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ABSTRACT

Source-free cross-modal knowledge transfer is a crucial yet challenging task, which
aims to transfer knowledge from one source modality (e.g., RGB) to the target
modality (e.g., depth or infrared) with no access to the task-relevant (TR) source
data due to memory and privacy concerns. A recent attempt Ahmed et al. (2022)
leverages the paired task-irrelevant (TI) data and directly matches the features from
them to eliminate the modality gap. However, it ignores a pivotal clue that the paired
TI data could be utilized to effectively estimate the source data distribution and
better facilitate knowledge transfer to the target modality. To this end, we propose a
novel yet concise framework to unlock the potential of paired TI data for enhancing
source-free cross-modal knowledge transfer. Our work is buttressed by two key
technical components. Firstly, to better estimate the source data distribution, we
introduce a Task-irrelevant data-Guided Modality Bridging (TGMB) module. It
translates the target modality data (e.g., infrared) into the source-like RGB images
based on paired TI data and the guidance of the available source model to alleviate
two key gaps: 1) inter-modality gap between paired TI data; 2) intra-modality gap
between TI and TR target data. We then propose a Task-irrelevant data-Guided
Knowledge Transfer (TGKT) module that transfers knowledge from the source
model to the target model by leveraging paired TI data. Notably, due to the
unavailability of labels for the TR target data and its less reliable prediction from
the source model, our TGKT model incorporates a self-supervised pseudo-labeling
approach to enable the target model to learn from its own predictions. Extensive
experiments show that our method achieves the state-of-the-art performance on
three datasets (RGB-to-depth and RGB-to-infrared).

1 INTRODUCTION

In recent years, researchers have extensively utilized depth or infrared sensors to broaden the scope
of computer vision applications beyond the use of RGB cameras Hao et al. (2021); Zhang et al.
(2022); Zhou et al. (2022); Lin et al. (2022); Munaro et al. (2014); Zhou et al. (2021); Chang et al.
(2017). However, learning successful deep learning-based models for depth and infrared modalities
necessitates a significant amount of labeled data for supervision. Acquiring large and diverse datasets
incurs prohibitively high costs for data annotation. Consequently, research endeavors have been
dedicated to exploring the cross-modal distillation methods Sun et al. (2021); Hafner et al. (2018);
Wang et al. (2021) that transfer knowledge from a model trained on extensively labeled RGB data to
the target modality, such as depth and infrared.

Nevertheless, practical limitations, e.g., memory constraints and privacy concerns, may render these
labeled datasets unavailable in real-world scenarios. In light of this, SOCKET Ahmed et al. (2022)
presents a pioneering approach to address the challenge of source-free cross-modal knowledge
transfer by learning a model for task-relevant (TR) target modality data with only accessing to source
model pretrained by TR source modality data. Specifically, it involves: a) a source model trained for
the task of interest (i.e., classification); b) unlabeled TR data in the target modality with the same task
of interest; and c) paired task-irrelevant (TI) data in both the source and target modalities. Notably,
SOCKET proposes an intuitive strategy of directly reducing the distance of features between paired
TI data to mitigate the modality gap.

However, we observe that the paired TI data plays a crucial role in bridging the modality gap by
effectively estimating the missing source data distribution and facilitating knowledge transfer from
the source to the target modalities. Drawing inspiration by the prior source-free domain adaptation
(SFDA) methods Li et al. (2020); Liu et al. (2021), we find that the paired TI data can be effectively
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Figure 1: Our observations. Paired TI data facilitates translating TR target data into TR source-like RGB images
and transferring knowledge for the task of interest.

utilized to translate the TR target data (e.g., infrared) into the TR source-like RGB data, which aligns
well with the original source data distribution, as illustrated in Fig. 1. However, naively applying
these SFDA methods without considering the significant modality gap leads to a marginal or even
deteriorated performance boost, as confirmed by our experiments in Tabs. 2 and 3. Moreover, the
paired TI data (e.g., infrared) can be coupled with TR target data to extract knowledge from the
source model and transfer it to the target model. A straightforward way is to exploit cross-modal
distillation methods, e.g., Gupta et al. (2016); Garcia et al. (2019); Sayed et al. (2019); Hoffman et al.
(2016); however, these methods are limited to transferring knowledge solely with the paired TR data.
In this work, there exists the paired TI data, which may have the potential to facilitate knowledge
transfer for the task of interest, as shown in Fig. 1. With these observations, we strive to address a
novel question: “how to unlock the potential of the paired TI data to accurately estimate the source
data distribution to alleviate the modality gap, and facilitate knowledge transfer from the source
model to the target model for the unlabeled TR target data?”

In this paper, we present a novel yet concise framework comprising two core components: Task-
irrelevant data-Guided Modality Bridging module (TGMB) and Task-irrelevant data-Guided Knowl-
edge Transfer (TGKT) module, as depicted in Fig. 2. Specifically, the TGMB module is introduced
to translate the TR target data into the TR source-like RGB images via designing a translation net
(See Sec. 3.1). This allows for mitigating the large modality gap between RGB and depth/infrared
modalities. Specifically, to generate source-like RGB images with the paired TI data, we employ
domain-adversarial learning Creswell et al. (2018) to eliminate two primary gaps: the inter-modality
gap between the paired TI data; the intra-modality gap between the TI and TR target data. Note that
using existing image translation methods, e.g., Razavi et al. (2019); Esser et al. (2021), alone does
not meet our specific needs as they primarily aim to reconstruct natural-looking images rather than
optimal source-like RGB images (i.e., inputs) for the source model. Therefore, to guide the translation
process, we utilize the available source model to maximize the mutual information Ahmed et al.
(2021); Liang et al. (2020a) between the distribution of the TR source-like data and its corresponding
predictions generated by the source model. This ensures that the translated source-like RGB images
closely resemble the source data distribution required for effective knowledge transfer.

After bridging the source and target modalities, we propose a TGKT module that transfers the
knowledge of the source model to the target model for the unlabeled target modality (See Sec. 3.2).
As the predictions of TR source-like images may be less reliable due to the absence of the ground-
truth labels and the modality gap between the source and target data, a technical challenge arises:

“how to effectively transfer knowledge from the source model with less reliable predictions to the
target model using the paired TI data?”. To overcome this challenge, we first transfer knowledge
for the task of interest by minimizing the KL-divergence between the predictions of TR source-like
RGB images and TR target data. Furthermore, we utilize the paired TI data to facilitate knowledge
transfer by decreasing the distance between the features of TI source and target data. Considering
the limitations of the TR source-like images’ predictions, we incorporate a self-supervised pseudo-
labeling approach Liang et al. (2020a) to enable the target model to learn from its own predictions,
thereby mitigating the impact of less reliable predictions.

