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Abstract
Quantifying linguistic diversity in multilingual001
data sets is important for improving cross-002
linguistic coverage of NLP models. How-003
ever, current linguistic diversity scores rely004
mostly on measures such as the number of005
languages in the sample, which are not very006
informative about the structural properties of007
languages. In this paper, we propose a score008
derived from the distribution of text statis-009
tics (mean word length) as a linguistic at-010
tribute suitable for cross-linguistic comparison.011
We compare NLP data sets (UD, Bible100.012
mBERT, XTREME, XGLUE, XNLI, XCOPA,013
TyDiQA, XQuAD) to a new data set designed014
specifically for the purpose of being typologi-015
cally representative (WALS-SC). To do so, we016
apply a version of the Jaccard index (Jmm)017
suitable for comparing sets of measures. This018
diversity score can identify the types of lan-019
guages that need to be included in multilin-020
gual data sets in order to reach broad lin-021
guistic coverage. We find, for example, that022
(poly)synthetic languages are missing in al-023
most all data sets.024

1 Introduction025

Data sets for training and testing NLP models are026

increasingly multilingual and aimed at broad lin-027

guistic coverage. These data sets are often claimed028

to represent a typologically diverse sample, includ-029

ing low-resource and endangered languages.030

Linguistic diversity is typically described as the031

number of languages included in the data set, yet032

less often as the number of language families to033

which these languages belong. Both counts indi-034

cate a level of linguistic diversity: the more lan-035

guages and families, the more diversity. But how036

much diversity do we need? How can we define a037

desired or optimal diversity to set as a goal when038

composing multilingual data sets?039

These questions are typically not addressed in040

multilingual NLP studies. However, they are impor-041

tant in assessing whether our methods generalise042

well across diverse languages, without the need to 043

test them on each single language (even if we had 044

the necessary data for all languages). 045

The aim of this paper is to start a discussion on 046

how to define optimal diversity, and how to quan- 047

tify the degree to which multilingual NLP data sets 048

capture it. For this, we need a simple scalable 049

method to describe and compare languages, ideally 050

a numerical attribute that can be easily assigned to 051

any language. To be able to describe low-resource 052

languages, the value of the attribute should not de- 053

pend on the data size. We also need a quantifiable 054

definition of the desired diversity of the language 055

sample, and a method to compare the actual diver- 056

sity with the desired one. 057

We propose to use text statistics as a quantitative 058

attribute for describing languages. As a represen- 059

tation of overall linguistic diversity, we propose 060

to use a predefined sample of languages designed 061

by linguists for that purpose — the 100-language- 062

sample (100L) selected by the Word Atlas of Lan- 063

guage Structures (WALS; Comrie et al. (2013)) 064

to represent geographic and phylogenetic diver- 065

sity. Since text data are needed for our language 066

attributes and they are not easily accessible for all 067

the languages in the 100L sample, we compile a 068

new corpus which aims to cover the 100L sample 069

— the WALS-sample corpus (WALS-SC). This new 070

data set allows us to compare popular NLP data 071

sets against an independent benchmark. As a com- 072

parison method, we propose to use a version of the 073

Jaccard index suitable for comparing measures. 074

Thus, our study contributes a novel technique 075

to estimate the linguistic diversity of a data set, 076

which NLP researchers can easily apply and use as 077

a complement to existing techniques. This helps 078

researchers to make informed choices when design- 079

ing a multilingual data set. Representing a wider 080

spectrum of linguistic diversity is a way to improve 081

the cross-linguistic generalisation of NLP technol- 082

ogy, but also a way to deal with biases against 083
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low-resource languages, which are harder to repre-084

