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ABSTRACT

While Prover-Verifier Games (PVGs) offer a promising and much needed path to-
ward verifiability in nonlinear classification models, they have not yet been applied
to complex inputs such as high-dimensional images. Conversely, Concept Bottle-
neck Models (CBMs) effectively translate such data into interpretable concepts but
are limited by their reliance on low-capacity linear predictors. In this work, we push
towards real-world verifiability by combining the strengths of both approaches. We
introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for
formal verifiability with concept encodings to handle complex, high-dimensional
inputs in an interpretable way. NCV achieves this by utilizing recent minimally
supervised concept discovery models to extract structured concept encodings from
raw inputs. A prover then selects a subset of these encodings, which a verifier,
implemented as a nonlinear predictor, uses exclusively for decision-making. Our
evaluations show that NCV outperforms CBM and pixel-based PVG classifier
baselines on high-dimensional, logically complex datasets and also helps miti-
gate shortcut behavior. Overall, we demonstrate NCV as a promising step toward

performative, verifiable Al

1 INTRODUCTION

Deep learning has achieved remarkable pre-
dictive performances, but often at the expense
of interpretability and trustworthiness (Rudin,
2019). However, particularly in high-stakes
applications, it is critical that models provide
verifiable justifications for their decisions (Irv-
ing et al., 2018; Fok & Weld, 2023). Prover-
Verifier Games (PVGs), introduced by Anil et al.
(2021), formalize such justifications via a game-
theoretic approach: a prover provides evidence
to convince a verifier, who accepts only ver-
ifiable proofs. A prominent instantiation of
PVGs is the Merlin-Arthur Classifier (Wéldchen
etal., 2024), i.e., a classifier guided by cooper-
ative and adversarial provers, offering formal
interpretability guarantees through information-
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Figure 1: Challenges of Prover-Verifier Games
(PVGs) in image classification: (i) It is non-trivial
to scale up for high-dimensional data. (ii) Further-
more, the learned explanation masks on the pixel
level remain difficult for humans to understand.

theoretic bounds. However, the Merlin-Arthur framework faces significant scalability challenges
when applied to high-dimensional real-world data, as explanations based on raw pixels are both
computationally difficult to optimize and offer limited human understandability (cf. Fig. 1; Wéldchen

et al. (2024)).

Concurrently, Concept Bottleneck Models (CBMs) have emerged as a powerful framework for
interpretable machine learning, structuring predictions through intermediate interpretable concept
encodings (Koh et al., 2020; Stammer et al., 2021). Despite their advantages, CBMs typically employ
linear classifiers on top of concept encoding layers, thereby potentially restricting expressivity and
failing on tasks requiring nonlinear interactions among concepts (e.g., XOR problems, counting or
permutation invariance, cf. Suppl. B) (Mahinpei et al., 2021; Kimura et al., 2024; Lee et al., 2019).
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In this work, we combine the best of both worlds by introducing the Neural Concept Verifier (NCV),
a novel framework integrating concept-based representations into PVGs in the form of Merlin-
Arthur Classifiers. NCV shifts the prover—verifier interaction from the image level to a structured,
symbolic concept level, overcoming both the scalability limitations encountered by Merlin-Arthur
Classifiers in high-dimensional settings and the expressivity constraints inherent to linear CBMs.
Through extensive evaluations on controlled synthetic benchmarks such as CLEVR-Hans, as well
as large-scale real-world datasets including CIFAR-100 and ImageNet-1k, we demonstrate that
NCYV successfully scales PVGs to complex, high-dimensional classification tasks. At the same time,
NCYV enables verifiable, performant nonlinear classifiers on top of concept extractors, effectively
narrowing the interpretability—accuracy gap present in standard, linear CBMs. Lastly, our framework
improves robustness to shortcut learning, thereby enhancing the generalizability and trustworthiness
of predictions, particularly crucial in high-stakes applications.

Our contributions can be summarised as: (i) We propose Neural Concept Verifier (NCV), a framework
combining concept-based models with Prover—Verifier Games (PVGs). (ii) NCV scales PVGs to
high-dimensional image data by operating on compact concept encodings. (iii) It enables expressive
yet interpretable classification via sparse, nonlinear reasoning over concepts. (iv) We validate
NCYV on synthetic and real-world benchmarks, demonstrating strong accuracy and verifiability. (v)
We highlight that NCV improves generalization under spurious correlations, indicating increased
robustness.

The remainder of the paper is structured as follows. We begin with a review of related work,
highlighting recent developments in the field. We then introduce our proposed Neural Concept Verifier
framework, and present its formal description. This is followed by a comprehensive experimental
evaluation that investigates key aspects of the framework. Finally, we discuss our findings and
conclude the paper.

2 BACKGROUND

Prover-Verifier Games. PVGs were introduced by Anil et al. (2021) as a game-theoretic framework
to encourage learning agents to produce festable justifications through interactions between an
untrusted prover and a trusted verifier. Their work showed that under suitable game settings, the
verifier can learn robust decision rules even when the prover actively attempts to persuade it of
arbitrary outputs. Wildchen et al. (2024) extended this idea to the Merlin-Arthur Classifier (MAC),
which provides formal interpretability guarantees by bounding the mutual information between the
selected features and the ground-truth label. Recently, Kirchner et al. (2024) applied a PVG-inspired
approach to improve legibility of Large Language Model (LLM) outputs and Amit et al. (2024)
introduced self-proving models that leverage interactive proofs to formally verify the correctness of
model outputs. PVG-style setups have also been explored in safety-focused learning protocols (Irving
et al., 2018; Brown-Cohen et al., 2024; Gtuch et al., 2024). These developments reflect a broader
trend of utilising multi-agent learning (Pruthi et al., 2022; Schneider & Vlachos, 2024; Du et al.,
2024; Nair et al., 2023; Stammer et al., 2024a). Our work builds on this line of research by embedding
PVGs into a concept-based classification framework, addressing the dimensionality bottleneck that
limits PVGs in high-dimensional settings.