We evaluate the effectiveness of our proposed method on two cross-modal knowledge transfer tasks
with three benchmark datasets: SUN RGB-D Song et al. (2015), DIML RGB-D Cho et al. (2021), and
RGB-NIR Brown & Süsstrunk (2011). Our proposed method achieves a performance improvement
of +9.81% on the DIML RGB-D dataset and +3.50% on the RGB-NIR dataset, surpassing the
state-of-the-art methods.
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2 RELATED WORK

Source-Free Cross-Modal Knowledge Transfer. SOCKET Ahmed et al. (2021) introduces a
pioneering approach that addresses the challenging problem of transferring knowledge from one
source modality (e.g., RGB) to the target modality (e.g., depth or infrared) with no access to the
TR source data. However, SOCKET primarily focuses on reducing the modality gap by directly
decreasing the feature distance between the paired TI data. In contrast, we find that the paired TI data
can be coupled with TR target data to extract knowledge from the source model and transfer it to
the target model. Consequently, we strive to unlock the potential of the paired TI data to estimate
the source data distribution to alleviate the modality gap, and facilitate knowledge transfer from the
source model to the target model for unlabeled TR target data.

Source-Free Domain Adaptation. To address data privacy and storage concerns associated with
unsupervised domain adaptation (UDA) methods Ben-David et al. (2006); Pan & Yang (2010); Zhu
et al. (2023), source-free domain adaptation (SFDA) methods have emerged, which can be broadly
categorized into data generation-based approaches Li et al. (2020); Liu et al. (2021) and model fine-
tuning-based approaches Liang et al. (2020b; 2021); Ahmed et al. (2021); Ding et al. (2022); Yang
et al. (2021). Data generation-based methods adopt the generative model to estimate the source data
distribution by generating source-like data to improve the model performance in the target domain. On
the other hand, model fine-tuning-based methods exploit information maximization, self-supervised
pseudo-label refinement, spherical k-means, and attention mechanism to achieve a single source
adaptation to an unlabeled target domain. However, it is worth noting that data generation-based
methods may generate noisy source-like images and model fine-tuning-based methods generate noisy
pseudo labels for target data. In contrast to the aforementioned approaches, source-free cross-modal
knowledge transfer presents additional challenges due to the need to transfer knowledge between
different modalities. Leveraging the availability of the paired TI data and the available source model,
our proposed method aims to estimate source-like RGB images to bridge the modality gap.

Cross-Modal Distillation. To transfer knowledge across different modalities, cross-modal knowledge
distillation (CMKD) methods are typically used, which try to transfer knowledge learned from a
large-scale labeled dataset of one modality to another modality without a large amount of labeled
data Gupta et al. (2016). Most existing CMKD methods Gupta et al. (2016); Garcia et al. (2019);
Sayed et al. (2019); Hoffman et al. (2016); Ferreri et al. (2021); Du et al. (2019); Ayub & Wagner
(2019) highly rely on the assumption that the paired TR data is available across different modalities.
However, conventional CMKD methods only focus on transferring knowledge using the paired TR
data. In this work, we strive to utilize the paired TI data to facilitate knowledge transfer for the task
of interest in our source-free cross-modal knowledge transfer problem.

3 PROPOSED FRAMEWORK

Overview Assume we are given the well-annotated source modality data Ds = {(xs
i , y

s
i )}

ns
i=1,

consisting of ns labeled samples. Here, xs
i ∈ X s and ysi ∈ Ys ⊆ RK , where K denotes the total

number of classes in the label set C = 1, 2, · · · ,K. Similarly, Dt = {(xt
i)}

nt
i=1 represents the target

domain dataset, comprising nt unlabeled samples, which share the same underlying label set C as
the source domain. We define paired TI data as {xs

TIi
, xt

TIi
}nTI
i=1 , where xs

TIi
corresponds to the i-th

TI data point from the source modality, and xt
TIi

is its corresponding counterpart from the target
modality. The total number of paired TI data is denoted as nTI . In the source-free cross-modal
knowledge transfer scenario, we have access to the pre-trained source model C(Fs(·)), which has
been trained on Ds using supervised learning with a cross-entropy loss. Here, Fs represents the CNN
feature extractor followed by a linear classifier C. Only Dt is available during the training, and no
data in Ds can be utilized. Additionally, we use Fs(x) to denote feature representations and introduce
the translation net T to convert single-channel depth/infrared data into three-channel source-like
RGB images suitable for the source model. To mitigate the inter-modality and intra-modality gaps,
we employ two discriminators, D1 and D2, respectively. The objective of our work is to learn a
target-specific feature extractor Ft that generates target representations aligned with the source data
representations by leveraging the source feature extractor Fs and the paired TI data.

The proposed framework is depicted in Fig. 2, consisting of two main components: TGMB and
TGKT. The TGMB module aims to translate TR target data into TR source-like RGB images that are
compatible with the source model (See Sec. 3.1). The modality bridging is achieved by leveraging
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Figure 2: Overall framework of our proposed method. TGMB: Task-irrelevant data-Guided Modality Bridging,
TGKT: Task-irrelevant data Guided Knowledge Transfer.

the paired TI data and the pre-trained source model to generate TR source-like RGB data, enabling
us to extract source knowledge and train the translation net accordingly. Subsequently, in the TGKT
process (See Sec. 3.2), we transfer knowledge from the source model with less reliable predictions to
the target model using the paired TI data. This facilitates the transfer of learned knowledge from the
source model to the target model, enhancing its performance in the task of interest. The modality gap
is effectively eliminated through the synergistic operation of these modules, empowering the target
model to acquire the knowledge learned from the source model. We now describe these technical
components in detail.

3.1 TASK-IRRELEVANT DATA-GUIDED MODALITY BRIDGING (TGMB)

In our source-free cross-modal knowledge transfer setting, we have access to the paired TI data, which
can be leveraged to mitigate the modality gap. Unlike SOCKET Ahmed et al. (2022), which directly
minimizes the distance between the paired TI data in the feature space to align the distributions of
the two modalities, we further propose a novel approach to generate source-like RGB images that
effectively bridge the modality gap. However, there exists a challenging question of how to translate
TR target data into TR source-like RGB images while maintaining alignment with the source data
distribution. To tackle this challenge, we introduce the TGMB module, as illustrated in Fig. 2. The
TGMB module consists of a translation net T responsible for converting one-channel depth/infrared
data into three-channel RGB images, along with two discriminators D1 and D2 designed to minimize
both the inter-modality gap and the intra-modality gap, respectively. Moreover, we leverage the
knowledge embedded in the pre-trained source model Fs to guide the training of the translation net
by utilizing the mutual information of the TR source-like RGB images.

Specifically, the TGMB module is designed to translate the one-channel target depth/infrared modality
data into the source-like RGB data. To accomplish this, we propose a training objective that focuses
on reconstructing the TI source RGB images through the translation of TI target data. The objective
is formulated as follows:

Lrec =
1

nTI

nTI∑
i=1

∥∥xs
TIi

−T(xt
TIi

)
∥∥2 . (1)

To facilitate the translation process, our approach centers around reducing two gaps: the inter-
modality gap between the paired TI data; 2) the intra-modality gap between the TI and TR target
data. The primary objective of minimizing the inter-modality gap is to discriminate between the TI
source RGB images and the translated TI source-like RGB images. To ensure the compatibility of
the source-like RGB images with the available source model, we employ an adversarial learning
procedure incorporating a feature-based (instead of image-based) discriminator D1. The objective
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function for this procedure is formulated as follows:

LD1 =
1

nTI

nTI∑
i=1

log(D1(Fs(x
s
TIi

)) +
1

nTI

nTI∑
i=1

log(1−D1(Fs(T(xt
TIi

))). (2)

