduces Grouped
 109 Tied Attention, which reduces cache requirements by sharing key and value components, thereby
 110 increasing arithmetic intensity. Building on this, Grouped Latent Attention is proposed to enhance
 111 model parallelism through grouped operations on latent variables within the MLA framework. In
 112 contrast, Grouped-Head LatentT Attention (GTA) proposed in this paper adopts a novel attention
 113 matrix sharing strategy combined with a nonlinear value decoding process. To our knowledge, this
 114 is the first approach to achieve simultaneous improvements in both the prefill and decode phases
 115 without compromising model quality.

116 3 METHOD

119 In this section, we present our proposed **Grouped-Head Latent Attention (GTA)** mechanism, which
 120 enhances the efficiency of transformer architectures while retaining their expressive power. We begin
 121 by revisiting Multi-Head Attention (MHA) and introducing our efficiency-driven variants, Grouped-
 122 Value Attention (GVA) and Grouped-Head Attention (GHA). These approaches progressively reduce
 123 memory and computational overheads but introduce trade-offs in expressivity. Building on their
 124 insights, we introduce GTA, which employs a compressed latent representation and a nonlinear
 125 decoder to achieve superior efficiency and performance.

126 3.1 EVOLVING PATTERNS OF ATTENTION MECHANISMS



143 Figure 1: Attention Architecture: Comparing MHA with GVA and GHA, highlighting key,
 144 query, and value projection differences. Left-to-right: cache reduction via sharing and compression; top-to-
 145 bottom: attention computation reduction via shared attention maps and non-linearity.

146 **Brief introduction to MHA** MHA (Vaswani et al., 2017) underpins modern transformers by
 147 enabling the model to attend to diverse sequence patterns. For an input $X \in \mathbb{R}^{N \times H}$, where N
 148 denotes sequence length and H the hidden dimension, MHA projects X into queries, keys, and
 149 values:

$$150 Q = XW_Q \in \mathbb{R}^{N \times n_h d_h}, K = XW_K \in \mathbb{R}^{N \times n_h d_h}, V = XW_V \in \mathbb{R}^{N \times n_h d_h}, \quad (1)$$

152 where $W_Q, W_K, W_V \in \mathbb{R}^{H \times n_h d_h}$ are projection matrices, n_h is the number of heads, and d_h satisfies
 153 $n_h \cdot d_h = H$. Each head computes:

$$154 O_i = \text{Softmax} \left(\frac{Q_i K_i^T}{\sqrt{d_h}} \right) V_i W_{O_i} \in \mathbb{R}^{N \times H}, \quad (2)$$

156 with $W_{O_i} \in \mathbb{R}^{d_h \times H}$ as the output projection, yielding $O = \sum_{i=1}^{n_h} O_i$. While effective, MHA's
 157 key-value (KV) cache grows as $\mathcal{O}(2HN)$, posing scalability challenges for long sequences.

159 To address these inefficiencies, techniques such as Multi-Query Attention (MQA) (Shazeer, 2019)
 160 and Grouped-Query Attention (GQA) (Ainslie et al., 2023) emerged, reducing memory overhead by
 161 sharing keys and values across heads. Building on this foundation, we introduce GVA and GHA as
 evolutionary steps toward our novel GTA mechanism.

162 **Grouping Values to Share Attention Matrix** In GVA, the attention weights computed from
 163 queries and keys are shared across groups of heads. This means that multiple heads within a group
 164 apply the same attention distribution but operate on distinct value projections. By reusing the attention
 165 weights, GVA reduces redundant computation while preserving the ability of each head to produce
 166 unique outputs through its own value transformation. This strikes a balance between efficiency and
 167 representational flexibility, though it still requires maintaining a full set of value projections, keeping
 168 memory usage relatively high.

169 **Grouping Heads to Compress Attention** GHA extends this idea by sharing query and key
 170 representations within groups of heads, while deriving distinct value representations for each head.
 171 Specifically, multiple heads in a group use the same query and key representations, but their values
 172 are computed separately from a shared source, further compressing the memory footprint of the KV
 173 cache. This sharing mechanism significantly lowers both computational and storage costs, making
 174 GHA well-suited for resource-constrained settings. However, the reduced diversity in query and
 175 key representations can limit the model’s ability to capture fine-grained dependencies, potentially
 176 impacting performance on complex tasks.

177 The progression from MHA to GVA and GHA illustrates a critical trade-off between efficiency
 178 and expressivity in attention mechanisms. These insights motivate the development of GTA, which
 179 introduces a novel nonlinear decoder to achieve greater efficiency without sacrificing performance,
 180 addressing the limitations of its predecessors.

182 3.2 GROUPED-HEAD LATENT ATTENTION

184 GHA mitigates the computational and memory demands of MHA by sharing query, key, and value
 185 representations across heads, but this often compromises expressivity due to fewer unique representa-
 186 tions. To address this limitation, we propose GTA, a novel mechanism that enhances efficiency while
 187 preserving representational power. By integrating a compressed latent value representation with a
 188 nonlinear decoder, GTA dynamically generates head-specific values, achieving robust expressivity
 189 with a reduced memory footprint. This design makes GTA particularly suited for resource-constrained
 190 inference.

191 **Input projections and grouping** GTA begins by processing an input sequence $X \in \mathbb{R}^{N \times H}$, where
 192 N is the sequence length and H is the hidden dimension. It computes queries, keys, and a compressed
 193 latent value representation as follows:

$$195 \quad Q = XW_Q \in \mathbb{R}^{N \times n_q d_h}, \quad K = XW_K \in \mathbb{R}^{N \times n_k d_h}, \quad C = XW_C \in \mathbb{R}^{N \times n_c d_l}, \quad (3)$$

196 where $W_Q \in \mathbb{R}^{H \times n_q d_h}$, $W_K \in \mathbb{R}^{H \times n_k d_h}$, and $W_C \in \mathbb{R}^{H \times n_c d_l}$ are projection matrices. Here, n_q ,
 197 n_k , and n_c represent the number of query, key, and value groups, while d_h and d_l denote the head
 198 and latent dimensions, with $d_l \geq d_h$ to ensure expressive projections.

199 To enhance efficiency, GTA organizes these representations into groups. Queries are divided into
 200 n_q groups, with each head i using $Q_{q(i)} \in \mathbb{R}^{N \times d_h}$ via a mapping $q(i)$. Keys are partitioned into
 201 n_k groups, with head i accessing $K_{k(i)} \in \mathbb{R}^{N \times d_h}$ via a mapping $k(i)$. Values are derived from the
 202 latent representation C , split into n_c groups, with head i using $C_{c(i)} \in \mathbb{R}^{N \times d_l}$ from group $c(i)$. This
 203 hierarchical grouping minimizes redundancy, preserves flexible attention patterns, and paves the way
 204 for efficient value generation.

205 **Nonlinear value decoder** Building on this grouped structure, GTA generates head-specific value
 206 matrices $V_i \in \mathbb{R}^{N \times d_h}$ for each head i :

$$207 \quad V_i = C_{c(i)} W_{P,i} \odot \text{Sigmoid}(x_t W_{G,i}), \quad (4)$$

208 where $W_{P,i} \in \mathbb{R}^{d_l \times d_h}$ is a head-specific projection matrix, $W_{G,i} \in \mathbb{R}^{H \times d_h}$ is a gating matrix, and
 209 $x_t \in \mathbb{R}^H$ is the current token’s representation.

210 The gate $\text{Sigmoid}(x_t W_{G,i}) \in \mathbb{R}^{d_h}$, broadcasting across the sequence, introduces nonlinearity through
 211 element-wise multiplication (\odot). For each head i , GTA generates the value $V_i \in \mathbb{R}^{N \times d_h}$ from the
 212 compressed latent representation $C_{c(i)} \in \mathbb{R}^{N \times d_l}$, where $c(i)$ assigns head i to one of n_c value groups.

216 The projection is performed using $W_{P,i} \in \mathbb{R}^{d_l \times d_h}$, which combines a direct mapping for a subset
 217 of $C_{c(i)}$ ’s elements—determined by the head and group assignment—with a learnable component
 218 initialized with small random values to enhance diversity. The resulting projection, $C_{c(i)}W_{P,i}$, is
 219 then modulated by the gate, introducing nonlinearity and enabling context-adaptive feature selection.
 220 This design ensures full-rank projections, preventing information loss and enhancing the diversity of
 221 the final output across heads within the same group. The nonlinear decoding process thus enables
 222 GTA to produce expressive, context-sensitive values for attention computation.

223

224 3.3 EFFICIENT ATTENTION COMPUTATION

225 Using the dynamically generated values, GTA computes the attention output for each head i :

$$226 \quad 227 \quad 228 \quad 229 \quad O_i = \text{Softmax} \left(\frac{Q_i K_{k(i)}^T}{\sqrt{d_h}} \right) V_i W_{O,i}, \quad (5)$$

230 where $W_{O,i} \in \mathbb{R}^{d_h \times H}$ is the output projection, and the final output is $O = \sum_{i=1}^{n_h} O_i$. For efficient
 231 inference, GTA reformulates the computation:

$$232 \quad 233 \quad 234 \quad 235 \quad O_i = \left(\text{Softmax} \left(\frac{Q_i K_{k(i)}^T}{\sqrt{d_h}} \right) C_{c(i)} W_{P,i} \right) \odot \text{Sigmoid}(x_t W_{G,i}) W_{O,i}. \quad (6)$$

236 GTA caches both the compressed latent values $C \in \mathbb{R}^{N \times n_c d_l}$ and keys $K \in \mathbb{R}^{N \times n_k d_h}$, resulting
 237 in a memory footprint of $\mathcal{O}((n_c d_l + n_k d_h)N)$. This design reduces memory usage compared to
 238 traditional grouped attention mechanisms, while computing the nonlinear gate on-the-fly using
 239 x_t , thereby minimizing computational overhead. Furthermore, GTA’s nonlinear decoder enhances
 240 expressivity over linear projections by combining a compact latent representation with a context-
 241 aware sigmoid gate, improving output diversity, akin to increasing the effective rank (Shazeer, 2020a).
 242 This architecture achieves a robust balance of scalability, expressivity, and efficiency, making GTA a
 243 compelling solution for resource-constrained tasks.

244

245 4 PERFORMANCE EVALUATION

246 To evaluate the effectiveness of our proposed GTA approach, we conduct extensive experiments on
 247 language model pretraining with varying model sizes and sequence lengths. We analyze performance
 248 in terms of evaluation loss, parameter count, and memory efficiency of KV cache. Additionally, we
 249 perform ablation studies to investigate the impact of specific design choices.

250

251 4.1 VALIDATING GTA EFFECTIVENESS

252 We train transformer language models on the C4 dataset (Raffel et al., 2023) using sequence lengths
 253 of 2048 and 4096 tokens. Training employs the AdamW optimizer (Loshchilov & Hutter, 2017) with
 254 cosine scheduler and the TinyLlama tokenizer (Zhang et al., 2024). Full training details are provided
 255 in Appendix A.1 and Appendix A.2. To benchmark our GTA, we compare it against the following
 256 attention variants: MHA (Vaswani et al., 2017), GQA (Ainslie et al., 2023) and MLA (Liu et al.,
 257 2024a).

258 Prior work often adjusts model parameters (e.g., hidden state dimensions) to match total parameter
 259 counts across architectures, but this can confound the analysis of attention mechanisms by altering
 260 MLP capacity. To isolate the impact of attention, we adopt a framework that fixes non-attention
 261 parameters (e.g., hidden state dimensions, MLP sizes) across models, allowing parameter count
 262 variations solely due to attention design. This ensures a controlled comparison, focusing on the
 263 attention mechanism’s contribution to performance and efficiency.

264 **Results for 160M parameter models.** Table 1 presents the performance of models with approxi-
 265 mately 160M parameters. At a sequence length of 2048 tokens, GTA (with the GTA2 configuration)
 266 achieves a lower evaluation loss and better Wikitext perplexity (PPL) compared to MHA, GQA, and
 267 MLA. Additionally, GTA (with the GTA1 configuration) records higher downstream task accuracy,
 268 demonstrating a notable improvement. These results are achieved using only 12.5% of MHA’s
 269 KV cache size per layer (192 vs. 1536 dimensions), highlighting GTA’s memory efficiency. At a

sequence length of 4096 tokens, GTA remains competitive, delivering the lowest evaluation loss and comparable PPL, alongside the highest average downstream accuracy. This indicates GTA’s ability to maintain strong performance with reduced memory requirements for longer sequences.

