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ABSTRACT

While Prover-Verifier Games (PVGs) offer a promising and much needed path to-
ward verifiability in nonlinear classification models, they have not yet been applied
to complex inputs such as high-dimensional images. Conversely, Concept Bottle-
neck Models (CBMs) effectively translate such data into interpretable concepts but
are limited by their reliance on low-capacity linear predictors. In this work, we push
towards real-world verifiability by combining the strengths of both approaches. We
introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for
formal verifiability with concept encodings to handle complex, high-dimensional
inputs in an interpretable way. NCV achieves this by utilizing recent minimally
supervised concept discovery models to extract structured concept encodings from
raw inputs. A prover then selects a subset of these encodings, which a verifier,
implemented as a nonlinear predictor, uses exclusively for decision-making. Our
evaluations show that NCV outperforms CBM and pixel-based PVG classifier
baselines on high-dimensional, logically complex datasets and also helps miti-
gate shortcut behavior. Overall, we demonstrate NCV as a promising step toward
concept-level, verifiability AI.

1 INTRODUCTION

Prover

Verifier

Explanation:
: Car

Figure 1: Challenges of Prover-Verifier Games
(PVGs) in image classification: (i) It is non-trivial
to scale up for high-dimensional data. (ii) Further-
more, the learned explanation masks on the pixel
level remain difficult for humans to understand.

Deep learning has achieved remarkable pre-
dictive performances, but often at the expense
of interpretability and trustworthiness (Rudin,
2019). However, particularly in high-stakes
applications, it is critical that models provide
verifiable justifications for their decisions (Irv-
ing et al., 2018; Fok & Weld, 2023). Prover-
Verifier Games (PVGs), introduced by Anil et al.
(2021), formalize such justifications via a game-
theoretic approach: a prover provides evidence
to convince a verifier, who accepts only ver-
ifiable proofs. A prominent instantiation of
PVGs is the Merlin-Arthur Classifier (Wäldchen
et al., 2024), i.e., a classifier guided by cooper-
ative and adversarial provers, offering formal
interpretability guarantees through information-
theoretic bounds. However, the Merlin-Arthur framework faces significant scalability challenges
when applied to high-dimensional real-world data, as explanations based on raw pixels are both
computationally difficult to optimize and offer limited human understandability (cf. Fig. 1; Wäldchen
et al. (2024)).

Concurrently, Concept Bottleneck Models (CBMs) have emerged as a powerful framework for
interpretable machine learning, structuring predictions through intermediate interpretable concept
encodings (Koh et al., 2020; Stammer et al., 2021). Despite their advantages, CBMs typically employ
linear classifiers on top of concept encoding layers, thereby potentially restricting expressivity and
failing on tasks requiring nonlinear interactions among concepts (e.g., XOR problems, counting or
permutation invariance, cf. Suppl. B) (Mahinpei et al., 2021; Kimura et al., 2024; Lee et al., 2019).
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In this work, we combine the best of both worlds by introducing the Neural Concept Verifier (NCV),
a novel framework integrating concept-based representations into PVGs in the form of Merlin-
Arthur Classifiers. NCV shifts the prover–verifier interaction from the image level to a structured,
symbolic concept level, overcoming both the scalability limitations encountered by Merlin-Arthur
Classifiers in high-dimensional settings and the expressivity constraints inherent to linear CBMs.
Through extensive evaluations on controlled synthetic benchmarks such as CLEVR-Hans, as well
as large-scale real-world datasets including CIFAR-100 and ImageNet-1k, we demonstrate that
NCV successfully scales PVGs to complex, high-dimensional classification tasks. At the same time,
NCV enables verifiable, performant nonlinear classifiers on top of concept extractors, effectively
narrowing the interpretability–accuracy gap present in standard, linear CBMs. Lastly, our framework
improves robustness to shortcut learning, thereby enhancing the generalizability and trustworthiness
of predictions, particularly crucial in high-stakes applications.

Our contributions can be summarised as: (i) We propose Neural Concept Verifier (NCV), a framework
combining concept-based models with Prover–Verifier Games (PVGs). (ii) NCV scales PVGs to
high-dimensional image data by operating on compact concept encodings. (iii) It enables expressive
yet interpretable classification via sparse, nonlinear reasoning over concepts. (iv) We validate
NCV on synthetic and real-world benchmarks, demonstrating strong accuracy and verifiability. (v)
We highlight that NCV improves generalization under spurious correlations, indicating increased
robustness.

The remainder of the paper is structured as follows. We begin with a review of related work,
highlighting recent developments in the field. We then introduce our proposed Neural Concept Verifier
framework, and present its formal description. This is followed by a comprehensive experimental
evaluation that investigates key aspects of the framework. Finally, we discuss our findings and
conclude the paper.

2 BACKGROUND

Prover-Verifier Games. PVGs were introduced by Anil et al. (2021) as a game-theoretic framework
to encourage learning agents to produce testable justifications through interactions between an
untrusted prover and a trusted verifier. Their work showed that under suitable game settings, the
verifier can learn robust decision rules even when the prover actively attempts to persuade it of
arbitrary outputs. Wäldchen et al. (2024) extended this idea to the Merlin-Arthur Classifier (MAC),
which provides formal interpretability guarantees by bounding the mutual information between the
selected features and the ground-truth label. Recently, Kirchner et al. (2024) applied a PVG-inspired
approach to improve legibility of Large Language Model (LLM) outputs and Amit et al. (2024)
introduced self-proving models that leverage interactive proofs to formally verify the correctness of
model outputs. PVG-style setups have also been explored in safety-focused learning protocols (Irving
et al., 2018; Brown-Cohen et al., 2024; Głuch et al., 2024). These developments reflect a broader
trend of utilising multi-agent learning (Pruthi et al., 2022; Schneider & Vlachos, 2024; Du et al.,
2024; Nair et al., 2023; Stammer et al., 2024a). Our work builds on this line of research by embedding
PVGs into a concept-based classification framework, addressing the dimensionality bottleneck that
limits PVGs in high-dimensional settings.

Concept Representations for Interpretability. The introduction of Concept Bottleneck Models
(CBMs) (Koh et al., 2020; Delfosse et al., 2024), but also concept-based explanations (Kim et al.,
2018; Crabbé & van der Schaar, 2022; Poeta et al., 2023; Lee et al., 2025) was an important moment
in the growing interest in AI interpretability research. The particular appeal of CBMs lies in the
promise of interpretable predictions and a controllable, structured interface for human interactions
(Stammer et al., 2021). While initial CBMs relied on fully supervised concept annotations, subsequent
research has relaxed this requirement by leveraging pretrained vision-language models like CLIP for
concept extraction (Bhalla et al., 2024; Yang et al., 2023; Oikarinen et al., 2023; Panousis et al., 2024;
Steinmann et al., 2025), or employing fully unsupervised concept discovery methods (Ghorbani et al.,
2019; Stammer et al., 2024b; Schut et al., 2025; Sawada & Nakamura, 2022). Overall, much work has
focused on enhancing the concept bottleneck itself—by reducing supervision requirements, mitigating
concept leakage, or dynamically expanding the concept space. However, several recent approaches
also enrich the classifier component using nonlinear or symbolic predictors, including Concept
Embedding Models (Espinosa Zarlenga et al., 2022), concept-based memory reasoning (Debot et al.,
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Figure 2: Overview of the Neural Concept Verifier (NCV). The input image is first processed by a
concept extractor to produce symbolic concept encodings. A prover–verifier game is then played over
these encodings: a cooperative prover selects a sparse concept subset supporting the true class, while
an adversarial prover selects misleading concepts. Finally, the nonlinear verifier makes a prediction
based only on these selected concepts, ensuring verifiable and robust classification.

2024), neural-symbolic reasoning (Barbiero et al., 2023), and causal concept models (Dominici et al.,
2024; De Felice et al., 2025). NCV is complementary to these methods: rather than proposing a new
classifier architecture, it wraps any concept-level predictor in a prover–verifier game that enforces
sparse, per-sample concept selection and evaluates predictions under competing subsets.

Shortcut Learning. Independent of their interpretability, training deep models can often lead to
unwanted artifacts and side effects. Shortcut learning describes the problem of models learning
to rely on unwanted and unintended features to resolve a task (Geirhos et al., 2020). This is a
common problem when training purely deep learning models (Lapuschkin et al., 2019; Schramowski
et al., 2020) or neuro-symbolic models (Marconato et al., 2023; Bortolotti et al., 2025), and, if not
taken care of, can lead to predictions being right for the wrong reasons (Ross et al., 2017). There
have been various methods developed to tackle this problem, from careful dataset curation (Ahmed
et al., 2021) to modified model training (Friedrich et al., 2023), cf. (Steinmann et al., 2024) for a
comprehensive overview. However, these mitigation methods rely on several important assumptions
about the training data and potential shortcuts to mitigate, and can affect model performance (Sagawa
et al., 2019). While NCV is not specifically designed to mitigate shortcuts, we show that our setup
can intrinsically mitigate the impact of shortcuts in the data.

3 NEURAL CONCEPT VERIFIER (NCV)

In this section, we introduce the Neural Concept Verifier (NCV), a framework that combines concept-
based representations with the Merlin–Arthur prover-verifier paradigm (Wäldchen et al., 2024). NCV
trains nonlinear classifiers whose predictions provably rely on sparse subsets of high-level concepts,
with guarantees formalized through completeness and soundness criteria (cf. Suppl. A). This enables
scaling PVGs from low-dimensional settings to high-dimensional inputs via concept encodings.
In contrast to the original MAC, which operates on raw pixel features and struggles to scale to
high-dimensional inputs, NCV performs the prover–verifier interaction directly in concept space.
This shift enables optimization on complex datasets and grounds explanations in human-interpretable
concepts. NCV consists of two main components (cf. Fig. 2): (i) a minimally or weakly supervised
concept extractor that transforms input data into interpretable concept encodings, and (ii) a nonlinear
MAC that selects and verifies sparse concept-based inputs to make final predictions. After providing
background notations and a high-level overview of the NCV framework below, we provide detailed
descriptions of each main component as well as training and inference details in the following.

