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Abstract

Mesh-free Lagrangian methods are widely used for simulating fluids, solids, and their com-
plex interactions due to their ability to handle large deformations and topological changes.
These physics simulators, however, require substantial computational resources for accurate
simulations. To address these issues, deep learning emulators promise faster and scalable
simulations, yet they often remain expensive and difficult to train, limiting their practical
use. Inspired by the Material Point Method (MPM), we present NeuralMPM, a neural
emulation framework for particle-based simulations. NeuralMPM interpolates Lagrangian
particles onto a fixed-size grid, computes updates on grid nodes using image-to-image neural
networks, and interpolates back to the particles. Similarly to MPM, NeuralMPM benefits
from the regular voxelized representation to simplify the computation of the state dynam-
ics, while avoiding the drawbacks of mesh-based Eulerian methods. We demonstrate the
advantages of NeuralMPM on 6 datasets, including fluid dynamics and fluid-solid interac-
tions simulated with MPM and Smoothed Particles Hydrodynamics (SPH). Compared to
GNS and DMCF, NeuralMPM reduces training time from 10 days to 15 hours, memory
consumption by 10x-100x, and increases inference speed by 5x-10x, while achieving compa-
rable or superior long-term accuracy, making it a promising approach for practical forward
and inverse problems. A project page is available at https://neuralmpm.isach.be.

1 Introduction

The Navier-Stokes equations describe the time evolution of fluids and their interactions with solid materials.
As analytical solutions rarely exist, numerical methods are required to approximate the solutions. On the
one hand, Eulerian methods discretize the fluid domain on a fixed grid, simplifying the computation of
the dynamics, but requiring high-resolution meshes to solve small-scale details in the flow. Lagrangian
methods, on the other hand, represent the fluid as virtual moving particles defining the system’s state, hence
maintaining a high level of detail in regions of high density. While effective at handling deformations and
topological changes (Monaghan, 2012), Lagrangian methods struggle with collisions and interactions with
rigid objects (Vacondio et al., 2021; Lind et al., 2020).

Regardless of the discretization strategy, large-scale high-resolution numerical simulations are computation-
ally expensive, limiting their practical use in downstream tasks such as forecasting, inverse problems, or
computational design. To address these issues, deep learning emulators have shown promise in accelerating
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simulations by learning an emulator model that can predict the system’s state at a fraction of the cost. Next
to their speed, neural emulators also have the strategic advantage of being differentiable, enabling their use in
inverse problems and optimization tasks (Allen et al., 2022; Zhao et al., 2022; Forte et al., 2022). Moreover,
they have the potential to be learned directly from real data, bypassing the costly and resource-intensive
process of building a simulator (Lam et al., 2023; Pfaff et al., 2021; Lemos et al., 2023; Jumper et al., 2021; He
et al., 2019). In this direction, particle-based neural emulators (Sanchez-Gonzalez et al., 2020; Ummenhofer
et al., 2020; Prantl et al., 2022) have seen success in accurately simulating fluids and generalizing to unseen
environments. These emulators, however, suffer from the same issues as traditional Lagrangian methods,
with collisions and interactions with rigid objects being particularly challenging. These emulators can also
require long training and inference times, limiting their practical use.

Taking inspiration from the hybrid Material Point Method (MPM) (Sulsky et al., 1993; Nguyen et al., 2023)
that combines the strengths of both Eulerian and Lagrangian methods, we introduce NeuralMPM, a neural
emulation framework for particle-based simulations.

• As in MPM, NeuralMPM uses Lagrangian particles to represent the system’s state but models system
dynamics on voxelized grids. This approach benefits from a regular grid structure for simplified state
dynamics computation while avoiding the drawbacks of mesh-based Eulerian methods.

• It interpolates particles onto a fixed-size grid, bypassing the need for expensive neighbor searches
at each timestep and replacing them with two efficient voxelization-based interpolation steps (Xu
et al., 2021)

• By defining dynamics on a grid, NeuralMPM leverages well-established grid-to-grid neural archi-
tectures. This introduces an inductive bias that enables easier processing of global and local point
cloud structures, freeing capacity to learn the system’s dynamics.

Compared to previous data-driven approaches (Sanchez-Gonzalez et al., 2020; Ummenhofer et al., 2020;
Prantl et al., 2022), these improvements reduce the training time from days to hours, while achieving higher
or comparable accuracy.

2 Computational Fluid Dynamics

Computational fluid dynamics simulations can be classified into two broad categories, Eulerian and La-
grangian, depending on the discretization of the fluid (Rakhsha et al., 2021). In Eulerian simulations, the
domain is discretized with a mesh, with state variables ut

i (such as mass or momentum) maintained at each
mesh point i. Well-known examples of Eulerian simulations are the finite difference method, where the
domain is divided into a uniform regular grid (also called an Eulerian grid), and the finite element method,
where the domain is divided into regions, or elements, that may have different shapes and density, allowing
to increase the resolution in only some areas of the domain (Iserles, 2008; Morton & Mayers, 2005). Another
widely used family of Eulerian methods is the spectral and pseudo-spectral family of methods, where the
equation is solved in Fourier space or alternating between Fourier and real space, respectively, leveraging the
fact that differentiation in real space is multiplication in Fourier space Pope (2000). Lagrangian simulations,
on the other hand, discretize the fluid as a set of virtual moving particles {pt

i, ut
i}N

i=1, each described by its
position pt

i and state variables ut
i that include the particle velocity vt

i . To simulate the fluid, the particles
move according to the dynamics of the system, producing a new set of particles {pt+1

i , ut+1
i }N

i=1 at each
timestep. Simulations in Lagrangian coordinates are particularly useful when the fluid is highly deformable,
as the particles can move freely and adapt to the fluid’s shape. Among Lagrangian methods, Smoothed
Particle Hydrodynamics (SPH) (Gingold & Monaghan, 1977; Price, 2012) is one of the most popular, where
the fluid is represented by a set of particles that interact with each other through a kernel function that
smooths the interactions.

