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Abstract

Quantifying linguistic diversity in multilingual
data sets is important for improving cross-
linguistic coverage of NLP models. How-
ever, current linguistic diversity scores rely
mostly on measures such as the number of
languages in the sample, which are not very
informative about the structural properties of
languages. In this paper, we propose a score
derived from the distribution of text statis-
tics (mean word length) as a linguistic at-
tribute suitable for cross-linguistic comparison.
We compare NLP data sets (UD, Bible100.
mBERT, XTREME, XGLUE, XNLI, XCOPA,
TyDiQA, XQuAD) to a new data set designed
specifically for the purpose of being typologi-
cally representative (WALS-SC). To do so, we
apply a version of the Jaccard index (J,m)
suitable for comparing sets of measures. This
diversity score can identify the types of lan-
guages that need to be included in multilin-
gual data sets in order to reach broad lin-
guistic coverage. We find, for example, that
(poly)synthetic languages are missing in al-
most all data sets.

1 Introduction

Data sets for training and testing NLP models are
increasingly multilingual and aimed at broad lin-
guistic coverage. These data sets are often claimed
to represent a typologically diverse sample, includ-
ing low-resource and endangered languages.

Linguistic diversity is typically described as the
number of languages included in the data set, yet
less often as the number of language families to
which these languages belong. Both counts indi-
cate a level of linguistic diversity: the more lan-
guages and families, the more diversity. But how
much diversity do we need? How can we define a
desired or optimal diversity to set as a goal when
composing multilingual data sets?

These questions are typically not addressed in
multilingual NLP studies. However, they are impor-
tant in assessing whether our methods generalise

well across diverse languages, without the need to
test them on each single language (even if we had
the necessary data for all languages).

The aim of this paper is to start a discussion on
how to define optimal diversity, and how to quan-
tify the degree to which multilingual NLP data sets
capture it. For this, we need a simple scalable
method to describe and compare languages, ideally
a numerical attribute that can be easily assigned to
any language. To be able to describe low-resource
languages, the value of the attribute should not de-
pend on the data size. We also need a quantifiable
definition of the desired diversity of the language
sample, and a method to compare the actual diver-
sity with the desired one.

We propose to use text statistics as a quantitative
attribute for describing languages. As a represen-
tation of overall linguistic diversity, we propose
to use a predefined sample of languages designed
by linguists for that purpose — the 100-language-
sample (100L) selected by the Word Atlas of Lan-
guage Structures (WALS; Comrie et al. (2013))
to represent geographic and phylogenetic diver-
sity. Since text data are needed for our language
attributes and they are not easily accessible for all
the languages in the 100L sample, we compile a
new corpus which aims to cover the 100L sample
— the WALS-sample corpus (WALS-SC). This new
data set allows us to compare popular NLP data
sets against an independent benchmark. As a com-
parison method, we propose to use a version of the
Jaccard index suitable for comparing measures.

Thus, our study contributes a novel technique
to estimate the linguistic diversity of a data set,
which NLP researchers can easily apply and use as
a complement to existing techniques. This helps
researchers to make informed choices when design-
ing a multilingual data set. Representing a wider
spectrum of linguistic diversity is a way to improve
the cross-linguistic generalisation of NLP technol-
ogy, but also a way to deal with biases against



low-resource languages, which are harder to repre-
sent and thus more likely to be left behind (Joshi
et al., 2020).

2 Related Work

Evaluating the linguistic diversity of data sets relies
on comparable descriptions of languages. There-
fore, we need to determine which languages are
similar and which ones are dissimilar. Describing
and comparing languages has a very rich tradition
in linguistics, but the resulting descriptions tend
to be rather language-specific, which makes cross-
linguistic comparison a difficult task (Haspelmath,
2007).

The most widely accepted method for compar-
ing languages relies on genealogical classification:
given a phylogenetic tree, we consider languages
located in the same region of the tree to be sim-
ilar. This method currently prevails in NLP (cf.
the work discussed in Section 7). Typically, we
regard languages that belong to the same family
to be similar. To know which language belongs to
which family, we turn to popular authorities such as
WALS (Dryer and Haspelmath, 2013) or Glottolog
(Hammarstrom et al., 2018). However, language
families can be too broad for a meaningful com-
parison as they include typologically very different
languages. For instance, English and Armenian
belong to the same family, Indo-European, but are
vastly different in terms of their phoneme invento-
ries, morphology, and word order.

Another possibility to compare languages, start-
ing to be used in NLP only recently, is to rely on
grammatical features extracted from WALS.! Ponti
et al. (2020) propose a diversity score using the fea-
tures from URIEL (Littell et al., 2017) (which is de-
rived from WALS and other typological databases).
The score is called typology and it is calculated
as the entropy of feature values (averaged per lan-
guage).2 Moran (2016) compose a sample of 10
maximally diverse languages selected from lan-
guage clusters made with WALS and AUTOTYP
features (Stoll and Bickel, 2013). Other work in
NLP uses grammatical features (usually termed
typological) for other purposes such as improv-
ing model performance or predicting the features
(Ponti et al., 2019), not for sampling.

! An alternative typological database is AUTOTYP (Bickel
et al., 2017).

They propose two more scores, family and geography,
which do not make use of grammatical features.