3.1 PROBLEM SETUP AND NOTATION

Let X ∈ RN×D denote a dataset of N inputs (e.g., images), each of dimension D, and let Y ∈
{1, . . . ,K}N be the corresponding class labels for K classes.We assume that the pairs (x, y) are
drawn i.i.d. from an unknown data distribution D over RD ×{1, . . . ,K}, and that (X ,Y) correspond
to a finite sample from D. For the verifier, we consider an extended prediction space {1, . . . ,K,⊥}
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with an additional rejection class ⊥, which allows the model to abstain from a decision when uncertain
and is crucial for enforcing interpretability guarantees in adversarial setups (Wäldchen et al., 2024).
Our overall goal is to learn a model f : RD → {1, . . . ,K,⊥} that maps an input x ∈ RD to a
prediction ŷ ∈ {1, . . . ,K,⊥}, where the prediction is based on a small, interpretable subset of
high-level concepts.

3.2 THE NCV FRAMEWORK

NCV next decomposes f into the following components (cf. Fig. 2 for an illustrative overview):

1. A concept extractor g : X → C, which maps each input x to a high-level concept encoding
c ∈ RC , where C ∈ N is the number of discovered concepts.

2. A pair of prover agents M,M̂ : C → {0, 1}C that produce sparse binary masks selecting
m concepts each. M (Merlin, cooperative Prover) aims to help classification; M̂ (Morgana,
adversarial Prover) aims to mislead, which is crucial for overall robustness.

3. A nonlinear verifier (Arthur) A : RC → Y , which predicts a label based only on the masked
concepts.

The three agents are trained jointly, where the interaction between these agents encourages the verifier
to rely only on robust, informative concept features. Let us now provide details on these individual
components.

3.3 CONCEPT EXTRACTION

The concept extractor g : X → RC transforms raw input data into interpretable, high-level concept
representations, where each dimension corresponds to a semantically meaningful concept. The
resulting concept encoding c ∈ RC serves as the input to the PVG. The value of C is determined
entirely by the concept extractor (e.g., vocabulary size or number of discovered concepts) and is
treated as a fixed input dimensionality for the subsequent prover-verifier interaction.

While conceptually simple, a careful combination of PVGs and concept-based models is necessary.
The concept extractor must satisfy three key requirements: interpretability, expressiveness, and modu-
larity. Concepts should correspond to human-understandable features that can serve as meaningful
explanations, the concept space should capture sufficient information for the target task without
creating information bottlenecks, and the extractor should operate independently of the prover-verifier
components. Unlike traditional concept extractor approaches that enforce sparsity constraints directly
on c, our framework delegates sparsity to the prover-verifier interaction. This allows the concept space
to remain dense and expressive while achieving interpretable sparsity through downstream concept
selection. Further, NCV can accommodate different supervision paradigms for concept extraction:
supervised methods that leverage predefined concept vocabularies, self-supervised methods that
exploit multi-modal correspondences (e.g., vision-language alignment), or unsupervised methods
that discover latent conceptual structures can all be used as concept extractors.

Overall, NCV requires that g produces consistent, interpretable encodings while maintaining sufficient
information for accurate classification. In our evaluations, we instantiate NCV’s concept extractor
via the recent unsupervised and object-centric NCB framework (Stammer et al., 2024b) and the
multi-modal, CLIP-based SpLiCE (Bhalla et al., 2024) approach. Operating in concept space rather
than raw input space provides: (i) scalability through dimensionality reduction and (ii) explanations
based on human-interpretable concepts.

3.4 VERIFIABLE CLASSIFICATION VIA THE MERLIN-ARTHUR CLASSIFIERS

The second core component of NCV is a verifiable classifier of the Merlin-Arthur setup (Wäldchen
et al., 2024) originally inspired by Interactive Proof Systems (Goldwasser et al., 1985). This setup
generally formalizes the idea of proving that a classification decision is supported by a sparse and
informative set of features.

In NCV, specifically, two competing provers, Merlin and Morgana, select concept subsets either to
support or mislead classification, respectively. The verifier, Arthur, then makes predictions based
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solely on these masked concepts without knowledge of the prover’s intent. Formally, each prover
outputs a sparse binary mask with m active entries, producing selected subsets S = M(c) ⊙ c

and Ŝ = M̂(c) ⊙ c, where c is the concept encoding from extractor g, and ⊙ denotes element-
wise masking. Notably, all three agents represent differentiable models, with Arthur specifically
representing a nonlinear model.

This interactive setup enables two key metrics: completeness and soundness. Writing S = M(c)⊙ c

for Merlin’s cooperative subset and Ŝ = M̂(c)⊙ c for Morgana’s adversarial subset, we define

Completeness = P(x,y)∼D
[
A(S) = y

]
, (1)

Soundness = P(x,y)∼D
[
A(Ŝ) ∈ {y,⊥}

]
, (2)

where ⊥ denotes the rejection class. Intuitively, completeness measures how often Arthur can
recover the true label from Merlin’s sparse, helpful concepts, while soundness measures how often
Arthur can avoid committing to a wrong label under Morgana’s misleading subset, either by staying
correct or abstaining (cf. Suppl. A for the theoretical interpretation). Overall, these components in
NCV encourage the verifier to base its decisions on inspectable, sparse concept subsets, leading to
information-theoretic guarantees (cf. Sec. A.2).

Sparsity has recently become central in concept-based models, as large concept spaces require sparse
predictions for interpretability. Prior work (Bhalla et al., 2024; De Santis et al., 2025) achieves this
by regularizing the concept space itself, restricting the number of active concepts before training the
classifier. In contrast, NCV keeps the concept space fully expressive and enforces sparsity only in
the concepts passed to the classifier. At inference, Arthur predicts solely from the masked concepts
selected by Merlin, ensuring sparse, interpretable predictions without limiting the richness of the
concept space.

3.5 TRAINING AND INFERENCE

The training step of NCV incorporates updating only the parameters of the three agents M , M̂ , and
A as g represents a pretrained model that is subsequently frozen upon NCV’s multi-agent training
step. Thus, the three agents are jointly trained by optimizing a three-agent game, which encourages
Arthur to rely on concepts selected by Merlin, while being robust to potentially misleading concepts
selected by Morgana. Given a concept encoding c ∈ RC , label y ∈ Y and cross-entropy function
CE(·, ·), we define:

• Merlin’s loss: LM = CE(A(S), y), where S is the sparse concept subset selected by
Merlin. This loss encourages Arthur to classify correctly based on Merlin’s input.

• Morgana’s loss: L
M̂

= CE(A(Ŝ), y), where Ŝ is Morgana’s adversarial concept subset.
Here, the loss is interpreted as the classifier’s inability to be misled by deceptive inputs1.

Overall, Arthur’s loss combines both objectives with a hyperparameter γ ∈ R≥0, controlling the
emphasis on predictive performance (completeness) versus robustness (soundness):

LA = (1− γ)LM + γ L
M̂
, (3)

In detail, the three agents are updated jointly in a two-phase min-max optimization. First, the prover
agents are updated where Merlin minimizes LM and Morgana maximizes L

M̂
; then Arthur is updated

by minimizing LA on the sparse selected concepts chosen by the provers. This scheme incentivizes
Arthur to base its predictions on informative, task-relevant, and verifiably robust concept subsets.

At inference time, only the cooperative prover M is used to select a sparse subset of concepts, based
on the input’s concept encoding. The verifier A then predicts a label or rejects based solely on this
selected subset.

Overall, by integrating concept-extractor modules and leveraging the Merlin–Arthur framework,
NCV emphasizes faithfulness2 and interpretability while preserving nonlinear modeling capabilities,

1In practice, the CE loss of Morgana is a slightly modified CE loss (cf. Sec. A.4).
2Our notion of ‘faithfulness’ is defined in Sec. A.3.
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and shifts the min–max optimization into a lower-dimensional concept space, improving efficiency,
scalability, and stability in high-dimensional settings, a common challenge in min–max optimization
for deep learning (Mescheder et al., 2018; Nagarajan & Kolter, 2017). A more detailed discussion
of completeness, soundness, and their information-theoretic interpretation in NCV is provided in
Suppl. A.

4 EXPERIMENTAL EVALUATIONS

In this section, we present a comprehensive evaluation of Neural Concept Verifier (NCV) on both
synthetic and real-world high-dimensional image datasets. We evaluate based on two instantiations of
NCV that utilize different concept extractors: a CLIP-based extractor and the Neural Concept Binder
(NCB). We assess predictive performance and interpretability across multiple datasets, compare
against several baselines and examine scalability and robustness against shortcut learning.

Our evaluation is structured around the following research questions: (Q1) Does shifting Prover-
Verifier Games (PVGs) to concept-encodings via NCV lead to performative classifiers on high-
dimensional synthetic and real-world images (i.e., high completeness and soundness)? (Q2) Does
NCV reduce the “interpretability-accuracy gap” in the context of CBMs? (Q3) Does NCV allow
for more detailed explanations over pixel-based PVGs? Finally, (Q4) Can training via NCV reduce
shortcut learning?

4.1 EXPERIMENTAL SETUP

Datasets. We investigate NCV on CLEVR-Hans3 and CLEVR-Hans7 (Stammer et al., 2021),
synthetic benchmarks derived from CLEVR (Johnson et al., 2017) that capture complex object
compositions and include visual shortcuts. CLEVR-Hans3 features three compositional classes, while
CLEVR-Hans7 increases the complexity to seven, with all images rendered at 128×128 pixels. The
training and validation sets contain spurious correlations between attributes and labels (e.g., gray
cubes linked to a specific class), which are absent in the test set, making the datasets well-suited for
studying shortcut behavior. Models that exploit such correlations often fail under the decorrelated
test distribution. We first report results on non-confounded versions of these datasets, where feature
distributions are consistent across splits, and later return to the confounded versions for shortcut
mitigation. To assess scalability and generalization to natural images, we additionally evaluate on
ImageNet-1k (Deng et al., 2009) with 1.2M high-resolution images across 1,000 classes (resized to
224×224 pixels), and on CIFAR-100 (Krizhevsky, 2009) with 60,000 low-resolution 32×32 images
across 100 fine-grained categories. Lastly, we perform experiments on COCOLogic (Steinmann et al.,
2025), a recent benchmark combining real-world images with complex, compositional class rules.