Hybrid Eulerian-Lagrangian methods combine the strengths of both frameworks. Like Lagrangian methods,
they carry the system state information via particles, thereby automatically adjusting the resolution to the
local density of the system. By using a regular grid, however, they simplify gradient computation, make entity
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contact detection easier, and prevent cracks from propagating only along the mesh. Among hybrid methods,
the Material Point Method has gained popularity for its ability to handle large deformations and topological
changes. MPM combines a regular Eulerian grid with moving Lagrangian particles. It does so in four main
steps: (1) the quantities carried by the particles are interpolated onto a regular grid Gt = p2g({pt

i, ut
i})

using a particle-to-grid (p2g) function, (2) the equations of motion are solved on the grid, where derivatives
and other quantities are easier to compute, resulting in a new grid state Gt+1 = f(Gt), (3) the resulting
dynamics are interpolated back onto the particles as {ut+1

i } = g2p(Gt+1, {pt
i}), using a grid-to-particle

(g2p) function, (4) the positions of the particles are updated by computing particle-wise velocities and using
an appropriate integrator, such as Euler, i.e., pt+1

i = pt
i + ∆tvt+1

i . The grid values are then reset for the
next step. MPM has been used in soft tissue simulations (Ionescu et al., 2005), in molecular dynamics (Lu
et al., 2006), in astrophysics (Li & Liu, 2002), in fluid-membrane interactions (York II et al., 2000), and in
simulating cracks (Daphalapurkar et al., 2007) and landslides (Llano Serna et al., 2015). MPM is also widely
used in the animation industry, perhaps most notably in Disney’s 2013 film Frozen (Stomakhin et al., 2013),
where it was used to simulate snow.

Notwithstanding the success of numerical simulators, they remain expensive, slow, and, most of the time,
non-differentiable. In recent years, differentiable neural emulators have shown great promise in accelerating
fluid simulations, most notably in a series of works to emulate SPH simulations in a fully data-driven manner.
Graph network-based simulators (GNS) (Sanchez-Gonzalez et al., 2020) use a graph neural network (GNN)
and a graph built from the local neighborhood of the particles to predict the acceleration of the system. The
approach requires building a graph out of the point cloud at every timestep to obtain structural information
about the cloud, which is an expensive operation. In addition, the GNN needs to extract global information
from its nodes, which is only possible with a high number of message-passing steps, resulting in a large
computational graph and long training and inference times. This large computational graph, along with
repeated construction, makes fully autoregressive training over long rollouts impractical, as the gradients
need to backpropagate all the way back to the first step. Cheaper strategies exist, like the push-forward
trick (Brandstetter et al., 2022b), but they have been shown to be inferior to fully backpropagating through
trajectories (List et al., 2024; Sharabi & Louppe, 2023). As autoregressive training is not available, the
stability of the learned dynamics can be compromised, making the model prone to diverging or oscillating.
Noise injection training strategies can be used to increase the stability of the rollouts, but the magnitude
of the noise becomes a critical parameter. Related approaches to GNS include Han et al. (2022), who
introduce improvements to GNS to make them subequivariant to certain transformations and show increased
accuracy on simulations involving solid objects, and Viswanath et al. (2024), who apply GNS on a reduced
representation of the particle system obtained by farthest point sampling.

An alternative approach is the continuous convolution (CConv) (Ummenhofer et al., 2020; Winchenbach &
Thuerey, 2024), an extension of convolutional networks to point clouds. In this method, a convolutional
kernel is applied to each particle by interpolating the values of the kernel at the positions of its neighbors,
which are found via spatial hashing on GPU, a cheaper alternative to tree-based searches that allows for
autoregressive training. In (Prantl et al., 2022), Deep Momentum Conserving Fluids (DMCF) build upon
CConv to design a momentum-conserving architecture. Nevertheless, to account for long-range interactions,
the authors introduce different branches, with different receptive fields, into their network. The number
of branches, and their hyperparameters, need to be tuned to capture global dependencies, leading to long
training times even with optimized CUDA kernels. Finally, Zhang et al. (2020) propose an approach that
uses nearest neighbors to construct the local features of each particle. Those local features are then averaged
onto a regular grid. Like GNS, this method suffers from the need to repeat the neighbor search at every
simulation timestep. Ultimately, the performance of point cloud-based simulators is tightly linked to the
method used to process the spatial structure of the cloud. Brute force neighbour search is O(N2), K-d trees
are O(N log N), and voxelization and hashing are O(N) (Xu et al., 2021; Hastings & Mesit, 2005). Recently,
Alkin et al. (2024), attempt to bridge the gap between Lagrangian and Eulerian representations by avoiding
explicit grid- or particle-based latent structures, but necessitating extra networks to account for particle
movement or empty volumes.

An approach different from data-driven modeling is hybrid models, where parts of a classical solver are
replaced with learned components. For instance, Yin et al. (2021) employ a neural network to learn unknown
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Figure 1: NeuralMPM works in 4 steps. (1) The positions P t and velocities V t of the particles are used
to compute the velocity V t

g and density Dt
g of each grid node through voxelization. (2) From this grid, the

processor neural network predicts the grid velocities at the next m timesteps. The next m positions are
computed iteratively by (3) performing bilinear interpolation of the predicted velocities onto the previous
positions and (4) updating the positions using the predicted velocities.

physics, which is then integrated into a simulator. Similarly, Li et al. (2024a) use a neural network to bypass
computational bottlenecks in MPM simulators, while Ma et al. (2023) learn general constitutive laws, allowing
for one-shot trajectory learning. These approaches achieve impressive results by leveraging extensive physics
knowledge, but this reliance also limits their applicability. Hybrid models may inherit both the strengths
and weaknesses of classical and ML methods. Our approach falls within the data-driven domain, as the prior
constraints on the learnable dynamics induced by the MPM-like algorithm are minimal and can be overcome
with data (Table 1).