sent and thus more likely to be left behind (Joshi085

et al., 2020).086

2 Related Work087

Evaluating the linguistic diversity of data sets relies088

on comparable descriptions of languages. There-089

fore, we need to determine which languages are090

similar and which ones are dissimilar. Describing091

and comparing languages has a very rich tradition092

in linguistics, but the resulting descriptions tend093

to be rather language-specific, which makes cross-094

linguistic comparison a difficult task (Haspelmath,095

2007).096

The most widely accepted method for compar-097

ing languages relies on genealogical classification:098

given a phylogenetic tree, we consider languages099

located in the same region of the tree to be sim-100

ilar. This method currently prevails in NLP (cf.101

the work discussed in Section 7). Typically, we102

regard languages that belong to the same family103

to be similar. To know which language belongs to104

which family, we turn to popular authorities such as105

WALS (Dryer and Haspelmath, 2013) or Glottolog106

(Hammarström et al., 2018). However, language107

families can be too broad for a meaningful com-108

parison as they include typologically very different109

languages. For instance, English and Armenian110

belong to the same family, Indo-European, but are111

vastly different in terms of their phoneme invento-112

ries, morphology, and word order.113

Another possibility to compare languages, start-114

ing to be used in NLP only recently, is to rely on115

grammatical features extracted from WALS.1 Ponti116

et al. (2020) propose a diversity score using the fea-117

tures from URIEL (Littell et al., 2017) (which is de-118

rived from WALS and other typological databases).119

The score is called typology and it is calculated120

as the entropy of feature values (averaged per lan-121

guage).2 Moran (2016) compose a sample of 10122

maximally diverse languages selected from lan-123

guage clusters made with WALS and AUTOTYP124

features (Stoll and Bickel, 2013). Other work in125

NLP uses grammatical features (usually termed126

typological) for other purposes such as improv-127

ing model performance or predicting the features128

(Ponti et al., 2019), not for sampling.129

1An alternative typological database is AUTOTYP (Bickel
et al., 2017).

2They propose two more scores, family and geography,
which do not make use of grammatical features.

Finally, languages can be described using fea- 130

tures derived from various text statistics. These val- 131

ues could be the type-token ratio (TTR) or unigram 132

entropy of a text, which have been shown to cor- 133

relate with other morphological complexity mea- 134

sures (Kettunen, 2014; Bentz et al., 2016). Many 135

other methods have been proposed for assessing 136

linguistic complexity using text statistics (see, for 137

instance, Berdicevskis et al. (2018)). All of these 138

measures can, in principle, be used for describing 139

and comparing languages. Although such com- 140

parisons might seem counter-intuitive and hard to 141

interpret in terms of genealogical classification, it is 142

safe to regard them as complementary descriptions 143

of languages, more directly relevant to text process- 144

ing, which is the most common goal in NLP. 145

Transfer learning created a new need for nuanced 146

languages comparison for NLP. While models can 147

now be transferred across languages with zero-shot 148

or few-shot learning (Pires et al., 2019), the success 149

of the transfer depends on the similarity between 150

languages. Lin et al. (2019) propose a range of 151

measures that can be used in order to choose the 152

bast transfer language, which they divide into data- 153

dependent (data size, token overlap, TTR) and data 154

independent (various distance measures extracted 155

from the URIEL database). Lauscher et al. (2020) 156

study how well different similarity scores predict 157

the success of the transfer and they find that lan- 158

guage family is, in fact, the one that is least helpful 159

in all the tasks considered (with mBERT and XLM- 160

R). Turc et al. (2021) show that German is a better 161

transfer language than English for some languages. 162

Our proposal for assessing linguist diversity is rel- 163

evant to these efforts too, as its key component is 164

language comparison. 165

More generally, our work is intended to con- 166

tribute to several wide-scope initiatives for improv- 167

ing the quality of data management in NLP (Bender 168

and Friedman, 2018; Kreutzer et al., 2021; Lhoest 169

et al., 2021) by focusing specifically on diversity 170

assessments and data-independent scores for lan- 171

guage comparison. 172

3 WALS-SC as an Initial Capture of 173

Overall Linguistic Diversity 174

The WALS-sample corpus (WALS-SC) is an ongo- 175

ing collection effort for texts written in languages 176

which are part of the WALS one hundred language 177

sample. The WALS editors selected this language 178

sample as guidelines for contributors of chapters. 179
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Figure 1: Geographic distribution of the languages included in the WALS 100L sample and their endangerment
status.