Baseline Models. We compare our framework against several representative baselines, with train-
ing details provided in Suppl. C. As a strong but non-interpretable baseline, we use a standard
ResNet-18 (He et al., 2016) for evaluations on CLEVR-Hans, and a ResNet-50 for CIFAR-100, CO-
COLogic and ImageNet-1k, each trained end-to-end on raw images. We further evaluate a pixel-based
MAC (Wäldchen et al., 2024) (denoted as Pixel-MAC), an instantiation of the Prover-Verifier Game in
which the verifier is initialized from a pretrained ResNet-18, while both provers (Merlin and Morgana)
are U-Net models (Ronneberger et al., 2015) that output continuous feature-importance masks over
the input image. These masks are discretized using Top-k selection to define the features visible to the
verifier, and all agents are jointly fine-tuned; the resulting explanations (i.e., certificates) correspond
to masks in pixel space (see (Wäldchen et al., 2024) for further details). Lastly, we compare to a
vanilla Concept Bottleneck Model (Koh et al., 2020) (denoted as CBM), where a linear classifier
predicts from concept features extracted by either NCB (Stammer et al., 2024b) for CLEVR-Hans
or SpLiCE (Bhalla et al., 2024) for CIFAR-100, ImageNet-1k and COCOLogic. In addition, we
include a nonlinear CBM variant (CBM+MLP), which replaces the linear classifier by a two-layer
MLP operating on the same concept encodings; this baseline isolates the effect of a more expressive
concept-level predictor without changing the underlying concept extractor.

NCV Instantiations. For CLEVR-Hans3 and CLEVR-Hans7, we instantiate NCV with NCB (Stam-
mer et al., 2024b) as the concept extractor, using models pretrained on CLEVR (Johnson et al., 2017).
A permutation-invariant Set Transformer (Lee et al., 2019) serves as the verifier (Arthur) to process
the unordered NCB encodings. The provers (Merlin and Morgana) are independent Set Transformers
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Table 1: NCV delivers high predictive performance and soundness through verifiable, concept-based
reasoning evaluated via completeness and soundness. We report completeness and soundness scores
for ResNet, Pixel-MAC, CBM, and NCV across synthetic (CLEVR-Hans3, CLEVR-Hans7) and real-
world (CIFAR-100, ImageNet-1k, COCOLogic) datasets. NCV matches or outperforms baselines in
completeness in most settings, while offering strong soundness guarantees.

Model Feature
Space

Completeness
(Accuracy)

Soundness
(Robustness)

Completeness
(Accuracy)

Soundness
(Robustness)

Completeness
(Accuracy)

Soundness
(Robustness)

CIFAR-100 ImageNet-1k COCOLogic
ResNet-50 pixel space 81.45± 0.60 n/a 76.01± 0.02 n/a 65.80± 3.41 n/a
CBM (nonlin.) SpLiCE 79.29± 0.42 n/a 69.02± 0.38 n/a 70.09± 0.56 n/a
Pixel-MAC pixel space 15.27± 4.78 96.31± 4.12 35.06± 3.20 99.65± 0.26 42.57± 3.13 97.70± 0.61

CBM SpLiCE 75.42± 0.04 n/a 68.59± 0.01 n/a 58.84± 0.09 n/a
NCV (ours) CLIP-Sim 83.32± 0.28 99.99± 0.01 67.04± 0.16 99.94± 0.02 75.42± 3.21 97.87± 0.47

CLEVR-Hans3 CLEVR-Hans7
ResNet-18 pixel space 97.87± 0.24 n/a 98.71± 0.24 n/a
Pixel-MAC pixel space 96.59± 0.72 99.99± 0.01 97.61± 0.38 99.88± 0.28

CBM NCB 95.44± 0.08 n/a 89.12± 0.12 n/a
NCV (ours) NCB 98.92± 0.32 100.00± 0.00 97.89± 0.31 100.00± 0.00

that take the full concept-slot encodings as input and output a sparse mask of 12 active concepts for the
verifier. All components are jointly trained with the Adam optimizer (Kingma & Ba, 2014). Further
details and ablations are provided in Suppl. D. For ImageNet-1k, CIFAR-100 and COCOLogic, we
use a CLIP-based concept extractor (Radford et al., 2021), following the approach of SpLiCE (Bhalla
et al., 2024) to compute image–text similarity scores with a fixed concept vocabulary. Unlike SpLiCE,
which performs per-sample optimization, our method (denoted as CLIP-Sim) retains the full activation
vector and delegates concept selection to the provers, avoiding expensive inference-time optimization
and enabling scalability. Here, the verifier and both provers are two-layer MLPs; the provers output
sparse masks of 32 concepts per example. All modules are trained with Adam. Additional details and
ablations are provided in Suppl. D and Suppl. E, including the effect of varying the mask size and the
weighting parameter γ.

Metrics. All methods are evaluated for completeness and, where applicable, soundness (Sec. 3.4).
Here, completeness coincides with standard classification accuracy when Arthur is evaluated on
Merlin’s cooperative subsets S, while soundness is the probability that Arthur either predicts the
correct label or abstains when evaluated on Morgana’s adversarial subsets Ŝ. We use 20 random
seeds for CLEVR-Hans and 10 for ImageNet-1k, CIFAR-100 and COCOLogic, reporting mean and
standard deviation across all seeds. For CLEVR-Hans shortcut learning, we additionally report a
separate shortcut robustness metric in Table 2: the validation–test gap, i.e., the difference between
validation accuracy on a confounded split and test accuracy on a non-confounded split; smaller
gaps indicate better generalization and reduced shortcut reliance. This shortcut robustness metric is
independent of soundness and does not involve the prover–verifier game.

4.2 EVALUATIONS

Scaling PVGs to High Dimensions (Q1). In our first evaluation, we examine whether shifting
the Prover–Verifier Game (PVG) to concept encodings enables NCV to scale to high-dimensional
image domains while achieving strong performance in terms of completeness and soundness. We
hereby compare NCV against two key baselines: (1) a black-box ResNet classifier (ResNet-18
for CLEVR-Hans and ResNet-50 for CIFAR-100, ImageNet-1k and COCOLogic), and (2) Pixel-
MAC, a nonlinear PVG model operating in raw pixel space. Tab. 1 summarizes results across
synthetic (CLEVR-Hans3, CLEVR-Hans7) and real-world (CIFAR-100, ImageNet-1k, COCOLogic)
benchmarks. Each model’s feature space is indicated for clarity. On the synthetic CLEVR-Hans
benchmarks, we observe that NCV consistently achieves the highest completeness scores, surpassing
Pixel-MAC and even ResNet-18 on CLEVR-Hans3, while also attaining perfect soundness. This
demonstrates that NCV not only matches or exceeds the performance of strong black-box classifiers
but also certifiable decision-making. Pixel-MAC performs well in these settings but falls slightly
short in completeness and cannot match NCV’s zero-error soundness.
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CLEVR-Hans

Pixel-
MAC

NCV

small and 
cube

small and 
metal and
sphere

mugs and
cups and
extend and
support and
cappuchino

ImageNet-1k

Figure 3: Comparison of explanations from NCV vs. Pixel-MAC. (top) Merlin–Arthur training on
pixel space yields uninformative masks. (bottom) MAC on concept encodings via NCV translates
into combinations of high-level concepts and, in turn, in an interpretable prediction. The conjunction
“and” in these outputs simply concatenates the individual concepts selected by Merlin and does not
denote a learned logical AND operator.

On the more challenging real-world datasets, Pixel-MAC either fails entirely or performs poorly.
In contrast, NCV successfully scales to these datasets, achieving superior completeness and near-
perfect soundness. Notably, NCV surpasses ResNet-50 even in raw accuracy for CIFAR-100 and
COCOLogic, providing both higher predictive performance while retaining interpretability. In
summary, NCV generalizes well across domains: it scales beyond the limitations of pixel-based
PVGs, delivers competitive accuracy even on large-scale and complex datasets, and retains soundness
throughout. Additional comparisons with the DCR baseline (Barbiero et al., 2023) using the same
10k-concept CLIP-Sim vocabulary are reported in the supplements (cf. Tab. 4 in Suppl. C), where
NCV substantially outperforms DCR on CIFAR-100 and COCOLogic-10 and DCR failing to scale to
ImageNet-1k in our setup. Overall, these findings affirm that shifting PVGs to concept space enables
interpretable classifiers whose decisions can be evaluated via completeness and soundness, while
remaining performant and scalable in high-dimensional synthetic and real-world visual environments.
We therefore answer Q1 affirmatively.

Narrowing the Interpretability–Accuracy Gap (Q2). In Tab. 1, we further examine whether
NCV can overcome a central limitation of standard Concept Bottleneck Models (CBMs): the
interpretability–accuracy gap resulting from their use of constrained linear classifiers (cf. Suppl. B
for a discussion). Related to this, we observe that NCV consistently narrows and in some cases even
closes this gap, while maintaining high completeness and soundness across all evaluated datasets.
Specifically, on CLEVR-Hans3, the baseline CBM trails the opaque ResNet-18 by over 2 percentage
points in completeness, whereas NCV matches or exceeds the ResNet’s performance while retaining
perfect soundness. The benefit is even more pronounced on CLEVR-Hans7: CBM underperforms
ResNet-18 by nearly 10 percentage points, while NCV narrows the gap to just 1 percentage point.
This trend persists on real-world datasets. On CIFAR-100, NCV outperforms the base CBM and
even slightly exceeds ResNet-50’s performance. This is even more pronounced on COCOLogic,
where NCV outperforms both the base CBM and ResNet-50 by a large margin. As the additional
benefits of a nonlinear classifier are quite small on ImageNet-1k, the additional training complexity
of NCV results in a slightly worse performance compared to the base CBM there. Overall, NCV
improves over linear CBMs in both accuracy and robustness, especially on tasks requiring complex
concept reasoning. At the same time, it can match or even surpasses the accuracy of the opaque
ResNet models, demonstrating that interpretable, concept-level reasoning via Prover–Verifier Games
can deliver competitive performance, without sacrificing the completeness and soundness criteria.
Complementing these results, the nonlinear CBM+MLP baseline reduces the accuracy gap between
CBMs and ResNets, but still falls short of NCV on most datasets and does not provide per-sample,
prover–verifier style explanations or guarantees. We therefore answer Q2 affirmatively.