Concept Representations for Interpretability. The introduction of Concept Bottleneck Models
(CBMs) (Koh et al., 2020; Delfosse et al., 2024), but also concept-based explanations (Kim et al.,
2018; Crabbé & van der Schaar, 2022; Poeta et al., 2023; Lee et al., 2025) was an important moment
in the growing interest in Al interpretability research. The particular appeal of CBMs lies in the
promise of interpretable predictions and a controllable, structured interface for human interactions
(Stammer et al., 2021). While initial CBMs relied on fully supervised concept annotations, subsequent
research has relaxed this requirement by leveraging pretrained vision-language models like CLIP
for concept extraction (Bhalla et al., 2024; Yang et al., 2023; Oikarinen et al., 2023; Panousis et al.,
2024; Steinmann et al., 2025), or employing fully unsupervised concept discovery methods (Ghorbani
et al., 2019; Stammer et al., 2024b; Schut et al., 2025; Sawada & Nakamura, 2022). While previous
work has focused on enhancing the concept bottleneck itself, by reducing supervision requirements,
mitigating concept leakage (Havasi et al., 2022), or dynamically expanding the concept space (Shang
et al., 2024), the classifier component of CBMs, has received little attention. We argue that while a
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Figure 2: Overview of the Neural Concept Verifier (NCV). The input image is first processed by a
concept extractor to produce symbolic concept encodings. A prover—verifier game is then played over
these encodings: a cooperative prover selects a sparse concept subset supporting the true class, while
an adversarial prover selects misleading concepts. Finally, the nonlinear verifier makes a prediction
based only on these selected concepts, ensuring verifiable and robust classification.

linear layer offers interpretability, its limited expressiveness makes it unsuitable for handling complex,
compositional, and object-centric tasks. Our proposed NCV tackles this limitation.

Shortcut Learning. Independent of their interpretability, training deep models can often lead to
unwanted artifacts and side effects. Shortcut learning describes the problem of models learning
to rely on unwanted and unintended features to resolve a task (Geirhos et al., 2020). This is a
common problem when training purely deep learning models (Lapuschkin et al., 2019; Schramowski
et al., 2020) or neuro-symbolic models (Marconato et al., 2023; Bortolotti et al., 2025), and, if not
taken care of, can lead to predictions being right for the wrong reasons (Ross et al., 2017). There
have been various methods developed to tackle this problem, from careful dataset curation (Ahmed
et al., 2021) to modified model training (Friedrich et al., 2023), ¢f. (Steinmann et al., 2024) for a
comprehensive overview. However, these mitigation methods rely on several important assumptions
about the training data and potential shortcuts to mitigate, and can affect model performance (Sagawa
et al., 2019). While NCYV is not specifically designed to mitigate shortcuts, we show that our setup
can intrinsically mitigate the impact of shortcuts in the data.

3 NEURAL CONCEPT VERIFIER (NCV)

In this section, we introduce the Neural Concept Verifier (NCV), a novel framework for training verifi-
able nonlinear classifiers capable of handling high-dimensional inputs. NCV combines concept-based
representations with the Prover-Verifier Game setup of Merlin-Arthur Classifiers (MAC) (Wéldchen
et al., 2024), enabling models whose predictions are certified to rely on a sparse set of high-level
concepts. NCV consists of two main components (cf. Fig. 2): (i) a minimally or weakly supervised
concept extractor that transforms input data into interpretable concept encodings, and (ii) a nonlinear
MAC that selects and verifies sparse concept-based inputs to make final predictions. After providing
background notations and a high-level overview of the NCV framework below, we provide detailed
descriptions of each main component as well as training and inference details in the following.

3.1 PROBLEM SETUP AND NOTATION

Let X € RY*D denote a dataset of N inputs (e.g., images), each of dimension D, and ) €
RN *(K+1) the corresponding labels for K classes plus one additional rejection class. The rejection
class allows the model to abstain from a decision when uncertain, which is important for enforcing
interpretability guarantees in adversarial setups (Wildchen et al., 2024). Our overall goal is to learn a
model f: X — ) that maps an input z € X to a prediction § € ), where the prediction is based on
a small, interpretable subset of high-level concepts.
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3.2 THE NCV FRAMEWORK
NCYV next decomposes f into the following components (cf. Fig. 2 for an illustrative overview):

1. A concept extractor g : X — C, which maps each input z to a high-level concept encoding
c € RY, where C' € N is the number of discovered concepts.

2. A pair of prover agents )M, M:C— {0,1}¢ that produce sparse binary masks selecting

m concepts each. M (Merlin, cooperative Prover) aims to help classification; M (Morgana,
adversarial Prover) aims to mislead, which is crucial for overall robustness.

3. A nonlinear verifier (Arthur) A : R® — ), which predicts a label based only on the masked
concepts.

The three agents are trained jointly, where the interaction between these agents encourages the verifier
to rely only on robust, informative concept features. Let us now provide details on these individual
components.

3.3 CONCEPT EXTRACTION

The concept extractor g : X — R transforms raw input data into interpretable, high-level concept
representations, where each dimension corresponds to a semantically meaningful concept. The
resulting concept encoding ¢ € RY serves as the input to the PVG.

While conceptually simple, a careful combination of PVGs and concept-based models is necessary.
The concept extractor must satisfy three key requirements: interpretability, expressiveness, and modu-
larity. Concepts should correspond to human-understandable features that can serve as meaningful
explanations, the concept space should capture sufficient information for the target task without
creating information bottlenecks, and the extractor should operate independently of the prover-verifier
components. Unlike traditional concept extractor approaches that enforce sparsity constraints directly
on c, our framework delegates sparsity to the prover-verifier interaction. This allows the concept space
to remain dense and expressive while achieving interpretable sparsity through downstream concept
selection. Further, NCV can accommodate different supervision paradigms for concept extraction:
supervised methods that leverage predefined concept vocabularies, self-supervised methods that
exploit multi-modal correspondences (e.g., vision-language alignment), or unsupervised methods
that discover latent conceptual structures can all be used as concept extractors.

Overall, NCV requires that g produces consistent, interpretable encodings while maintaining sufficient
information for accurate classification. In our evaluations, we instantiate NCV’s concept extractor
via the recent unsupervised and object-centric NCB framework (Stammer et al., 2024b) and the
multi-modal, CLIP-based SpLiCE (Bhalla et al., 2024) approach. Operating in concept space rather
than raw input space provides: (i) scalability through dimensionality reduction and (ii) explanations
based on human-interpretable concepts.

3.4 VERIFIABLE CLASSIFICATION VIA THE MERLIN-ARTHUR CLASSIFIERS

The second core component of NCV is a verifiable classifier of the Merlin-Arthur setup (Wéldchen
et al., 2024) originally inspired by Interactive Proof Systems (Goldwasser et al., 1985). This setup
generally formalizes the idea of proving that a classification decision is supported by a sparse and
informative set of features.