Given the absence of explicit supervision for the translation of TR target data into TR source-like
RGB images, we address this challenge by focusing on minimizing the intra-modality gap between
TI and TR target data. This ensures an effective translation process that successfully aligns the TR
target data with the TR source-like RGB images. To achieve this, we introduce the feature-based
discriminator D2 and define the corresponding objective as follows:

LD2
=

1

nt

nt∑
i=1

log(D2(Fs(T(xt
i))) +

1

nTI

nTI∑
i=1

log(1−D2(Fs(T(xt
TIi

))). (3)

The overall objective of the discriminators D1 and D2 is to jointly minimize the inter-modality and
intra-modality gaps for effective translation and alignment of the TR target data with the TR source
data. And the objective of discriminators is formulated as

LD = LD1
+ LD2

. (4)

After applying reconstruction and discriminator losses following existing image translation methods
Razavi et al. (2019); Esser et al. (2021); Van Den Oord et al. (2017), the translation net is capable of
generating natural-looking images. However, note that these images may not fully meet our specific
requirements and align with the original source data distribution. Therefore, to improve the suitability
of the TR source-like images for the source model, we incorporate mutual information Ahmed et al.
(2021); Liang et al. (2020a) to guide the translation process. Specifically, we compute the conditional
entropy Lent and the marginal entropy, referred to as diversity Ldiv , for the TR source-like RGB data.
These measures are designed to capture the information content and distributional consistency of the
TR source-like RGB images, thus facilitating effective translation and bridging of the modality gap.
The mutual information loss LIM is defined as

LIM = Lent − Ldiv, (5)

where Lent = − 1
nt

[
∑nt

i=1 δk(C(Fs (T(xt
i)))) log δk(C(Fs (T(xt

i))))] ,Ldiv = −
∑K

k=1 p̄k log p̄k.
Here, p̄ = 1

nt
[
∑nt

i=1 δk(C(Fs(T (xt
i))))] represents the embedding of the entire domain and δk

denotes the k-th element in the softmax output of the classifier. Finally, the total objective of TGMB
is obtained by combining the aforementioned losses, resulting in the following formulation:

LTGMB = Lrec + αdLD + αimLIM , (6)

where the trade-off parameters αd and αim control the relative importance of each loss term.

3.2 TASK-IRRELEVANT DATA-GUIDED KNOWLEDGE TRANSFER (TGKT)

After TGMB module successfully translates TR target data into TR source-like RGB images that
conform to the distribution of the source modality data, our approach focuses on leveraging both
the paired TR target data and source-like RGB images to transfer knowledge from the source model
to the target modality data. In contrast to previous CMKD methods Sun et al. (2021); Hafner et al.
(2018); Wang et al. (2021) that solely rely on the paired TR data, our work also takes advantage of
the available paired TI data. Moreover, our approach faces a challenge of the absence of ground-truth
labels for the target data and the less reliability of predictions made by the source model on the TR
source-like images. Consequently, a crucial question arises: “How to effectively utilize the TI data to
facilitate knowledge transfer from the source model with less reliable predictions to the target model
for the task of interest?" In response to this question, we introduce the Task-irrelevant data Guided
Knowledge Transfer (TGKT) as shown in Fig. 2.

First, in line with prior CMKD methods, we integrate KL-divergence into our approach to facilitate
knowledge transfer from the source model to the target model, leveraging the TR target data and the
generated TR source-like RGB data. The objective function for knowledge transfer is formulated as:

Lkd =
1

nt

nt∑
i=1

KL
(
δk(C(Ft(x

t
i))∥δk(C(Fs(T(xt

i)))
)
. (7)
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In light of the availability of paired TI data, we propose a knowledge transfer approach between
models that capitalizes on this data. Specifically, we facilitate the learning process of the target model
by minimizing the distance between paired TI data in the feature space. This strategy aims to align
the feature representations of the two modalities, thereby enabling effective knowledge transfer from
the source model to the target model. To achieve this, we define the following objective:

Lf =
1

nTI

nTI∑
i=1

∥∥Fs(x
s
TIi

)− Ft(x
t
TIi

)
∥∥2 . (8)

However, due to the absence of ground-truth labels for the TR data and the modality gap between the
source and target data, the predictions made by the source model on the TR target data are somewhat
less accurate. If only KL-divergence and feature matching losses are employed, the performance
of the target model will be limited. Therefore, to effectively tackle this issue, we further adopt a
self-supervised pseudo-labeling method Liang et al. (2020a) to enable the target model to learn from
its own predictions. This approach leverages the inherent structure or properties of the target data to
create pseudo-labels, which serve as supervision signals for training the target model. The objective
of such an approach is formulated as follows:

Lself =
1

nt

nt∑
i=1

1[k=ŷt] log δk(C(Ft(x
t
i))), (9)

where 1. is an indicator function that evaluates to 1 when the argument is true. ŷt is the pseudo-label
of the i-th target data, which is obtained via k-means clustering as Liang et al. (2020a). This
objective encourages the target model to make accurate predictions, leveraging the TR target data in
a self-supervised manner. And the total objective of TGKT is defined as the combination of three key
terms:

LTGKT = Lkd + βfLf + βselfLself , (10)
where βf and βself are the balancing hyper-parameters.

4 EXPERIMENTS

4.1 DATASETS, BASELINES, AND IMPLEMENTATIONS

Datasets. To testify the versatility of the proposed method, we conduct experiments on the several
public visual datasets: SUN RGB-D Song et al. (2015), DIML RGB+D Cho et al. (2021), and
RGB-NIR Brown & Süsstrunk (2011). The details about datasets are shown in the suppl. material.
The detailed statistics of the datasets is illustrated in Tab. 1.

Baseline methods. This paper addresses a novel problem statement that has received limited attention
in the existing literature, with SOCKET Ahmed et al. (2022) being the only prior work that has
considered this specific problem. To assess the effectiveness of our proposed method, we conduct
comprehensive comparisons with SHOT Liang et al. (2020a), which is widely recognized as the
state-of-the-art approach in the field of SFDA. By selecting SOCKET and SHOT as baseline methods,
we aim to provide a rigorous evaluation of our proposed approach against the most relevant and
competitive existing techniques.

Implementations. In our experimental setup, we implement our proposed method using PyTorch
framework. For training the source model, we utilize the widely adopted ResNet50 architecture He
et al. (2016) pretrained on the ImageNet dataset Deng et al. (2009), following previous works Liang
et al. (2020a); Peng et al. (2019); Xu et al. (2019). To construct the translation net, we combine a
fully connected layer, a batch normalization layer, and a convolutional layer. Similarly, for the two
discriminators, we employ a three-layer fully connected network architecture. Due to the page limit,
we put the details in the suppl. material.

4.2 EXPERIMENTAL RESULTS

Results on the SUN RGB-D dataset. Tab. 2 presents the results obtained on the SUN RGB-D
benchmark, demonstrating the superiority of our proposed method over the state-of-the-art approaches
in terms of average performance. The proposed TGMB module exhibits a remarkable performance
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Table 1: TR/TI split on the three datasets

SUN-RGBD DIML RGB-NIR

Number of domains 4 1 1
Domain names K-v1, K-v2, Real, Xtion N/A N/A
# of TR images for source training 1258, 2250, 727, 2528 693 315
# of TR unlabeled images 1258, 2250, 727, 2528 693 315
Number of paired TI images 3572 1419 162
Number of TR & TI classes 17&28 6&12 6&3
Modalities RBG-D RGB-D RGB-NIR

Table 2: Classification accuracy (%) on the SUN RGB-D dataset.