More Detailed Explanations (Q3) We next investigate the resulting explanations produced by our
NCV framework, with a focus on explanatory clarity. Since our goal is to improve over classic vision-
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Table 2: Shortcut robustness on CLEVR-Hans3 and CLEVR-Hans7. We report validation accuracy
on a shortcut-confounded split, test accuracy on a clean split, and the resulting validation–test gap
(“shortcut robustness”, lower is better) across models trained with varying amounts of clean data.

Ratio
Non-Conf.

(Samples)

Model CLEVR-Hans3 CLEVR-Hans7
Val Acc

(w/ shortcut)

Test Acc
(w/o shortcut)

Val-Test
Gap (↓)

Val Acc
(w/ shortcut)

Test Acc
(w/o shortcut)

Val-Test
Gap (↓)

0%
CBM (lin.) 95.65± 0.09 90.54± 0.09 5.11 90.37± 0.10 85.27± 0.15 5.10
CBM (non-lin.) 98.70± 0.32 95.04± 0.96 3.66 98.09± 0.24 90.69± 1.17 7.40
NCV 99.44± 0.15 94.21± 1.41 5.23 98.38± 0.18 92.23± 0.67 6.15

1%
(105)

CBM (lin.) 96.28± 0.16 91.03± 0.31 5.25 90.74± 0.12 85.41± 0.17 5.33
CBM (non-lin.) 99.10± 0.27 94.84± 0.98 4.26 98.17± 0.17 92.65± 1.31 5.52
NCV 99.37± 0.18 97.11± 0.98 2.26 98.19± 0.24 94.68± 0.64 3.51

5%
(525)

CBM (lin.) 95.38± 0.37 93.34± 0.51 2.04 90.37± 0.15 86.37± 0.18 4.00
CBM (non-lin.) 98.41± 0.55 96.13± 0.71 2.28 98.32± 0.22 95.19± 0.80 3.13
NCV 99.59± 0.19 98.88± 0.37 0.71 98.47± 0.24 96.24± 0.71 2.23

20%
(2100)

CBM (lin.) 95.67± 0.28 93.46± 0.23 2.21 89.93± 0.29 87.21± 0.31 2.72
CBM (non-lin.) 99.15± 0.21 98.09± 0.51 1.06 98.21± 0.29 97.00± 0.49 1.21
NCV 99.37± 0.28 98.82± 0.67 0.55 98.63± 0.13 97.74± 0.28 0.89

based Prover–Verifier Games, we compare against pixel-level MAC explanations. Fig. 3 illustrates a
qualitative example from both the CLEVR-Hans3 (cf. Fig. 4 for more examples) and ImageNet-1k
datasets. Notably, under Pixel-MAC, the Prover–Verifier setup operates directly on pixels, yielding
broad, diffuse explanation masks that often cover entire objects or irrelevant background regions,
arguably providing limited insight regarding which exact features drive the verifier’s final decision. In
contrast, NCV leverages its internal concept encodings to isolate sparse, high-level concepts that are
consistently associated with a class decision under the prover–verifier interaction, recovering the class
rule for CLEVR-Hans (i.e., small cube and small metal sphere) and providing a meaningful concept
explanation for the coffee-mug class of ImageNet-1k.3 For ImageNet-1k, the mask size is set to 32
concepts, but for clarity we visualize only the top 5 most frequent concepts across 32 samples. In the
ImageNet-1k setting, our CLIP/SpLiCE-based concept vocabulary is derived from LAION-based
vocabulary (Schuhmann et al., 2021) (see Suppl. E for more details), which can occasionally yield
overly generic or noisy concept labels (e.g., “extend”), and thus limits the quality of the resulting
textual explanations.

Overall, these examples highlight that NCV offers higher-level, semantically meaningful explanations
rather than fine-grained pixel masks, and that concept-level PVGs yield interpretable decisions whose
supporting concept subsets can be evaluated via completeness and soundness even for complex,
high-dimensional data. This leads us to answer Q3 affirmatively.

Mitigating Shortcut Learning (Q4) Lastly, to assess whether NCV can mitigate shortcut learning
in image classification, we train models on different versions of CLEVR-Hans3 and CLEVR-Hans7
with varying ratios of clean samples (i.e., without shortcut) in the training and validation sets. We
then measure validation accuracy with shortcuts and test accuracy on a held-out, clean data split. This
setup allows us to track both predictive performance and robustness to shortcut learning. Tab. 2 reports
results for three model types: a linear CBM, a nonlinear CBM, and our instantiation of NCV using
NCB as concept extractor. We observe that while NCV achieves the highest test accuracy among all
models in the 0% clean data setting, it still exhibits a sizeable validation-test gap, indicating a strong
influence of the underlying shortcuts. As the amount of clean samples is progressively increased, test
accuracy and test-validation gap improves across all models. However, NCV consistently achieves
the highest test accuracy in every setting, and its validation–test gap decreases more rapidly than for
either CBM variant. This trend indicates that NCV is not only better at leveraging clean supervision
when available, but is also more robust to shortcut learning. Together, these results demonstrate

2For CLEVR-Hans, NCV uses NCB’s object-centric slots to reconstruct objects from Merlin’s concept
selections; for ImageNet-1k, it visualizes CLIP-based high-level semantic concepts.

3The availability of object-level concepts in NCV depends on the underlying concept extractor. For CLEVR-
Hans, we use NCB, which provides such object-based explanations.
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that concept-level Prover–Verifier Games in NCV encourage models to rely on robust, task-relevant
features, making NCV more resilient to shortcut learning, even with limited amounts of clean data.

5 DISCUSSION

Overall, our results show that shifting Prover–Verifier Games (PVGs) to the concept level yields a
powerful and scalable framework for verifiable, interpretable classification. By operating on symbolic
concept embeddings, NCV avoids the computational cost of per-sample inference in pixel space,
yet matches or surpasses pixel-based baselines in both completeness and soundness. It reduces
the performance gap typical of Concept Bottleneck Models (CBMs), achieving parity with opaque
models on synthetic tasks and even surpassing them on natural images. Additionally, concept-level
outputs offer concise, human-readable explanations. Finally, NCV exhibits a resilience to spurious
correlations, generalizing from confounded training splits and closing the generalization gap with
minimal available clean data.

That said, NCV has several limitations. Its effectiveness depends on the quality of the underlying
concept extractor: noisy or entangled concept spaces can reduce both accuracy and human under-
standability. The increased training complexity introduced by the three-agent PVG setup also results
in greater computational cost and training instability, e.g., compared to linear CBMs. Moreover,
when using pretrained models like CLIP for concept discovery, NCV inherits their biases and incon-
sistencies to some extent (Birhane et al., 2021; Gehman et al., 2020; Bhalla et al., 2024). Finally,
recent work (Debole et al., 2025) shows that such concept spaces can diverge from expert semantics,
even when yielding strong downstream performance.

6 CONCLUSION

In this work, we have introduced the Neural Concept Verifier (NCV), a unified framework that brings
together Prover–Verifier Games and concept-level representations for interpretable classification at
scale. Through extensive experiments on CLEVR-Hans, CIFAR-100, ImageNet-1k, and COCOLogic,
we have shown that NCV achieves high completeness and soundness, reduces the interpretabil-
ity–accuracy gap of concept bottleneck models, delivers detailed concept-based explanations, and
effectively mitigates shortcut learning. Thus, NCV paves the way for deploying trustworthy and
transparent models in domains where both predictive performance and verifiability are essential.

Future work should explore how concept encodings can be integrated into alternative PVG-style se-
tups, where structured representations may improve performance or reduce communication overhead.
It is also promising to investigate applications beyond vision, such as natural language processing
and structured data, where interpretable verification may be equally valuable. At the optimization
level, our current setup does not train Merlin and Morgana end-to-end on discrete, binarized masks;
developing more stable optimization schemes for discrete concept selection could further strengthen
the framework and the provers themselves. Finally, while existing information-theoretic guarantees,
such as those introduced by Wäldchen et al. (2024), focus on binary classification under specific as-
sumptions, extending such guarantees to high-dimensional, multi-class settings remains an important
open direction for formal interpretability at scale.
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Supplementary Materials

A THEORETICAL GUARANTEES AND RELATION TO MERLIN–ARTHUR
CLASSIFIERS

Neural Concept Verifier (NCV) builds on the Merlin–Arthur classifier (MAC) framework of Wäldchen
et al. (2024), which provides information-theoretic interpretability guarantees in a binary classification
setting. In this appendix, we briefly recall these guarantees and explain how they apply in our concept-
based setting. We do not prove new theorems here; rather, we instantiate existing results and make
explicit which assumptions are required and where our claims remain empirical.

A.1 MERLIN–ARTHUR GUARANTEES IN THE BINARY CASE

We briefly recall the guarantees for Merlin–Arthur classifiers in the original binary setting of Wäldchen
et al. (2024), focusing on the quantities that appear in our NCV discussion: average precision, mutual
information, completeness, soundness, asymmetric feature correlation, and relative success rate.

Setup. We consider a two-class data space D = (X ,D, ℓ) with label L = ℓ(X) ∈ {−1, 1}, where
X ∼ D and the class-conditional distributions are Dl := D( · | L = l). Features are partial objects
z ∈ Dp (e.g., subsets of pixels) that can be contained in a data point x; we write z ⊆ x. A feature
selector M (Merlin or Morgana) maps x to a feature M(x) ⊆ x, and Arthur is a classifier A that
predicts in {−1,⊥, 1}, where ⊥ denotes abstention.

Average precision and mutual information. Given a feature z and a second data point x ∼ D, the
precision of z is the probability that x has the same label as a reference point x′ that exhibits z:

Pr(z;x′) := Px∼D
[
ℓ(x) = ℓ(x′) | z ⊆ x

]
.