In NCV, specifically, two competing provers, Merlin and Morgana, select concept subsets either to
support or mislead classification, respectively. The verifier, Arthur, then makes predictions based
solely on these masked concepts without knowledge of the prover’s intent. Formally, each prover
outputs a sparse binary mask with m active entries, producing selected subsets:

S=M(c)Oec, §:J\/J\(C)®c,

where c is the concept encoding from extractor g, and © denotes element-wise masking. Notably, all
three agents represent differentiable models, with Arthur specifically representing a nonlinear model.

This interactive setup enables two key metrics: (i) completeness, i.e., the probability that Arthur
correctly classifies the input when using Merlin’s selected features and (ii) soundness, i.e., the
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probability that Arthur avoids incorrect classification when using Morgana’s features, either by giving
the correct class or opting for a rejection. Overall, these components in NCV ensure that only sparse,
faithful concept subsets are used and can be inspected for final predictions.

Sparsity has recently become central in concept-based models, as large concept spaces require sparse
predictions for interpretability. Prior work (Bhalla et al., 2024; De Santis et al., 2025) achieves this
by regularizing the concept space itself, restricting the number of active concepts before training the
classifier. In contrast, NCV keeps the concept space fully expressive and enforces sparsity only in
the concepts passed to the classifier. At inference, Arthur predicts solely from the masked concepts
selected by Merlin, ensuring sparse, interpretable predictions without limiting the richness of the
concept space.

3.5 TRAINING AND INFERENCE

The training step of NCV incorporates updating only the parameters of the three agents M, M, and
A as g represents a pretrained model that is subsequently frozen upon NCV’s multi-agent training
step. Thus, the three agents are jointly trained by optimizing a three-agent game, which encourages
Arthur to rely on concepts selected by Merlin, while being robust to potentially misleading concepts
selected by Morgana. Given a concept encoding ¢ € R, label y € ) and cross-entropy function
CE(-,-), we define:

* Merlin’sloss: Ly, = CE(A(S),y), where S is the sparse concept subset selected by
Merlin. This loss encourages Arthur to classify correctly based on Merlin’s input.

* Morgana’sloss: Ly; =CE (A(S),y), where S is Morgana’s adversarial concept subset.
Here, the loss is interpreted as the classifier’s inability to be misled by deceptive inputs'.

Overall, Arthur’s loss combines both objectives with a hyperparameter v € R, controlling the
emphasis on predictive performance (completeness) versus robustness (soundness):

La=1~-75)Ln+Lg, ()

In detail, the three agents are updated jointly in a two-phase min-max optimization. First, the prover
agents are updated where Merlin minimizes Ly, and Morgana maximizes L 7; then Arthur is updated
by minimizing L 4 on the sparse selected concepts chosen by the provers. This scheme incentivizes
Arthur to base its predictions on informative, task-relevant, and verifiably robust concept subsets.

At inference time, only the cooperative prover M is used to select a sparse subset of concepts, based
on the input’s concept encoding. The verifier A then predicts a label or rejects based solely on this
selected subset.

Overall, by integrating concept-extractor modules and leveraging the Merlin—Arthur framework,
NCYV emphasizes faithfulness and interpretability while preserving nonlinear modeling capabilities,
and shifts the min—max optimization into a lower-dimensional concept space, improving efficiency,
scalability, and stability in high-dimensional settings, a common challenge in min—max optimization
for deep learning (Mescheder et al., 2018; Nagarajan & Kolter, 2017).

4 EXPERIMENTAL EVALUATIONS

In this section, we present a comprehensive evaluation of Neural Concept Verifier (NCV) on both
synthetic and real-world high-dimensional image datasets. We evaluate based on two instantiations of
NCV that utilize different concept extractors: a CLIP-based extractor and the Neural Concept Binder
(NCB). We assess predictive performance and interpretability across multiple datasets, compare
against several baselines and examine scalability and robustness against shortcut learning.

Our evaluation is structured around the following research questions: (Q1) Does shifting Prover-
Verifier Games (PVGs) to concept-encodings via NCV lead to performative classifiers on high-
dimensional synthetic and real-world images (i.e., high completeness and soundness)? (Q2) Does
NCYV reduce the “interpretability-accuracy gap” in the context of CBMs? (Q3) Does NCV allow

'In practice, the CE loss of Morgana is a slightly modified CE loss, cf. Wildchen et al. (2024).
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for more detailed explanations over pixel-based PVGs? Finally, (Q4) Can training via NCV reduce
shortcut learning?

4.1 EXPERIMENTAL SETUP

Datasets. We investigate NCV on CLEVR-Hans3 and CLEVR-Hans7 (Stammer et al., 2021),
synthetic benchmarks derived from CLEVR (Johnson et al., 2017) that capture complex object
compositions and include visual shortcuts. CLEVR-Hans3 features three compositional classes, while
CLEVR-Hans7 increases the complexity to seven, with all images rendered at 128 x 128 pixels. The
training and validation sets contain spurious correlations between attributes and labels (e.g., gray
cubes linked to a specific class), which are absent in the test set, making the datasets well-suited for
studying shortcut behavior. Models that exploit such correlations often fail under the decorrelated
test distribution. We first report results on non-confounded versions of these datasets, where feature
distributions are consistent across splits, and later return to the confounded versions for shortcut
mitigation. To assess scalability and generalization to natural images, we additionally evaluate on
ImageNet-1k (Deng et al., 2009) with 1.2M high-resolution images across 1,000 classes (resized to
224 x 224 pixels), and on CIFAR-100 (Krizhevsky, 2009) with 60,000 low-resolution 32 x 32 images
across 100 fine-grained categories. Lastly, we perform experiments on COCOLogic (Steinmann et al.,
2025), a recent benchmark combining real-world images with complex, compositional class rules.

Baseline Models. We compare our framework against several representative baselines, with train-
ing details provided in Suppl. C. As a strong but non-interpretable baseline, we use a standard
ResNet-18 (He et al., 2016) for evaluations on CLEVR-Hans, and a ResNet-50 for CIFAR-100, CO-
COLogic and ImageNet-1k, each trained end-to-end on raw images. We further evaluate a pixel-based
MAC (Wildchen et al., 2024) (denoted as Pixel-MAC), an instantiation of the Prover-Verifier Game in
which the verifier is initialized from a pretrained ResNet-18, while both provers (Merlin and Morgana)
are U-Net models (Ronneberger et al., 2015) that output continuous feature-importance masks over
the input image. These masks are discretized using Top-k selection to define the features visible to the
verifier, and all agents are jointly fine-tuned; the resulting explanations (i.e., certificates) correspond
to masks in pixel space (see (Wildchen et al., 2024) for further details). Lastly, we compare to a
vanilla Concept Bottleneck Model (Koh et al., 2020) (denoted as CBM), where a linear classifier
predicts from concept features extracted by either NCB (Stammer et al., 2024b) for CLEVR-Hans or
SpLiCE (Bhalla et al., 2024) for CIFAR-100, ImageNet-1k and COCOLogic.