They were asked to cover at least these one hundred180

languages in their collection efforts. The idea is to181

maximize genealogical (language family) and areal182

(geographic) diversity, and hence to minimize bias183

regarding the relative frequency of different types184

of linguistic features (Comrie et al., 2013). Figure 1185

shows the languages and their endangerment status186

according to UNESCO.187

The WALS-SC collection of text samples3 aims188

at capturing cross-linguistic diversity in terms of189

languages and their modalities and genres by cov-190

ering the WALS 100L sample. It is comprised of191

existing text resources, e.g., Project Gutenberg,4192

Open Subtitles (Lison and Tiedemann, 2016), The193

Parallel Bible Corpus (Mayer and Cysouw, 2014),194

the Universal Declaration of Human Rights,5 and195

extended with manually collected translations,196

transcriptions, and grammatical annotations from197

sources of language documentation and descrip-198

tion. Texts of various modes (spoken, written) and199

genres (conversation, technical, (non-)fiction) are200

included.201

Due to the fact that the WALS-SC includes both202

high- and and low-resource languages, we have203

implemented a text sampling procedure to counter-204

balance the large divergence in text sizes. When205

we encounter a text with less than 50k word tokens,206

we include the entire document. For languages207

for which large corpora are already available, we208

randomly sample chunks of contiguous text of the209

length 50k word tokens. This procedure allows210

3In the final version, the link to the shared repository will
be provided here.

4https://www.gutenberg.org/
5http://unicode.org/udhr/

Figure 2: A toy example of comparing sets of measures
with the minmax version of the Jaccard index.

us to build corpora of comparable sizes for cross- 211

linguistic comparison. 212

Taken together, WALS-SC currently contains 213

more than 100 million word tokens from genealogi- 214

cally and geographically diverse languages written 215

in fifteen different scripts (see Appendix A for an 216

overview). Given that its language sample is rec- 217

ommended by an influential team of typologist, we 218

regard this data set as an initial approximation of 219

the overall linguistic diversity, which can be im- 220

proved in the future. 221

4 Comparing Data Sets with Jaccard 222

Similarity 223

Our goal is to estimate the linguistic diversity of 224

a data set with respect to some desired diversity 225

(represented in our study by WALS-SC). Our score 226

is thus a comparison between two data sets. We 227

compare scaled distributions of the values of a nu- 228

merical attribute as shown in Figure 2. The upper 229

part of the figure shows (constructed) examples of 230
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two data sets (A and B), which we compare as-231

suming that A is the data set whose diversity we232

want to assess and B is the WALS-SC data set. The233

values of the numerical attribute (one measurement234

per language) are on the x-axis and the numbers235

of languages are on the y-axis. Each bar in the236

figures represents the number of languages in the237

given data set with the numerical value in the given238

range (bin). For instance, the first bar in the upper239

left plot shows that the first sample (A) has 30 lan-240

guages, with the values of their numerical attributes241

falling between 1 and 2. The other sample (B) has242

no languages in this bin.243

The width of the bins is arbitrary, but it does244

impact the score. Narrower bins capture more dif-245

ferences between two distributions than wider bins.246

By setting the width of the bins, we thus control247

the resolution at which we want to compare two248

data sets. In our example, the width is the dis-249

tance between integers, but one can define different250

thresholds (as long as all of the bins are of the same251

width).252

Since the data sets that we compare contain dif-253

ferent numbers of languages, the values on the y-254

axis (counts of languages) are normalised in order255

to neutralise the effect of the size of the samples256

and focus rather on the diversity. We multiply all257

counts in the smaller set with the scalar c:258

c =
max(|A|, |B|)
min(|A|, |B|)

(1)259

In this way, we increase the counts in the smaller260

set proportionally to obtain the same number of261

data points in both distributions and comparable262

numbers in each bin.6263

Once we have represented our two sets in this264

way, we compare them using a generalised ver-265

sion of Jaccard similarityy. This score shows how266

much the two distributions overlap. Intuitively, it267

is the ratio between the intersection and the union268

of the two distributions (shown in the bottom part269

of Figure 2).270

The original Jaccard index (Jaccard, 1912) com-271

pares two sets, but its generalised versions are suit-272

able for comparing sets of measurements. Thus,273

we use the minmax version of the score (Jmm),274

initially proposed by Tanimoto (1958) for compar-275

ing vectors of binary values and then generalised276

6Another way to normalise the counts would be to divide
them by the size of the set, but we chose the first option in
order to preserve the notion of number of languages, which is
helpful for the subsequent explanations.