3 NeuralMPM

We consider a Lagrangian system evolving in time and defined by the positions pt
i and velocities vt

i of a set of
N particles i = 1, ..., N . We denote with P t and V t the set of positions and velocities of all particles at time
t and with St = (P t, V t) the full state of the system. In a more complex setting, the state of the system can
include other local properties, such as pressure or elastic stiffness of materials, and global properties, such as
an external force. In this work, for simplicity, we let the network learn the relevant simulation parameters
implicitly. The evolution of the particles is described by a function f mapping the current state of the
system to its next state St+1 = f(St). Given a starting system S0 = (P 0, V 0), its full trajectory, or rollout,
is denoted by S1:T . Our goal is to build an emulator f̂θ(·) capable of predicting a full rollout f̂1:T

θ (S0) of T
timesteps from the initial state S0. Following MPM, NeuralMPM operates in four steps, described below,
as illustrated in Figure 1 and in Alg 1.

Step 1: Voxelization. Using the particle positions P t, the velocities V t are interpolated onto a regular
fixed-size grid. This interpolation is performed through voxelization, which divides the domain into regular
volumes (voxels). Each grid node is identified as the center of a voxel (e.g., square in 2D) in the domain, and
the velocities of the particles in the voxel are averaged to give the node’s velocity. Similarly, the density is
computed as the normalized number of particles in the voxel. This results in the grid tensor Gt that contains
the grid velocities V t

g and density Dt
g.
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Step 2: Processing. Taking advantage of the regular grid representation of the cloud, the grid velocities
{V̂ i

g }t+m
i=t+1 of the next m timesteps are predicted using a neural network. We chose a U-Net (Ronneberger

et al., 2015) as it is a well-established image-to-image model, known to perform well in various tasks,
including physical applications. The combination of kernels applied with different receptive fields (from
smaller to larger) can allow the U-Net to efficiently extract both local and global information. Nonetheless,
any grid-to-grid architecture could be used. We experiment with the FNO (Li et al., 2021) architecture in
Appendix D and find it to underperform, leading us to keep the U-Net. A fully convolutional U-Net and
an FNO have the additional advantage of being able to generalize to different domain shapes, a desirable
property (Section 4.3).

Step 3: Update of particle velocities. The predicted velocities V̂ t+1 at the next timestep are then
interpolated back to the particle level onto the positions P t using bilinear interpolation. The velocity of each
particle is computed as a weighted average of the four surrounding grid velocities, based on its Euclidean
distance to each of them.

Step 4: Update of particle positions. Finally, the positions of the particles are updated with Euler
integration using the next velocities and known current positions of the particles, that is P̂ t+1 = P t+∆tV̂ t+1.
Steps 3 and 4 are performed m times to compute the next m positions from the set of grid velocities computed
at step 2.

Additional features of the individual particles can be included in the grid tensor Gt by interpolating them
in the same way as the velocities. Local, such as boundary conditions, or global, such as gravity or external
forces, features are represented as grid channels. For simulations with multiple types of particles, the features
of each material are interpolated independently and stacked as channels in Gt.

NeuralMPM is trained end-to-end on a set of trajectories S0:T to minimize the mean squared error ||P t+1−
P̂ t+1

θ (St)||22 between the ground-truth and predicted next positions of the particles. At inference time, the
model is exposed to much longer sequences, which requires carefully stabilizing the rollout procedure to
prevent the accumulation of large errors over time. To address this, we first make use of autoregressive
training (Prantl et al., 2022; Ummenhofer et al., 2020), where the model is unrolled K times on its own
predictions, producing a sequence of Ŝk = f̂θ(Ŝk−1) for k = 1, ..., K and initial input Ŝ0 = S0, before
backpropagating the error through the entire rollout. Unlike more costly methods that require alternative
stabilization strategies, such as noise injection (Sanchez-Gonzalez et al., 2020), NeuralMPM’s efficiency makes
autoregressive training possible. Nevertheless, to further stabilize the training, we couple autoregressive
training with time bundling (Brandstetter et al., 2022b), resulting in a training strategy where the model
predicts m steps Ŝ1:m at once from a single initial state, inside an outer autoregressive loop of K steps of
length m. We show in Section 4 that this training strategy leads to more accurate rollouts.

Algorithm 1 NeuralMPM
Require: P 0, V 0, grid g, t, neural backbone h, functions p2g and g2p

1: P̂ t ← P t, V̂ t ← V t

2: while t < T do
3: Voxelization: Interpolate density and velocities onto the grid using Gt = (Dt

g, V t
g ) = p2g(P̂ t, V̂ t)

4: Processing: {V̂ i
g }t+m

i=t+1 = h(Gt)
5: for i in range(1, m) do
6: Update velocities: V̂ t+i = g2p(V̂ t+i

g , P̂ t+i−1)
7: Update positions: P̂ t+i = P t+i−1 + ∆tV̂ t+i

8: end for
9: t← t + m

10: end while
11: return Full trajectory {P̂ , V̂ }T

t
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4 Experiments

We conduct a series of experiments to demonstrate the accuracy, speed, and generalization capabilities of
NeuralMPM. Specifically, we examine its robustness to hyperparameter and architectural choices through
an ablation study (4.1). We compare NeuralMPM to GNS and DMCF in terms of accuracy, training time,
convergence, and inference speed (4.2). We also evaluate the generalization capabilities of NeuralMPM (4.3)
and illustrate how its differentiability can be leveraged to solve an inverse design problem (4.4). Through
these experiments, we demonstrate that NeuralMPM is a flexible, accurate, and fast method for emulating
complex particle-based simulations. The baselines established by Winchenbach & Thuerey (2024) and hybrid
simulators (Li et al., 2024a; Ma et al., 2023) have promising results. However, we do not compare against
them as they either use different benchmarks or are specifically tailored for certain physical domains, requiring
material-specific knowledge. In contrast, NeuralMPM, like GNS and DMCF, requires only particle positions
without being restricted to any particular domain. Rollouts for all experiments, models, and datasets are
available at drive and in the supplementary material.