NCYV Instantiations. For CLEVR-Hans3 and CLEVR-Hans7, we instantiate NCV with NCB (Stam-
mer et al., 2024b) as the concept extractor, using models pretrained on CLEVR (Johnson et al., 2017).
A permutation-invariant Set Transformer (Lee et al., 2019) serves as the verifier (Arthur) to process
the unordered NCB encodings. The provers (Merlin and Morgana) are independent Set Transformers
that take the full concept-slot encodings as input and output a sparse mask of 12 active concepts for
the verifier. All components are jointly trained with the Adam optimizer (Kingma, 2014). Further
details and ablations are provided in Suppl. D. For ImageNet-1k, CIFAR-100 and COCOLogic, we
use a CLIP-based concept extractor (Radford et al., 2021), following the approach of SpLiCE (Bhalla
et al., 2024) to compute image—text similarity scores with a fixed concept vocabulary. Unlike SpLiCE,
which performs per-sample optimization, our method (denoted as CLIP-Sim) retains the full activation
vector and delegates concept selection to the provers, avoiding expensive inference-time optimization
and enabling scalability. Here, the verifier and both provers are two-layer MLPs; the provers output
sparse masks of 32 concepts per example. All modules are trained with Adam. Additional details and
ablations are given in Suppl. E.

Metrics. All methods are evaluated for completeness and, where applicable, soundness (Sec. 3.4).
Hereby, completeness corresponds to classification accuracy under cooperative feature selection,
while soundness measures robustness to adversarial prover selections. We use 20 random seeds
for CLEVR-Hans and 10 for ImageNet-1k, CIFAR-100 and COCOLogic, reporting mean and
standard deviation across all seeds. For CLEVR-Hans shortcut learning, we additionally report the
validation—test gap, i.e., the difference between validation accuracy on a confounded split and test
accuracy on a non-confounded split; smaller gaps indicate better generalization and reduced reliance
on spurious correlations.
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Table 1: NCV delivers high predictive performance and robustness through verifiable, concept-
based reasoning. We report completeness and soundness scores for ResNet, Pixe- MAC, CBM, and
NCYV across synthetic (CLEVR-Hans3, CLEVR-Hans7) and real-world (CIFAR-100, ImageNet- 1k,
COCOLogic) datasets. NCV consistently matches or outperforms baselines in completeness while
offering strong soundness guarantees.

Model Feature Completeness Soundness ~ Completeness Soundness ~ Completeness ~ Soundness

ode Space (Accuracy) (Robustness) (Accuracy) (Robustness) (Accuracy) (Robustness)
CIFAR-100 ImageNet-1k COCOLogic

Ll ob  pheldpee LA nen wi e N . i

Pixel-MAC  pixel space 15.27+4.78 96.31+4.12 35.06+ 3.20 99.65+0.26 42.57+3.13 97.70+0.61

CBM SpLiCE 75.42+0.04 n/a  68.59+0.01 n/a 58.84+0.09 n/a

NCYV (ours) CLIP-Sim 83.32+0.28 99.99+ 0.01 67.04+0.16 99.944 0.02 75.4243.21 97.87+0.47

CLEVR-Hans3 CLEVR-Hans7

Sevieily ptelaee LT oo Shilios W

Pixel-MAC  pixel space 96.59+0.72 99.99+0.01 97.61+0.38 99.88+0.28

CBM NCB 95.44+0.08 n/a 89.12+0.12 n/a

NCYV (ours) NCB 98.924+0.32 100.00+ 0.00 97.89+0.31  100.00+0.00

4.2 EVALUATIONS

Scaling PVGs to High Dimensions (Q1). In our first evaluation, we examine whether shifting the
Prover—Verifier Game (PVG) to concept encodings enables NCV to scale to high-dimensional image
domains while achieving strong performance in terms of completeness and soundness. We hereby
compare NCV against two key baselines: (1) a black-box ResNet classifier (ResNet-18 for CLEVR-
Hans and ResNet-50 for CIFAR-100, ImageNet-1k and COCOLogic), and (2) Pixel-MAC, a nonlinear
PVG model operating in raw pixel space. Tab. 1 summarizes results across synthetic (CLEVR-Hans3,
CLEVR-Hans7) and real-world (CIFAR-100, ImageNet-1k, COCOLogic) benchmarks. Each model’s
feature space is indicated for clarity. On the synthetic CLEVR-Hans benchmarks, we observe that
NCV consistently achieves the highest completeness scores, surpassing Pixel-MAC and even ResNet-
18 on CLEVR-Hans3, while also attaining perfect soundness. This demonstrates that NCV not only
matches or exceeds the performance of strong black-box classifiers but also maintains faithful and
certifiable decision-making. Pixel-MAC performs well in these settings but falls slightly short in
completeness and cannot match NCV’s zero-error soundness.

On the more challenging real-world datasets, Pixel-MAC either fails entirely or performs poorly.
In contrast, NCV successfully scales to these datasets, achieving superior completeness and near-
perfect soundness. Notably, NCV surpasses ResNet-50 even in raw accuracy for CIFAR-100 and
COCOLogic, providing both higher predictive performance while retaining interpretability. In
summary, NCV generalizes well across domains: it scales beyond the limitations of pixel-based
PVGs, delivers competitive accuracy even on large-scale and complex datasets, and retains soundness
throughout. These findings affirm that shifting PVGs to concept space enables interpretable and
verifiable classifiers that remain performant and scalable in high-dimensional synthetic and real-world
visual environments. We therefore answer Q1 affirmatively.