to weight vectors by Grefenstette (1994). In our 277

version, we compare two data sets as two vectors 278

of weights: each bin is one dimension in the vec- 279

tors and the number of languages in that bin is its 280

weight. 281

Formally, we first map all the languages in all 282

data sets to real numbers m : L 7→ R, so that 283

{Y = m(x) : x ∈ X} = {(xi, yi)}, where 284

x is a language (x ∈ L), y is its corresponding 285

measurement (y ∈ R) and the range of the in- 286

dex i is 1 . . . |X|. We then group the measure- 287

ments into bins by applying a given threshold: 288

{Z = t(y) : y ∈ Y } = {(yi, zj)}, where z is 289

the bin to which the measurement is assigned, the 290

range of i is 1 . . . |X| and the range of j is 1 . . . |Z|. 291

With this formalisation, we define the Jaccard 292

minmax similarity of two data sets, Jmm(A,B), as 293

a similarity between two vectors of weights: 294

Jmm(a,b) =

∑|Z|
j=1min(aj , bj)∑|Z|
j=1max(aj , bj)

(2) 295

The sum in the numerator represents the inter- 296

section and the sum in the denominator the union 297

of the two sets of measurements. The weights a 298

and b represent the number of measurements in the 299

bin j. In the example in Figure 2, this gives the 300

following vectors: 301

a: a1 = 0, a2 = 30, a3 = 60, a4 = 50, a5 = 0 302

b : b1 = 0, b2 = 0, b3 = 40, b4 = 40, b5 = 50 303

With these weights, we obtain the following sim- 304

ilarity score: 305

Jmm(a,b) = 0+0+40+40+0
0+30+60+50+50 =

= 80
190 = 0.42

(3) 306

The values of Jmm fall in the range [0, 1], with 307

higher values indicating more similarity between A 308

and B, and, indirectly, better coverage of linguistic 309

diversity in A. 310

5 Mean Word Length as a Language 311

Attribute 312

We now turn to the question of how to define and 313

calculate a numerical attribute for calculating Jac- 314

card minmax similarity. This needs to be one num- 315

ber that tells us something about the structural prop- 316

erties of each language.7 Good candidates for such 317

7More generally, multiple attributes can be used too. In this
scenario, languages would be embedded in a multidimensional
space and clustered (instead of mono-dimensional bins that
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Figure 3: Mean word length measures at different text sizes in WALS-SC. The languages on the x-axis are sorted
according to the increasing value calculated on the biggest sample (10K). The values in the two smaller samples
(2K and 500) depart very little from the main trend.

attributes are diversity indices derived from typo-318

logical databases and various complexity measures319

calculated from text (see Section 2). A limitation320

of the measures proposed before is that they all321

require considerable resources: either a detailed322

grammar description or a relatively big sample of323

text necessary to collect comparable statistics. In324

particular, token-to-type ratio (TTR) and text en-325

tropy are known to grow as a function of text size326

(Tweedie and Baayen, 1998; Bentz et al., 2017).327

While this growth is predictable, it makes the mea-328

sure dependent on the data size.329

What we propose instead is to measure the mean330

word length as a single attribute that differentiates331

between languages. This approach might appear332

simplistic given the ongoing discussion on the sta-333

tus of words as linguistic units (Haspelmath, 2017;334

Wray, 2015). In an NLP setting, we argue that335

word length is still a practical and meaningful mea-336

sure that can be easily calculated and applied to337

any language, regardless of the size of the available338

resources. We come back to the limitations of this339

approach in Section 8.340

We define words to be sequences of Unicode341

characters, delimited by spaces or other language-342

specific word delimiters, as defined by common343

multilingual tokenisers. We split words into se-344

quences of characters and take the length of charac-345

ter sequences as word length.8 We apply this same346

we use). Then, the comparison would be performed using
more general methods for external cluster validation (Halkidi
et al., 2001).