Table 1: Performance of 160M parameter models at sequence lengths of 2048 and 4096. This table compares models based on total parameter count, KV cache dimensions per layer, evaluation loss, and average accuracy across a suite of downstream tasks.

Model	Params	Cache/layer	Seq Len	Eval Loss	Wikitext PPL	PIQA	HellaSwag	ARC-e	ARC-c	Winogrande	Avg
GQA	158.50M	384 (3 \times 2 \times 64)	2048	2.719	23.63	65.94	30.70	42.59	19.53	51.38	42.03
MLA	172.54M	288 (256+32)	2048	2.707	22.69	65.01	30.72	40.65	19.19	51.38	41.39
MHA	178.78M	1536 (12 \times 2 \times 64)	2048	2.696	23.03	66.26	30.87	42.85	19.49	52.17	42.33
GTA1	160.75M	192 (64+128)	2048	2.712	22.67	66.21	30.62	42.63	19.80	52.80	42.41
GTA2	164.13M	192 (64+128)	2048	2.690	22.41	65.72	31.42	41.58	19.45	53.59	42.35
GQA	158.50M	384 (3 \times 2 \times 64)	4096	2.831	26.93	63.71	29.28	39.27	18.26	49.96	40.09
MLA	172.54M	288 (256+32)	4096	2.823	24.98	64.09	29.52	38.89	18.43	50.75	40.33
MHA	178.78M	1536 (12 \times 2 \times 64)	4096	2.827	25.16	63.87	29.38	39.56	18.77	49.67	40.25
GTA1	160.75M	192 (64+128)	4096	2.819	24.01	63.82	29.53	39.48	18.60	52.80	40.85
GTA2	164.13M	192 (64+128)	4096	2.812	25.06	63.71	29.30	38.85	20.48	51.30	40.73

Results for 500M parameter models. Table 2 summarizes results for models with approximately 500M parameters. At 2048 tokens, GTA achieves a lower evaluation loss and higher downstream accuracy, with competitive PPL relative to MHA and GQA. This performance is attained with only 12.5% of MHA’s KV cache size (320 vs. 2560 dimensions). Configurations with smaller caches (e.g., 192 dimensions, 7.5% of MHA’s) yield comparable results, balancing performance and efficiency. At 4096 tokens, GTA not only matches MHA’s evaluation loss but also provides lower Wikitext PPL and higher downstream accuracy. Its reduced memory footprint remains a key benefit.

Table 2: Performance of 500M parameter models at sequence lengths of 2048 and 4096. This table compares models based on total parameter count, KV cache dimensions per layer, evaluation loss, and average accuracy across a suite of downstream tasks.

Model	Params	Cache/layer	Seq Len	Eval Loss	Wikitext PPL	PIQA	HellaSwag	ARC-e	ARC-c	Winogrande	Avg
GQA	483.23M	512 (4 \times 2 \times 64)	2048	2.508	18.52	68.61	34.31	46.72	20.44	51.62	44.34
MLA	516.00M	342 (320+32)	2048	2.486	16.44	68.77	34.52	45.86	19.45	53.43	44.41
MHA	543.27M	2560 (20 \times 2 \times 64)	2048	2.484	17.53	68.44	35.11	47.35	20.73	50.91	44.51
GTA3	486.98M	192 (64+128)	2048	2.503	17.34	68.50	34.22	46.84	19.80	50.28	43.92
GTA4	500.11M	320 (64+256)	2048	2.478	16.82	68.55	34.93	47.05	20.99	53.51	45.01
GQA	483.23M	512 (4 \times 2 \times 64)	4096	2.614	19.01	67.41	31.97	43.86	18.43	52.17	42.77
MLA	516.00M	342 (320+32)	4096	2.596	17.99	65.78	32.29	44.28	19.20	52.88	42.89
MHA	543.27M	2560 (20 \times 2 \times 64)	4096	2.592	19.87	66.65	32.79	43.98	19.37	51.62	42.88
GTA3	486.98M	192 (64+128)	4096	2.609	18.77	67.25	31.85	44.49	18.26	51.07	42.58
GTA4	500.11M	320 (64+256)	4096	2.592	16.96	66.97	32.45	43.94	18.26	53.18	42.96

4.2 SCALING TO 1B LANGUAGE MODEL

To investigate the impact of scaling model size and training data, we train two models, GTA-1B and GQA-1B, each with 1 billion parameters, trained on 220 billion tokens from the smollm-corpus (Ben Allal et al., 2024) dataset, with details in Appendix A.1. GQA-1B adopts the LLaMA-3.2 (llama team, 2024) framework with MobileLLM’s (Liu et al., 2024b) optimal hyperparameters, tuned via extensive search. GTA-1B, designed for efficiency, uses only 30% of GQA-1B’s cache size while maintaining competitive performance.

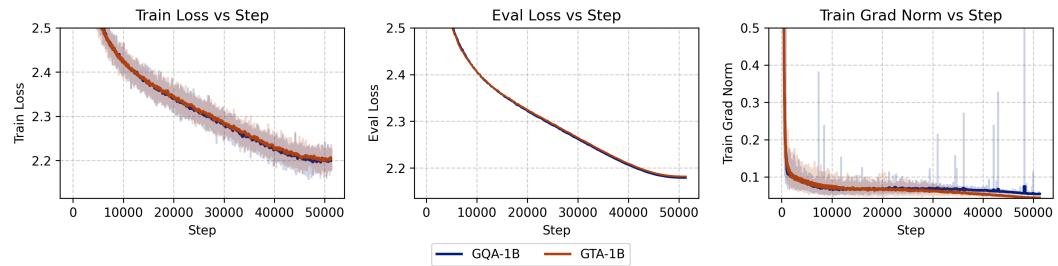


Figure 2: Loss and gradient norm curves over 50,000 training steps for GTA-1B and GQA-1B, showing stable convergence with GTA-1B’s reduced cache size.

Figure 2 shows the training curves, with both models converging stably. GTA-1B’s loss trajectory matches GQA-1B’s, despite its reduced cache, highlighting its memory-efficient architecture. We leverage lm-evaluation-harness (Gao et al., 2024) to evaluate our models. These evaluation

324 datasets can be divide into: general tasks (ARC-e, ARC-c (Clark et al., 2018), HellaSwag (Zellers
325 et al., 2019), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019),
326 TruthfulQA (Lin et al., 2021), SIQA (Sap et al., 2019)); coding task (MBPP (Austin et al., 2021));
327 instruction following task (IFEval (Zhou et al., 2023)); reasoning tasks (LogiQA (Liu et al., 2020),
328 BBH (Suzgun et al., 2022));

329
330 Table 3: We evaluate our models with several common and domain benchmarks, the vertical line
331 denotes different few-shot numbers, where the left ones use 5-shot and the right ones use 3-shot.

Model	PIQA	HellaS.	LogiQA	SIQA	ARC-e	ARC-c	BoolQ	MathQA	TQA	BBH	IFEval	MBPP	Avg.
GQA-1B	75.03	46.46	24.42	46.26	77.02	42.58	63.89	25.56	40.48	23.01	9.90	12.80	40.62
GTA-1B	74.59	46.47	23.50	44.26	75.63	40.87	62.01	25.93	39.01	21.01	9.80	11.60	39.56
GQA-1B-SFT	74.31	45.52	20.58	42.42	70.45	36.09	63.57	26.26	40.89	22.01	29.76	15.80	40.64
GTA-1B-SFT	74.59	45.20	19.80	45.08	71.30	39.16	65.01	26.47	41.30	25.50	36.04	16.60	42.17

336 For supervised fine-tuning (SFT), we further train both base models using the tulu3 dataset (Lambert
337 et al., 2024), a diverse collection of instruction-tuning data designed to enhance model generalization
338 across tasks. The fine-tuned models, GTA-1B-SFT and GQA-1B-SFT, are evaluated on the same
339 benchmarks. Table 3 shows that GTA-1B-SFT delivers performance comparable to GQA-1B-SFT
340 across diverse benchmarks, with a notable improvement in average accuracy. This competitive
341 performance, combined with GTA-1B’s reduced cache size, highlights its ability to generalize
342 effectively during fine-tuning under resource constraints.

343 In summary, GTA-1B achieves comparable performance to GQA-1B in both base and fine-tuned
344 settings, using only 30% of GQA-1B’s KV cache size and 37.5% of its self-attention computational
345 cost. These results underscore the potential of memory- and compute-efficient architectures for
346 scaling large language models, enabling sustainable and resource-efficient AI development.

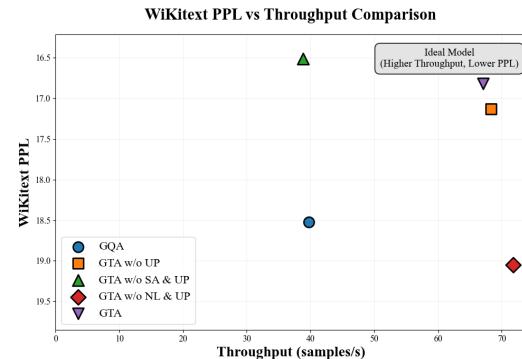
348 4.3 ABLATION STUDIES ON GTA COMPONENTS

350 We perform ablation studies to evaluate the sensitivity of our GTA to critical parameters: attention
351 matrix sharing, head dimension, and nonlinearity choice. We systematically analyze three key
352 components: Shared Attention (SA), Nonlinear decoding (NL), and Up-projection (UP).

353 Figure 3 illustrates the trade-off between average
354 performance and total latency for various
355 GTA configurations on 500M parameter models
356 with 2048 sequence length. From the plot, we
357 observe that the nonlinear decoding (NL) has a
358 significant impact on model performance, lead-
359 ing to substantial gains. The shared attention
360 mechanism (SA) greatly affects speed by reduc-
361 ing latency. Meanwhile, the up-projection (UP)
362 improves model performance with minimal in-
363 crease in latency. The full GTA configuration
364 achieves strong performance while optimizing
365 the latency-performance balance. Key findings
366 include: (1) sharing attention matrices across
367 heads reduces parameters and slightly improves
368 performance when combined with other com-
369 ponents, suggesting a regularization benefit; (2)
370 increasing head dimension enhances performance for both GTA and GQA, with GTA consistently
371 outperforming GQA; and (3) Sigmoid nonlinearity outperforms sparser alternatives (e.g., SiLU,
372 ReLU²), emphasizing the need for higher-rank value representations. Comprehensive results and
373 configurations are detailed in Appendix A.4. **GTA demonstrates the ability to increase throughput**
374 **while preserving modeling capability and overall performance.**

375 5 EFFICIENCY EVALUATION

376 In this section, we evaluate the computational and memory efficiency of our GTA mechanism against
377 prominent attention variants: MHA, GQA, MLA, GVA, and GHA. Through theoretical analysis



378 Figure 3: Performance vs. Total Latency Compari-
379 son for GTA components.

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

378 and empirical benchmarks, we demonstrate GTA’s ability to achieve high expressivity with reduced
 379 resource demands, positioning it as an efficient solution for modern transformer architectures.
 380

381 5.1 THEORETICAL EFFICIENCY ANALYSIS 382

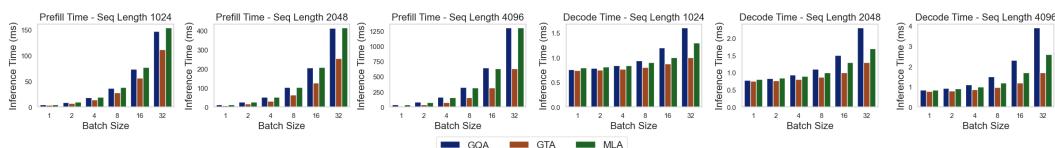
383 Table 4 compares GTA with existing attention mechanisms across memory usage, computational com-
 384 plexity, and expressivity, with detailed formulations
 385 in Appendix B. GTA achieves a favorable efficiency-
 386 expressivity trade-off: while GHA has the lowest
 387 overhead, it suffers from weak expressivity. In con-
 388 trast, GTA maintains strong expressivity comparable
 389 to MHA while achieving substantial efficiency im-
 390 provements.
 391