Data. We consider 6 datasets with variable sequence lengths, numbers of particles, and materials. The
first three datasets, WaterRamps, SandRamps, and Goop, contain a single material, water, sand, and
goop, respectively, with different material properties. The first two datasets contain random ramp obstacles
to challenge the model’s generalization capacity. The fourth dataset, MultiMaterial, mixes the three
materials together in the same simulations. These four datasets are taken from Sanchez-Gonzalez et al. (2020)
and were simulated using the Taichi-MPM simulator (Hu et al., 2018b). They each contain 1000 trajectories
for training and 30 (Goop) or 100 (WaterRamps, SandRamps, MultiMaterial) for validation and
testing. The fifth dataset, Dam Break 2D, was generated using SPH and contains 50 trajectories for
learning, and 25 for validation and testing. The last dataset, VariableGravity, was also generated using
Taichi-MPM. It consists of simulations with variable gravity of a water-like material, and contains 1000
trajectories for training and 100 for validation and testing.

Protocol. NeuralMPM is trained on trajectories with varying initial conditions and number of particles.
The training batches are sampled randomly in time and across sequences. We use Adam (Kingma & Ba, 2014)
with the following learning rate schedule: a linear warm-up over 100 steps from 10−5 to 10−3, 900 steps at
10−3, then a cosine annealing (Loshchilov & Hutter, 2017) for 100, 000 iterations. We use a batch size of 128,
K = 4 autoregressive steps per iteration, bundle m = 8 timesteps per model call (resulting in 24 predicted
states), and a grid size of 64× 64. For most of our experiments, we use a U-Net (Ronneberger et al., 2015)
with three downsampling blocks with a factor of 2, 64 hidden channels, a kernel size of 3, and MLPs with
three hidden layers of size 64 for pixel-wise encoding and decoding into a latent space. For a fair comparison,
we ran training and inference for NeuralMPM, DMCF, and GNS on the exact same hardware. GNS and
DMCF were trained until convergence (a maximum of 120 and 240 hours, respectively), while NeuralMPM
required 20 hours or less to converge. For WaterRamps, Sandramps, Goop, and MultiMaterial, we
use the same parameters as those reported by authors. We hyperparameter search DMCF for Dam Break
2D and both GNS and DMCF for VariableGravity and report the best performance obtained for a budget
of 60 GPU-days per dataset. Further details on training can be found in Appendix B.

4.1 Ablation study

To study the robustness of NeuralMPM to hyperparameter and architectural choices, we start with the
default architecture and hyperparameters and ablate its components individually to examine their impact
on performance. We vary the number K of autoregressive steps with and without grid and particle noise
in the input state the number of bundled timesteps m predicted by a single model call, and the depth and
number of hidden channels of the network. We also investigate adding noise to stabilize rollouts, either
directly to the particles’ positions or to the grid-level representation after voxelization.

Figure 3 summarizes the ablation results. A larger number K of autoregressive steps yields more accurate
rollouts without the need to add noise. Indeed, injecting noise does not improve accuracy and is even
detrimental for K = 4. Individually tuning the noise levels for grids and particles can modestly lower error
rates, but is either very sensitive or negligible. The model performs better when bundling more timesteps,
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Figure 2: Example snapshots. We train and evaluate NeuralMPM on WaterRamps, SandRamps and
Goop, each consisting of a single material, on MultiMaterial that mixes water, sand and goop, and
on Dam Break 2D, a rectangular-shaped SPH dataset. NeuralMPM is able to learn various kinds of
materials, their interactions, and their interactions with solid obstacles. Despite being inspired by MPM, it
is not limited to data showing MPM-like behaviour.
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Figure 3: Ablation results. Mean squared error of full rollouts on unseen test data for Goop. The default
parameters are in blue. The dotted orange line (2.4 × 10−3) indicates the MSE we obtained for GNS after
240 hours (20M training steps). The dotted red line is the MSE for DMCF after the same amount of time
(5.25 × 10−3). NeuralMPM is robust to hyperparameter changes, with the biggest effects coming from the
number of timesteps bundled together (m) and grid noise. For a rollout of length T , the model is called T/m
times, meaning lower values of m require maintaining stability for longer. Autoregressive training coupled
with time bundling suffices to stabilize the model, eliminating the need for noise injection. Although GNS
reportedly slightly outperforms NeuralMPM, these results could not be reproduced in our experiments.
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Figure 4: Example VariableGravity trajectory against baselines. Each method is unrolled starting
from the initial conditions of a random test trajectory not seen during training.

enabling faster rollouts as a single forward pass predicts more steps. We found m = 8 to be optimal with
the other default hyperparameters, outperforming larger bundling. This is because more network capacity
is needed to extract information for the next 16 or 32 timesteps from a single state. Instead, we opted for a
shallower and narrower network to balance speed and memory footprint with performance gains. In terms of
network architecture, we chose a U-Net. We experiment with an FNO (Li et al., 2021) in Appendix D and
find it to underperform, leading us to keep the U-Net architecture. We find the U-Net’s width and depth to
have a minor impact on performance, confirming that a larger network is not needed. The grid size, however,
is critical. A low resolution loses fine details, while a high resolution turns meaningful structures, such as
liquid blobs or walls, into isolated voxels.