8We use the units defined by the Unicode Standard as

definition to all scripts (see Section 8). 347

Word length is related to the structures of lan- 348

guages in several ways. The most prominent re- 349

lation holds between word length and morpholog- 350

ical types: longer words can be expected in lan- 351

guages with rich morphology (large morphological 352

paradigms, productive derivation), while shorter 353

words are found in languages with less morphol- 354

ogy. Along another dimension of morphological 355

diversity, we find longer words in (poly)synthetic 356

languages vs. shorter words in analytic languages. 357

Finally, morphological fusion in combination with 358

rich morphology can lead to middle-length words. 359

The interrelatedness between morphological types 360

and other elements of grammar, e.g., word order 361

(Sinnemäki, 2010; Ehret and Szmrecsanyi, 2016; 362

Futrell et al., 2015), makes word length a more 363

global attribute describing indirectly other proper- 364

ties of languages beyond morphology. 365

The relation between word length and word fre- 366

quency follows from communicative efficiency of 367

language (Zipf, 1949; Grzybek, 2007; Piantadosi 368

et al., 2011; Bentz and Ferrer Cancho, 2016) con- 369

necting word length to unigram entropy and TTR, 370

which both rely on word frequency. 371

This brings us to an important advantage of word 372

length over other text statistics: it manifests itself 373

in very small samples of text and remains stable 374

across different sizes. A sample of contiguous text 375

of only 500 tokens gives us already a very good 376

estimation of the overall mean word length. To 377

“user-perceived characters” (NFC).
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see this, consider Figure 3, which shows the val-378

ues of the mean word length for the WALS-SC379

languages on random samples of the length 500,380

2000 and 10000 tokens (values at 10000 are almost381

identical to overall values). Appendix C shows that382

languages are almost identically ranked with all the383

sample sizes.384

Being a text feature, the mean word length can385

be calculated without matching languages in the386

sample to linguistic databases, which is very con-387

venient for automatic screening of large samples.388

We can tell how diverse our samples are even if we389

do not know exactly what languages they contain.390

6 Tests: Data and Methods391

We calculate the Jaccard minmax score for a num-392

ber of popular data sets in NLP.10 Without attempt-393

ing to provide an exhaustive evaluation, we review394

data sets that are multilingual (containing ten or395

more languages), relatively widely used and re-396

cently released or updated. The list is given in397

Table 1 and discussed in more detail in Section 7.398

Descriptions of the data sets often do not in-399

clude all the information that was needed for our400

comparison. In particular, the number of language401

families is often not stated. To add this information,402

we extracted language names from the data files,403

converted these names into ISO 639-3 codes man-404

ually, and then retrieved the corresponding fami-405

lies from the Glottolog database (top level family).406

Therefore, the numbers in the second and the third407

column marked with an asterisk are added or mod-408

ified by us. The numbers without an asterisk are409

reported in the respective publications.410

Conversion to ISO 639-3 codes led to some411

changes in the number of languages, compared412

to those cited in the data descriptions. For instance,413

the mBERT training data has only 97 distinct lan-414

guages, not the 104 as mentioned in the original415

description.416

Sampling from NLP data sets Since our numer-417

ical attribute (mean word length) can be calculated418

on small samples, we take a single random sample419

for each data set considered. To do this, we select420

a random position in the data set and extract con-421

tiguous text of the length up to 10K tokens starting422

from the random position. In case a data set does423

not contain such long texts (or sequences of para-424

10In the final version, the link to the shared code will be
provided here.