Narrowing the Interpretability—Accuracy Gap (Q2). In Tab. 1, we further examine whether
NCV can overcome a central limitation of standard Concept Bottleneck Models (CBMs): the
interpretability—accuracy gap resulting from their use of constrained linear classifiers (cf. Suppl. B
for a discussion). Related to this, we observe that NCV consistently narrows and in some cases
even closes this gap, while maintaining formal verifiability across all evaluated datasets. Specifically,
on CLEVR-Hans3, the baseline CBM trails the opaque ResNet-18 by over 2 percentage points in
completeness, whereas NCV matches or exceeds the ResNet’s performance while retaining perfect
soundness. The benefit is even more pronounced on CLEVR-Hans7: CBM underperforms ResNet-18
by nearly 10 percentage points, while NCV narrows the gap to just 1 percentage point. This trend
persists on real-world datasets. On CIFAR-100, NCV outperforms the base CBM and even slightly
exceeds ResNet-50’s performance. This is even more pronounced on COCOLogic, where NCV
outperforms both the base CBM and ResNet-50 by a large margin. As the additional benefits of
a nonlinear classifier are quite small on ImageNet-1k, the additional training complexity of NCV
results in a slightly worse performance compared to the base CBM there. Overall, NCV improves
over linear CBMs in both accuracy and robustness, especially on tasks requiring complex concept
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Figure 3: Comparison of explanations from NCV vs. Pixel-MAC. (top) Merlin—Arthur training on
pixel space yields uninformative masks. (bottom) MAC on concept encodings via NCV translates
into combinations of high-level concepts and, in turn, in an interpretable prediction.

reasoning. At the same time, it can match or even surpasses the accuracy of the opaque ResNet
models, demonstrating that interpretable, concept-level reasoning via Prover—Verifier Games can
deliver competitive performance without sacrificing transparency or verifiability. We therefore answer
Q2 affirmatively.

More Detailed Explanations (Q3) We next investigate the resulting explanations produced by our
NCV framework, with a focus on explanatory clarity. Since our goal is to improve over classic vision-
based Prover—Verifier Games, we compare against pixel-level MAC explanations. Fig. 3 illustrates a
qualitative example from both the CLEVR-Hans3 (cf. Fig. 4 for more examples) and ImageNet-1k
datasets. Notably, under Pixel-MAC, the Prover—Verifier setup operates directly on pixels, yielding
broad, diffuse explanation masks that often cover entire objects or irrelevant background regions,
arguably providing limited insight regarding which exact features drive the verifier’s final decision.
In contrast, NCV leverages its internal concept encodings to pinpoint the precise attributes relevant
for a class decision, recovering the exact class rule for CLEVR-Hans (i.e. small cube and small metal
sphere), and providing a meaningful concept explanation for class coffee-mug of ImageNet-1k.> For
ImageNet-1k, the mask size is set to 32 concepts, but for clarity we visualize only the top 5 most
frequent concepts across 32 samples. Overall, these examples highlight that NCV offers substantially
more detailed and understandable explanations than pixel-based PVG baselines, highlighting that
concept-level PVGs yield verifiable and interpretable decisions even for complex, high-dimensional
data. This leads us to answer Q3 affirmatively.

Mitigating Shortcut Learning (Q4) Lastly, to assess whether NCV can mitigate shortcut learning
in image classification, we train models on different versions of CLEVR-Hans3 and CLEVR-Hans7
with varying ratios of clean samples (i.e., without shortcut) in the training and validation sets. We
then measure validation accuracy with shortcuts and test accuracy on a held-out, clean data split. This
setup allows us to track both predictive performance and robustness to shortcut learning. Tab. 2 reports
results for three model types: a linear CBM, a nonlinear CBM, and our instantiation of NCV using
NCB as concept extractor. We observe that while NCV achieves the highest test accuracy among all
models in the 0% clean data setting, it still exhibits a sizeable validation-test gap, indicating a strong
influence of the underlying shortcuts. As the amount of clean samples is progressively increased, test
accuracy and test-validation gap improves across all models. However, NCV consistently achieves
the highest test accuracy in every setting, and its validation—test gap decreases more rapidly than for
either CBM variant. This trend indicates that NCV is not only better at leveraging clean supervision
when available, but is also more robust to shortcut learning. Together, these results demonstrate
that concept-level Prover—Verifier Games in NCV encourage models to rely on robust, task-relevant
features, making NCV more resilient to shortcut learning, even with limited amounts of clean data.

’The availability of object-level concepts in NCV depends on the underlying concept extractor. For CLEVR-
Hans, we use NCB, which provides such object-based explanations.
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Table 2: NCV shows increased robustness to shortcuts on CLEVR-Hans3 and CLEVR-Hans7. We
report validation accuracy on a set with shortcuts, and test accuracy on a set without shortcuts, as well
as the validation—test gap (lower is better) across models trained with varying amounts of clean data.

Ratio Model CLEVR-Hans3 CLEVR-Hans7

Non-Conf. Val Acc Test Acc Val-Test Val Acc Test Acc Val-Test
(Samples) (w/ shortcut) (w/o shortcut) Gap (J,) (w/ shortcut) (w/o shortcut) Gap (l)

CBM (lin.) 95.65+0.09  90.54+0.09 5.11 90.37+0.10  85.27+0.15 5.10

0% CBM (non-lin.) | 98.70+0.32 95.04+0.96 3.66 98.09+024  90.69+1.17 7.40

NCV 99.44+0.15 94.21+1.41 5.23 98.38+0.18 92.23+0.67 6.15

1% CBM (lin.) 96.28+0.16  91.03+0.31 5.25 90.74+0.12  85.41+0.17 5.33

(102) CBM (non-lin.) | 99.10+0.27  94.84+0.98 4.26 98.17+0.17  92.65+1.31 5.52

NCV 99.37+0.18 97.11+0.98 2.26 98.19+024 94.68+0.64 3.51

50 CBM (lin.) 95.38+0.37  93.34+0.51 2.04 90.37+0.15  86.37+0.18 4.00

(522) CBM (non-lin.) | 98.41+0.55 96.13+0.71 2.28 98.32+0.22  95.19+0.80 3.13

NCV 99.59+0.19 98.88+0.37 0.71 98.47+024 96.24+0.71 2.23

20% CBM (lin.) 95.67+0.28  93.46+0.23 2.21 89.93+0.29 87.21+0.31 2.72

(2106) CBM (non-lin.) | 99.15+0.21  98.09+0.51 1.06 98.21+0.29  97.00+0.49 1.21

NCV 99.37+0.28 98.82+0.67 0.55 98.63+0.13 97.74+0.28 0.89

5 DISCUSSION

Overall, our results show that shifting Prover—Verifier Games (PVGs) to the concept level yields a
powerful and scalable framework for verifiable, interpretable classification. By operating on symbolic
concept embeddings, NCV avoids the computational cost of per-sample inference in pixel space,
yet matches or surpasses pixel-based baselines in both completeness and soundness. It reduces
the performance gap typical of Concept Bottleneck Models (CBMs), achieving parity with opaque
models on synthetic tasks and even surpassing them on natural images. Additionally, concept-level
outputs offer concise, human-readable explanations. Finally, NCV exhibits a resilience to spurious
correlations, generalizing from confounded training splits and closing the generalization gap with
minimal available clean data.