4.2 Comparison with previous work

We compare NeuralMPM against GNS and DMCF. We use the official implementations and training in-
structions to assess training times, inference times, as well as accuracy. We compare against both GNS and
DMCF on WaterRamps, Sandramps, Goop, Dam Break 2D, and VariabelGravity. We also compare
against GNS on MultiMaterial, but not against DMCF since it does not support multiple materials.

Accuracy. We report quantitative results comparing the long-term accuracy in Table 1 and show trajecto-
ries of NeuralMPM in Figure 2, as well as comparisons against baselines on WaterRamps in Figure 4. On
the mono-material datasets WaterRamps, SandRamps, and Goop, NeuralMPM performs competitively
with GNS and better than DMCF in terms of mean squared error (MSE). For MultiMaterial, NeuralMPM
reduces the MSE by almost half, which we attribute to it being a hybrid method, known to better handle in-
teractions, mixing, and collisions between different materials. In Dam Break 2D, NeuralMPM outperforms
both baselines, despite the data being simulated using SPH. Finally, NeuralMPM surpasses the performance
of DMCF in VariableGravity, even though the latter accounts for gravity explicitly. In terms of Earth
Mover’s Distance (EMD), NeuralMPM outperforms both baselines across all benchmarks, suggesting that
NeuralMPM is better at capturing the spatial distribution of the particles.

Training. In Figure 5, we report the evolution of the mean squared error of full emulated rollouts on the
held-out test set during training, for each method, along with predicted snapshots at increasing training
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Data (Simulator) N T NeuralMPM GNS DMCF
MSE↓ EMD↓ MSE↓ EMD↓ MSE↓ EMD↓

WaterRamps (MPM) 2.3k 600 13.92 68 11.75 90 20.45 105
SandRamps (MPM) 3.3k 400 3.12 61 3.11 84 6.22 91

Goop (MPM) 1.9k 400 2.18 55 2.4 73 5.25 85
MultiMaterial (MPM) 2k 1000 9.6 66 14.79 105 - -
Dam Break 2D (SPH) 5k 401 29.07 348 87.04 384 74.77 381

VariableGravity (MPM) 600 1000 14.48 92 134 350 28.77 97

Table 1: Full rollout MSE & EMD (both ×10−3) for NeuralMPM and the baselines on each dataset, with
the maximum number of particles N and sequence length T . Each method was trained until full convergence
(NeuralMPM: 15h, GNS: 240h, DMCF: 120h), and the best model was used.

0 1 2 3 4 5 10 20 40 60 100 150 240
Time [h]

11
13
15

20

30

60

80

100

M
S

E
(1

0−
3 )

NeuralMPM

DMCF

GNS

1 Hour 5 Hours 15 Hours Best
Ground
Truth

O
ur

s
G

N
S

D
M

C
F

Figure 5: Training convergence. (Left) NeuralMPM trains and converges much faster than GNS and
DMCF. Note the log scale on both axes. (Right) Snapshots of models trained for increasing durations then
unrolled until the same timestep on a held-out simulation. For a fair comparison, out-of-bounds particles in
GNS and DMCF were clamped.
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Figure 6: Time and memory performance. Average FPS (left) and GPU VRAM usage (right) for
increasing numbers of particles for a traditional solver (Taichi-MPM (Hu et al., 2018a)), NeuralMPM, and
the two baselines. The two baselines quickly require very large amounts of memory and become very slow.
Although Taichi-MPM is more memory efficient for high numbers of particles, NeuralMPM remains much
faster, emulating 30 million particles at 25FPS. For the low particle count regime (< 10K) we used the
NeuralMPM and baselines WaterRamps models. For the high particle count regime we used untrained
models and measured the throughput. The figures measures just FPS, and not the real simulation time.
Taichi-MPM needs a much smaller step size than the three neural emulators (0.2ms vs 2.5ms), and is therefore
likely slower than all of them
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durations. NeuralMPM converges significantly faster than both baselines while reaching lower error rates.
Furthermore, the convergence of the training procedure and quality of the architecture can be assessed much
earlier during training, effectively saving compute and enabling the development of more refined final models.
Moreover, NeuralMPM is also more memory-efficient, which enables the use of higher batch sizes of 128, as
opposed to only 2 in GNS and DMCF.

Inference time and memory. In Figure 6, we display the time and memory performance of NeuralMPM,
the two baselines GNS and DMCF, and the reference solver Taichi-MPM. In terms of speed, NeuralMPM
strongly outperforms all three methods, partly thanks to time bundling, which considerably reduces the
number of model calls required for a given number of frames to emulate. In terms of memory, although
NeuralMPM remains inferior to Taichi-MPM, which is highly optimized, it can emulate tens of millions of
particles on a single GPU, while GNS and DMCF struggle to reach half a million.

4.3 Generalization

WATERDROP-XL Larger rectangular domains
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Figure 7: Generalization. (Left) NeuralMPM generalizes to domains with more particles (∼ 4× here) with
minimal inference time overhead due to the processing of the voxelized representation. (Right) A NeuralMPM
model trained on a square domain can naturally generalize to larger rectangular domains (twice as wide here)
when using a fully convolutional U-Net.

One notable advantage of NeuralMPM is that the processor is invariant to the number of particles, as
the transition model only processes the voxelized representation, while both p2g and g2p scale linearly. To
demonstrate this, we train a model on WaterRamps, which contains about 2.3k particles and 600 timesteps,
and evaluate it on WaterDrop-XL, which features about four times more particles, 1000 timesteps, and
no obstacles. An example snapshot is displayed in Figure 7. The larger number of particles only affects
interpolation steps between the grid and particles, resulting in a negligible impact on total inference time,
making the model nearly as fast despite 4 times more particles. We also validate generalization quantitatively
by comparing the error rates on WaterDrop-XL of a model trained directly on it and the model trained
solely on WaterRamps. With the same training budget, the latter achieves a lower MSE at 20.92 × 10−3

against 28.09× 10−3. More trajectories are displayed in Figure 23.