392 GTA’s KV cache scales as $(n_k d_h + n_c d_l)N$ compared
 393 to MHA’s $2n_h d_h N$, where $n_k \ll n_h$ and $n_c \ll n_h$, yielding a reduction factor of approximately
 394 $\frac{2H}{n_k d_h + n_c d_l}$. The attention computation is similarly reduced from $2n_h d_h N^2$ to $n_q(d_h + d_l)N^2$,
 395 providing proportional inference speedups. While GTA introduces additional linear computation,
 396 this trade-off substantially improves model expressivity, rivaling MHA while maintaining efficiency
 397 comparable to other efficient variants.
 398

399 5.2 CONDUCTING EMPIRICAL BENCHMARKS 400

401 To substantiate the theoretical advantages, we benchmark GTA-1B against GQA-1B and MLA-1B
 402 using the `LLM-Viewer` (Yuan et al., 2024) framework on an NVIDIA H100 80GB GPU. This
 403 framework simulates optimal inference performance based on hardware specifications and model
 404 configurations. Figure 4 illustrates the prefill and decode times across various configurations. GTA-
 405 1B consistently outperforms both GQA-1B and MLA-1B in compute-bound prefill and I/O-bound
 406 decode phases, demonstrating superior latency characteristics.
 407

408 We further validate GTA’s effectiveness across diverse settings: (1) **Multi-device evaluation** on
 409 NVIDIA H100-PCIe, A100, and A100-40G shows consistent efficiency gains; (2) **Long-context scal-
 410 ing** up to 128K tokens demonstrates that GTA’s advantages become more pronounced with increasing
 411 sequence length; (3) **Model scaling** to 8B parameters confirms that performance improvements are
 412 maintained at larger model sizes. More hardware configurations and detailed evaluation results are
 413 provided in Appendix C.
 414



415 Figure 4: Prefill and decode times for GTA-1B, MLA-1B and GQA-1B across configurations on
 416 an NVIDIA H100 80GB GPU. GTA-1B achieves lower latency in both compute-bound prefill and
 417 I/O-bound decode phases, showcasing its enhanced efficiency.
 418

419 5.3 REAL-WORLD DEPLOYMENT PERFORMANCE 420

421 Following PLM (Deng et al., 2025), we evaluate GTA-1B’s real-world performance through inference
 422 experiments using the `torch` library. We measure prefill and decode times across diverse hardware
 423 platforms: NVIDIA H100 (server-grade GPU), NVIDIA A800 (server-grade GPU), RTX 3060
 424 (consumer-grade GPU), Apple M2 (ARM-based processor), and BCM2712 (mobile processor). This
 425 approach captures hardware-specific optimizations and system-level overheads, providing direct
 426 measurements of real-world inference latency beyond theoretical simulations from `LLM-Viewer`.
 427

428 We customize batch sizes to reflect realistic usage scenarios: server-grade GPUs (H100, A800) use
 429 prefill batch size 32 and decode batch size 64 for high-throughput environments; consumer devices
 430

Table 4: Efficiency comparison of attention mechanisms. Lower numbers indicate better efficiency.

Attention	KV Cache	Computation	Linear	Expressivity
MHA	6	4	5	Strong
GQA	4	4	2	Moderate
MLA	2	5	6	Strong
GVA	5	3	4	Moderate
GHA	3	1	1	Weak
GTA (Ours)	1	2	3	Strong

(M2, BCM2712) use batch size 1 for individual users; RTX 3060 uses prefill batch size 4 and decode batch size 16 for moderate workloads.

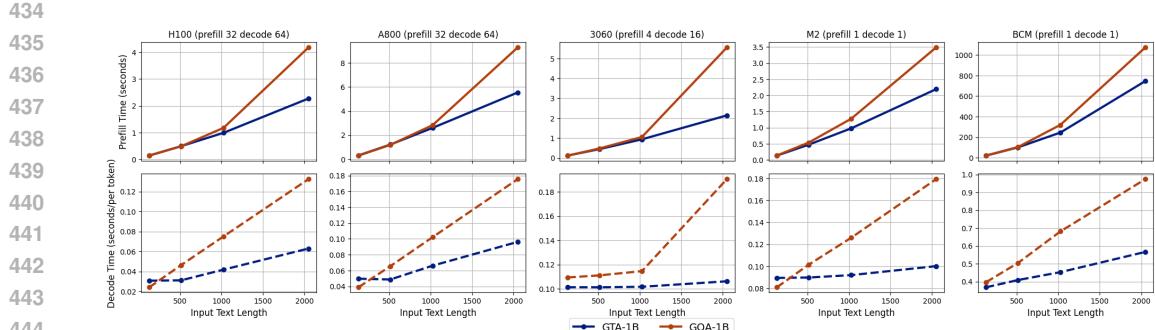


Figure 5: Comparison of prefill (top row) and decode (bottom row) times for GTA-1B and GQA-1B across various configurations on NVIDIA H100, NVIDIA A800, RTX 3060, Apple M2, and BCM2712. Prefill plots (top) display input text length on the x-axis and time required on the y-axis. Decode plots (bottom) show starting generation length on the x-axis and time to generate 128 tokens on the y-axis.

As shown in Figure 5, GTA-1B (blue solid line) consistently outperforms GQA-1B (orange dashed line) across all platforms. The performance advantage is particularly pronounced at longer input lengths (e.g., 2k tokens) and during extended generation phases, demonstrating GTA-1B’s robustness across diverse hardware configurations.

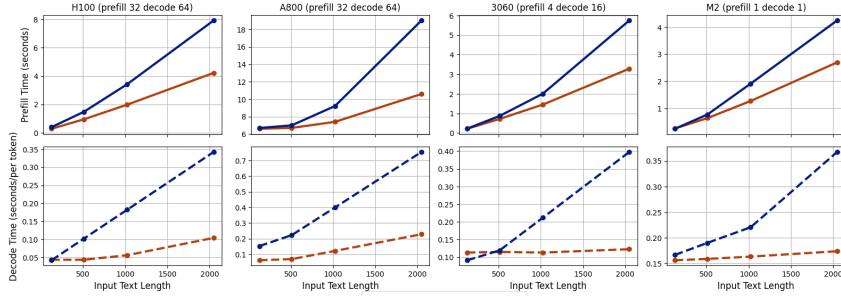


Figure 6: Performance comparison of GTA-1B and GQA-1B with cache offload enabled, showing prefill (top row) and decode (bottom row) times across different hardware configurations. Cache offload transfers the key-value cache to CPU memory to alleviate GPU memory constraints, resulting in I/O-bound conditions due to frequent data transfers.

Figure 6 demonstrates performance with cache offload enabled. GTA-1B maintains its advantages in I/O-bound scenarios where frequent data transfers occur between GPU and CPU memory, with particularly notable improvements in decode times across all platforms.

GTA-1B consistently surpasses GQA-1B in both prefill and decode performance across all hardware platforms, with significant advantages at longer input lengths. Its superior performance in both standard and I/O-bound conditions demonstrates practical applicability for server-grade and consumer-grade deployments, enhancing attention mechanism efficiency through reduced computational complexity and memory demands. Further experimental details, including comprehensive hardware specifications, are provided in Appendix C.4.

6 CONCLUSION

We present Grouped-head Latent Attention (GTA), which shares attention maps across heads and encodes values in a learned latent space to exploit redundancy. GTA reduces attention FLOPs by up to 62.5% and reduce KV cache size by up to 70% compared to GQA, matching perplexity while doubling inference speed on commodity hardware. By seeking the trade-off between efficiency and expressivity, GTA enables efficient LLM design and deployments across a wide range of real-world scenarios. The limitation stems from our lack of engineering-focused optimization efforts, which prevents us from achieving the theoretical upper bound of efficiency gains.

486 REFERENCES
487

488 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
489 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
490 *arXiv preprint arXiv:2305.13245*, 2023.

491 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
492 Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
493 formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the*
494 *Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and*
495 *Short Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational
496 Linguistics. doi: 10.18653/v1/N19-1245. URL <https://aclanthology.org/N19-1245>.

497 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
498 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
499 models. *arXiv preprint arXiv:2108.07732*, 2021.

500 Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
501 Smollm-corpus, 2024. URL <https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus>.

502 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
503 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial*
504 *Intelligence*, 2020.

505 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
506 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
507 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

508 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
509 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
510 *arXiv:1905.10044*, 2019.

511 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
512 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
513 *arXiv:1803.05457v1*, 2018.

514 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
515 efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:
516 16344–16359, 2022.

517 Cheng Deng, Luoyang Sun, Jiwen Jiang, Yongcheng Zeng, Xinjian Wu, Wenxin Zhao, Qingfa
518 Xiao, Jiachuan Wang, Haoyang Li, Lei Chen, Lionel M. Ni, Haifeng Zhang, and Jun Wang. Plm:
519 Efficient peripheral language models hardware-co-designed for ubiquitous computing, 2025. URL
520 <https://arxiv.org/abs/2503.12167>.

521 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
522 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
523 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
524 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
525 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

526 Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Multi-token attention, 2025.
527 URL <https://arxiv.org/abs/2504.00927>.

528 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
529 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
530 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
531 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
532 Pushing frontiers in open language model post-training. 2024.

533 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
534 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>, 2021.

540 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 541 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 542 *arXiv:2412.19437*, 2024a.

543

544 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
 545 challenge dataset for machine reading comprehension with logical reasoning. *arXiv preprint*
 546 *arXiv:2007.08124*, 2020.

547 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 548 and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
 549 <https://arxiv.org/abs/2307.03172>.

550

551 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
 552 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
 553 Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,
 554 2024b. URL <https://arxiv.org/abs/2402.14905>.

555 Meta llama team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

556

557 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 558 *arXiv:1711.05101*, 2017.

559

560 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 561 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 562 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

563

564 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 565 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

566

567 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint*
 568 *arXiv:1911.02150*, 2019.

569

570 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020a.

571

572 Noam Shazeer. Glu variants improve transformer, 2020b. URL <https://arxiv.org/abs/2002.05202>.

573

574 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 575 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

576

577 Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
 578 Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339–7361, 2024.

579

580 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 581 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 582 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

583

584 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 585 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 586 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

587

588 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 589 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 590 *systems*, 30, 2017.

591

592 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 593 transformers with hardware-efficient training, 2024. URL <https://arxiv.org/abs/2312.06635>.

594

595 Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
 596 transformer, 2025. URL <https://arxiv.org/abs/2410.05258>.

594 Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao Xue, Bingzhe Wu, Zhikai Li,
595 Qingyi Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer. Llm inference
596 unveiled: Survey and roofline model insights, 2024.

597

598 Ted Zadouri, Hubert Strauss, and Tri Dao. Hardware-efficient attention for fast decoding, 2025. URL
599 <https://arxiv.org/abs/2505.21487>.

600 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
601 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
602 *Computational Linguistics*, 2019.

603

604 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
605 language model. *arXiv preprint arXiv:2401.02385*, 2024.

606

607 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
608 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-*
609 *ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:*
610 *System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
611 URL <http://arxiv.org/abs/2403.13372>.