That said, NCV has several limitations. Its effectiveness depends on the quality of the underlying
concept extractor: noisy or entangled concept spaces can reduce both accuracy and human under-
standability. The increased training complexity introduced by the three-agent PVG setup also results
in greater computational cost and training instability, e.g., compared to linear CBMs. Moreover,
when using pretrained models like CLIP for concept discovery, NCV inherits their biases and incon-
sistencies to some extent (Birhane et al., 2021; Gehman et al., 2020; Bhalla et al., 2024). Finally,
recent work (Debole et al., 2025) shows that such concept spaces can diverge from expert semantics,
even when yielding strong downstream performance.

6 CONCLUSION

In this work, we have introduced the Neural Concept Verifier (NCV), a unified framework that brings
together Prover—Verifier Games and concept-level representations for interpretable classification at
scale. Through extensive experiments on CLEVR-Hans, CIFAR-100, ImageNet-1k, and COCOLogic,
we have shown that NCV achieves high completeness and soundness, reduces the interpretabil-
ity—accuracy gap of concept bottleneck models, delivers detailed concept-based explanations, and
effectively mitigates shortcut learning. Thus, NCV paves the way for deploying trustworthy and
transparent models in domains where both predictive performance and verifiability are essential.

Future work should explore how concept encodings can be integrated into alternative PVG-style se-
tups, where structured representations may improve performance or reduce communication overhead.
It is also promising to investigate applications beyond vision, such as natural language processing
and structured data, where interpretable verification may be equally valuable. Finally, while existing
information-theoretic guarantees, such as those introduced by Wildchen et al. (2024), focus on binary
classification under specific assumptions, extending such guarantees to high-dimensional, multi-class
settings remains an important open direction for formal interpretability at scale.
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Supplementary Materials

A USE OF LARGE LANGUAGE MODELS

Large language models were used to support this work by assisting with text refinement, implementa-
tion of code components (including methods and plot generation), and by providing input during idea
development and approach refinement.

B WHY LINEAR CLASSIFIERS FALL SHORT IN CBMS

While linear classifiers are generally considered to be interpretable, these models are not suited to
solve arbitrarily complex problems. A linear classifier is only able to capture linear relationships
between inputs and output features and cannot model complex, non-linear relationships. In the
context of CBMs, this problem is usually tackled by utilizing a linear classifier to predict the output
based on the detected concepts. The concepts themselves can be detected using non-linear models,
and only the classification based on these concepts is done with a linear model. However, this is not
always sufficient, as there are also simple examples where non-linear relationships between concepts
and the output exist, for example thresholds detection (three out of five symptoms need to be present
to indicate an illness) or multiplicative effects (crop yield is the result of a multiplicative relationship
between rain and fertility).

To illustrate the problem in a simple experimental setup, let us assume we have a dataset of simple
shapes and every image contains between one and four of these shapes. The shapes are either a square
or a circle and either orange or blue. We consider two simple classification scenarios for this dataset.

* XOR: This setting classification follows the traditional XOR problem: We want to classify
images that contain either an orange square or a blue circle as class one and all other images
as class two.

* Counting: This setting includes object counting and illustrates that even for classification
based on a single attribute, a linear layer can be insufficient. Here, we want to classify all
images with exactly one blue shape as class one, and all other images as class two.

We evaluate a linear layer and a simple MLP on this toy dataset. To further simplify things, we assume
that our concept encoder is able to perfectly detect the concepts in the image, thus providing for
each element the information whether there is an object and if so, its shape and color. We randomly
generate 5000 samples of the dataset and train the models on a train split of 80% and evaluate on the
remaining 20%. The MLP has one hidden layer of size 16 and uses ReLU activation functions.

The results of this evaluation are shown in
Tab. 3. In both scenarios, the linear classi- Table 3: A linear prediction layer cannot solve XOR or
fication layer is not able to solve the task, counting. Even with the assumption of a perfect concept

despite the deceptively simple relationship  encoder, the linear layer fails.
between concepts and output classes. On

the other hand, the MLP achieves close to ~ Model XOR (Acc) Counting (Acc)
perfect accuracy on both settings. Linear Layer 0.766 + 0.011  0.677 4 0.006
So far, we have argued that not every task ~ MLP 0.953 £0.053  0.982 £ 0.015

can be solved with a CBM and a linear
classification layer. However, this is not
entirely accurate. In principle, any task can be solved linearly—provided that we define the right
linear-sufficient concepts. For instance, in the XOR setting, detecting the concepts “orange square
and no blue circle” and “blue circle and no orange square” would allow a linear classifier to solve the
task. Similarly, in the counting task, introducing a concept such as “exactly one blue object” would
make linear classification trivial.

That said, the assumption that such sufficient concepts are always available is not realistic. First,
designing or discovering these concepts often makes concept detection considerably more difficult.
Second, as concepts become increasingly specific and compositional, they tend to lose interpretability.

14



Under review as a conference paper at ICLR 2026

Finally, requiring tailored concepts for every individual task does not scale. Returning to our example,
the concept “exactly one blue object” might help with task two but is essentially useless for task one.

Taken together, this illustrates why relying solely on linear classifiers in CBMs is often impractical.
To address such cases, non-linear classifiers should also be considered.

C EXPERIMENTAL DETAILS: BASELINES

In this section we provide training details for the three introduced baselines ResNet-18, ResNet-50,
Pixel-MAC and CBM.

C.1 RESNET-18 AND RESNET-50

We initialize the framework with a pretrained ResNet-18 model and employ the Adam optimizer
across all experiments. On the CLEVR datasets, the model is trained with a batch size of 128 for 30
epochs using a learning rate of 10~% and weight decay of 10—, repeated across 20 random seeds
with early stopping based on validation loss.