Source Image
Target Depth K-v1 K-v2

Source only SHOT SOCKET TGMB TGKT Source only SHOT SOCKET TGMB TGKT

K-v1 22.73 16.38 29.17 34.50 41.49 18.27 17.78 19.16 10.33 16.71
K-v2 3.02 10.81 19.63 12.26 18.76 20.36 43.87 48.58 29.11 51.47
Real 4.45 5.33 17.09 8.74 15.66 8.09 11.29 42.67 16.80 44.49
Xtion 2.70 10.89 25.83 15.82 28.62 8.13 20.67 38.62 20.40 41.16
Average 8.23 10.85 23.60 17.76 26.13 13.71 23.40 37.26 19.16 38.46

Source Image
Target Depth Real Xtion

Source only SHOT SOCKET TGMB TGKT Source only SHOT SOCKET TGMB TGKT

K-v1 5.19 7.29 12.93 8.52 13.20 10.88 17.60 18.04 13.69 24.49
K-v2 13.76 19.81 32.46 18.98 39.20 10.84 11.04 27.69 16.81 28.14
Real 11.83 15.27 44.15 28.06 46.49 6.25 8.50 23.22 14.16 24.92
Xtion 6.19 18.43 27.65 12.28 25.58 5.81 11.04 40.70 18.30 39.20
Average 9.24 15.20 29.30 19.96 31.12 8.45 12.05 27.41 15.74 29.19

Table 3: Classification accuracy (%) on DIML RGB-D and RGB-NIR datasets.

Method Source only SHOT SOCKET TGMB TGKT

RGB -> Depth 26.55 39.97 40.98 44.30 50.79
RGB->NIR 76.83 86.03 86.98 81.59 90.48

improvement compared to the source-only approach, with gains of +9.53%, +5.45%, +10.72%, and
+7.29% observed across four domains, respectively. These results indicate the efficacy of our TGMB
module in effectively bridging the modality gap by translating TR target data into TR source-like
RGB images with the paired TI data and the source model. In the K-v1 → K-v1 transfer task, TGMB
even outperforms SOCKET by +5.33%, further validating its effectiveness in mitigating modality
gaps. Based on the TGMB module, our TGKT method achieves the highest performance in 11 out
of 16 transfer tasks and has a gain of +2.53%, +1.20%, +1.82%, and +1.78% in four domains
over SOCKET. This outcome highlights the superiority of TGKT, as it enables the paired TI data
to facilitate knowledge transfer for the TR data, allowing the target model to learn from the source
model with less reliable predictions. Specifically, TGKT achieves performance gains of +12.32%
and +6.74% over SOCKET in K-v1 → K-v1 and K-v2 → Real tasks, respectively. However, due to
the limitations of the translation process, TGMB achieves a performance of 10.33% compared to the
18.27% achieved by the source-only approach in K-v1 → K-v2 task, resulting in that TGKT achieves
a 2.45% performance drop compared to SOCKET. This discrepancy may arise from the utilization of
the source model to guide the translation, with the less reliable mutual information about TR data
for some tasks, leading to less satisfactory performance of TGMB. A comprehensive analysis can
be found in the suppl. material. Overall, our proposed method has delivered compelling results,
validating its effectiveness in addressing the source-free cross-modal knowledge transfer problem.

Results on the DIML and RGB-NIR datasets. To further demonstrate the effectiveness of our
method, we conduct comparative experiments on the DIML and RGB-NIR datasets, aiming to evaluate
its performance against previous works. Tab. 3 presents the experimental results for two transfer
tasks: RGB → Depth and RGB → NIR. Our method achieves remarkable accuracy improvements
over SOCKET, with absolute gains of +9.81% and +3.50%, resulting in accuracies of 50.79%
and 90.48%, respectively. These results clearly surpass those obtained by competing methods,
establishing the superiority of our approach. Specifically, our proposed module, TGMB, exhibits
superior performance compared to the source-only approach, demonstrating absolute improvements
of +17.75% and +4.72% for the RGB → Depth and RGB → NIR tasks, respectively. These
improvements highlight the effectiveness of TGMB in bridging the modality gap, which is facilitated
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Table 4: Ablation study of loss components of TGMB on the SUN RGB-D dataset.

Lrec L1
D L2

D LIM K-v1 K-v2 Real Xtion Average

! 30.45 9.57 6.28 12.56 14.72
! ! 31.72 10.81 6.84 13.91 15.82
! ! 31.96 10.65 6.12 13.20 15.48
! ! ! 33.07 11.13 7.00 14.71 16.48
! ! ! ! 34.50 12.26 8.74 15.82 17.76

Table 5: Ablation study of loss components of TGKT on the SUN RGB-D dataset.

Lkd Lf Lself K-v1 K-v2 Real Xtion Average

! 34.02 12.24 8.59 13.20 17.01
! ! 37.84 17.17 15.98 25.66 24.16
! ! 36.31 15.42 7.47 24.40 20.90
! ! ! 41.49 18.76 15.66 28.62 26.13

by the inclusion of our proposed loss terms. Moreover, TGMB outperforms SHOT and SOCKET
by margins of +4.33% and +3.3% in RGB → Depth tasks., respectively, further establishing its
competitive advantages. Building upon the performance of TGMB, TGKT achieves additional
improvements of +6.49% and +8.89% for the RGB → Depth and RGB → NIR tasks, respectively.
This confirms the effectiveness of our proposed method in transferring knowledge from a source
model with less reliable predictions to a target model, particularly when aided by paired TI data.

4.3 ABLATION STUDY AND ANALYSIS

In this section, we select the K-v1 dataset as the target modality and establish four transfer tasks to
evaluate the performance of our proposed method. These tasks include K-v1 → K-v1, K-v2 → K-v1,
Real → K-v1, and Xtion → K-v1 transfer tasks.

Effectiveness of loss terms of TGMB. To thoroughly examine the contributions of each loss
component in our proposed TGMB module, we conduct ablation studies on the four transfer tasks.
The results presented in Tab. 4 demonstrate satisfactory and consistent performance gains achieved
by incorporating each loss term, highlighting their effectiveness in enhancing the overall performance.
Compared to the source-only approach, the reconstruction loss Lrec yields a significant +6.49%
performance gain. This improvement indicates the validity of estimating the source data distribution
to mitigate the modality gap. Additionally, the discriminator losses L1

D and L2
D contribute to

further improvements of +1.10% and +0.76%, respectively, by reducing the inter-modality and
intra-modality gaps. The combination of these two losses results in a +1.76% performance gain,
underscoring their effectiveness in generating source-like RGB images. Building upon these loss
terms, the mutual information loss LIM achieves an additional +1.28% performance gain. This
improvement validates the efficacy of utilizing the source model to guide the generation of source-like
RGB images, thereby facilitating bridging the modality gap.