612 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
613 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
614 *arXiv:2311.07911*, 2023.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A TRAINING DETAIL**
649650 **A.1 PRETRAIN DETAIL**
651652 This section provides a comprehensive overview of the pretraining configurations and procedures
653 employed in our experiments. We detail the model hyperparameters, data settings, and training
654 specifics to ensure reproducibility and provide further insights into our methodology. The experiments
655 were conducted on 4 nodes, each equipped with 8 NVIDIA A800 GPUs (80GB memory), totaling 32
656 GPUs for distributed training.
657658 **Hardware Configuration** Our training infrastructure consisted of 4 computing nodes, with each
659 node containing 8 NVIDIA A800 GPUs (80GB memory). The distributed training setup allowed
660 flexible allocation of GPU resources, scaling from single-node (8 GPUs) to full-cluster (32 GPUs)
661 configurations depending on model size and training requirements.
662663 **Model hyperparameters** The key architectural hyperparameters for our models are summarized
664 in Table 5 and Table 6. We present configurations for 160M, 500M, 1B and 8B parameter models,
665 highlighting the variations across different attention mechanisms: MHA, MLA, GQA, and our
666 proposed GTA variants.
667668
669 **Table 5: Model hyperparameters for 160MB and 500MB**670

	160M					500M				
	MHA	MLA	GQA	GTA1	GTA2	MHA	MLA	GQA	GTA3	GTA4
Number of layers	24	24	24	24	24	24	24	24	24	24
Hidden Dimension	768	768	768	768	768	1280	1280	1280	1280	1280
Intermediate Size	1920	1920	1920	1920	1920	3584	3584	3584	3584	3584
Number of Attention Heads	12	12	12	12	12	20	20	20	20	20
Number of Q Heads	12	12	12	3	6	20	20	20	5	10
Number of V Heads	12	1	3	1	1	20	1	4	1	2
Number of K Heads	12	1	3	1	1	20	1	4	1	1
KV Lora Rank	—	256	—	—	—	—	320	—	—	—
Compressed V Head Dimension	—	—	—	128	128	—	—	—	128	128
Vocabulary Size	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000
Activation Function	silu									
Tie Embedding	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
Params(M)	178.78	172.54	158.50	160.75	164.13	543.27	516.00	483.23	486.98	500.11

681
682 **Table 6: Model hyperparameters for 1B and 8B**
683684

	1B			8B		
	MLA-1B	GQA-1B	GTA-1B	MLA-8B	GQA-8B	GTA-8B
Number of layers	54	54	54	32	32	32
Hidden Dimension	1280	1280	1280	4096	4096	4096
Intermediate Size	3584	3584	3584	14336	14336	14336
Number of Attention Heads	20	20	20	32	32	32
Number of Q Heads	20	20	5	32	32	8
Number of V Heads	1	5	1	1	8	2
Number of K Heads	1	5	1	1	8	1
KV Lora Rank	320	-	-	512	-	-
Compressed V Head Dimension	-	-	128	-	-	256
Vocabulary Size	128256	128256	128256	128256	128256	128256
Activation Function	silu	silu	silu	silu	silu	silu
Tie Embedding	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE

697
698 **Data and hyperparameters** Table 7 details the key hyperparameters used in our pretraining
699 experiments. We employed two different scaling configurations, referred to as "Validation" and
700 "Scaling", to assess the impact of model and data scaling on performance. These configurations differ
701 primarily in global batch size, learning rate, and certain Adam optimizer settings.
702

702

703

Table 7: Experiments hyperparameters.

704

705

Hyperparameter	Validation	Scaling	SFT
Global Batch Size	800	2048	96
Learning Rate	2.00E-04	1.00E-03	2.00E-5
Learning Rate Scheduler	cosine	consine	cosine
Warm up rate	0.01	0.01	0.1
Weight Decay	default(0.0)	0.1	0.1
Adam β_1	default(0.9)	0.9	0.9
Adam β_2	default(0.999)	0.95	0.95
Clip Grad	1.0	1.0	1.0
Rms Norm Eps	default(1e-06)	1e-5	1e-5
Attention Dropout	0	0	0
Hidden Dropout	0	0	0
Epoch	1	1	4

715

716

A.2 LOSS CURVE

717

To provide insights into the training dynamics, we present the loss curves for various model configurations. Figure 7, Figure 8, Figure 9 and Figure 10 illustrate the training and evaluation loss trajectories for the 160M and 500M models across different sequence lengths. Notably, the evaluation loss is slightly lower than the training loss, which can be attributed to the evaluation being conducted on a subset of the data for efficiency, potentially comprising a simpler distribution.

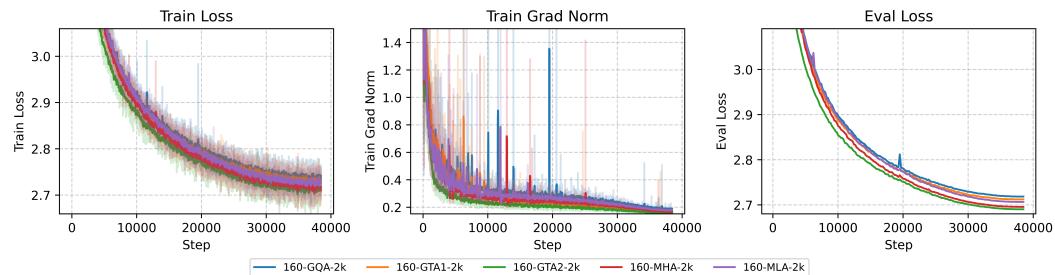


Figure 7: Loss Curve for 160M with 2048 sequence length

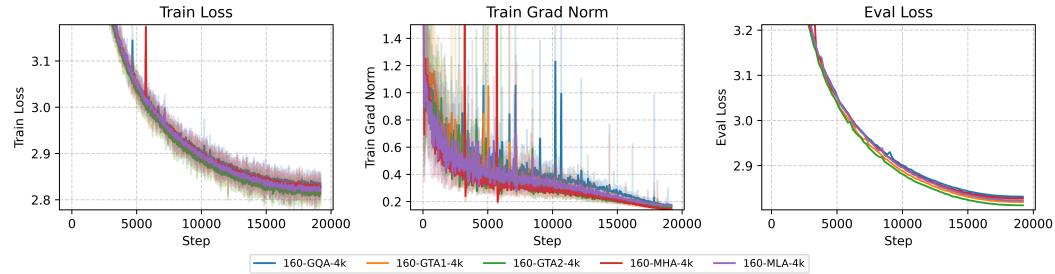


Figure 8: Loss Curve for 160M with 4096 sequence length

A.3 SFT DETAIL

In the SFT stage, we trained our model using the `tulu-3-sft-mixture` Lambert et al. (2024) dataset. We utilized the LlamaFactory Zheng et al. (2024) framework with nearly all default hyperparameters. Additional training details are available in Table 7.

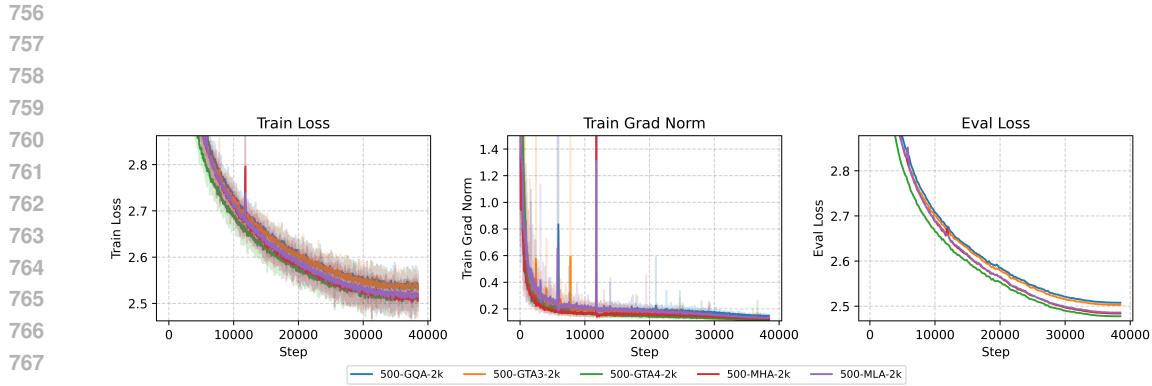


Figure 9: Loss Curve for 500M with 2048 sequence length

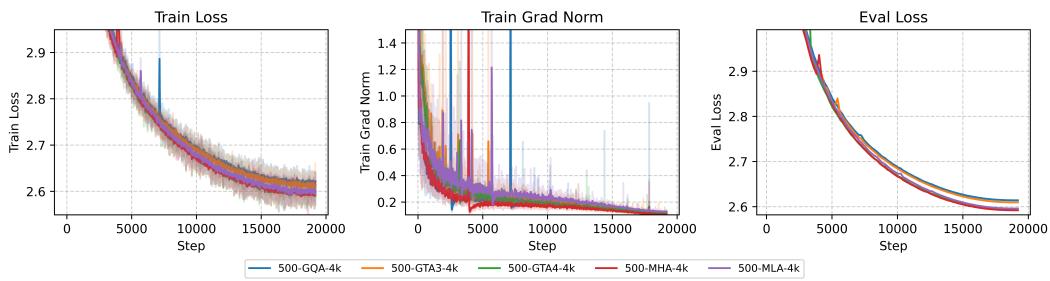


Figure 10: Loss Curve for 500M with 4096 sequence length

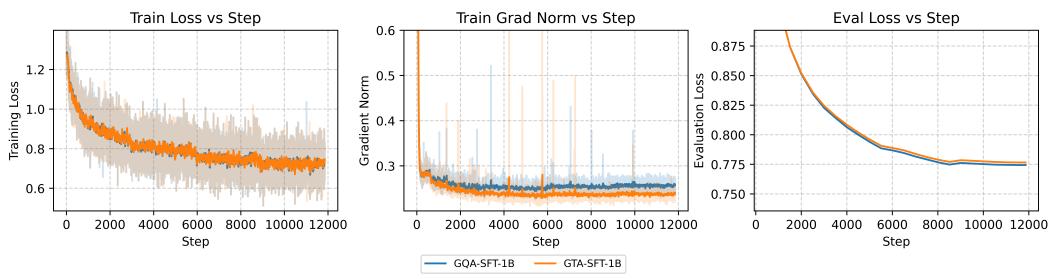


Figure 11: Loss curve for SFT

810 A.4 SENSITIVITY ANALYSIS RESULT
811812 **Ablation study on GTA components** We provide comprehensive results and configurations for the
813 ablation studies on the GTA components. All experiments were conducted on models with 500M
814 parameters and a sequence length of 2048. The base configuration uses a standard transformer
815 architecture, with variations introduced by enabling or disabling the Shared Attention (SA), Nonlinear
816 decoding (NL), and Up-projection (UP) components.817 Table 8 presents detailed results, including evaluation loss, perplexity on Wikitext, and accuracy on
818 downstream tasks such as PIQA, HellaSwag, ARC-easy (ARC-e), ARC-challenge (ARC-c), and
819 Winogrande. The average (Avg) is computed across the downstream tasks.
820821 Table 8: Ablation study on GTA components.
822

Model	Eval Loss	Wikitext PPL	PIQA	HellaSwag	ARC-e	ARC-c	Winogrande	Avg
MHA	2.486	17.58	68.64	35.11	47.85	20.83	50.98	44.68
GTA	2.475	16.87	68.51	34.98	47.45	21.07	53.31	45.06
GTA w/o UP	2.483	17.13	68.44	34.28	46.88	21.85	52.22	44.73
GTA w/o SA & UP	2.479	16.51	68.68	34.96	47.95	22.46	52.96	45.40
GTA w/o NL & UP	2.521	19.05	67.56	34.12	45.44	19.05	51.42	43.52
GQA (GTA w/o SA & NL & UP)	2.508	18.52	68.61	34.31	46.72	22.44	51.62	44.73

823 From the results, the full GTA achieves the lowest evaluation loss and a balanced improvement across
824 metrics. Removing NL leads to the most significant degradation, highlighting its importance for
825 performance. SA provides efficiency benefits (as seen in latency reductions in the main text), while
826 UP offers minor gains without substantial overhead. These findings validate the synergistic effects of
827 the GTA components.
828829 **Impact of Shared Attention Matrix** To understand the importance of sharing attention matrix
830 across heads in our GTA architecture, we conduct an ablation study comparing shared vs. non-shared
831 attention matrix. As shown in Table 9, while sharing attention matrix reduces the parameter count
832 from 511.37M to 492.61M, it actually improves performance slightly (2.4995 vs. 2.496). This
833 suggests that our approach not only saves memory and computation but also provides a beneficial
834 regularization effect, supporting the hypothesis that traditional attention mechanisms may be over-
835 parameterized.
836837 Table 9: Ablation study on the effect of sharing attention matrix in GTA models (500M parameter
838 range).
839

Configuration	Parameters	Eval Loss	Cache/layer	Seq Length
GTA with 5 attention matrix groups	486.98M	2.5031	192 (64+128)	2048
GTA with 10 attention matrix groups	492.61M	2.4995	192 (64+128)	2048
GTA without attention matrix groups	511.37M	2.4960	192 (64+128)	2048