For a feature selector M , the average precision is the expected precision of the features it selects:

Pr
D
(M) := Ex′∼D

[
Px∼D

[
ℓ(x) = ℓ(x′) | M(x′) ⊆ x

]]
. (4)

This quantity bounds the average conditional entropy of the class given Merlin’s features and thus
the mutual information. Writing Hb for the binary entropy and H(·), I(·; ·) for entropy and mutual
information, Wäldchen et al. (2024) show

Ex′∼D
[
Ix∼D

(
ℓ(x); M(x′) ⊆ x

)]
≥ Hx∼D

(
ℓ(x)

)
−Hb

(
Pr
D
(M)

)
. (5)

Thus, as PrD(M) → 1, the binary entropy term Hb(PrD(M)) → 0 and Merlin’s features carry
almost all available label information in this binary setting.

Idealised min–max guarantee (optimal players). In the idealised setting, Arthur and Morgana
are assumed to play optimally against a fixed Merlin. Define the error set

E
M,M̂,A

:=
{
x ∈ X

∣∣A(M(x)) ̸= ℓ(x) ∨ A(M̂(x)) = −ℓ(x)
}
,

i.e., points where Merlin fails to convince Arthur of the correct label, or Morgana successfully forces
an incorrect (non-abstaining) prediction. The min–max error of Merlin is

εM := min
A

max
M̂

Pr
x∼D

[x ∈ E
M,M̂,A

].

Theorem 2.7 in Wäldchen et al. (2024) states that if εM is small, there exists a subset X ′ ⊆ X of
mass at least 1− εM such that, restricted to the induced data space D′ = (X ′,D′, ℓ), Merlin achieves
perfect precision:

Pr
D′
(M) = 1 ⇒ Hx′,x∼D′

(
ℓ(x′) | M(x′) ⊆ x

)
= 0.

In words: if an optimally trained Arthur–Morgana pair can almost never disagree with Merlin, then
on almost all of the data space Merlin’s features determine the label uniquely.
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Realistic players: completeness, soundness, AFC, and relative strength. For high-dimensional
data, exhaustive search for an optimal Morgana is not feasible. The analysis is therefore relaxed to
realistic (e.g., neural) players and expressed in terms of:

• Completeness
min

l∈{−1,1}
Px∼Dl

[
A(M(x)) = ℓ(x)

]
≥ 1− εc,

i.e., Merlin’s features let Arthur classify correctly with high probability in each class.

• Soundness
max

l∈{−1,1}
Px∼Dl

[
A(M̂(x)) = −ℓ(x)

]
≤ εs,

i.e., Morgana almost never forces a confidently wrong prediction; on her subsets, Arthur
either stays correct or abstains (predicts ⊥).

• Asymmetric Feature Correlation (AFC) κ, which measures how strongly a set of features
can be concentrated in a few points of one class but spread out across many points of the
other class. Large AFC allows Merlin to use globally uninformative features (appearing
equally often in both classes) in a way that still yields high completeness and soundness.

• Class imbalance B, which upper-bounds how skewed the class prior can be (formally, a
bound on the ratio of class masses).

• Relative success rate α of Morgana, which compares how often Morgana can find a
convincing feature in the wrong class to how often Merlin can do so in the correct class,
restricted to points that contain at least one feature Merlin uses successfully:

α := min
l∈{−1,1}

Px∼D−l

[
A(M̂(x)) = l | x ∈ F ∗

l

]
Px∼Dl

[
A(M(x)) = l | x ∈ F ∗

l

] ,

where F ∗
l is the set of points that contain a feature Merlin uses to convince Arthur of class l.

Intuitively, α is large if Morgana’s search procedure is at least as powerful as Merlin’s.

Under these conditions, Wäldchen et al. (2024) prove that completeness, soundness, AFC, class
imbalance, and relative success jointly lower-bound the average precision:

Pr
D
(M) ≥ 1− εc −

κα−1εs
1− εc + κα−1B−1εs

. (6)

Combining the bound on PrD(M) in equation 6 with the mutual-information inequality equation 5,
we obtain:

Ex′
[
I
(
ℓ(x);M(x′) ⊆ x

)]
≥ H

(
ℓ(x)

)
−Hb

(
1− εc −

κα−1εs
1− εc + κα−1B−1εs

)
.

For balanced datasets (B ≈ 1), bounded AFC (κ = O(1)), and a reasonably strong Morgana
(α = O(1)), high completeness (εc ≪ 1) and soundness (εs ≪ 1) therefore imply that Merlin’s
features carry almost all label information in this binary setting.

A.2 INSTANTIATION FOR CONCEPT-BASED MODELS

NCV applies the same prover–verifier game as Merlin–Arthur classifiers, but in a concept space rather
than pixel space. For an input x ∈ X , a concept extractor g produces an encoding c = g(x) ∈ RC .
We interpret each concept index j ∈ {1, . . . , C} as a feature. Merlin and Morgana are implemented
as provers M,M̂ : RC → {0, 1}C that output sparse binary masks M(c), M̂(c) with at most m
active entries. Arthur then predicts using the masked encodings

S = M(c)⊙ c and Ŝ = M̂(c)⊙ c.

To connect this to the binary setting of Section A.1, consider a fixed class k ∈ {1, . . . ,K} and the
associated one-vs-rest binary task with label Yk ∈ {−1, 1} (class k vs. all others). For this binary
subproblem we view:
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• the concept indices j ∈ {1, . . . , C} as features,
• Merlin’s selector M as a map that sends c = g(x) to a subset M(c) ⊆ {1, . . . , C},
• Arthur as a classifier that predicts in {−1,⊥, 1} from the masked encoding M(c)⊙ c.

Let Pr(k)D (M) denote the average precision of Merlin’s concept features on this one-vs-rest task for
class k, defined analogously to equation 4:

(k)

Pr
D
(M) := Ex′∼D

[
Px∼D

[
Yk(x) = Yk(x

′) | M(x′) ⊆ x
]]
.

Applying the mutual-information inequality equation 5 to the binary label Yk and selector M yields

Ex′∼D
[
Ix∼D

(
Yk(x); M(x′) ⊆ x

)]
≥ H(Yk)−Hb

( (k)

Pr
D
(M)

)
. (7)

Thus, if Pr(k)D (M) is close to 1, Merlin’s sparse concept subsets for class k carry almost all information
about Yk.

The analysis of Section A.1 further relates Pr(k)D (M) to observable completeness and soundness on
this binary subproblem, under three additional assumptions:

• a bounded Asymmetric Feature Correlation (AFC) parameter κconcept in concept space.
Formally, each one-vs-rest subproblem for class k has its own AFC parameter κk; for
notational simplicity we write κconcept for a uniform upper bound κconcept ≥ κk over all
classes.

• a bounded class imbalance Bk for the one-vs-rest task;
• a non-degenerate relative success rate αk of Morgana, meaning that Morgana’s search

procedure over concept subsets is roughly as powerful as Merlin’s. In the ideal full-search
setting one has αk = 1; in NCV we use symmetric neural architectures for Merlin and
Morgana as heuristic evidence that αk is close to 1, but we do not estimate it explicitly.

Under these conditions, the precision bound equation 6 applies class-wise: for each k one obtains

(k)

Pr
D
(M) ≥ 1− ε(k)c −

κconcept(αk)
−1ε

(k)
s

1− ε
(k)
c + κconcept(αk)−1(Bk)−1ε

(k)
s

,

where ε
(k)
c and ε

(k)
s are the completeness and soundness errors of NCV on the one-vs-rest problem

for class k. Combining this with equation 7 yields a lower bound on the mutual information between
the class-k label and Merlin’s concept subsets.

In NCV we view these results as an idealised description of the concept-level prover–verifier game:

• On binary tasks and under the AFC and relative-strength assumptions above, high complete-
ness and soundness imply that Merlin’s sparse concept subsets are highly informative about
the label in the sense of equation 7.

• In our high-dimensional, multi-class experiments we do not estimate the classwise parame-
ters (ε(k)c , ε

(k)
s , αk, Bk, κconcept) explicitly. We therefore interpret the Merlin–Arthur theory

as a theoretical lens for NCV, not as a quantitative certification for each dataset; empirically
reported completeness and soundness should be read in this light (cf. the discussion in
Sec. 6).

A.3 NOTION OF FAITHFULNESS

Throughout the paper, when we say that NCV produces faithful explanations, we mean this in the
information-theoretic sense inherited from Merlin–Arthur and adapted to concept space:

1. For an input x with true class k, Merlin produces a sparse concept subset S(x) = M(c)⊙ c
(with c = g(x)) such that, with high probability over x ∼ Dk, Arthur can correctly predict
k from S(x) alone, i.e., completeness for the corresponding one-vs-rest task is high.
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2. An adversarial prover cannot find alternative concept subsets that force Arthur into a wrong
prediction; at worst, Arthur abstains via the rejection class ⊥. This is soundness in the sense
of Section A.1.

3. Under bounded concept-space AFC, bounded class imbalance, and a reasonably strong
Morgana (relative success rate αk not too small), the precision bound of Section A.1 links
the class-wise average precision Pr

(k)
D (M) to the completeness and soundness errors ε(k)c

and ε
(k)
s . In particular, when these errors are small and the parameters (κconcept, αk, Bk) are

well-behaved, the bound guarantees that Pr(k)D (M) is close to 1, and the mutual-information
inequality equation 7 then implies that Merlin’s sparse concept subsets for class k carry near-
maximal information about Yk. In our experiments we report completeness and soundness
empirically, but we do not attempt to estimate the resulting lower bounds on Pr

(k)
D (M).

This is explicitly not a causal guarantee: NCV does not prove that the concepts are causally sufficient
for the task. It only ensures that, relative to the given concept representation and under the assumptions
above, the sparse subsets Merlin selects are as informative and robust as possible under the prover–
verifier game.

A.4 USE OF THE REJECTION CLASS AND TRAINING OBJECTIVE

Finally, we clarify how the rejection class is used during training, since it is crucial for enforcing
soundness in the sense of Sec. A.1. Arthur outputs logits A(S) ∈ RK+1 over K classes plus a
rejection class ⊥. Denote by py and p⊥ the corresponding softmax probabilities for the true class y
and for the rejection class, respectively.