If a domain-agnostic processor architecture is used, such as a fully convolutional U-Net or an FNO, then
NeuralMPM can generalize to different domain shapes without retraining, as shown in Fig 7. We demonstrate
this ability by considering a model solely trained on WaterRamps, a square domain of size 0.84 × 0.84
mapped to 64 × 64 grids. Without retraining, we perform inference with this model on larger unseen
environments of size 1.68× 0.84, and change the grid size to 128× 64. The unseen environments were built
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by merging and modifying initial conditions of held-out test trajectories from WaterRamps. NeuralMPM
emulates particles in this larger and rectangular domain despite being trained on a smaller square domain
with a smaller grid, showing that a U-Net can generalize to other domains. No ground truth is displayed
as Sanchez-Gonzalez et al. (2020) provide no information about the data generation. More trajectories are
shown in Figure 24.

4.4 Inverse design problem

Finally, we demonstrate the application of NeuralMPM for inverse problems on a toy inverse design task
that consists in optimizing the direction of a ramp to make the particles reach a target location, similar to
(Allen et al., 2022). We place a blob of water at different starting locations, and we then place a ramp at
some location, with a random initial angle α. The goal is to spin the ramp by tuning α in order to make the
water end up at a desired location. The main challenges of this task are the long-range time horizon of the
goal and the presence of nonlinear physical dynamics. We proceed by selecting the point where we want the
water to end up and compute the average distance between the point and particles at the last simulation
frame. We then minimize the distance via gradient descent, leveraging the differentiability of NeuralMPM
to solve this inverse design problem. We show an example optimization in Figure 8, and additional examples
in Appendix D.

Initial Unoptimized Optimized

α

Figure 8: Inverse design problem. We exploit NeuralMPM’s differentiability to optimize the angle α of
a ramp, anchored at the red dot, in order to get the water close to the red square region.

5 Conclusion

Summary. We presented NeuralMPM, a neural emulation framework for particle-based simulations in-
spired by the hybrid Eulerian-Lagrangian Material Point Method. We have shown its effectiveness in sim-
ulating a variety of materials and interactions, its ability to generalize to larger systems and its use in
inverse problems. Crucially, NeuralMPM trains in 6% of the time it takes to train GNS and DMCF to
comparable accuracy, and is 5x-10x faster at inference time. By interpolating particles onto a fixed-size grid,
global information is distilled into a voxelized representation that is easier to learn and process with powerful
image-to-image models. The use of voxelization allows NeuralMPM to bypass expensive graph constructions,
and the interpolation leads to easier generalization to a larger number of particles and constant runtime.
The lack of expensive graph construction and message passing also allows for more autoregressive steps and
parallel rollouts.

Limitations. Like other approaches, NeuralMPM is limited by the computation used to process the
structure of the point cloud. In our case, voxelization means we cannot deal with particles that lie outside
of the domain and are limited to regular grids. Additionally, the size of the voxels is directly related to the
number of particles within a given volume. If the voxels are too large, the model will fail to capture finer
details. Conversely, if they are too small, the model may struggle due to insufficient local structure. Similarly,
performance can degrade in very sparse domains. Compressible fluids might also present challenges, though
this requires further verification.

Future work. Our work is only a first step towards hybrid Eulerian-Lagrangian neural emulators, leav-
ing many avenues for future research. Extending NeuralMPM to 3D systems is a natural continuation of
this work. Future studies could also explore alternative particle-to-grid and grid-to-particle functions, like
the non-uniform Fourier transform (Fessler & Sutton, 2003), or more sophisticated interpolation methods
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from classical MPM literature (Nguyen et al., 2023). A less traditional direction is to make NeuralMPM
probabilistic and encode richer distributional information about the particles in the grid nodes, instead of
maintaining only a mean value. This could potentially improve NeuralMPM’s ability to resolve subgrid
phenomena. Finally, advances in Lagrangian Particle Tracking (Schröder & Schanz, 2023) will eventually
make it possible to create datasets from real-world data, enabling the training of NeuralMPM directly from
data without the need for the costly design process of a numerical simulator.
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A Supplementary Material

In addition to the supplementary material on the project page (https://neuralmpm.isach.be), we have
uploaded videos, minimal code for reproduction, and baseline comparisons to an online cloud storage that
can be found at https://bit.ly/neuralmpm_suppmaterial.

B Training details

Hardware. We run all our experiments using the same hardware: 4 CPUs, 24GB of RAM, and an NVIDIA
RTX A5000 GPU with 24GB of VRAM. For reproducing the results of DMCF, we kept the A5000 GPU but
it required up to 96GB of RAM for training.

Data Preprocessing. Similar to Prantl et al. (2022), we slightly alter the original MPM datasets to add
boundary particles, as the original data from Sanchez-Gonzalez et al. (2020) does not have them. We define
the velocity at a timestep to be vt = vt − vt−1. We therefore skip the first step during training for which
no velocity is available.

Implementation. Our implementation, training scripts, experiment configurations, and instructions for
reproducing results are publicly available at [URL]. We implement NeuralMPM using PyTorch (Paszke
et al., 2019), and use PyTorch Geometric (Fey & Lenssen, 2019) for implementing efficient particle-to-grid
functions, more specifically from the Scatter and Cluster modules. For memory efficiency, we do not store
all (up to) 1,000 training trajectories in memory, and rather use a buffer of about 16 trajectories over which
several epochs are performed before loading a new buffer of random trajectories.