840
841 **Effect of Head Dimension** We also investigate the effect of increasing the head dimension while
842 keeping the total parameter count similar. Table 11 compares models with head dimensions of 64 and
843 128. Doubling the head dimension improves performance in both GQA and GTA models, with GTA
844 consistently outperforming GQA. Notably, GTA with doubled head dimensions achieves our best
845 performance (2.492), suggesting that allocating more capacity to each head while sharing attention
846 matrixs is an effective design choice for attention mechanisms.
847848 Table 10: Ablation study on the effect of head dimension in GQA and GTA models (500M parameter
849 range).
850

Model	Head Dim	Parameters	Head Dim	Eval Loss	Cache/layer	Seq Length
GQA	64	483.23M	64	2.5079	512 (4×2×64)	2048
GTA	64	492.61M	64	2.4995	192 (64+128)	2048
GQA	128	483.23M	128	2.5038	512 (2×2×128)	2048
GTA	128	498.24M	128	2.4844	384 (128+256)	2048

864 **Choice of Nonlinearity** We explored different nonlinear activation functions for the gating mechanism, including ReLU², Silu, and Sigmoid, and observed that performance degrades as the sparsity 865 of the activation increases. Sigmoid, with its smooth and bounded output, consistently outperformed 866 sparser alternatives like Silu and ReLU², which introduce more zeros and reduce the effective rank 867 of the value representation. This behavior contrasts with typical MLP architectures, where sparse 868 activations like ReLU often enhance performance by promoting feature selectivity. In GTA, however, 869 the reduced rank caused by sparsity impairs the expressivity of value, underscoring the importance of 870 maintaining a higher rank in the value representation for effective attention computation. 871

872 873 Table 11: Ablation study on the effect of activation function in GTA models (500M parameter range). 874

875 Model	876 Parameters	877 Activation	878 Eval Loss	879 Cache/layer	880 Seq Length
881 GTA	882 492.61M	883 Sigmoid	884 2.4995	885 192 (64+128)	886 2048
887 GTA	888 492.61M	889 Silu	890 2.5314	891 192 (64+128)	892 2048
893 GTA	894 492.61M	895 ReLU ²	896 2.5502	897 192 (64+128)	898 2048

918 B COMPUTATIONAL ANALYSIS

919 B.1 THEORETICAL EFFICIENCY ANALYSIS

920 Table 12 compares the key-value (KV) cache size and computational complexity across attention
 921 mechanisms. GTA achieves a KV cache size of $(n_k d_h + n_c d_l)N$, significantly smaller than MHA’s
 922 $2n_h d_h N$. Its attention computation, $n_q(d_h + d_l)N^2$, is also lower than MHA’s $2n_h d_h N^2$, enhancing
 923 inference efficiency. While GTA introduces additional linear computation, this trade-off substantially
 924 improves model expressivity, rivaling MHA while maintaining efficiency comparable to GVA and
 925 GHA.

926
 927 Table 12: Comparison of computational complexity and memory requirements for different attention
 928 mechanisms. H is the hidden dimension, N is the sequence length, n_q, n_k, n_v, n_c are the number of
 929 query, key, value, and latent value heads, respectively, d_h is the per-head dimension, and d_l is the
 930 latent dimension.

931 Attention	932 KV Cache per Layer	933 Attention	934 Computation per Layer	935 Expressivity
936 Linear				
MHA	$2n_h d_h N$	$2n_h d_h N^2$	$4NH^2$	Strong
GQA	$2n_k d_h N$	$2n_h d_h N^2$	$2NH^2 + 2n_k d_h NH$	Moderate
MLA	$(d_c + d_{rope})N$	$n_h(d_{rope} + 2d_{nope})N^2$	$((d_c + d_{rope})H + n_h(d_{rope} + d_{nope})H + 2n_h d_l d_{nope} + H^2)N$	Strong
GVA	$(H + n_k d_h)N$	$(n_q d_h + n_h d_h)N^2$	$2NH^2 + 2n_k d_h NH$	Moderate
GHA	$(n_k d_h + n_v d_h)N$	$(n_q d_h + n_h d_h)N^2$	$NH^2 + n_q d_h NH + n_k d_h NH + n_v d_h NH$	Weak
GTA (Ours)	$(n_k d_h + n_c d_l)N$	$n_q(d_h + d_l)N^2$	$2NH^2 + (n_q d_h + n_k d_h + n_c d_l + d_l)NH$	Strong

937 As shown in Table 12, GTA achieves substantial efficiency gains in both computation and memory
 938 usage. The KV cache size is reduced from $2HN$ in MHA to $(n_k d_h + n_c d_l)N$, where $n_k \ll n_h$ and
 939 $n_c \ll n_h$. This translates to a reduction factor of approximately $\frac{2H}{n_k d_h + n_c d_l}$, which can be significant
 940 for large models. The attention computation is also reduced from $2n_h d_h N^2$ to $n_q(d_h + d_l)N^2$,
 941 offering proportional speedups during inference.

942 B.2 GTA

943 B.2.1 DEFINITION

944 Let $\mathbf{h}_t \in \mathbb{R}^H$ represent the input hidden state for the t -th token in the attention mechanism. The
 945 grouped key and compressed value for the j -th head are denoted by $\mathbf{k}_{t,j} \in \mathbb{R}^{d_h}$ and $\mathbf{c}_{t,j} \in \mathbb{R}^{d_c}$,
 946 respectively. The position-independent query for the k -th head is represented as $\mathbf{q}_{t,k} \in \mathbb{R}^{d_h}$. The
 947 computations for the attention mechanism proceed as follows:

$$948 \begin{aligned} \mathbf{k}_{t,j} &= \text{RoPE}(W_{K,j} \mathbf{h}_t), \\ 949 \mathbf{q}_{t,k} &= \text{RoPE}(W_{Q,k} \mathbf{h}_t), \\ 950 \mathbf{v}_{t,j}^C &= W_{V,j} \mathbf{h}_t, \end{aligned}$$

951 where $W_{K,j} \in \mathbb{R}^{d_h \times d_h}$ and $W_{C,j} \in \mathbb{R}^{d_h \times d_h}$ are the up-projection matrices for grouped key and
 952 compressed value for the j -th kv head, and $W_{Q,k} \in \mathbb{R}^{d_h \times d_h}$ for the k -th head, respectively.

953 The attention outputs $\{\mathbf{o}_{t,i}\}$ are calculated as follows:

$$954 \mathbf{o}_{t,i} = \left(\sum_{k=1}^t \text{Softmax}_k \left(\frac{\mathbf{q}_{t,Q(i)}^\top \mathbf{k}_{k,K(i)}}{\sqrt{d_h}} \right) \mathbf{v}_{k,V(i)} \right) W_{P,i},$$

955 where $W_{P,i} \in \mathbb{R}^{d_h \times d_c}$ is the attention projection matrix.

956 The i -th head gate $\mathbf{g}_{t,i} \in \mathbb{R}^{d_h \times H}$ is proceed as follows:

$$957 \mathbf{g}_{t,i} = W_{G,i} \mathbf{h}_t,$$

972 The final output is obtained by combining the attention results from all heads through a linear
 973 projection:
 974

$$975 \quad 976 \quad \mathbf{u}_t = W_O [\mathbf{o}_{t,1} \odot \mathbf{g}_{t,1}; \mathbf{o}_{t,2} \odot \mathbf{g}_{t,2}; \dots; \mathbf{o}_{t,n_h} \odot \mathbf{g}_{t,n_h}],$$

977 where $W_O \in \mathbb{R}^{d \times d_{\text{hope}} n_h}$ is the output projection matrix and n_h is the number of attention heads.
 979

980 B.2.2 PREFILL

982 For an input sequence of length N , the computational complexity begins with the projection operations
 983 for keys $\mathbf{k}_{t,j}$ and compressed values $\mathbf{c}_{t,j}$, requiring $\mathcal{O}(d_h N H)$ and $\mathcal{O}(d_c N H)$ operations. The query
 984 projection $\mathbf{q}_{t,k}$ further contributes $\mathcal{O}(d_h N H)$. The gate projection requires $\mathcal{O}(N H^2)$ and the attention
 985 projection for each head requires $\mathcal{O}(d_h d_c N)$. The output projection requires $\mathcal{O}(N H^2)$.
 986

987 Respectively. Aggregating these components, the total linear projection cost becomes:
 988

$$989 \quad \mathcal{O}(2N H^2 + (n_q d_h + n_k d_h + n_v d_c + d_c) N H).$$

991 The attention mechanism's computational complexity arises from pairwise interactions between
 992 sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
 993 scores QK^T has a complexity of $\mathcal{O}(n_q d_h N^2)$. Generating the attention output by values V adds
 994 $\mathcal{O}(n_q d_c N^2)$. The total complexity is thus $\mathcal{O}(n_q (d_h + d_c) N^2)$.
 995

Combining all terms, the total computational complexity for the prefill phase is:
 996

$$997 \quad \text{Prefill}_{\text{GTA}} = \mathcal{O}(2N H^2 + (n_q d_h + n_k d_h + n_v d_c + d_c) N H + n_q (d_h + d_c) N^2).$$

1000 B.2.3 DECODE

1001 For an input sequence of length $N - 1$, the decoder phase computes the N -th token's representations
 1002 through successive transformations. Key and value projections $\mathbf{k}_{N,j}$ and $\mathbf{c}_{N,j}$ require $\mathcal{O}(d_h H)$ and
 1003 $\mathcal{O}(d_c H)$ operations, while the query projection $\mathbf{q}_{N,i}$ incurs $\mathcal{O}(d_h H)$. The gate projection requires
 1004 $\mathcal{O}(H^2)$ and the attention projection for each head requires $\mathcal{O}(d_h d_c)$. The output projection requires
 1005 $\mathcal{O}(H^2)$. The total computational linear projection cost:
 1006

$$1007 \quad \mathcal{O}(2H^2 + (n_q d_h + n_k d_h + n_v d_c + d_c) H).$$

1009 The attention mechanism, operating over cached historical states, scales as $\mathcal{O}(2n_h d_h N)$, reflecting
 1010 linear dependence on sequence length N . Aggregating all components, the total computational cost
 1011 is:
 1012

$$1013 \quad \text{Generate}_{\text{GTA}} = \mathcal{O}(2H^2 + (n_q d_h + n_k d_h + n_v d_c + d_c) H + 2n_h d_h N).$$

1014 Caching historical keys $\{\mathbf{k}_{t,j}\}$ and values $\{\mathbf{v}_{t,j}\}$ for $t = 1, \dots, N - 1$ demands memory:
 1015

$$1016 \quad \text{Cache}_{\text{GTA}} = (n_k d_h + n_v d_c) N,$$

1018 B.3 MLA

1019 B.3.1 DEFINITION

1020 Let $\mathbf{h}_t \in \mathbb{R}^H$ represent the input hidden state for the t -th token in the attention mechanism. The
 1021 low-rank key-value joint compression state is denoted as $\mathbf{c}_t^{KV} \in \mathbb{R}^{d_c}$, while the decompressed
 1022 key and value for the i -th head are denoted by $\mathbf{k}_{t,i}^C \in \mathbb{R}^{d_{\text{hope}}}$ and $\mathbf{v}_{t,i}^C \in \mathbb{R}^{d_{\text{hope}}}$, respectively. The
 1023 position-independent query for the i -th head is represented as $\mathbf{q}_{t,i}^C \in \mathbb{R}^{d_{\text{hope}}}$. The computations for the
 1024 attention mechanism proceed as follows:
 1025

1026
 1027
 1028 $\mathbf{c}_t^{KV} = W_{DKV} \mathbf{h}_t$,
 1029 $\mathbf{k}_{t,i}^C = W_{UK,i} \mathbf{c}_t^{KV}$,
 1030 $\mathbf{k}_t^R = \text{RoPE}(W_{KR} \mathbf{h}_t)$,
 1031 $\mathbf{k}_{t,i} = [\mathbf{k}_{t,i}^C; \mathbf{k}_t^R]$,
 1032 $\mathbf{q}_{t,i}^C = W_{Q,i} \mathbf{h}_t$,
 1033 $\mathbf{q}_{t,i}^R = \text{RoPE}(W_{QR,i} \mathbf{h}_t)$,
 1034 $\mathbf{q}_{t,i} = [\mathbf{q}_{t,i}^C; \mathbf{q}_{t,i}^R]$,
 1035 $\mathbf{v}_{t,i}^C = W_{UV,i} \mathbf{c}_t^{KV}$,
 1036
 1037
 1038
 1039
 1040 where $W_{DKV} \in \mathbb{R}^{d_c \times H}$ is the down-projection matrix for key-value compression, $W_{UK,i} \in \mathbb{R}^{d_{\text{nope}} \times d_c}$
 1041 and $W_{UV,i} \in \mathbb{R}^{d_{\text{nope}} \times d_c}$ are the up-projection matrices for decompressed key and value for the i -th
 1042 head, $W_{KR} \in \mathbb{R}^{d_{\text{rope}} \times H}$ generates the shared positional key component via RoPE Su et al. (2024), and
 1043 $W_{Q,i} \in \mathbb{R}^{d_{\text{nope}} \times H}$ and $W_{QR} \in \mathbb{R}^{d_{\text{rope}} \times H}$ generate the position-independent and RoPE-enhanced query
 1044 components for the i -th head.