On CIFAR-100, we use a ResNet-50 trained for 100 epochs with a learning rate of 10~%, weight
decay of 10~°, and a batch size of 128, averaged over 10 random seeds with early stopping. The
ResNet-50 baseline on ImageNet is evaluated directly using pretrained PyTorch (Paszke et al., 2019)
weights without further finetuning. For COCOLogic, a ResNet-50 is trained for 300 epochs with a
batch size of 256, learning rate of 104, and weight decay of 10~2, again averaged over 10 random
seeds with early stopping.

In the Pixel-MAC setup, a separate ResNet-18 is trained under the same configuration as above but
with a reduced learning rate of 10~°, while keeping the batch size, weight decay, and early stopping
criterion unchanged. All Pixel-MAC results are obtained from these ResNet-18 checkpoints.

C.2 PIXEL-MAC

In this setup, we apply Merlin-Arthur training on pixel space by utilizing the pretrained ResNet-
18 models as classifiers and U-Net architectures for both Merlin and Morgana. Throughout all
experiments, we employ the Adam optimizer for both classifier and feature selector optimization,
with v = 0.5 to ensure high soundness.

For the CLEVR datasets, we train with a batch size of 128 for 40 epochs, using a learning rate of
10~° and weight decay of 10~ for the classifier optimization. The U-Net architectures are trained
with a learning rate of 10~%, weight decay of 10~° and an L1 penalty coefficient of 0.1. We set
the mask size to 1500, meaning that the U-Nets select a subset of 1500 pixels per sample (out of
128 x 128 pixels).

For CIFAR-100, we reduce the batch size to 64 and train for 100 epochs. The classifier is optimized
with a learning rate of 10~° and weight decay of 10~%. Both Merlin and Morgana are trained using a
learning rate of 10~2 and a reduced mask size of 32 pixels. We use an L1 penalty of 0.01 and apply
early stopping across 10 random seeds.

For ImageNet and COCOLogic, we further reduce the batch size to 32 due to memory constraints and
train for 80 epochs using the same learning rates and hyperparameters as in the CIFAR-100 setting.
The mask size is set to 1000 pixels per image. As with CIFAR-100, early stopping is applied across
10 random seeds, and training is initialized from the pretrained ResNet-18 backbone.

C.3 CBM WITH LINEAR CLASSIFIER

Next, we present the implementation details for the CBM baseline, where a linear classifier operates
on concept features obtained from the concept extractor.

For the CLEVR datasets, we train a linear classifier on concepts extracted by the Neural Concept
Binder. The training process employs a batch size of 128, a learning rate of 102, and weight decay
of 10~*. The model is trained for 60 epochs on CLEVR-Hans3 and 30 epochs on CLEVR-Hans7,
using early stopping based on validation loss, repeated across 20 different random seeds.
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For CIFAR-100 and ImageNet, we train a linear classifier on sparse SpLiCE encodings using a
dictionary size of 10,000. In both cases, we use a batch size of 4096 and train for 250 epochs
with early stopping, a learning rate of 103, and no weight decay. A hidden layer with 512 units
is used, and an L1 penalty of 0.2 is applied within SpLiCE to encourage sparsity in the concept
representations. All results are averaged over 10 random seeds.

D NCB-BASED NEURAL CONCEPT VERIFIER EXPERIMENTS

In the following, we provide details on NCB-based NCV, experimental evaluations as well as
additional evaluations.

D.1 PRETRAINING

Before training NCV, we first pretrain the models without the feature selectors. The corresponding
results for the pretraining are shown in Tab. 4, where we evaluate on 20 random seeds. These
pretrained models are then used as initialization for the subsequent NCV training. For the pretraining,
we use a Set Transformer with two stacked multi-head attention blocks, a hidden dimension of 128
and four attention heads. We use a batch size of 128, 30 epochs and the Adam optimizer with a
learning rate of 10~ for both datasets, applying early stopping based on validation loss.

Table 4: Pretraining results on the CLEVR-Hans3 and CLEVR-Hans7 datasets without shortcuts

CLEVR-Hans3 CLEVR-Hans7
Val. Accuracy Test Accuracy Val. Accuracy Test Accuracy

99.02£0.31 98.13£0.37 98.08+0.24 97.83+£0.25

D.2 NCV TRAINING

For the experiments presented in our main results in Tab. 1, the experimental details for both datasets
are as follows:

Model Architecture. The verifier is implemented as a pretrained Set Transformer consisting of
two stacked multi-head attention blocks with hidden dimension 128, four attention heads, and
layer normalization. Merlin and Morgana are implemented as independent neural networks, each
parameterized by a Set Transformer with two stacked attention blocks with hidden dimensions 256,
four attention heads, and layer normalization. The provers receive the full concept slot matrix as
input and output a sparse selection mask with exactly 12 nonzero entries (out of 64 total features),
indicating the active blocks provided to the verifier.

Training Details. All components are jointly trained using the Adam optimizer with a learning rate
of 1072 and weight decay of 10~%. Models are trained for 50 epochs and a batch size of 512 is used
throughout. For the Merlin and Morgana provers, a hard selection constraint is enforced, limiting
the number of selected concepts to a fixed budget of 12 block-encodings per sample. To ensure
high soundness, we set v = 0.5, giving equal weight to both feature selector losses in the total loss
computation. We train our models using 20 random seeds.

Extended Results. Additionally, we evaluated the NCV framework with varying mask sizes and
an alternative model architecture for the feature selectors. The results are presented in Tab. 5 for
the CLEVR-Hans3 dataset and Tab. 6 for the CLEVR-Hans7 dataset, where we evaluate both the
validation set and the test set. The alternative architecture implements a MLP with two hidden
layers and ReLU activation functions for the feature selectors, while maintaining a pretrained Set
Transformer as the classifier across all experiments. Our results reveal that the Set Transformer
feature selector consistently outperforms the MLP feature selector on the test set, particularly with
smaller mask sizes such as 4 and 6. Furthermore, this configuration maintains high completeness
(>96%) and soundness (>99%), even with a reduced number of selected features.
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Table 5: Completeness and soundness on the CLEVR-Hans3 dataset without shortcuts for different

mask sizes and feature selector architectures. The highlighted values are used for Table 1.