Baselines. We use the official implementations and training instructions of GNS (Sanchez-Gonzalez et al.,
2020) and DMCF (Prantl et al., 2022) to reproduce their results and conduct new experiments. More specif-
ically, we train GNS as instructed for 20M steps on all four datasets, using their provided configuration. For
DMCF, we follow their default configurations and train for 400K iterations for each dataset. In datasets
that were not used by the original authors, VariableGravity and Dam break 2D, we performed hyper-
parameter search. GNS and DMCF both were trained for a total budget of 60 GPU-days per dataset, and
the best performance was reported.

Normalization. We normalize the input of the model over each channel individually. We investigated
computing the statistics across a buffer, resembling (Ioffe & Szegedy, 2015), and precomputing them on
the whole training set and found no difference in performance. During inference, we use the precomputed
statistics.

Code. The code, together with additional videos, is available at the project’s website [URL].

C Additional Discussion

Boundary conditions. Boundary conditions are represented as stationary particles. Like moving parti-
cles, their density and zero velocity are interpolated into channels, but their positions is enforced to remain
fixed during rollout. This approach allows for flexible boundary shapes, such as the ramps in WaterRamps.

Voxelization and interpolation. The voxelization procedure used is implemented using CUDA by Py-
TorchCluster Fey & Lenssen (2019), p2g is implemented by us based on the voxelized representation, and
g2p uses PyTorch’s bilinear interpolation (grid_sample) Paszke et al. (2019) based on the voxelized rep-
resentation of the data. The cost of those operations is O(N), e.g., a naive implementation of voxelization
assigns each point p = (x, y, z) to a voxel index computed as:
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where s is the voxel size and ⌊·⌋ denotes the floor function. Since this computation is performed in con-
stant time for each of the N points, the overall complexity is O(N). Alternative interpolation methods
could be considered, although quick experimentation with bicubic interpolation for grid-to-particles or dif-
ferent weighting schemes for voxelization did not yield much difference in our pipeline. Some methods, like
GIOROM Viswanath et al. (2024) and GINO Li et al. (2024b), learn the interpolation through the use of
graph-based neural networks, but this strongly increases computational costs due to the construction of a
graph and the forward pass in the neural network.

Limitations of voxelization. One of the main issues of voxelization onto a fixed regular grid means
the domain is limited and it must be rectangular, like for the material point method. While a rectangular
domain can be defined with local boundary conditions over the irregular domain of interest, this will be a
disadvantage for sparse systems, for which Lagrangian methods might be a better fit. Likewise, out-of-bounds
particles can be handled either with a larger domain, which might be more computationally expensive,
by clamping the positions, or simply dropping the out-of-bounds particles. These particular conditions
are known disadvantages of MPM, and of some implementations of SPH, and are therefore inherited by
NeuralMPM.

Rollout stability. Long-term stability during rollout of neural emulators is an open problem. As such,
we decouple this problem from the design of the method or the architecture. There are commonly used
tricks in the literature, such as noise injection, backpropagating through the autoregressive rollout, temporal
bundling, having two models work in tandem (one to produce large timesteps and one to interpolate between
them), using explicit constraints White et al. (2024), or modifying the gradients Schnell & Thuerey (2024).
(List et al., 2025) perform a comparative study of some of these methods.

D Supplementary results

Additional results on DamBreak2D We have also compared the accuracy and inference speed of
NeuralMPM against a different implementation of GNS, and one of SEGNN, both provided by (Toshev
et al., 2024), in Tables 2 and 3. As in Table 1, NeuralMPM outperforms both by a margin baselines.

MSE↓ EMD↓
Ours 20.76 2.88
GNS 114.40 224.1

SEGNN 124.39 268.4

Table 2: Full-trajectory MSE (×10−3) and Sinkhorn distance (EMD) (×10−4) for NeuralMPM, GNS, and
SEGNN Brandstetter et al. (2022a) on the Dam Break 2D dataset from LagrangeBench. The two latter
models are baselines provided by LagrangeBench.

Single call (T = 1) Rollout (T = 401)
Ours 7.41 193.50
GNS 20.46 8,170.47

SEGNN 46.04 18,194.10

Table 3: Inference time (in ms) of NeuralMPM, GNS, and SEGNN Brandstetter et al. (2022a) on the
Dam Break 2D dataset from LagrangeBench. Times were averaged over all test trajectories. NeuralMPM
predicts 16 frames in a single model call and still outperforms the two baselines per call, which further widens
the gap for the total rollout time.

Evaluation. In Table 4, we report the numerical MSE rollout values that were reported in the bar plots
depicted in Figure 3 for Goop. Also, Figures 12 and 10 displays the error when rolling out a model for each
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Figure 9: MSE propagation during rollout. We show the 25th, 50th and 75th percentile of the MSE,
computed over particles and simulations, at each timestep during the rollout for each model and dataset.
The accuracy decreases as errors accumulate. While training in 5% of the time, NeuralMPM outperform the
baselines on all datasets, except WaterRamps, where it is slightly worse than GNS.

dataset, both in terms of MSE and EMD. For both metrics, the error starts low and slowly accumulates over
time. For the EMD, we use the Sinkhorn algorithm provided by (Cuturi et al., 2022).

Parameter Value MSE (×10−3)

K (No noise)

1 3.2
2 3.3
3 2.4
4 2.2

K (With noise)

1 3.5
2 2.5
3 2.4
4 3.0

Time bundling m

1 6.6
2 4.5
4 3.5
8 2.1
16 2.9
32 3.5

Grid size
32 5.5
64 2.4
128 7.1

Parameter Value MSE (×10−3)

Grid noise
0 3.2

0.001 2.4
0.005 6.9

Particle noise

0 2.2
0.0003 2.4
0.0006 2.4
0.001 2.1

U-Net Depth

2 3.3
3 3.0
4 2.4
5 2.3

U-Net Width
32 2.6
64 2.3
128 2.2

Table 4: Ablation results for Goop.