1045 The attention outputs $\{\mathbf{o}_{t,i}\}$ are calculated as follows:
 1046
 1047

$$\mathbf{o}_{t,i} = \sum_{j=1}^t \text{Softmax}_j \left(\frac{\mathbf{q}_{t,i}^\top \mathbf{k}_{j,i}}{\sqrt{d_h}} \right) \mathbf{v}_{j,i}^C,$$

1052 where $d_h = d_{\text{nope}} + d_{\text{rope}}$ represents the total head dimension. The final output is obtained by
 1053 combining the attention results from all heads through a linear projection:
 1054
 1055

$$\mathbf{u}_t = W_O [\mathbf{o}_{t,1}; \mathbf{o}_{t,2}; \dots; \mathbf{o}_{t,n_h}],$$

1058 where $W_O \in \mathbb{R}^{H \times d_{\text{nope}} n_h}$ is the output projection matrix and n_h is the number of attention heads.
 1059
 1060

B.3.2 PREFILL

1062 Let the input sequence length be N . The computational complexity for projecting the context
 1063 vector \mathbf{c}_t^{KV} is $\mathcal{O}(d_c NH)$. Subsequent projections for content-based keys $\mathbf{k}_{t,i}^C$ and values $\mathbf{v}_{t,i}^C$ require
 1064 $\mathcal{O}(2d_c d_{\text{nope}} N)$ operations, while the query projection $\mathbf{q}_{t,i}^C$ incurs $\mathcal{O}(d_{\text{nope}} NH)$. For rotary position
 1065 embeddings (RoPE), the projections for \mathbf{k}_t^R and $\mathbf{q}_{t,i}^R$ each demand $\mathcal{O}(d_{\text{rope}} NH)$. The output projection
 1066 further adds $\mathcal{O}(NH^2)$.
 1067

1068 The total computational linear projection cost for generating keys $\{\mathbf{k}_{t,i}\}$, queries $\{\mathbf{q}_{t,i}\}$, values $\{\mathbf{v}_{t,i}\}$
 1069 and outputs \mathbf{o}_t combines these components:
 1070

$$\mathcal{O}((d_c + d_{\text{rope}})NH + n_h(d_{\text{nope}} + d_{\text{rope}})NH + 2n_h d_c d_{\text{nope}} N + NH^2).$$

1072 The attention mechanism's computational complexity arises from pairwise interactions between
 1073 sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
 1074 scores QK^T has a complexity of $\mathcal{O}(n_h(d_{\text{rope}} + d_{\text{nope}})N^2)$. Generating the attention output by values
 1075 V adds $\mathcal{O}(n_h d_{\text{nope}} N^2)$. The total complexity is thus $\mathcal{O}(n_h(d_{\text{rope}} + 2d_{\text{nope}})N^2)$.
 1076

1077 Aggregating all terms, the overall computational complexity becomes:
 1078

$$\text{Prefill}_{mla} =$$

$$\mathcal{O}((d_c + d_{\text{rope}})NH + n_h(d_{\text{nope}} + d_{\text{rope}})NH + 2n_h d_c d_{\text{nope}} N + NH^2 + n_h(d_{\text{rope}} + 2d_{\text{nope}})N^2)$$

1080 B.3.3 DECODE
1081

1082 Consider an input sequence of length $N - 1$. The computational complexity to generate the N -th
1083 token's joint compression state \mathbf{c}_N^{KV} is $\mathcal{O}(d_c H)$. Subsequent projections for the rotary position
1084 embedding (RoPE)-based key \mathbf{k}_N^R and query $\mathbf{q}_{N,i}^R$ each require $\mathcal{O}(d_{\text{rope}} H)$, while the content-based
1085 query $\mathbf{q}_{N,i}^C$ incurs $\mathcal{O}(d_{\text{nope}} H)$. For historical tokens $t = 1, \dots, N$, the projections of content-based
1086 keys $\{\mathbf{k}_{t,i}^C\}$ and values $\{\mathbf{v}_{t,i}^C\}$ scale as $\mathcal{O}(2d_c d_{\text{nope}} N)$, while the output projection requires $\mathcal{O}(H^2)$.
1087 The total computational linear projection cost:

$$1088 \mathcal{O}((d_c + d_{\text{rope}})H + n_h(d_{\text{nope}} + d_{\text{rope}})H + 2n_h d_c d_{\text{nope}} N + H^2).$$

1090

1091 The attention mechanism's computational complexity arises from pairwise interactions between
1092 sequence elements. Computing attention scores QK^T has a complexity of $\mathcal{O}(n_h(d_{\text{rope}} + d_{\text{nope}})N)$.
1093 Generating the attention output by values V adds $\mathcal{O}(n_h d_{\text{nope}} N)$. The total complexity is thus
1094 $\mathcal{O}(n_h(d_{\text{rope}} + 2d_{\text{nope}})N)$. Combining these components, the total computational cost is:

$$1095 \text{Generate}_{\text{mla}} = \\ 1096 \mathcal{O}((d_c + d_{\text{rope}})H + n_h(d_{\text{nope}} + d_{\text{rope}})H + 2n_h d_c d_{\text{nope}} N + H^2 + (n_h(d_{\text{rope}} + 2d_{\text{nope}})N).$$

1098

1099 Caching mechanisms store the joint compression states $\{c_t^{KV}\}_{t=1, \dots, N-1}$ and RoPE keys
1100 $\{\mathbf{k}_t^R\}_{t=1, \dots, N-1}$, with memory footprint:

$$1101 \text{Cache}_{\text{mla}} = (d_{\text{rope}} + d_c)N.$$

1103

1104 B.4 GQA
1105

1106 B.4.1 DEFINITION

1107 Let $\mathbf{h}_t \in \mathbb{R}^H$ represent the input hidden state for the t -th token in the attention mechanism. The
1108 grouped key and value for the j -th kv head are denoted by $\mathbf{k}_{t,j} \in \mathbb{R}^{d_h}$ and $\mathbf{v}_{t,j} \in \mathbb{R}^{d_h}$, respectively.
1109 The position-independent query for the i -th head is represented as $\mathbf{q}_{t,i} \in \mathbb{R}^{d_h}$. The computations for
1110 the attention mechanism proceed as follows:

1111

$$1112 \\ 1113 \mathbf{k}_{t,j} = \text{RoPE}(W_{K,j} \mathbf{h}_t), \\ 1114 \mathbf{q}_{t,i} = \text{RoPE}(W_{Q,i} \mathbf{h}_t), \\ 1115 \mathbf{v}_{t,j}^C = W_{V,j} \mathbf{h}_t,$$

1117

1118 where $W_{K,j} \in \mathbb{R}^{d_h \times H}$ and $W_{V,j} \in \mathbb{R}^{d_h \times H}$ are the up-projection matrices for grouped key and value
1119 for the j -th kv head, and $W_{Q,i} \in \mathbb{R}^{d_h \times H}$ for the i -th head, respectively.

1120 The attention outputs $\{\mathbf{o}_{t,i}\}$ are calculated as follows:

1122

$$1123 \\ 1124 \mathbf{o}_{t,i} = \sum_{k=1}^t \text{Softmax}_k \left(\frac{\mathbf{q}_{t,i}^\top \mathbf{k}_{k,i} \bmod n_k}{\sqrt{d_h}} \right) \mathbf{v}_{k,i \bmod n_k},$$

1126

1127 The final output is obtained by combining the attention results from all heads through a linear
1128 projection:

1129

1130

1131

1132

1133

$$\mathbf{u}_t = W_O [\mathbf{o}_{t,1}; \mathbf{o}_{t,2}; \dots; \mathbf{o}_{t,n_h}],$$

where $W_O \in \mathbb{R}^{H \times d_{\text{nope}} n_h}$ is the output projection matrix and n_h is the number of attention heads.

1134 B.4.2 PREFILL
 1135

1136 For an input sequence of length N , the computational complexity begins with the projection operations
 1137 for keys $\mathbf{k}_{t,j}$ and values $\mathbf{v}_{t,j}$, each requiring $\mathcal{O}(2d_h N H)$ operations. The query projection $\mathbf{q}_{t,i}$ further
 1138 contributes $\mathcal{O}(d_h N H)$. The output projection requires $\mathcal{O}(H^2)$.

1139 Respectively. Aggregating these components, the total linear projection cost becomes:
 1140

$$1141 \quad \mathcal{O}(2NH^2 + 2n_k d_h NH). \\ 1142$$

1143 The attention mechanism’s computational complexity arises from pairwise interactions between
 1144 sequence elements, resulting in a quadratic scaling with sequence length N . Computing attention
 1145 scores QK^T has a complexity of $\mathcal{O}(n_h d_h N^2)$. Generating the attention output by values V adds
 1146 $\mathcal{O}(n_h d_h N^2)$. The total complexity is thus $\mathcal{O}(2n_h d_h N^2)$.

1147 Combining all terms, the total computational complexity for the prefill phase is:
 1148

$$1149 \quad \text{Prefill}_{gqa} = \mathcal{O}(2NH^2 + 2n_k d_h NH + 2n_h d_h N^2). \\ 1150$$

1151 B.4.3 DECODE
 1152

1153 For an input sequence of length $N - 1$, the decoder phase computes the N -th token’s representations
 1154 through successive transformations. Key and value projections $\mathbf{k}_{N,j}$ and $\mathbf{v}_{N,j}$ require $\mathcal{O}(2d_h H)$
 1155 operations, while the query projection $\mathbf{q}_{N,i}$ incurs $\mathcal{O}(d_h H)$. The total computational linear projection
 1156 cost:

$$1157 \quad \mathcal{O}(2H^2 + 2n_k d_h H). \\ 1158$$

1159 The attention mechanism, operating over cached historical states, scales as $\mathcal{O}(2n_h d_h N)$, reflecting
 1160 linear dependence on sequence length N . Aggregating all components, the total computational cost
 1161 is:

$$1162 \quad \text{Generate}_{gqa} = \mathcal{O}(2H^2 + 2n_k d_h H + 2n_h d_h N). \\ 1163$$

1164 Caching historical keys $\{\mathbf{k}_{t,j}\}$ and values $\{\mathbf{v}_{t,j}\}$ for $t = 1, \dots, N - 1$ demands memory:
 1165

$$1166 \quad \text{Cache}_{gqa} = 2n_k d_h N, \\ 1167$$

1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

C EFFICIENCY ANALYSIS

1189

1190

1191 C.1 LONG-CONTEXT PERFORMANCE EVALUATION

1192

1193 To assess GTA’s scalability for long-context applications, we evaluate performance across extended
 1194 sequence lengths ranging from 4K to 128K tokens. As illustrated in Figure 12, our experiments on
 1195 NVIDIA H100 80GB demonstrate that GTA’s efficiency advantages become increasingly pronounced
 1196 with longer sequences. The performance gap between GTA-1B and GQA-1B widens substantially
 1197 as sequence length increases, with GTA showing superior latency characteristics across all tested
 1198 configurations.

1199

1200 This scaling behavior aligns with our theoretical analysis, as the computational and memory efficiency
 1201 improvements of GTA become more significant for longer sequences. The results confirm that
 1202 GTA maintains its architectural benefits even under the demanding memory and computational
 1203 requirements of extended context processing, making it particularly well-suited for applications
 1204 requiring long-context understanding.