Validation Test
Mask Size  Feature Selector Completeness Soundness Completeness Soundness

4 Set Transformer 98.35 +0.31 99.88+0.28  97.69 £ 0.63 99.82+0.23
MLP 96.51 +£1.18  99.81 £0.27  95.54 £ 1.37 99.85 +0.28

6 Set Transformer 98.71+0.52  99.87+0.13  98.11 +0.62 99.88 +0.19
MLP 96.21+0.89  99.96 £0.03  94.78 +1.24 99.97 + 0.06

12 Set Transformer 99.20£0.11  100.00 £0.00 98.92+0.32 100.00-+0.00
MLP 99.28 +£0.11 9998 £0.06  98.89+0.21 99.99 £ 0.07

Table 6: Completeness and soundness on the CLEVR-Hans7 dataset without shortcuts for different

mask sizes and feature selector architectures. The highlighted values are used for Table 1.

Validation Test
Mask Size  Feature Selector Completeness Soundness Completeness Soundness

4 Set Transformer 96.69 +1.28  99.93+£0.09  96.71 +1.37 99.91 + 0.09
MLP 92.63+1.24 99.89+0.12 92.71+£1.31 99.87+0.13

6 Set Transformer 97.32 £0.42 99.98 £ 0.02 97.14 £0.51 99.98 £+ 0.02
MLP 95.43 +1.48 99.88 +£0.13 95.12 +1.48 99.86 +0.14

12 Set Transformer 98.13+0.11  100.00£0.00 97.89+0.31 100.00-+0.00
MLP 97.414+1.07  99.99£0.03 97.01 +0.93 99.99 + 0.04

D.3 EXPLANATIONS

Here, we present supplementary examples of explanations generated by both Pixel-MAC and NCV
on the CLEVR-Hans3 dataset in Fig. 4. These results further substantiate our claim that NCV
provides significantly more transparent and interpretable explanations compared to the pixel-based
PVG baseline.

E EXPERIMENTAL DETAILS FOR CLIP-BASED NCV
In the following section, we present the implementation details of CLIP-based NCV training.

E.1 PRETRAINING

Once more, before starting with the actual NCV training, we first pretrain the models without the
provers (Merlin and Morgana). The corresponding results for the pretraining are shown in Tab. 7. As
textual concept descriptions 7', we used the top 10,000 most frequent one- and two-word phrases from
LAION (Schuhmann et al., 2021) captions, following the setup of Bhalla et al. (2024). For pretraining
the verifier, we use a two-layer multilayer perceptron (MLP) with a hidden dimension of 512 and
GELU activations (Hendrycks & Gimpel, 2016) on CIFAR-100, ImageNet-1k, and COCOLogic.
On CIFAR-100 and ImageNet, training uses a batch size of 4096 and a learning rate of 10~%, with
dropout (0.3), weight decay of 10~%, and early stopping (patience 10). On COCOLogic, we instead
train for 100 epochs with a batch size of 512, learning rate of 10~%, and weight decay of 10~2, using
a learning-rate scheduler (plateau, patience 5, factor 10~2, minimum learning rate 10~%) and no early
stopping. All pretraining is conducted without provers, and the resulting verifiers are used to initialize
the CLIP-based NCV training.

E.2 NCV TRAINING

For the experiments presented in our main results in Tab. 1, we detail the training setup separately for
CIFAR-100 and ImageNet.
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Figure 4: Comparison of explanations from NCV vs. Pixel-MAC for CLEVR-Hans3 images of
all three classes. (a) Merlin—Arthur training on pixel space yields uninformative masks. (b) NCV
provides clear explanations by highlighting object features corresponding to the class rule. The
single-object images are reconstructions from the respective slots selected by Merlin (prover).

Table 7: Pretraining accuracy of the verifier (without provers) for CLIP-based NCV on CIFAR-100,
COCOLogic and ImageNet-1k.

Dataset Accuracy (%)
CIFAR-100 85.96
COCOLogic 81.39
ImageNet-1k 77.07

Model Architecture. The verifier (Arthur) is initialized as the pretrained two-layer multilayer
perceptron (MLP) described above. Merlin and Morgana are implemented as independent neural
networks, each parameterized by a two-layer MLP with hidden dimension 512 and ReLU activations.
Both provers receive the full concept activation vector as input and output a sparse selection mask
indicating the active concepts that are passed to the verifier.

CIFAR-100. For CIFAR-100, all components are trained jointly for 100 epochs using the Adam
optimizer. We set the verifier learning rate to 10~4, and use 5 x 10~ for both Merlin and Morgana. A
batch size of 256 is used throughout. Weight decay is set to 0.1, and a hard mask size of 32 concepts
is enforced per input. To incentivize sparse masks, an L1 penalty of 0.1 is applied to the provers.
A learning rate scheduler (plateau-based) is employed with a patience of 5, minimum learning rate
of 1075, and decay factor of 0.001. Early stopping is disabled, and all results are averaged over 10
random seeds.

ImageNet. The ImageNet setup mirrors CIFAR-100 in most aspects. We again train for 100 epochs
with a batch size of 256, using the same learning rates for verifier (10~*) and provers (5 x 10~%), mask
size of 32 features, and L1 penalty (0.1). Weight decay is reduced to 0.005 to improve generalization.
The same learning rate scheduler and seed setup are used as in the CIFAR-100 experiments.

COCOLogic. Training on COCOLogic follows the CIFAR-100 configuration with minor adjustments:
models are trained for 100 epochs with a batch size of 512, verifier learning rate of 10~%, and prover
learning rates of 5 x 10~*. We use a weight decay of 0.01, a mask size of 32, and an L1 penalty of
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Table 8: Ablation results for our method on CIFAR-100 with varying mask sizes. We report mean +
std over 10 seeds.

Mask Size Completeness Completeness  Soundness Soundness

Train Validation Train Validation
4 74.97+4.45 69.32+2.66 99.85+0.07 99.854 0.09
8 87.42+ 2.60 71.20+22.43 99.95+0.03 99.95+0.03
16 94.08+1.46 81.82+0.50 99.96+ 0.03 99.97+ 0.02
64 97.65+0.47 84.01+0.31 100.004+0.00 100.00+0.00

Table 9: Ablation results for our method on ImageNet with varying mask sizes. We report mean +
std over 10 seeds.

Mask Size Completeness Completeness Soundness  Soundness

Train Validation Train Validation
4 59.30+0.34 55.96+0.30 99.81+0.03 99.83+0.06
8 64.84+0.41 60.98+0.30 99.94+0.00  99.94+0.03
16 68.85+0.34 64.60+0.12 99.96+0.03 99.96+0.03
64 73.35+0.39 69.03+0.18 99.97+0.00  99.97+0.02

0.1 on the provers. As with CIFAR-100, early stopping is disabled, and learning rate scheduling and
seed averaging remain unchanged.
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