graphs), we take smaller samples. The smallest 425

samples are 200-300 tokens long. 426

Word and character segmentation We to- 427

kenise all the collected samples into word-level 428

tokens using the Python library Polyglot (Al-Rfou, 429

2015). If a resulting token does not contain any 430

alphanumeric characters, we discard it as punctu- 431

ation. All the remaining tokens are further seg- 432

mented into characters using the Python library 433

segments (Moran and Cysouw, 2018). 434

Bin width We set the bin width for calculating 435

Jmm to 1. This is a rather coarse level of granular- 436

ity, which helps smaller samples get better scores 437

and also accommodate some noise that can be 438

found in such diverse samples. In addition to this, 439

we also tried 0.5 as the width. We do not report the 440

latter results, but the main trends did not change. 441

7 Findings: How Linguistically Diverse 442

are NLP Data Sets? 443

Table 1 lists all the reviewed data sets together with 444

some information about WALS-SC. 445

Comparing the data sets, we see that the Uni- 446

versal Dependencies data set agrees the most with 447

WALS-SC, showing thus more diversity than usu- 448

ally believed. On the other hand, the coverage of 449

the Bible 100 corpus is surprisingly low given the 450

fact that the majority of its languages are non-Indo- 451

European. Some much smaller language samples, 452

such as XNLI and XCOPA get a better score than 453

the Bible 100 sample. 454

If we compare our scores to Ponti et al. (2020), 455

we see considerable agreement, but also some dif- 456

ferences. Our score ranks XNLI and XCOPA 457

higher, while TyDiQA and XQuAD get relatively 458

low scores by both approaches, despite the careful 459

language selection in TyDiQA. 460

Figure 4 shows where the data sets diverge the 461

most. The main difference is whether a data set 462

includes languages with long words or not (mean 463

length > 8). Those samples that contain at least 464

some languages with long words score much bet- 465

ter on Jmm than those that remain completely on 466

the short-middle side. Given the relationships be- 467

tween word length and the structure of language 468

(discussed in Section 5), we believe this is just. 469

The second important factor is a strong peak of 470

the distribution indicating a bias towards one of 471

the length bins (Bible100 and XGLUE). The third 472

factor is a different (“wrong”) shape of the distri- 473
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Name and main references N(L) N(F) Criteria / goal TI Jmm

Universal Dependencies (UD)
(Nivre et al., 2020)

106* 20* Bias towards Eurasia recognised
but not intended

– 0.63

Bible 100 (Christodouloupoulos
and Steedman, 2015)

103* 30* Majority non-Indo-European – 0.52

mBERT (GitHub repo9) 97* 15* Top 100 size of Wikipedia plus
Thai and Mongolian

– 0.56

XTREME (Hu et al., 2020) 40 14 Diversity 0.42 0.41
XGLUE (Liang et al., 2020;
Wang et al., 2019)

19 7* – – 0.50

XNLI (Conneau et al., 2018;
Bowman et al., 2015; Williams
et al., 2018)

15 7* Span families, include low re-
source languages

0.39 0.58

XCOPA (Ponti et al., 2020) 11 11 Max diversity 0.41 0.57
TyDiQA (Clark et al., 2020) 11 10 Typological diversity 0.41 0.45
XQuAD (Artetxe et al., 2020; Ra-
jpurkar et al., 2016)

12* 6* Extension to new languages 0.36 0.52

WALS-SC (this paper) 86 51 WALS 100L sample coverage – –

Table 1: Multilingual NLP data sets with more than 10 languages in comparison to WALS-SC. N(L): the number
of languages in the data set. N(F): the number of families to which the languages belong. TI: typology index by
Ponti et al. (2020). Jmm: Jaccard minmax similarity (this paper).

Figure 4: Union and intersection between the distributions of the mean word length in WALS-SC and NLP data
sets.
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bution (TyDiQA). The data set that agrees least474