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

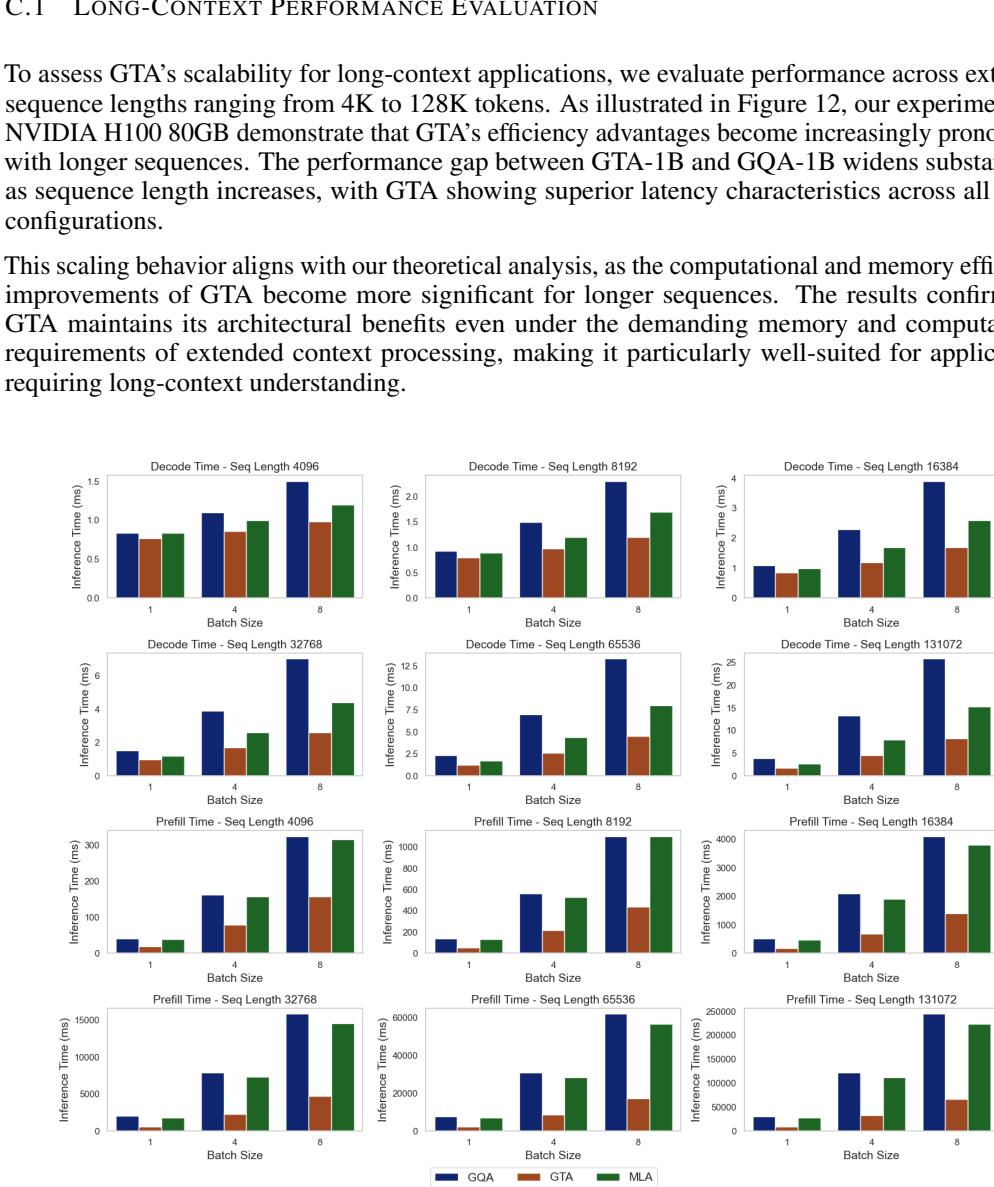
1237

1238

1239

1240

1241



1233
 1234
 1235
 1236 Figure 12: Performance comparison between GTA-1B, GQA-1B and MLA-1B across extended
 1237 sequence lengths (4K-128K tokens) on NVIDIA H100 80GB GPU. GTA demonstrates increasing
 1238 efficiency advantages as sequence length grows.

C.2 MODEL SIZE SCALING EVALUATION

1239 To validate that our approach scales beyond the 1B parameter regime, we conduct additional experiments
 1240 with 8B parameter models. As shown in Figure 13, the GTA-8B model maintains the efficiency
 1241 gains observed at smaller scales, demonstrating consistent performance improvements compared to
 1242 GQA-8B across various configurations. This demonstrates that our architectural innovations remain
 1243 effective as model capacity increases, suggesting promising applicability to larger language models.

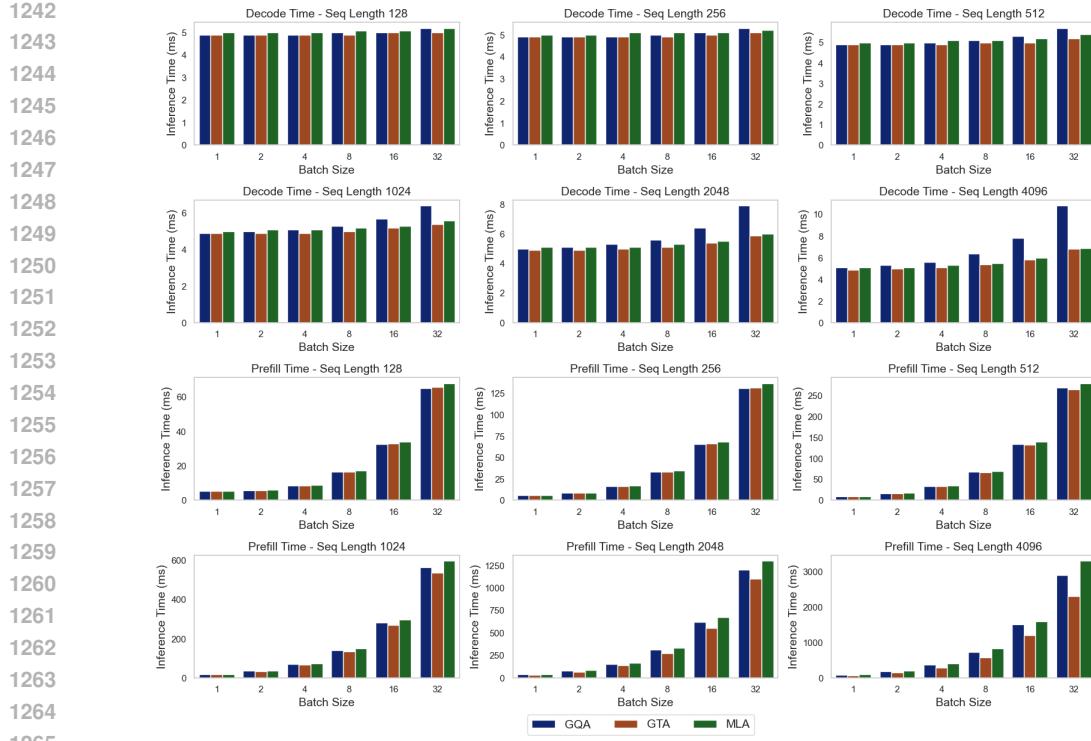


Figure 13: Performance comparison between GTA-8B, GQA-8B and MLA-8B across different configurations, demonstrating maintained efficiency advantages at larger model scales.

C.3 MULTI-DEVICE EVALUATION

To comprehensively evaluate the robustness of GTA-1B’s performance across diverse hardware platforms, we conducted extensive benchmarks using the `LLM-Viewer` framework, consistent with our main evaluation methodology. These experiments were performed on various NVIDIA GPUs, including NVIDIA A100 40GB, NVIDIA A100 80GB, NVIDIA H100 80GB, NVIDIA H100 PCIe 80GB. As presented in Figure 15, Figure 14, Figure 16, and Figure 17. The results consistently demonstrate GTA-1B’s performance advantages over GQA-1B across all tested configurations.

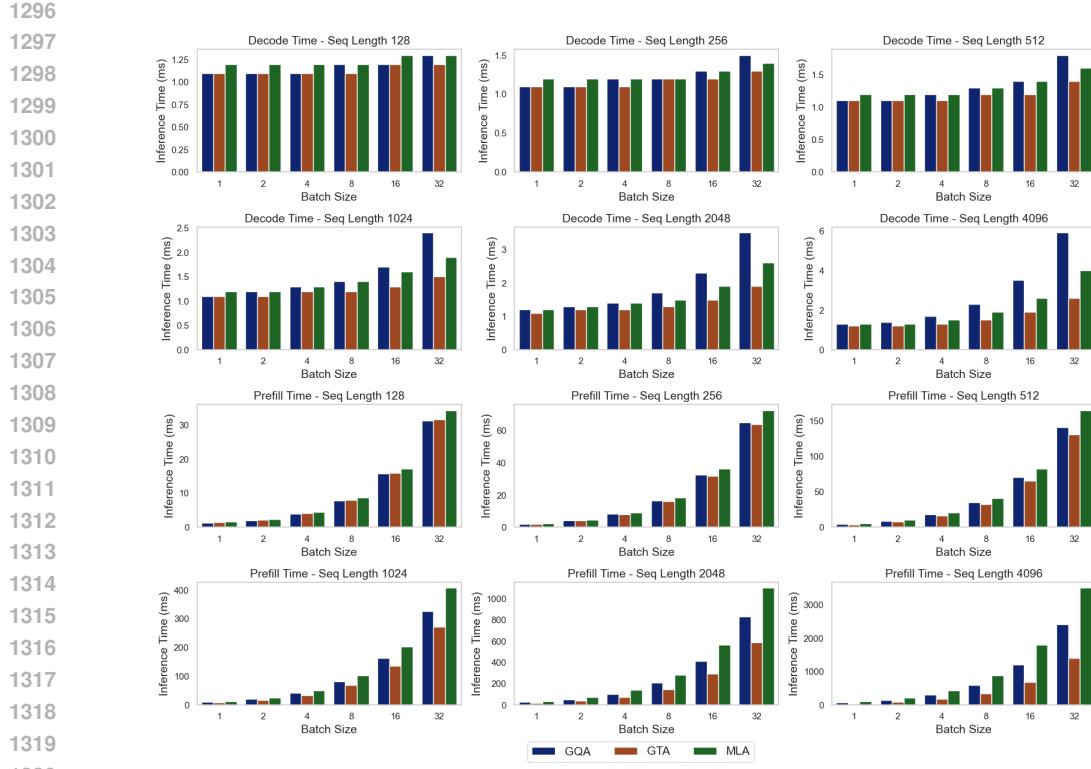
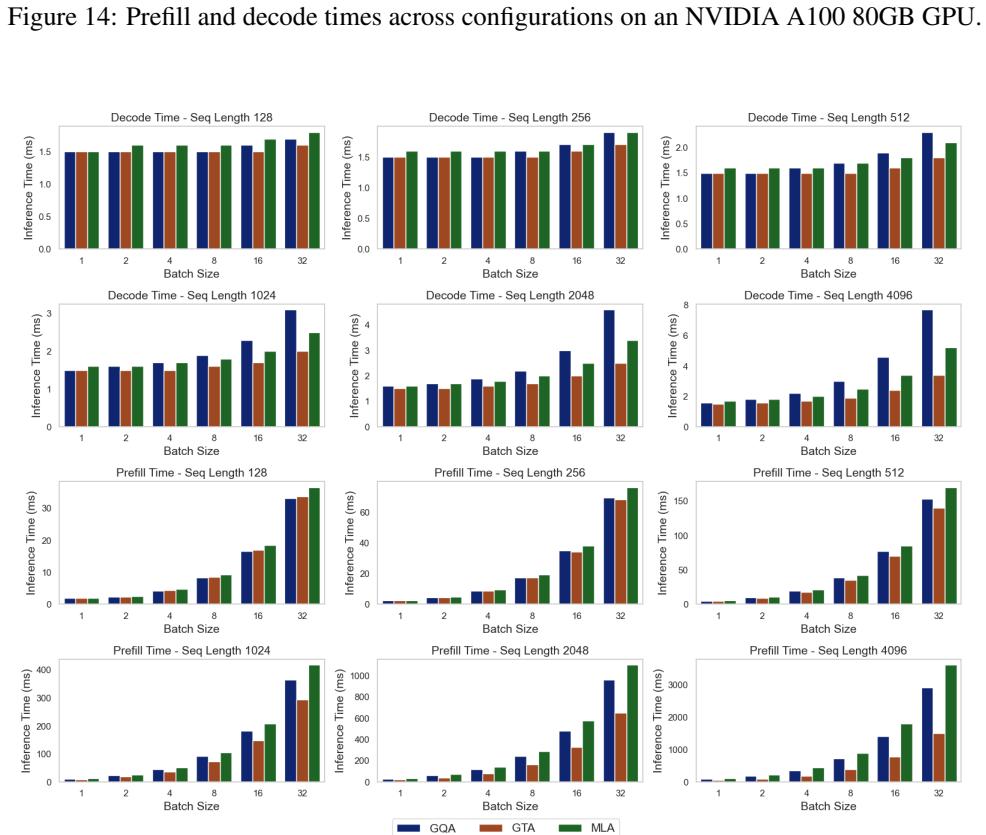
These findings align with our primary results (e.g NVIDIA A100 80GB GPU), further reinforcing GTA-1B’s scalability and adaptability across various hardware platforms. Notably, the I/O-bound decode phase shows significant benefits owing to GTA-1B’s optimized memory access patterns. Collectively, these results provide robust evidence for the practical utility of GTA-1B in diverse real-world deployment scenarios.