Grid-to-grid network. Although we have used a U-Net architecture for the grid-to-grid processor, Neu-
ralMPM can be used with any grid-to-grid processor and is not limited to that network. For example, in
Figure 13 and Table 5 we present qualitative and quantitative ablation results, respectively, for NeuralMPM
using an FNO network (Li et al., 2021) as the grid-to-grid processor. Results show that the FNO processor
is slightly worse than the U-Net processor.
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Figure 10: EMD propagation during rollout. We show the 25th, 50th and 75th percentile of the EMD,
computed over particles and simulations, at each timestep during the rollout for each model dataset daset.
The accuracy decreases as errors accumulate. While training in 5% of the time, NeuralMPM outperform the
baselines on all datasets.
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Figure 11: MSE propagation during rollout for the generalization task WaterDrop-XL. We show
the 25th, 50th and 75th percentile of the MSE, computed over particles and simulations, at each timestep
during the rollout for each model and daset. The accuracy decreases as errors accumulate. The models used
were trained on WaterRamps and tested on WaterDrop-XL to evaluate their generalization. NeuralMPM
performs better despite having a slightly worse MSE on WaterRamps than GNS.
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Figure 12: EMD propagation during rollout for the generalization task WaterDrop-XL. We show
the 25th, 50th and 75th percentile of the MSE, computed over particles and simulations, at each timestep
during the rollout for each model and daset. The accuracy decreases as errors accumulate. The models used
were trained on WaterRamps and tested on WaterDrop-XL to evaluate their generalization. NeuralMPM
performs better despite having a slightly worse MSE on WaterRamps than GNS.
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Figure 13: FNO processor. NeuralMPM with an FNO processor and default architecture. Rollout MSE
(×10−3) for different datasets.

Data FNO with noise FNO without noise
WaterRamps 16.8 16.3

SandRamps 5.5 3.5
Goop 4.3 3.8

Table 5: Rollout MSE (×10−3) for NeuralMPM with an FNO processor and default architecture, with and
without noise.

Additional inverse problem examples. We show two additional optimization examples in Figure 14.
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Initial Unoptimized Optimized

Figure 14: Inverse design problem. Additional optimization examples. We exploit NeuralMPM’s differ-
entiability to optimize the angle α of a ramp, anchored at the red dot, in order to get the water close to the
red square region.
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E Gallery of predicted trajectories

We present additional rollout comparisons in Figures 15 and 16. Further, in addition to the trajectories
in Figures 2 and 4, we show additional trajectories emulated with NeuralMPM for all datasets in Fig-
ures 17, 18, 19, 20, 21, 22, 23, and 24. We also release videos in the supplementary material, which we
recommend watching to better see the details and limitations of NeuralMPM. This includes 10 videos per
dataset of emulated trajectories on held-out test simulations.
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Figure 15: Example MultiMaterial trajectory against baselines. Each method is unrolled start-
ing from the initial conditions of a random test trajectory not seen during training.
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Figure 16: Example WaterRamps trajectory against baselines. Each method is unrolled starting
from the initial conditions of a random test trajectory not seen during training.
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Figure 17: Additional WaterRamps predicted trajectories. Evenly spaced in time snapshots of pre-
dicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.
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Figure 18: Additional SandRamps predicted trajectories. Evenly spaced in time snapshots of predicted
unrolled trajectories against ground truth. All trajectories are from the held-out test set.
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Figure 19: Additional Goop predicted trajectories. Snapshots of predicted unrolled trajectories against
ground truth. All trajectories are from the held-out test set. Due to Goop quickly reaching equilibrium,
more snapshots are taken in the first half of the trajectory.
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Figure 20: Additional MultiMaterial predicted trajectories. Evenly spaced in time snapshots of
predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set. The
first trajectory illustrates a rare failure where the shape of sand particles is not retained, even though all
particles are supposed to maintain the same velocity while airborne, as they are thrown against the wall.
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Figure 21: Additional Dam Break 2D predicted trajectories. Snapshots of predicted trajectories
against ground truth. All trajectories come from the held-out test set. To better show the differences of
these longer sequences, we select the following timesteps not even in time: t ∈ {0, 125, 400}. In the last
trajectory, NeuralMPM struggles to follow the gravity direction and breaks down over time.

27



Published in Transactions on Machine Learning Research (02/2025)

t = 0 t = 100 t = 150 t = 250 t = 500 t = 999

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 22: Additional VariablyGravity predicted trajectories. Snapshots of predicted trajectories
against ground truth. All trajectories come from the held-out test set.
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Figure 23: Generalization to more particles on WaterDrop-XL. Snapshots of predicted trajectories
emulated using a model trained solely on WaterRamps, against ground truth. All trajectories come from
the held-out test set of WaterDrop-XL. To better show the differences of these longer sequences, we select
the following timesteps not even in time: t ∈ {0, 75, 125, 200, 400, 999}. We can observe that the generalizing
model struggles to retain the shape of water while it’s falling.
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Initial Conditions Snapshot 1 Snapshot 2

Figure 24: Generalization to larger and non-square domains. We train a model on the square domains
in WaterRamps using 64× 64 input grids to the U-Net, and then perform inference on manually generated
non-square environments that are twice as wide and use a 128×64 input grid to the same U-Net. NeuralMPM
flawlessly generalizes and emulates particles in these new environments. Note: no ground truth is available
because the authors of GNS did not provide the physical parameters for simulating WaterRamps using
Taichi. Chosen time steps are 0, 150, 575. We recommend watching the videos in the supplementary material
for more detailed evaluation.
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