with WALS-SC is EXTREME, exhibiting all three475

factors of disagreement.476

Overall, it seems that the right-hand side of the477

mean word length scale remains rather scarcely478

represented in all data sets, including the WALS-479

SC itself. In future data collection, more effort480

should be put in representing languages with long481

words, especially because most of them are likely482

to be low-resource languages.483

8 Discussion484

We have highlighted the advantages of our pro-485

posal for assessing linguistic diversity in NLP data486

sets by comparing the distributions of mean word487

length. Now we turn to this measure’s limitations.488

The main issue with word length as defined489

above is that Unicode characters represent dif-490

ferent linguistic units, from low-level representa-491

tions close to sounds in alphabetic scripts to high-492

level meaningful units in logographic scripts. This493

can, in principle, lead to overestimating or under-494

estimating word length in some languages. While495

we can compare and score NLP data sets without496

knowing the true distribution of word lengths, a497

better estimation of this value would provide more498

sound and more interpretable measures of linguistic499

diversity.500

For charting the true distribution of word lengths501

across languages, script normalisation would be502

needed. One way to approach this task would be503

to replace orthography with phonemic transcrip-504

tion. In this scenario, text samples from NLP data505

sets would be pre-processed with a grapheme-to-506

phoneme (g2p) model and the word length would507

be measured on its output. This approach is cur-508

rently not feasible since the state-of-the art g2p509

performance depends considerably on the type of510

the script (Ashby et al., 2021). At the moment, g2p511

processing would introduce more confusion than512

normalization. However, the work on broad multi-513

lingual coverage of g2p models is ongoing and one514

might expect to see better solutions in the future. At515

the same time, a stronger international standardisa-516

tion of the phonemic transcription would be needed517

in order to obtain actually comparable measures518

(Moran and Cysouw, 2018). Current practices are519

still rather varied (e.g., whether one uses narrow or520

broad transcription).521

As an initial assessment of what would change522

if we used phonemic transcription, we have cre-523

ated a small parallel corpus of transcriptions of the 524

short story The North Wind and the Sun, which 525

is traditionally used for illustrating the sounds of 526

various languages. For each language in our corpus 527

(21 languages), we calculate the mean word length 528

in two versions: orthographic and phonemic. We 529

then perform a correlation test between these two 530

variables and obtain a Spearman rank correlation 531

of ρ = 0.66. This is a relatively strong correlation, 532

but still indicating considerable differences. The 533

list of languages and their mean word lengths is 534

given in Appendix B. Such studies of a broader 535

scope, together with various quantitative studies of 536

the scripts (Sproat and Gutkin, 2021), will lead to 537

better comparability of word lengths. 538

Another limitation of relying on word length is 539

the fact that languages can be structurally different 540

while belonging to the same word length bin even 541

with normalised orthography. This could be a rea- 542

son why several data sets have strong peaks in the 543

middle of the word length distribution. Combin- 544

ing several numerical attributes with word length 545

would be a way to obtain more nuanced language 546

descriptions. For this, one would need to define 547

attributes that are mutually independent, while all 548

the text-based measures proposed so far are rather 549

strongly correlated (see Section 2). Future work in 550

this direction would need to address internal word 551

structure more directly. 552

9 Conclusion 553

We have shown that NLP data sets can be assigned a 554

linguistic diversity score by comparing their distri- 555

bution of word lengths with the distribution found 556

in the WALS-SC data set, which we compile as 557

an initial capture of the overall linguistic diversity. 558

The scores assigned by our method (Jmm) largely 559

agree with previously proposed scores while pro- 560

viding a more fine-grained comparison and an ini- 561

tial upper bound. One finding that comes out of 562

our analysis is that languages on the high end of 563

the mean word length scale (> 8) are poorly rep- 564

resented even in the most diverse data sets. Thus, 565

the most important challenge for future work on 566

capturing full linguistic diversity is to broaden the 567

diversity spectrum, which will require annotating 568

and processing more low-resource languages of 569

certain types. 570
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Goran Glavaš. 2020. From zero to hero: On the730
limitations of zero-shot language transfer with mul-731
tilingual Transformers. In Proceedings of the 2020732
Conference on Empirical Methods in Natural Lan-733
guage Processing (EMNLP), pages 4483–4499, On-734
line. Association for Computational Linguistics.735

Quentin Lhoest, Albert Villanova del Moral, Yacine736
Jernite, Abhishek Thakur, Patrick von Platen, Suraj737

Patil, Julien Chaumond, Mariama Drame, Julien Plu, 738
Lewis Tunstall, Joe Davison, Mario Šaško, Gun- 739
jan Chhablani, Bhavitvya Malik, Simon Brandeis, 740
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas 741
Patry, Angelina McMillan-Major, Philipp Schmid, 742
Sylvain Gugger, Clément Delangue, Théo Matus- 743
sière, Lysandre Debut, Stas Bekman, Pierric Cis- 744
tac, Thibault Goehringer, Victor Mustar, François 745
Lagunas, Alexander Rush, and Thomas Wolf. 2021. 746
Datasets: A community library for natural language 747
processing. In Proceedings of the 2021 Conference 748
on Empirical Methods in Natural Language Process- 749
ing: System Demonstrations, pages 175–184, On- 750
line and Punta Cana, Dominican Republic. Associ- 751
ation for Computational Linguistics. 752

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen- 753
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou, 754
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei 755
Zhang, Rahul Agrawal, Edward Cui, Sining Wei, 756
Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie 757
Wu, Shuguang Liu, Fan Yang, Daniel Campos, Ran- 758
gan Majumder, and Ming Zhou. 2020. XGLUE: A 759
new benchmark datasetfor cross-lingual pre-training, 760
understanding and generation. In Proceedings of the 761
2020 Conference on Empirical Methods in Natural 762
Language Processing (EMNLP), pages 6008–6018, 763
Online. Association for Computational Linguistics. 764

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, 765
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, 766
Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios 767
Anastasopoulos, Patrick Littell, and Graham Neubig. 768
2019. Choosing transfer languages for cross-lingual 769
learning. In Proceedings of the 57th Annual Meet- 770
ing of the Association for Computational Linguis- 771
tics, pages 3125–3135, Florence, Italy. Association 772
for Computational Linguistics. 773