C.4 ADDITIONAL PRACTICAL INFERENCE DEPLOYMENTS

In this appendix, we provide detailed information about our experimental setup and present additional benchmark results for GTA-1B, GQA-1B and MLA-1B under half-precision computations.

We conducted comprehensive benchmarks using the `transformers` library (version 4.36.0) to evaluate the practical performance of our models across various hardware platforms. The experimental setup included the following specifications:

- **Hardware:** NVIDIA H100 80GB, NVIDIA A800 80GB, NVIDIA RTX 3060 12GB, Apple M2, and BCM2712
- **Precision:** Both full-precision (FP32, main text) and half-precision (FP16/BF16, this appendix)
- **Input Lengths:** 128, 512, 1024 and 2048 tokens



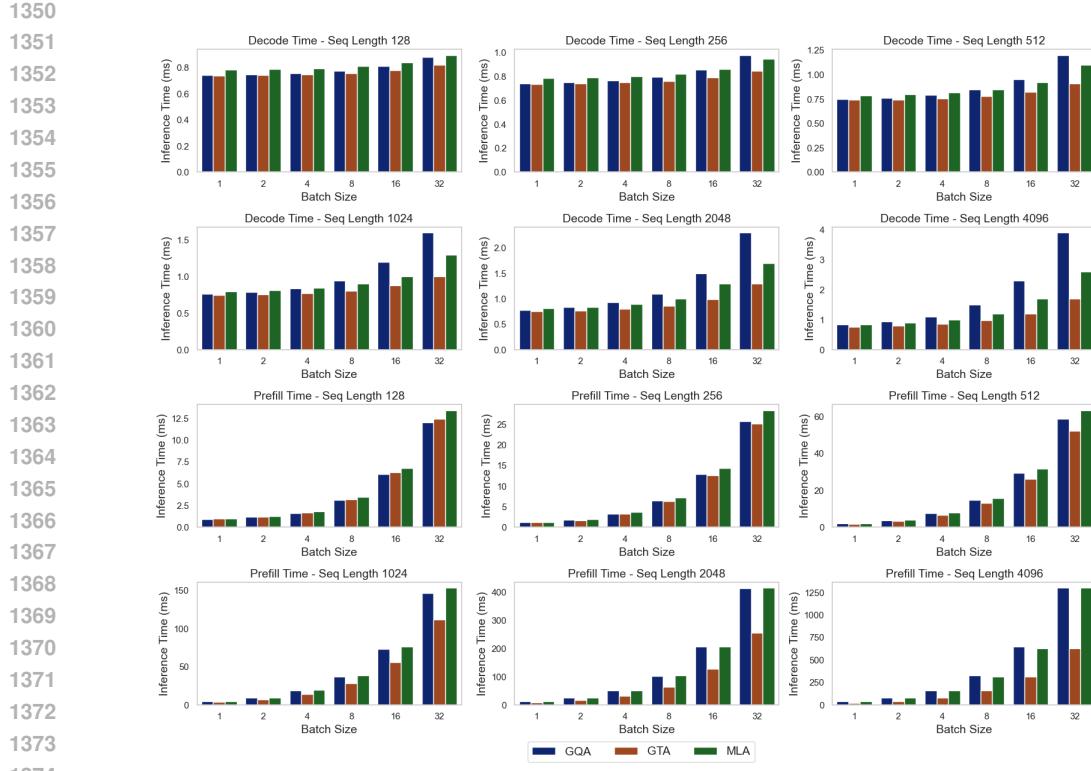
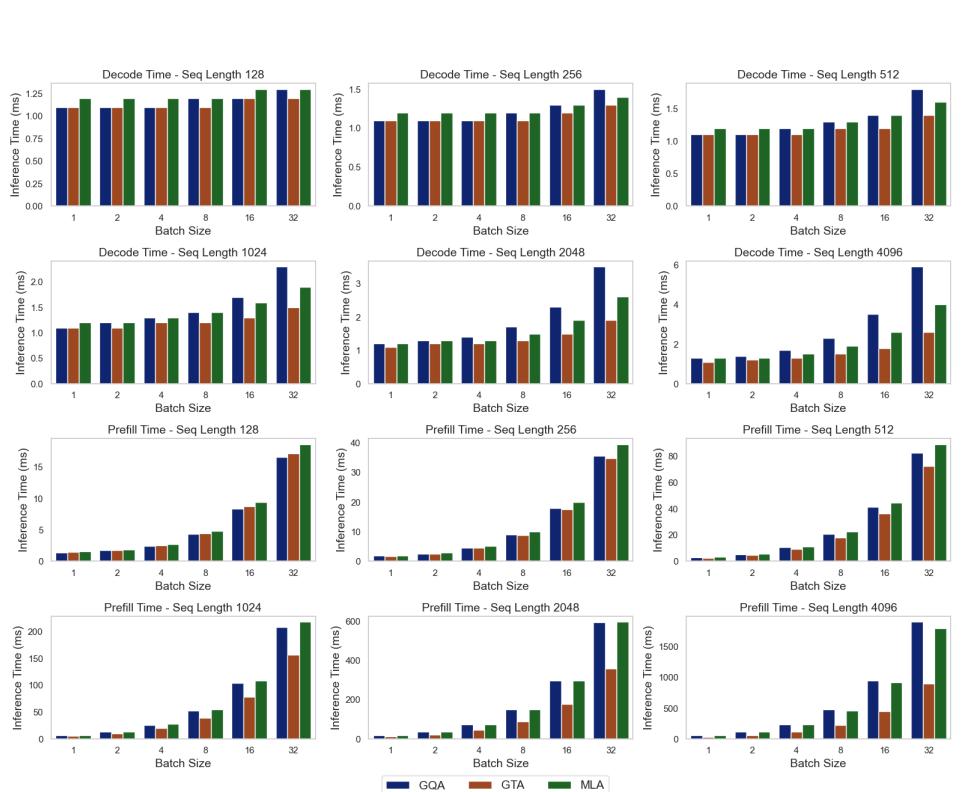
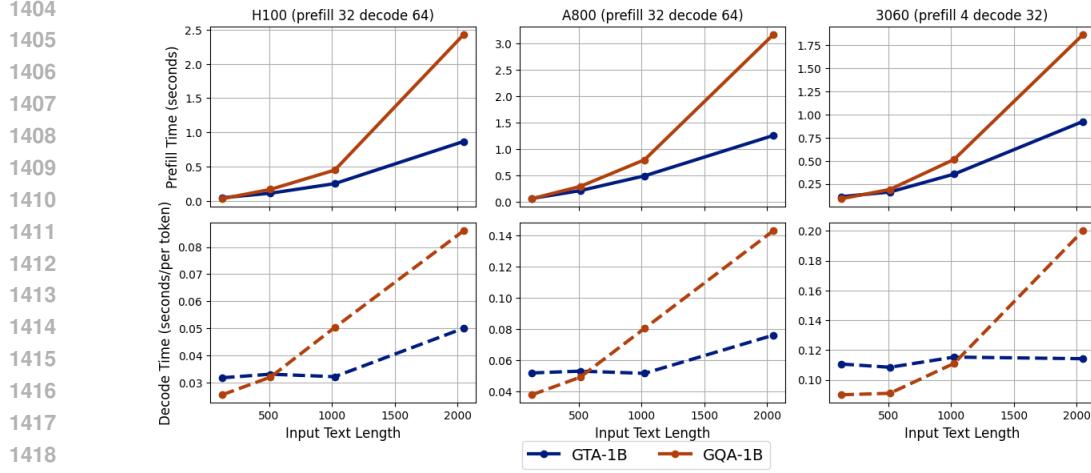
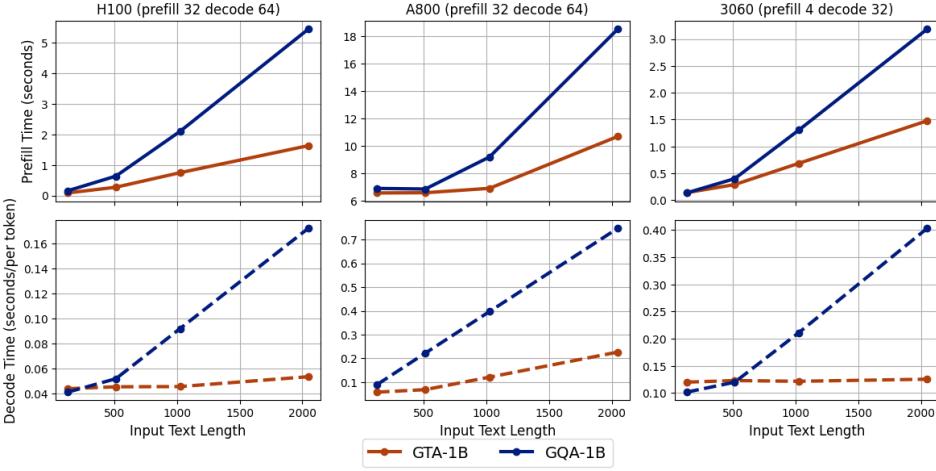


Figure 17: Prefill and decode times across configurations on an NVIDIA H100 PCIe 80GB GPU.



1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

Figure 18: Half-precision prefill and decode times for GTA-1B and GQA-1B across configurations on NVIDIA H100, NVIDIA A800, RTX 3060.



1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 19: Half-precision prefill and decode performance of GTA-1B and GQA-1B models with cache offload, evaluated on diverse hardware platforms across various test configurations.

For KV cache implementation, we used two approaches:

- **Standard benchmarks:** `DynamicCache` (default in transformers)
- **Offload benchmarks:** `OffloadedStaticCache` (allocates fixed memory, pre-caches two layers on GPU)

All results represent the average of three stable runs after a warm-up phase.

While the main text presented full-precision results, here we provide complementary half-precision benchmarks that demonstrate similar performance patterns but with overall improved efficiency across all hardware platforms.

Figure 18 shows half-precision performance without cache offload. Similar to full-precision results in the main text, GTA-1B (blue solid line) consistently outperforms GQA-1B (orange dashed line). The performance advantage becomes more pronounced at longer sequence lengths, with GTA-1B demonstrating improved efficiency in both prefill and decode phases.

Figure 19 presents the half-precision results with cache offload enabled. GTA-1B's efficiency advantage is further enhanced in this memory-constrained scenario, especially on the NVIDIA A800

1458 80GB at longer sequence lengths. This confirms that GTA-1B’s optimized memory access patterns
1459 are particularly effective in I/O-bound scenarios, consistent with the full-precision findings reported in
1460 the main text. These half-precision benchmarks demonstrate that GTA-1B maintains its performance
1461 advantages over GQA-1B across different precision settings, validating the architecture’s practical
1462 efficiency for real-world deployment scenarios.

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 **D THE USE OF LARGE LANGUAGE MODELS**
15131514 We used large language model (LLM) solely for grammar and spelling checking. The LLM did not
1515 generate, refine, or select research ideas, hypotheses, methods, analyses, results, or conclusions, and it
1516 did not write substantive content. All scientific contributions, experiment design, data interpretation,
1517 and writing decisions are the authors' own. The authors take full responsibility for any remaining
1518 errors.

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565