Effectiveness of loss components of TGKT. To evaluate the efficacy of the loss components in our
proposed TGKT and examine how their combination contributes to knowledge transfer, we conduct a
comprehensive analysis. The results in Tab. 5 reveal the following key observations: (1) The feature
matching loss Lf and the self-supervised pseudo-label loss Lself lead to notable improvements
of +7.15% and +3.89% in accuracy, respectively. This highlights the effectiveness of knowledge
transfer facilitated by the utilization of the paired TI data and the incorporation of a self-supervised
pseudo-labeling approach. (2) By combining both losses, our proposed method achieves a significant
improvement in knowledge transfer performance, reaching an accuracy of 26.13%. This collective
enhancement demonstrates the capacity of our method to effectively transfer knowledge from a source
model with less reliable predictions to the target model, leveraging the paired TI data.

Influence of αd and αim. To assess the impact of the weighting parameters αd and αim in the
objective of TGMB, we conduct a comprehensive analysis. The results, presented in Tab. 6, illustrate
the trade-off between the reconstruction loss Lrec, discriminator loss LD, and mutual information
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Table 6: Sensitivity of αd and αim evaluated on on the DIML RGB-D dataset.

αd K-v1 K-v2 Real Xtion Average αim K-v1 K-v2 Real Xtion Average

0 30.45 9.57 6.28 12.56 14.72 0 33.07 11.13 7.00 14.71 16.48
0.1 30.62 12.24 6.52 12.72 15.53 0.1 33.39 12.40 8.51 14.79 17.27
0.5 32.27 11.29 6.92 13.67 16.04 0.2 34.50 12.26 8.74 15.82 17.76
1 33.07 11.13 7.00 14.71 16.48 0.5 30.60 10.89 6.68 14.56 15.68
5 32.21 10.92 6.43 11.62 15.30 1 27.98 10.33 8.82 14.94 15.82

Table 7: Sensitivity of βf and βself evaluated on on the DIML RGB-D dataset.

βf K-v1 K-v2 Real Xtion Average βself K-v1 K-v2 Real Xtion Average

0.0 34.02 11.84 8.90 14.08 17.21 0.0 37.84 17.17 15.98 25.66 24.16
0.1 37.52 17.17 13.59 25.12 23.35 0.1 39.67 15.98 16.14 25.99 24.45
0.2 37.84 17.17 15.98 25.66 24.16 0.5 40.22 17.17 16.66 28.14 25.55
0.5 34.74 14.63 19.63 25.34 23.58 1.0 41.49 18.76 15.66 28.62 26.13
2.0 31.32 13.67 20.51 25.04 22.64 2.0 33.78 20.59 15.98 27.90 24.56

loss LIM , leading to several noteworthy findings: (1) After careful analysis, we select values of 1.0
and 2.0 for αd and αim, respectively, as they demonstrate the optimal trade-off between the different
loss components. (2) Note that when setting αd to 5.0, the discriminator loss LD may adversely
impact the performance on the Xtion → K-v1 transfer task. This can be attributed to the fact that
TGMB primarily focuses on reducing the modality gap, potentially disregarding the importance
of reconstruction performance. (3) The lack of ground truth of target data and the modality gap
poses challenges in generating reliable predictions from the source model for the source-like images.
Consequently, increasing the weight of the mutual information loss LIM may inadvertently misguide
the translation process, resulting in the generation of source-like RGB images that do not align with
the source data distributions.

Influence of βf and βself . To assess the effectiveness of knowledge transfer, we conduct a hyperpa-
rameter analysis on βf and βself , as presented in Tab. 7. In addition to validating the effectiveness of
our method and determining the optimal trade-off parameters βf and βself , the results yield several
important observations: (1) Increasing the value of βf may lead to degraded performance. This can
be attributed to the fact that feature matching between the paired TI data facilitates knowledge transfer
from the source to target modalities. However, it may also have a negative impact on the training for
the task of interest when the intra-modality gap between the TR and TI data is large. Consequently, it
becomes crucial to select a trade-off parameter that strikes a balance between reducing the modality
gap and training the model for the task of interest. (2) The self-supervised pseudo-labeling approach
may adversely affect performance, particularly in scenarios where the predictions of the TR target
data are less reliable. More ablation study results and discussion can be found in suppl. material.

5 CONCLUSION AND FUTURE WORK

In this work, we presented a novel yet concise framework to tackle a challenging source-free
cross-modal knowledge transfer problem. Our approach capitalizes on the unexplored potential
of task-irrelevant data to enhance the knowledge transfer for the task of interest. Specifically, our
proposed method leverages task-irrelevant data to facilitate translating the TR target data into the
TR source-like RGB images and transferring knowledge from the source model with less reliable
predictions to the target model. Extensive experiments conducted on three datasets verify that our
method achieves the state-of-the-art performance compared to previous methods.

Limitation and future work. One limitation of our method lies in its non-end-to-end framework,
which signifies that there are certain aspects requiring further development. To address this limitation,
our future endeavors will focus on updating the modality bridging and knowledge transfer processes
in an iterative manner. This iterative approach will enable us to devise more effective solutions for
the problem at hand. Furthermore, our future research will delve into investigating the utilization of
the task-irrelevant data as an auxiliary tool to facilitate knowledge distillation for the task of interest.
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A APPENDIX

ABSTRACT

Due to space limitations in the main paper, we provide more details of the proposed
method and experimental results in the supplementary material. In Sec.B, we delve
into a discussion regarding our proposed method. Sec.C provides comprehensive
information about the dataset used in our experiments, including details about the
class split. In Sec.D, we present in-depth descriptions of the individual modules and
the training procedures employed in our work. Sec.E introduces self-supervised
pseudo-labeling approach as introduced by Liang et al. (2020b). To facilitate
understanding and reproducibility, we provide a pseudo algorithm of our proposed
method in Sec.F. Sec.G presents an overview of potential future research directions.
Finally, Sec.H shows the boarder impact of proposed method. Our project code
will be publicly available upon acceptance.

B DISCUSSION

B.1 COMPARISON WITH IMAGE TRANSLATION METHOD

To demonstrate that using existing image translation methods Razavi et al. (2019); Esser et al. (2021);
Van Den Oord et al. (2017) alone does not meet our specific needs as they primarily aim to reconstruct
natural-looking images rather than optimal source-like RGB images for the source model, we conduct
a comparative analysis. To this end, we employ VQ-GAN Esser et al. (2021) pretrained with TI
source images to reconstruct the TR target images. Additionally, we utilize our proposed TGMB
to generate TR source-like images. For clarity, we illustrate this comparison using the K-v1 →
K-v1 task as an example. Firstly, we train VQ-GAN with the TI source data to enable accurate
reconstruction of the TI source images. Subsequently, we input the TR source data into VQ-GAN,
generating the reconstructed TR images. These reconstructed TR images are presented in in Fig.3.

To ensure a fair comparison, we also utilize our proposed TGMB approach to generate TR source-like
images. These source-like images are depicted in Fig. 4. We then input both the reconstructed TR
images obtained via VQ-GAN and the source-like images generated by TGMB into the pre-trained
source model. Upon evaluation, the model utilizing the reconstructed TR images via VQ-GAN
achieves an accuracy of 29.21%. In contrast, when employing the source-like images generated by
TGMB, the accuracy significantly improves to 34.50%. This comparison effectively demonstrates the
efficacy of our proposed TGMB approach in generating source-like images that bridge the modality
gap. Note that while the generated source-like images may not be visually recognizable by humans,
they possess similar representations and outputs to the source domain data when processed by
convolutional neural networks. In contrast, although the reconstructed images obtained via VQ-GAN
appear natural, they are sub-optimal for addressing downstream tasks, emphasizing the importance of
our proposed TGMB in generating suitable source-like images.