Given a concept encoding c = g(x) and Merlin/Morgana subsets S = M(c)⊙ c and Ŝ = M̂(c)⊙ c,
we use the following losses:

• Merlin loss
LM = − log py,

i.e., standard cross-entropy w.r.t. the true class based on Merlin’s subset.

• Morgana loss (soundness). In our implementation, Morgana’s loss is realised by operating
directly on the logits for the true class and the rejection class. Let z = A(Ŝ) ∈ RK+1 denote
Arthur’s logits on Morgana’s subset, and write zy and z⊥ for the components corresponding
to the true class y and the rejection class ⊥, respectively.
First, we define a modified target label ỹ that switches to the rejection class whenever Arthur
already prefers ⊥ over y on Ŝ:

ỹ =

{
y, if zy ≥ z⊥,

⊥, if z⊥ > zy.

We then define Morgana’s loss as

L
M̂

= CE
(
z, ỹ

)︸ ︷︷ ︸
cross-entropy on ỹ

+
1

B

B∑
i=1

(
− log

(
1 + exp(−|z(i)y − z

(i)
⊥ |)

))
︸ ︷︷ ︸

stabilising log-sum-exp term

,

where B is the batch size and z
(i)
y , z

(i)
⊥ are the logits for example i in the batch. The first

term encourages Arthur, on Morgana’s subsets, to either predict the true class y or abstain
(predict ⊥) whenever ⊥ is already preferred. The second term acts as a smooth regulariser
that keeps the difference |zy − z⊥| in a numerically stable range: it discourages pushing
these logits arbitrarily far apart and thus stabilises gradients for both Arthur and Morgana,
while still allowing Arthur to separate y and ⊥ when beneficial.

Arthur’s overall loss is a convex combination

LA = (1− γ)LM + γL
M̂
,
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with γ ∈ [0, 0.5] trading off completeness and soundness. In practice, all losses are averaged over the
batch (mean reduction).

Although Merlin’s and Morgana’s concept selections are ultimately discrete, both provers are trained
via continuous masks. Concretely, each prover outputs real-valued scores mcont, m̂cont ∈ RC , which
are used as soft masks to form

Ssoft = mcont ⊙ c, Ŝsoft = m̂cont ⊙ c.

When updating the provers (Merlin by gradient descent on LM , Morgana by gradient ascent on L
M̂

),
Arthur is frozen and we feed Ssoft and Ŝsoft into A, so that gradients from Arthur’s losses flow back
into the continuous mask parameters.

After these prover updates, we discretise the masks using a top-m operator: for each input, we set
the m entries of largest magnitude in mcont (respectively m̂cont) to 1 and all others to 0, obtaining
hard masks M(c), M̂(c) ∈ {0, 1}C . Arthur is then updated (gradient descent on LA) using the
corresponding hard-masked encodings S and Ŝ.

This alternating scheme — continuous masks for gradient flow in the provers and hard top-m masks
for Arthur’s update — implements a stable and practical min–max training procedure for NCV.
The explicit use of the rejection class ⊥ ensures that soundness measures robustness to adversarial
concept selections (Arthur is not allowed to be confidently wrong) and aligns with the Merlin–Arthur
framework instantiated in concept space.

A.5 LIMITATIONS OF THE THEORETICAL GUARANTEES

For completeness, we also spell out the main limitations of the Merlin–Arthur guarantees when
applied to NCV’s high-dimensional, multi-class, concept-based setting.

First, the original theory is formulated for binary classification. Our instantiation in Section A.2 uses
a one-vs-rest reduction to obtain class-wise guarantees on the mutual information I(Yk;M(x′) ⊆ x)
for each k, but it does not provide a direct statement about the joint K-class decision or about the
final argmax prediction over all classes.

High-dimensional sparsity and feature reuse. A central limitation arises from the extreme
sparsity of Merlin’s and Morgana’s selections in our high-dimensional concept spaces. In the original
Merlin–Arthur setting, features are typically small, localized structures (e.g., image patches) and
the experiments are conducted on relatively low-dimensional, small-scale datasets. In this regime,
many inputs share the same features, so the event {M(x′) ⊆ x} has non-negligible probability
and the average precision PrD(M) in Eq. 4 can be meaningfully interpreted and estimated from
finite samples. In NCV, Merlin and Morgana select small subsets of a large concept vocabulary (e.g.,
m ≪ C with C in the thousands), and in practice the exact subsets M(x′) and M̂(x′) are often highly
specific to each input. As a result, the precise event {M(x′) ⊆ x} may have very low probability
under D, and empirical estimates of Pr(k)D (M) become unstable in finite samples. For this reason,
we do not attempt to estimate average precision or the resulting mutual-information lower bounds
numerically in our experiments. Instead, we use completeness and soundness as observable proxies
and treat the precision/MI guarantees as an idealised, distribution-level description of the behaviour
that NCV is designed to promote, rather than as directly calibrated finite-sample certificates.

Class imbalance in one-vs-rest reductions. In large-K settings such as ImageNet-1k, the one-vs-
rest subproblems for each class k are highly imbalanced (the positive prior is approximately 1/K).
In the precision bound of Sec. A.2, this is reflected in the imbalance parameter Bk, whose large value
makes the resulting lower bound on Pr

(k)
D (M) more conservative: small soundness errors ε(k)s are

penalised more strongly relative to completeness ε(k)c . This provides an additional reason why we do
not attempt to compute numerical mutual-information lower bounds in our experiments, and instead
interpret the Merlin–Arthur theory qualitatively as a guiding framework.

Relative success and adversary class. Finally, the robustness interpretation of soundness in our
setting is tied to the particular adversarial prover class we train in practice (a neural network M̂
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with a specific architecture and loss). In the Merlin–Arthur framework, this dependence is captured
abstractly via the relative success rate α, which measures how powerful Morgana is compared to
Merlin on those points where Merlin can provide convincing evidence. In NCV we use symmetric
neural architectures for M and M̂ as heuristic evidence that αk is not tiny, but we do not attempt
to verify or optimise αk beyond this design choice. As a result, our empirical soundness estimates
should be interpreted as robustness against this trained adversary class, rather than against an arbitrary
worst-case adversary over all admissible subsets. This is fully in line with the practical use of the
Merlin–Arthur framework in Wäldchen et al. (2024), where the general theory is instantiated and
evaluated with specific neural implementations of Merlin, Morgana, and Arthur.

Overall, we see the Merlin–Arthur framework as providing a rigorous idealised model for the kind
of behaviour NCV is designed to encourage: high completeness, robustness to adversarial concept
subsets, and information-rich sparse explanations in concept space. In our experiments, we use
completeness and soundness as observable proxies for these properties, but we do not claim fully
certified guarantees beyond the stated assumptions.

B WHY LINEAR CLASSIFIERS FALL SHORT IN CBMS

While linear classifiers are generally considered to be interpretable, these models are not suited to
solve arbitrarily complex problems. A linear classifier is only able to capture linear relationships
between inputs and output features and cannot model complex, non-linear relationships. In the
context of CBMs, this problem is usually tackled by utilizing a linear classifier to predict the output
based on the detected concepts. The concepts themselves can be detected using non-linear models,
and only the classification based on these concepts is done with a linear model. However, this is not
always sufficient, as there are also simple examples where non-linear relationships between concepts
and the output exist, for example thresholds detection (three out of five symptoms need to be present
to indicate an illness) or multiplicative effects (crop yield is the result of a multiplicative relationship
between rain and fertility).

To illustrate the problem in a simple experimental setup, let us assume we have a dataset of simple
shapes and every image contains between one and four of these shapes. The shapes are either a square
or a circle and either orange or blue. We consider two simple classification scenarios for this dataset.

• XOR: This setting classification follows the traditional XOR problem: We want to classify
images that contain either an orange square or a blue circle as class one and all other images
as class two.

• Counting: This setting includes object counting and illustrates that even for classification
based on a single attribute, a linear layer can be insufficient. Here, we want to classify all
images with exactly one blue shape as class one, and all other images as class two.

We evaluate a linear layer and a simple MLP on this toy dataset. To further simplify things, we assume
that our concept encoder is able to perfectly detect the concepts in the image, thus providing for
each element the information whether there is an object and if so, its shape and color. We randomly
generate 5000 samples of the dataset and train the models on a train split of 80% and evaluate on the
remaining 20%. The MLP has one hidden layer of size 16 and uses ReLU activation functions.

Table 3: A linear prediction layer cannot solve XOR or
counting. Even with the assumption of a perfect concept
encoder, the linear layer fails.

Model XOR (Acc) Counting (Acc)

Linear Layer 0.766± 0.011 0.677± 0.006
MLP 0.953± 0.053 0.982± 0.015

The results of this evaluation are shown in
Tab. 3. In both scenarios, the linear classi-
fication layer is not able to solve the task,
despite the deceptively simple relationship
between concepts and output classes. On
the other hand, the MLP achieves close to
perfect accuracy on both settings.

So far, we have argued that not every task
can be solved with a CBM and a linear
classification layer. However, this is not
entirely accurate. In principle, any task can be solved linearly—provided that we define the right
linear-sufficient concepts. For instance, in the XOR setting, detecting the concepts “orange square
and no blue circle” and “blue circle and no orange square” would allow a linear classifier to solve the
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task. Similarly, in the counting task, introducing a concept such as “exactly one blue object” would
make linear classification trivial.

That said, the assumption that such sufficient concepts are always available is not realistic. First,
designing or discovering these concepts often makes concept detection considerably more difficult.
Second, as concepts become increasingly specific and compositional, they tend to lose interpretability.
Finally, requiring tailored concepts for every individual task does not scale. Returning to our example,
the concept “exactly one blue object” might help with task two but is essentially useless for task one.

Taken together, this illustrates why relying solely on linear classifiers in CBMs is often impractical.
To address such cases, non-linear classifiers should also be considered.

C EXPERIMENTAL DETAILS: BASELINES

In this section, we provide training details for the considered baselines: ResNet-18, ResNet-50,
Pixel-MAC, CBM (linear and nonlinear variants), and DCR.

C.1 RESNET-18 AND RESNET-50

We initialize the framework with a pretrained ResNet-18 model and employ the Adam optimizer
across all experiments. On the CLEVR datasets, the model is trained with a batch size of 128 for 30
epochs using a learning rate of 10−4 and weight decay of 10−4, repeated across 20 random seeds
with early stopping based on validation loss.