Pierre Lison and Jörg Tiedemann. 2016. Opensub- 774
titles2016: Extracting large parallel corpora from 775
movie and tv subtitles. In Proceedings from 776
LREC 2016, pages 923–929. European Language 777
Resources Association. 778

Patrick Littell, David R. Mortensen, Ke Lin, Kather- 779
ine Kairis, Carlisle Turner, and Lori Levin. 2017. 780
URIEL and lang2vec: Representing languages as 781
typological, geographical, and phylogenetic vectors. 782
In Proceedings of the 15th Conference of the Euro- 783
pean Chapter of the Association for Computational 784
Linguistics: Volume 2, Short Papers, pages 8–14, 785
Valencia, Spain. Association for Computational Lin- 786
guistics. 787

Thomas Mayer and Michael Cysouw. 2014. Creating 788
a massively parallel bible corpus. In Proceedings 789
of the International Conference on Language Re- 790
sources and Evaluation (LREC), pages 3158–3163. 791

Steven Moran. 2016. The ACQDIV database: 792
Min(d)ing the ambient language. In Proceedings 793
of the Tenth International Conference on Language 794
Resources and Evaluation (LREC’16), pages 4423– 795
4429, Portorož, Slovenia. European Language Re- 796
sources Association (ELRA). 797

10

https://doi.org/10.1515/LINGTY.2007.011
https://doi.org/10.1515/LINGTY.2007.011
https://doi.org/10.1515/LINGTY.2007.011
https://doi.org/10.1515/LINGTY.2007.011
https://doi.org/10.1515/LINGTY.2007.011
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
http://arxiv.org/abs/2103.12028
http://arxiv.org/abs/2103.12028
http://arxiv.org/abs/2103.12028
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/L16-1700
https://aclanthology.org/L16-1700
https://aclanthology.org/L16-1700


Steven Moran and Michael Cysouw. 2018. The Uni-798
code cookbook for linguists. Number 10 in Transla-799
tion and Multilingual Natural Language Processing.800
Language Science Press, Berlin.801

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-802
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A WALS-SC overview892

Genre Langs Tokens Scripts
conversation 7 5000 1
fiction 12 36 000 000 7
grammar 5 700 1
non-fiction 67 101 000 000 13
professional 39 80 000 15
Total 86 137 000 000 15

Table 2: Overview of basic statistics of the WALS-SC
(as of November 2021).

B Orthographic vs. Phonemic Mean893

Word Length894

ISO396-3 MWL MWL Trans.
Orth Phon type

1 aey 5.21 5.5 unk
2 arn 4.81 4.65 narrow
3 cmn 1.59 4.44 unk
4 deu 5 4.35 narrow
5 ell 4.62 4.23 unk
6 eng 4.19 3.46 narrow
7 eus 5.3 4.98 narrow
8 fra 4.55 3.18 broad
9 hau 3.8 4.07 narrow

10 heb 6.62 6.57 unk
11 hin 3.53 3.93 narrow
12 ind 5.92 5.25 unk
13 jpn 1.59 3.77 unk
14 kat 5.99 6.32 narrow
15 kor 2.85 6.56 unk
16 mya 10.22 8.15 unk
17 pes 3.99 5.03 unk
18 spa 4.62 4.36 narrow
19 tha 3.25 3.03 unk
20 tur 6.74 7.02 broad
21 vie 3.24 3.87 unk

Table 3: A comparison of the orthographic and the
phonemic word length. For those languages where both
broad and narrow transcriptions are available, we took
the narrow version.

C Language Rank Correlation with895

Different Sample Size896

To make sure that the stability across different sam-897

ple sizes suggested by Figure 3 is not a mere con-898

sequence of a relatively small range of variation,899

we perform correlation tests between different sam- 900

ples and in comparison to other measures (TTR 901

and unigram entropy (H)). Table 4 shows that the 902

ranks of languages change considerably less across 903

different sample sizes when considering the mean 904

word length than in the other two measures. 905

Samples MWL H TTR
500 tokens vs. max. 0.99 0.85 0.84
2K tokens vs. max 0.99 0.95 0.94

Table 4: Spearman rank correlation showing how much
rankings of languages change with text measures taken
on random samples of different size.
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