B.2 DETAILS OF COMPUTATIONAL COST

The generation module entails a computational cost of 190.841M/MACs, accompanied by a parameter
count of 2.851k. In the training progress of TGMB, since the translation layer consists of a few layers
and discriminators consist of three fully connected layers, the computational cost of the generation
module could be negligible compared with training the target model. Note that in the inference, we
only utilize the target model to label the target data without other modules like the generation module.
Therefore, testing the model is much efficient without computational cost of generation module.

B.3 NOVELTY OF THIS WORK

Our novelty is to “unlock the potential of the paired TI data to accurately estimate the source
data distribution and facilitate knowledge transfer from the source model to the target model for the
unlabeled TR target data”. Our work introduces a novel problem that has been overlooked by previous
studies. We have meticulously devised a distinct framework that harnesses TI data to facilitate the
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Figure 3: Reconstructed TR images via VQ-GAN on the K-v1 → K-v1 transfer task.

Figure 4: Generated TR source-like images via TGMB on the K-v1 → K-v1 transfer task.

estimation of TR source-like data and transfer of cross-modal knowledge. To achieve these aims,
we propose a specific module TGMB to generate TR source-like images via utilizing paired TI
data to guide this translation and further utilize a pre-trained source model to control the generation.
Addressing specific research challenges is inherent to our approach. Notably, we propose targeted
solutions to reduce both intra-modality and inter-modality gaps. This strategic approach leads to the
generation of source-like RGB images that effectively bridge the modality gap. Subsequently, upon
obtaining these TR source-like RGB images, we advocate for an approach that optimally harnesses
TI data to facilitate knowledge transfer from a source model with potentially less reliable predictions
to a target model that addresses the task of interest. Note that our method departs from conventional
knowledge distillation methods by emphasizing the minimization of distances between paired TI data
within the feature space, rather than relying on straightforward knowledge transfer between TR data.
Additionally, we incorporate self-supervised pseudo-labeling to tackle specific challenges where
predictions of TR source-like data is less reliable. Our proposed framework’s efficacy is reinforced
by compelling results and visualizations. These outcomes empirically demonstrate the effectiveness
of our approach and its potential to address the identified challenges.
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B.4 DETAILS OF TRAINING DISCRIMINATORS

Each discriminator receives two feature vectors. The inputs of discriminator D1 are the features of
TI source data and translated TI source-like data which is generated through the translation layer.
The inputs of the discriminator D2 comprise the feature vectors from both translated TI and TR
source-like data.

B.5 ROLE OF TI DATA

Our research pertains to the complex task of estimating TR source data, a challenge that underpins
our work. To estimate the TR source data, we propose the TGMB module to generate TR source-like
data with paired TI data guidance. Our rationale and strategies for modeling the TR source data are
expounded below. Since we have paired TI data, we propose a translation layer to translate the TI
target data into TI source-like data with reconstruction loss and inter-modality minimization loss.
Since TI and TR source data is from different distributions, we aspire for the translation layer to not
only function optimally with TI data but to seamlessly accommodate TR data as well. To this end,
we propose to minimize the intra-modality gap between generated TI and TR source data. Finally,
the translation layer can adeptly generate both TI and TR source data. To ensure a robust alignment
between the generated TR source-like images and the original source distribution, we capitalize on
pre-existing pre-trained source models and mutual information loss to guide the translation.

B.6 DETAILS OF TR/TI SPLIT

The context of our entire work is rooted in the setting, where the availability of paired TI data serves
as the backdrop. This paired TI data plays a crucial role in facilitating the transfer of knowledge
across different modalities – from a source modality to a distinct target modality – in situations
where access to TR source data is unavailable. The rationale behind utilizing paired TI data, as
elucidated in the first work SOCKET, is as follows: “SOCKET addresses a challenge within the
context of cross-modal knowledge transfer. It operates under the premise that only (a) source models
trained for the task of interest (TOI), and (b) unlabeled data within the target modality are accessible,
necessitating the construction of a model for the same TOI. A key aspect of this problem lies in the
assumption that no data from the source modality for TOI is accessible. This setup holds significance
in scenarios where memory and privacy constraints preclude the sharing of training data from the
source modality, permitting only the exchange of trained models. In response, SOCKET is proposed
to bridge the disparity between the source and target modalities. In this work, It is demonstrated that
leveraging an external dataset of source-target modality pairs, unrelated to TOI – designated as TI
data – can facilitate the learning of an effective target model by reducing the feature discrepancy
between the two modalities”. Therefore, this first work SOCKET provides the foundational context
for our entire work. Building upon the limitations and issues identified in previous research, we
propose a research problem and subsequently propose a novel and efficacious framework to address
this problem, thereby achieving state-of-the-art performance.

B.7 COMPARISON WITH SOCKET

In this work, we propose a research question based on SOCKET, and observe that the paired TI data
plays a crucial role in bridging the modality gap. The key factor of improving performance is utilizing
paired TI data as a guidance to estimate the source data distribution and cross-modal knowledge
transfer. Specifically, within the context of estimating TR source data, we utilize paired TI data to
diminish the inter-modality and intra-modality gaps to facilitate the generation of TR source-like
data. Moreover, we fully exploit the knowledge of the pre-trained source model to ensure that the
translated TR source-like images closely resemble the source data distribution required for effective
knowledge transfer. In the process of cross-modality knowledge transfer, we utilize paired TI data to
align the feature representations of the two modalities. Moreover, we further adopt a self-supervised
pseudo-labeling method to solve the problem that predictions made by the source model on the TR
source-like data are less accurate.
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B.8 GENERATION OF PAIRED TR DATA

In this work, the absence of direct access to TR source data is acknowledged. This renders direct
knowledge transfer from the source model to the target modality data unfeasible. Therefore, we
propose a TGMB module to translate the TR target data into TR source-like data with TI data-
guidance. It is imperative to recognize that the TR target data and its corresponding TR source-like
data are in fact meticulously paired. Since TR target data is unlabeled, we propose TGKT to transfer
knowledge from the source model to the target modality data based on generating TR source-like
data. Then we utilize KL-divergence to facilitate the knowledge transfer between different modalities.
Addressing the challenges posed by modality gaps and the reduced predictive reliability of TR
source-like data from the source model, we have devised Lf and Lself . These mechanisms serve to
navigate these complexities within the framework of paired TI data-guidance.

B.9 SELECTION OF TRANSLATION LAYER

Since the utilization of a diffusion model for image generation could potentially enhance computa-
tional efficiency, this approach might not align seamlessly with our specific requirements. Diffusion
models primarily aim to reconstruct natural-looking images, a goal that diverges from our objective
of producing optimal source-like RGB images for the source model’s inputs. Training a diffusion
model necessitates a substantial volume of paired images, which contrasts with the DIML and
RGB-NIR datasets that comprise merely a few hundred images. This disparity led us to forego the
utilization of conventional image generation methods for generating TR source-like images. Central
to our endeavor is the domain of source-free domain adaptation. In this context, our employment of
the generation method is geared towards producing TR source-like data. Our primary focus is on
enhancing effective generation by decreasing intra-modality and inter-modality gaps. Additionally,
the integration of an information maximization loss bolsters the generation process. Within this work,
we present a translation layer distinguished by its simplicity yet remarkable efficacy. The translation
layer, comprised of just a few convolutional layers, plays a pivotal role in bridging the modality gap.