On CIFAR-100, we use a ResNet-50 trained for 100 epochs with a learning rate of 10−4, weight
decay of 10−5, and a batch size of 128, averaged over 10 random seeds with early stopping. The
ResNet-50 baseline on ImageNet is evaluated directly using pretrained PyTorch (Paszke et al., 2019)
weights without further finetuning. For COCOLogic, a ResNet-50 is trained for 300 epochs with a
batch size of 256, learning rate of 10−4, and weight decay of 10−2, again averaged over 10 random
seeds with early stopping.

In the Pixel-MAC setup, a separate ResNet-18 is trained under the same configuration as above but
with a reduced learning rate of 10−5, while keeping the batch size, weight decay, and early stopping
criterion unchanged. All Pixel-MAC results are obtained from these ResNet-18 checkpoints.

C.2 PIXEL-MAC

In this setup, we apply Merlin-Arthur training on pixel space by utilizing the pretrained ResNet-
18 models as classifiers and U-Net architectures for both Merlin and Morgana. Throughout all
experiments, we employ the Adam optimizer for both classifier and feature selector optimization,
with γ = 0.5 to ensure high soundness.

For the CLEVR datasets, we train with a batch size of 128 for 40 epochs, using a learning rate of
10−5 and weight decay of 10−6 for the classifier optimization. The U-Net architectures are trained
with a learning rate of 10−4, weight decay of 10−5 and an L1 penalty coefficient of 0.1. We set
the mask size to 1500, meaning that the U-Nets select a subset of 1500 pixels per sample (out of
128×128 pixels).

For CIFAR-100, we reduce the batch size to 64 and train for 100 epochs. The classifier is optimized
with a learning rate of 10−5 and weight decay of 10−4. Both Merlin and Morgana are trained using a
learning rate of 10−3 and a reduced mask size of 32 pixels. We use an L1 penalty of 0.01 and apply
early stopping across 10 random seeds.

For ImageNet and COCOLogic, we further reduce the batch size to 32 due to memory constraints and
train for 80 epochs using the same learning rates and hyperparameters as in the CIFAR-100 setting.
The mask size is set to 1000 pixels per image. As with CIFAR-100, early stopping is applied across
10 random seeds, and training is initialized from the pretrained ResNet-18 backbone.
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C.3 CBM WITH LINEAR CLASSIFIER

Next, we present the implementation details for the CBM baseline, where a linear classifier operates
on concept features obtained from the concept extractor.

For the CLEVR datasets, we train a linear classifier on concepts extracted by the Neural Concept
Binder. The training process employs a batch size of 128, a learning rate of 10−3, and weight decay
of 10−4. The model is trained for 60 epochs on CLEVR-Hans3 and 30 epochs on CLEVR-Hans7,
using early stopping based on validation loss, repeated across 20 different random seeds.

For CIFAR-100 and ImageNet, we train a linear classifier on sparse SpLiCE encodings using a
dictionary size of 10,000. In both cases, we use a batch size of 4096 and train for 250 epochs
with early stopping, a learning rate of 10−3, and no weight decay. A hidden layer with 512 units
is used, and an L1 penalty of 0.2 is applied within SpLiCE to encourage sparsity in the concept
representations. All results are averaged over 10 random seeds.

C.4 DCR BASELINE IMPLEMENTATION

For the additional nonlinear CBM comparison in Sec. 4, we implemented Deep Concept Reasoning
(DCR; Barbiero et al. 2023) following the official torch-explain library. Our implementation
uses the same experimental setup as NCV to ensure a fair comparison.

Architecture. We employ a ResNet-18 backbone (pretrained weights disabled for consistency)
followed by two DCR-specific modules: (1) a ConceptEmbedding layer that maps backbone
features to concept predictions cpred ∈ [0, 1]C and learned concept embeddings cemb ∈ RC×d, and (2)
a ConceptReasoningLayer that learns class-specific logic rules in Disjunctive Normal Form
(DNF) over the concept embeddings to produce class predictions.

Concept Supervision. We supervise the concept predictions using the same CLIP-Sim similarity
vectors as NCV. Since these are cosine similarities in [−1, 1], we apply a linear normalization
ctruth = (sim + 1)/2 to map them to [0, 1] for BCE loss compatibility.

Training. Following the official DCR tutorial, we optimize a joint loss L = Lconcept + λ · Ltask,
where both terms use binary cross-entropy (BCE). The task loss uses one-hot encoded labels, as
the ConceptReasoningLayer outputs per-class probabilities (not logits). We train with Adam
optimizer for 100 epochs.

Hyperparameter Sweep. For each dataset, we performed a grid search over:

• Vocabulary size: n ∈ {1000, 3000, 10000}
• Concept embedding dimension: d ∈ {8, 16, 32}
• Learning rate: η ∈ {10−3, 10−4}
• Task loss weight: λ ∈ {0.5, 1.0}

This resulted in 3× 3× 2× 2 = 36 configurations per dataset, totaling over 100 training runs. For
COCOLogic-10, we report balanced accuracy due to class imbalance.

Results. Tab. 4 summarizes the best accuracies achieved by DCR compared to NCV at 10k
vocabulary size. DCR successfully trains on CIFAR-100 and COCOLogic-10 but fails to complete
training on ImageNet-1k within reasonable time (> 3 days per epoch). In contrast, NCV’s sparsity-
inducing mechanism enables efficient scaling to all three datasets under the same 10k-concept
space.

D NCB-BASED NEURAL CONCEPT VERIFIER EXPERIMENTS

In the following, we provide details on NCB-based NCV, experimental evaluations as well as
additional evaluations.
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Table 4: Comparison between DCR and NCV at 10k-concept vocabulary size on CLIP-Sim. NCV
metrics correspond to completeness (accuracy). For COCOLogic-10, we report balanced accuracy
due to class imbalance.

Dataset DCR NCV (ours)
(acc. %) (completeness, %)

CIFAR-100 51.76 83.32
ImageNet-1k n/a (timeout) 67.04
COCOLogic-10 (bal.) 38.61 75.42

D.1 PRETRAINING

Before training NCV, we first pretrain the models without the feature selectors. The corresponding
results for the pretraining are shown in Tab. 5, where we evaluate on 20 random seeds. These
pretrained models are then used as initialization for the subsequent NCV training. For the pretraining,
we use a Set Transformer with two stacked multi-head attention blocks, a hidden dimension of 128
and four attention heads. We use a batch size of 128, 30 epochs and the Adam optimizer with a
learning rate of 10−3 for both datasets, applying early stopping based on validation loss.

Table 5: Pretraining results on the CLEVR-Hans3 and CLEVR-Hans7 datasets without shortcuts

CLEVR-Hans3 CLEVR-Hans7
Val. Accuracy Test Accuracy Val. Accuracy Test Accuracy

99.02± 0.31 98.13± 0.37 98.08± 0.24 97.83± 0.25

D.2 NCV TRAINING

For the experiments presented in our main results in Tab. 1, the experimental details for both datasets
are as follows:

Model Architecture. The verifier is implemented as a pretrained Set Transformer consisting of
two stacked multi-head attention blocks with hidden dimension 128, four attention heads, and
layer normalization. Merlin and Morgana are implemented as independent neural networks, each
parameterized by a Set Transformer with two stacked attention blocks with hidden dimensions 256,
four attention heads, and layer normalization. The provers receive the full concept slot matrix as
input and output a sparse selection mask with exactly 12 nonzero entries (out of 64 total features),
indicating the active blocks provided to the verifier.

Training Details. All components are jointly trained using the Adam optimizer with a learning rate
of 10−3 and weight decay of 10−4. Models are trained for 50 epochs and a batch size of 512 is used
throughout. For the Merlin and Morgana provers, a hard selection constraint is enforced, limiting
the number of selected concepts to a fixed budget of 12 block-encodings per sample. To ensure
high soundness, we set γ = 0.5, giving equal weight to both feature selector losses in the total loss
computation. We train our models using 20 random seeds.

Extended Results. Additionally, we evaluated the NCV framework with varying mask sizes and
an alternative model architecture for the feature selectors. The results are presented in Tab. 6 for
the CLEVR-Hans3 dataset and Tab. 7 for the CLEVR-Hans7 dataset, where we evaluate both the
validation set and the test set. The alternative architecture implements a MLP with two hidden
layers and ReLU activation functions for the feature selectors, while maintaining a pretrained Set
Transformer as the classifier across all experiments. Our results reveal that the Set Transformer
feature selector consistently outperforms the MLP feature selector on the test set, particularly with
smaller mask sizes such as 4 and 6. Furthermore, this configuration maintains high completeness
(>96%) and soundness (>99%), even with a reduced number of selected features.
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Table 6: Completeness and soundness on the CLEVR-Hans3 dataset without shortcuts for different
mask sizes and feature selector architectures. The highlighted values are used for Table 1.

Validation Test
Mask Size Feature Selector Completeness Soundness Completeness Soundness

4 Set Transformer 98.35± 0.31 99.88± 0.28 97.69± 0.63 99.82± 0.23
MLP 96.51± 1.18 99.81± 0.27 95.54± 1.37 99.85± 0.28

6 Set Transformer 98.71± 0.52 99.87± 0.13 98.11± 0.62 99.88± 0.19
MLP 96.21± 0.89 99.96± 0.03 94.78± 1.24 99.97± 0.06

12 Set Transformer 99.20± 0.11 100.00± 0.00 98.92± 0.32 100.00± 0.00
MLP 99.28± 0.11 99.98± 0.06 98.89± 0.21 99.99± 0.07

Table 7: Completeness and soundness on the CLEVR-Hans7 dataset without shortcuts for different
mask sizes and feature selector architectures. The highlighted values are used for Table 1.

Validation Test
Mask Size Feature Selector Completeness Soundness Completeness Soundness

4 Set Transformer 96.69± 1.28 99.93± 0.09 96.71± 1.37 99.91± 0.09
MLP 92.63± 1.24 99.89± 0.12 92.71± 1.31 99.87± 0.13

6 Set Transformer 97.32± 0.42 99.98± 0.02 97.14± 0.51 99.98± 0.02
MLP 95.43± 1.48 99.88± 0.13 95.12± 1.48 99.86± 0.14

12 Set Transformer 98.13± 0.11 100.00± 0.00 97.89± 0.31 100.00± 0.00
MLP 97.41± 1.07 99.99± 0.03 97.01± 0.93 99.99± 0.04

D.3 EXPLANATIONS

Here, we present supplementary examples of explanations generated by both Pixel-MAC and NCV
on the CLEVR-Hans3 dataset in Fig. 4. These results further substantiate our claim that NCV
provides significantly more transparent and interpretable explanations compared to the pixel-based
PVG baseline.

E EXPERIMENTAL DETAILS FOR CLIP-BASED NCV

In the following section, we present the implementation details of CLIP-based NCV training.

E.1 PRETRAINING

Once more, before starting with the actual NCV training, we first pretrain the models without the
provers (Merlin and Morgana). The corresponding results for the pretraining are shown in Tab. 8. As
textual concept descriptions T , we used the top 10,000 most frequent one- and two-word phrases from
LAION (Schuhmann et al., 2021) captions, following the setup of Bhalla et al. (2024). For pretraining
the verifier, we use a two-layer multilayer perceptron (MLP) with a hidden dimension of 512 and
GELU activations (Hendrycks & Gimpel, 2016) on CIFAR-100, ImageNet-1k, and COCOLogic.
On CIFAR-100 and ImageNet, training uses a batch size of 4096 and a learning rate of 10−4, with
dropout (0.3), weight decay of 10−4, and early stopping (patience 10). On COCOLogic, we instead
train for 100 epochs with a batch size of 512, learning rate of 10−4, and weight decay of 10−2, using
a learning-rate scheduler (plateau, patience 5, factor 10−3, minimum learning rate 10−6) and no early
stopping. All pretraining is conducted without provers, and the resulting verifiers are used to initialize
the CLIP-based NCV training.

E.2 NCV TRAINING

For the experiments presented in our main results in Tab. 1, we detail the training setup separately for
CIFAR-100 and ImageNet.
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Figure 4: Comparison of explanations from NCV vs. Pixel-MAC for CLEVR-Hans3 images of
all three classes. (a) Merlin–Arthur training on pixel space yields uninformative masks. (b) NCV
provides clear explanations by highlighting object features corresponding to the class rule. The
single-object images are reconstructions from the respective slots selected by Merlin (prover).

Table 8: Pretraining accuracy of the verifier (without provers) for CLIP-based NCV on CIFAR-100,
COCOLogic and ImageNet-1k.

Dataset Accuracy (%)

CIFAR-100 85.96
COCOLogic 81.39
ImageNet-1k 77.07

Model Architecture. The verifier (Arthur) is initialized as the pretrained two-layer multilayer
perceptron (MLP) described above. Merlin and Morgana are implemented as independent neural
networks, each parameterized by a two-layer MLP with hidden dimension 512 and ReLU activations.
Both provers receive the full concept activation vector as input and output a sparse selection mask
indicating the active concepts that are passed to the verifier.

CIFAR-100. For CIFAR-100, all components are trained jointly for 100 epochs using the Adam
optimizer. We set the verifier learning rate to 10−4, and use 5×10−4 for both Merlin and Morgana. A
batch size of 256 is used throughout. Weight decay is set to 0.1, and a hard mask size of 32 concepts
is enforced per input. To incentivize sparse masks, an L1 penalty of 0.1 is applied to the provers.
A learning rate scheduler (plateau-based) is employed with a patience of 5, minimum learning rate
of 10−6, and decay factor of 0.001. Early stopping is disabled, and all results are averaged over 10
random seeds.

ImageNet. The ImageNet setup mirrors CIFAR-100 in most aspects. We again train for 100 epochs
with a batch size of 256, using the same learning rates for verifier (10−4) and provers (5×10−4), mask
size of 32 features, and L1 penalty (0.1). Weight decay is reduced to 0.005 to improve generalization.
The same learning rate scheduler and seed setup are used as in the CIFAR-100 experiments.

COCOLogic. Training on COCOLogic follows the CIFAR-100 configuration with minor adjustments:
models are trained for 100 epochs with a batch size of 512, verifier learning rate of 10−4, and prover
learning rates of 5× 10−4. We use a weight decay of 0.01, a mask size of 32, and an L1 penalty of
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Table 9: Ablation results for our method on CIFAR-100 with varying mask sizes. We report mean ±
std over 10 seeds.

Mask Size Completeness
Train

Completeness
Validation

Soundness
Train

Soundness
Validation

4 74.97± 4.45 69.32± 2.66 99.85± 0.07 99.85± 0.09

8 87.42± 2.60 71.20± 22.43 99.95± 0.03 99.95± 0.03

16 94.08± 1.46 81.82± 0.50 99.96± 0.03 99.97± 0.02

64 97.65± 0.47 84.01± 0.31 100.00± 0.00 100.00± 0.00

Table 10: Ablation results for our method on ImageNet with varying mask sizes. We report mean ±
std over 10 seeds.

Mask Size Completeness
Train

Completeness
Validation

Soundness
Train

Soundness
Validation

4 59.30± 0.34 55.96± 0.30 99.81± 0.03 99.83± 0.06

8 64.84± 0.41 60.98± 0.30 99.94± 0.01 99.94± 0.03

16 68.85± 0.34 64.60± 0.12 99.96± 0.03 99.96± 0.03

64 73.35± 0.39 69.03± 0.18 99.97± 0.01 99.97± 0.02

0.1 on the provers. As with CIFAR-100, early stopping is disabled, and learning rate scheduling and
seed averaging remain unchanged.

E.3 PROVER AND VERIFIER ARCHITECTURES

In all experiments, the choice of prover and verifier architectures is guided by the structure of the
concept representation. For unordered, slot-based concept encodings (as in NCB on CLEVR-Hans),
we use permutation-invariant Set Transformers for Merlin, Morgana, and Arthur. For fixed-size
concept vectors (as in CLIP/SpLiCE on CIFAR-100, ImageNet-1k, and COCOLogic-10), we use
shallow nonlinear MLPs.

In preliminary experiments, we observed that performance is stable across a range of nonlinear
architectures (varying depth, width, and activations), whereas purely linear models consistently
underperformed by collapsing to simple correlation tests. Based on this, we recommend using
permutation-invariant architectures for slot-based concepts and nonlinear MLPs for vector-based
concepts when applying NCV to new datasets.

E.4 EFFECT OF THE WEIGHTING PARAMETER γ

The weighting parameter γ controls the trade-off between Merlin’s cooperative objective and Mor-
gana’s adversarial objective when training Arthur. Recall that Arthur’s loss is given by

LA = (1− γ)LM + γ L
M̂
,

so that γ = 0 corresponds to training Arthur only on Merlin’s loss, and larger γ increases the relative
weight of Morgana’s adversarial objective. To assess the influence of this trade-off on NCV, we
sweep γ over a range from 0 (Merlin-only) up to 0.5 (substantial weight on Morgana) on CIFAR-100,
ImageNet-1k, and COCOLogic, keeping all other hyperparameters fixed. For each setting, we train
three models with different random seeds and report the mean completeness and soundness; for
COCOLogic, we report balanced metrics due to class imbalance.

Across all datasets the same qualitative behavior emerges. When γ = 0, i.e., the verifier is trained
without adversarial pressure from Morgana, completeness remains high but soundness collapses (e.g.,
37.9% on CIFAR-100, 10.4% on ImageNet-1k, and 51.8% balanced soundness on COCOLogic).
As soon as γ > 0, soundness rapidly recovers to values close to those reported in Tab. 1, while
completeness remains essentially unchanged throughout the range of γ we consider. These results
demonstrate that incorporating adversarial concept selection is crucial for learning verifiers that remain
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Figure 5: Effect of the weighting parameter γ on completeness and soundness for (a) CIFAR-100, (b)
ImageNet-1k validation, and (c) COCOLogic validation (balanced metrics). All curves show means
over 3 random seeds.

reliable under misleading concept subsets, without sacrificing standard predictive performance in the
regimes we study. For a detailed discussion of why an adversarial prover and its relative strength are
essential for the Merlin–Arthur mutual-information guarantees underlying NCV, see Suppl. A.

F COMPUTATIONAL COST AND HARDWARE SETUP

To complement the main results, we report approximate training times for all models and datasets
considered in Sec. 4. All runs were executed on a single NVIDIA A100 or A40 GPU; times are
reported as rounded wall-clock estimates and are meant to convey relative cost rather than exact
benchmarks. For CBM baselines, we exclude the per-sample SpLiCE optimization step at inference
time, which would add substantial overhead and further increase their deployment cost.

Table 11: Approximate training time comparison across models and datasets. Times are rounded
wall-clock estimates on a single NVIDIA A100 or A40 GPU. For CBM baselines, the per-sample
SpLiCE optimization at inference time is omitted here, but would incur significant additional cost.
(ImgNet = ImageNet-1k, COCO-10 = COCOLogic-10, CL-H3/CL-H7 = CLEVR-Hans3/7.)

Model CIFAR ImgNet COCO-10 CL-H3 CL-H7
ResNet (baseline) ∼25–30m ∼1.5d ∼50m < 10m < 10m
Pixel-MAC ∼1.3d ∼3d ∼4h < 2h < 2h
CBM ∼10–15m ∼4h ∼2m ∼2m ∼2m
NCV (ours) ∼20m (11m A + 7m PVG) ∼5h (2.5h A + 2.5h PVG) ∼5m ∼1.5m ∼5m

Overall, NCV is 1–3 orders of magnitude cheaper to train than Pixel-MAC across all datasets, while
remaining comparable to standard CBMs in runtime. Since concept encodings are precomputed
once and reused across models, NCV scales similarly to a conventional classifier without additional
architectural overhead, and remains practical even in large-scale settings such as ImageNet-1k.

G USE OF LARGE LANGUAGE MODELS

Large language models were used to support this work by assisting with text refinement, implementa-
tion of code components (including methods and plot generation), and by providing input during idea
development and approach refinement.
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