C DATASET

To testify the versatility of the proposed method, we conduct experiments on several public visual
datasets: SUN RGB-D Song et al. (2015), DIML RGB+D Cho et al. (2021), and RGB-NIR Brown &
Süsstrunk (2011).

SUN RGB-D is an indoor scene benchmark containing 10335 RGB-D image pairs which are captured
by four sensors, including Kinect version1 (K-v1), Kinect version2 (K-v2), Intel RealSense (Real),
and Asus Xtion (Xtion). We regard the images taken by different sensors from different domains.
The whole dataset consists of 45 classes, in which we take 17 common classes as TR classes and
the left 28 classes as TI classes. To obtain the source models from different domains, we train them
via RGB images from TR classes while the target modality data are the corresponding depth images
from TR classes. We build sixteen tasks to evaluate our method.

DIML RGB-D is comprised of over 200 indoor/outdoor scenes while we only use 2112 RGB-D
image pairs with 18 indoor scenes for evaluation. We split the 18 classes into two components: 6
classes as TR data and the remaining 12 classes as TI data. In each image pair, the RGB and depth
are regarded as the source and target, respectively. We report the performance of one transfer task:
RGB → Depth.

RGB-NIR contains 477 RGB and Near-Infrared (NIR) image pairs of 9 scene categories. The images
were captured using separate exposures from modified SLR cameras, using visible and NIR filters.
The whole dataset is split into TR data with 6 classes and TI data with 3 classes, and the knowledge
is transferred via a single source from RGB and NIR.

C.1 SUN RGB-D

The SUN RGB-D dataset with 45 classes is split into TR data and TI data. The TR data contains 17
common scenes which share among the four domains, including bathroom, classroom, computer
room, conference room, corridor, discussion area, home office, idk, kitchen, lab, living room, office,
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Figure 5: SUN RGB-D TR sample images. The TR data is from the 17 scenes out of 45 classes across two
modalities and 4 out of 17 classes are shown here. The source RGB images are discarded after finishing training
the source model, and the labels are unavailable for the target depth samples in our settings.

Basement Bedroom Bookstore Cafeteria Exhibition Gym

Figure 6: SUN RGB-D TI sample images. We show some samples of TI images which comprise 28 classes,
and list 6 classes, each with paired RGB and depth samples here.

office kitchen, printer room, reception room, rest space, study space. The TR samples in SUN RGB-D
dataset are shown as Fig.5.

The data with the remaining 28 classes is categorized into TI data, where the remaining classes are
basement, bedroom, book store, cafeteria, coffee room, dancing room, dinette, dining area, dining
room, exhibition, furniture store, gym, home, study, hotel room, indoor balcony, laundromat, lecture
theatre, library, lobby, mail room, music room, office dining, play room, reception, recreation room,
stairs, storage room. The TI samples in SUN RGB-D dataset are shown as Fig.6.

C.2 DIML RGB-D

The 6 classes used as TR data in DIML RGB-D dataset are bathroom, classroom, computer room,
kitchen, corridor, living room. The TR samples in DIML RGB-D dataset are shown as Fig.7.

The left 12 scenes regarded as the TI data are bedroom, billiard hall, book store, cafe, church, hospital,
laboratory, library, meeting room, restaurant, store, warehouse. The TI samples in DIML RGB-D
dataset are shown as Fig.8.
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Figure 7: DIML TR sample images. We show all the scenes in TR data, which comprises 6 classes. The source
RGB samples are not available after training, and the target labels are not accessible during the whole process.

Bedroom Cafe Church Hospital Library Store

DIML TIFigure 8: DIML TI sample images. We show 6 out of 12 classes for TI data, each with paired RGB and depth
samples here.

C.3 RGB-NIR

The TR data in RGB-NIR dataset contains 6 classes, which are country, field, indoor, mountain, street,
water. The TR samples in RGB-NIR dataset are shown as Fig.9

The remaining 3 classes used as TI data are forest, old building, urban. The TI samples in RGB-NIR
dataset are shown as Fig.10

D IMPLEMENTATIONS

In our experimental setup, ResNet-50 He et al. (2016) serves as the feature extractor module for
training both the source and target models. The architectural modifications we employ are in line
with the approach proposed in Liang et al. (2020a); Xu et al. (2019). Specifically, we replace the
last fully connected layer with a bottleneck layer and a task-specific classifier layer. Additionally,
we incorporate batch normalization layer Ioffe & Szegedy (2015) after the bottleneck layer and
apply weight normalization in the final layer. To reduce the inter-modality and intra-modality gaps
within the models, we introduce two discriminators that are designed based on adversarial learning
Goodfellow et al. (2020). Each discriminator consists of three fully connected layers, with a Rectified
Linear Unit (ReLU) Nair & Hinton (2010) activation function applied after the first two layers.
The translation module, crucial for our framework, is constructed by combining a fully connected
layer, a batch normalization layer, and a convolutional layer, adopting a UNET Ronneberger et al.
(2015) architecture. Specifically, we utilize the first DoubleConv module and OutConv module to
establish the translation module, which facilitates the conversion process between different modalities.
To generate images that closely resemble the inputs of the source model, we impose constraints
for the outputs of the translation module using the sigmoid Dubey et al. (2022) and normalize
functions. These constraints ensure the production of source-like images during the generation
process, maintaining consistency with the desired outputs.
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Figure 9: RGB-NIR TR sample images. There are 6 classes for TR data, and we show all the scenes here.
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Figure 10: RGB-NIR TI sample images. We show all the 3 classes for TI data, and they all RGB and depth
paired image samples.

Furthermore, each framework is trained using the back-propagation algorithm, a widely adopted
technique in deep learning. Specifically, for training the source model, we employ stochastic gradient
descent with a momentum value of 0.9 and weight decay set to 10−3. The learning rate is set at 10−2

for the bottleneck and classifier layers, while the backbone is trained at a rate of 10−3. Additionally,
we incorporate a learning rate scheduling strategy, as described in Ganin & Lempitsky (2015), where
the initial rate is exponentially decayed as the learning progresses. This strategy aids in optimizing
the training process. During the training process of the translation layer in the TGMB, we utilize
stochastic gradient descent with a momentum value of 0.9, weight decay set to 10−3, and a learning
rate of 10−3. For training the discriminators, we employ the Adam optimizer, a popular optimization
algorithm, and set the learning rate to 10−4. It is important to note that in the TGMB process, the
parameters of the source model are fixed. In the TGKT process, we leverage both the translation
module and source model to teach the target model. The architecture of the target model is identical
to that of the source model. For training the target model, we also utilize stochastic gradient descent
with a momentum value of 0.9 and weight decay set to 10−3. The learning rate is set at 10−2 for
the bottleneck and classifier layers, while the backbone is trained at a rate of 10−3. Throughout the
training of the source model, TGMB, and TGKT, we employ a batch size of 32, a common practice
in deep learning experiments. To facilitate the implementation of our experiments, we utilize the
PyTorch framework Paszke et al. (2019), a widely-used deep learning library. For a comprehensive
understanding of the algorithm, we provide the detailed algorithm in Sec. F.

E SELF-SUPERVISED PSEUDO-LABELING

To obtain more accurate pseudo-labels, we follow the method as the work Liang et al. (2020b)Ahmed
et al. (2021) and adopt a self-supervised clustering strategy to refine the wrong predictions. Firstly,
we calculate the cluster centroid of each class by target model for the whole target data at iteration 0
as follows:
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where Ĝt = C(F̂t(x
t
i)) denotes the target model from the last iteration, F̂t represents the feature

extractor from the last iteration and C is the classifier which is fixed during the whole process. The
calculated centroids are capable of representing the distribution of different categories of target
domains more robustly and reliably. Next, we assign the class label k as the pseudo-label for the i-th
target feature F̂t(x

i
t) when its nearest neighbor is the k-th centroid. The pseudo-label at iteration 0 is

calculated as:
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After that, we continue to compute the target centroids based on the updated pseudo-labels by
repeating the steps:
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ŷ
(1)
t = argmin

k

∥∥∥F̂t(x
i
t)− c

(1)
k

∥∥∥2
2
, (14)

where 1{.} denotes an indicator function that equals 1 when the inside argument is true. Here ŷt
represents the self-supervised pseudo-labels as they are produced by the centroids calculated in an
unsupervised manner. We reiterate updating the pseudo-labels regularly based on Eq.(3) and (4) until
reaching certain iterations. Finally, the pseudo-label cross-entropy loss Lself is calculated as follow:

Lself =
1

nt

nt∑
i=1

1[k=ŷt] log
(
δk

(
C
(
Ft(x

t
i)
)))

. (15)

F ALGORITHM

The pseudo algorithms of the proposed TGMB and TGKT are shown in Algorithm. 1 and Algorithm. 2,
respectively.

G FUTURE WORK

The utilization of TI data for facilitating knowledge transfer presents challenges due to its out-of-
distribution nature when compared to the TR (Target Reconstruction) data. However, in our work,
we demonstrate that TI data can indeed be leveraged to minimize the gap between the source and
target models. It is important to note that the impact of TI data on training can vary depending on
the magnitude of the intra-modality gap between the TR and TI data and the emphasis placed on
reducing this gap versus improving supervised performance.

Additionally, the effectiveness of the self-supervised pseudo-labeling approach relies on the reliability
of the predictions generated by the target model for the TR target data. In cases where the predictions
for TR data from the source model are less reliable, the self-supervised pseudo-labeling approach
can enhance the performance of the target model. However, it is crucial to acknowledge that this
approach may also have adverse effects, particularly when the predictions of TR target data from
the target model are unreliable. This implies that the pseudo-labeling process generates less reliable
predictions for TR data, consequently misleading the training of the target model.

Considering the challenges associated with utilizing TI data for knowledge transfer and the potential
limitations of the self-supervised pseudo-labeling approach, future research efforts will be directed
towards exploring the utilization of task-irrelevant data to transfer knowledge between cross-modal
TR data. Additionally, we intend to investigate approaches that ensure the reliable guidance of the
target model’s training process using the self-supervised pseudo-labeling approach, while effectively
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Algorithm 1 Task-irrelevant data-Guided Modality Bridging

1: Input: xs
TIi

, xt
TIi

, xt
i; max iterations: I; model: Fs, C, T, D1, D2.

2: for i to I do
3: Utilize translation module T to generate source-like TR and TI images: T(xt

i), T(xt
TIi

).
4: Calculate the reconstruction loss using paired TI images:

Lrec =
1

nTI

∑nTI

i=1

∥∥xs
TIi

−T(xt
TIi

)
∥∥2.

5: Decrease the inter-modality and intra-modality gaps with two discriminators:
L1
D = 1

nTI

∑nTI

i=1 log(D1(Fs(x
s
TIi

)) + 1
nTI

∑nTI

i=1 log(1−D1(Fs(T(xt
TIi

))),
L2
D = 1

nt

∑nt

i=1 log(D2(Fs(T(xt
i))) +

1
nTI

∑nTI

i=1 log(1−D2(Fs(T(xt
TIi

))),
LD = L1

D + L2
D.

6: To improve the suitability of the TR source-like images for the source model, we maximize
the mutual information of TR source-like images:
Lent = − 1

nt
[
∑nt

i=1 δk(C(Fs (T(xt
i)))) log δk(C(Fs (T(xt

i))))] ,

Ldiv = −
∑K

k=1 p̄k log p̄k,
LIM = Lent − Ldiv .

7: Compute the total objective for TGMB:
LTGMB = Lrec + αdLD + αimLIM .

8: Update the translation module T with LTGMB .
9: To update the two discriminators, we calculate the discriminator loss as:

L1
D = 1

nTI

∑nTI

i=1 log(D1(Fs(x
t
TIi

)) + 1
nTI

∑nTI

i=1 log(1−D1(Fs(T(xs
TIi

))),
L2
D = 1

nTI

∑nTI

i=1 log(D2(Fs(T(xt
TIi

))) + 1
nt

∑nt

i=1 log(1−D2(Fs(T(xt
i))),

10: Update the discriminators D1 and D2 with L1
D and L2

D, respectively.
11: end for
12: return translation module T.
13: End.

Algorithm 2 Task-irrelevant data-Guided Knowledge Transfer

1: Input: xs
TIi

, xt
TIi

, xt
i; max iterations: I; model: Fs, Ft, C, T.

2: for i to I do
3: Transfer knowledge from the source model to the target model using paired TR target data and

source-like images:
Lkd = 1

nt

∑nt

i=1 KL (δk(C(Ft(x
t
i))∥δk(C(Fs(T(xt

i)))) .
4: Utilize pried TI data to facilitate knowledge transfer between the source and target model:

Lf = 1
nTI

∑nTI

i=1

∥∥Fs(x
s
TIi

)− Ft(x
t
TIi

)
∥∥2 .

5: Apply self-supervised pseudo-labeling approach to enable the target model to learn from its
own predictions:
Lself = 1

nt

∑nt

i=1 1[k=ŷt] log δk(C(Ft(x
t
i)))).

6: The total objective of the TGKT process is defined as:
LTGKT = Lkd + βfLf + βselfLself .

7: Update the target model Ft with the loss LTGKT .
8: end for
9: return target model Ft.

10: End.

transferring knowledge from the source model (teacher) to the target model (student). These endeavors
aim to overcome the aforementioned challenges and advance the field of knowledge transfer in cross-
modal settings.

H BOARDER IMPACT

This paper represents a pioneering contribution in the field of source-free cross-modal knowledge
transfer by incorporating task-irrelevant data to facilitate the transfer of knowledge for task-relevant
data. This novel approach fills a critical gap in the current research landscape, as it addresses the
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challenge of knowledge transfer between different modalities without requiring task-relevant data.
By leveraging task-irrelevant data as a valuable resource, our proposed method has the potential to
impact the development of cross-modality large-scale models for the task of interest in real-world
applications.
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