Finally, languages can be described using fea-
tures derived from various text statistics. These val-
ues could be the type-token ratio (TTR) or unigram
entropy of a text, which have been shown to cor-
relate with other morphological complexity mea-
sures (Kettunen, 2014; Bentz et al., 2016). Many
other methods have been proposed for assessing
linguistic complexity using text statistics (see, for
instance, Berdicevskis et al. (2018)). All of these
measures can, in principle, be used for describing
and comparing languages. Although such com-
parisons might seem counter-intuitive and hard to
interpret in terms of genealogical classification, it is
safe to regard them as complementary descriptions
of languages, more directly relevant to text process-
ing, which is the most common goal in NLP.

Transfer learning created a new need for nuanced
languages comparison for NLP. While models can
now be transferred across languages with zero-shot
or few-shot learning (Pires et al., 2019), the success
of the transfer depends on the similarity between
languages. Lin et al. (2019) propose a range of
measures that can be used in order to choose the
bast transfer language, which they divide into data-
dependent (data size, token overlap, TTR) and data
independent (various distance measures extracted
from the URIEL database). Lauscher et al. (2020)
study how well different similarity scores predict
the success of the transfer and they find that lan-
guage family is, in fact, the one that is least helpful
in all the tasks considered (with mBERT and XLM-
R). Turc et al. (2021) show that German is a better
transfer language than English for some languages.
Our proposal for assessing linguist diversity is rel-
evant to these efforts too, as its key component is
language comparison.

More generally, our work is intended to con-
tribute to several wide-scope initiatives for improv-
ing the quality of data management in NLP (Bender
and Friedman, 2018; Kreutzer et al., 2021; Lhoest
et al., 2021) by focusing specifically on diversity
assessments and data-independent scores for lan-
guage comparison.

3  WALS-SC as an Initial Capture of
Overall Linguistic Diversity

The WALS-sample corpus (WALS-SC) is an ongo-
ing collection effort for texts written in languages
which are part of the WALS one hundred language
sample. The WALS editors selected this language
sample as guidelines for contributors of chapters.
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Figure 1: Geographic distribution of the languages included in the WALS 100L sample and their endangerment

status.

They were asked to cover at least these one hundred
languages in their collection efforts. The idea is to
maximize genealogical (language family) and areal
(geographic) diversity, and hence to minimize bias
regarding the relative frequency of different types
of linguistic features (Comrie et al., 2013). Figure 1
shows the languages and their endangerment status
according to UNESCO.

The WALS-SC collection of text samples’ aims
at capturing cross-linguistic diversity in terms of
languages and their modalities and genres by cov-
ering the WALS 100L sample. It is comprised of
existing text resources, e.g., Project Gutenberg,*
Open Subtitles (Lison and Tiedemann, 2016), The
Parallel Bible Corpus (Mayer and Cysouw, 2014),
the Universal Declaration of Human Rights,> and
extended with manually collected translations,
transcriptions, and grammatical annotations from
sources of language documentation and descrip-
tion. Texts of various modes (spoken, written) and
genres (conversation, technical, (non-)fiction) are
included.

Due to the fact that the WALS-SC includes both
high- and and low-resource languages, we have
implemented a text sampling procedure to counter-
balance the large divergence in text sizes. When
we encounter a text with less than 50k word tokens,
we include the entire document. For languages
for which large corpora are already available, we
randomly sample chunks of contiguous text of the
length 50k word tokens. This procedure allows

3In the final version, the link to the shared repository will
be provided here.

*https://www.gutenberg.org/

Shttp://unicode.org/udhr/
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Figure 2: A toy example of comparing sets of measures
with the minmax version of the Jaccard index.

us to build corpora of comparable sizes for cross-
linguistic comparison.

Taken together, WALS-SC currently contains
more than 100 million word tokens from genealogi-
cally and geographically diverse languages written
in fifteen different scripts (see Appendix A for an
overview). Given that its language sample is rec-
ommended by an influential team of typologist, we
regard this data set as an initial approximation of
the overall linguistic diversity, which can be im-
proved in the future.

4 Comparing Data Sets with Jaccard
Similarity

Our goal is to estimate the linguistic diversity of
a data set with respect to some desired diversity
(represented in our study by WALS-SC). Our score
is thus a comparison between two data sets. We
compare scaled distributions of the values of a nu-
merical attribute as shown in Figure 2. The upper
part of the figure shows (constructed) examples of
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two data sets (A and B), which we compare as-
suming that A is the data set whose diversity we
want to assess and B is the WALS-SC data set. The
values of the numerical attribute (one measurement
per language) are on the x-axis and the numbers
of languages are on the y-axis. Each bar in the
figures represents the number of languages in the
given data set with the numerical value in the given
range (bin). For instance, the first bar in the upper
left plot shows that the first sample (A) has 30 lan-
guages, with the values of their numerical attributes
falling between 1 and 2. The other sample (B) has
no languages in this bin.

The width of the bins is arbitrary, but it does
impact the score. Narrower bins capture more dif-
ferences between two distributions than wider bins.
By setting the width of the bins, we thus control
the resolution at which we want to compare two
data sets. In our example, the width is the dis-
tance between integers, but one can define different
thresholds (as long as all of the bins are of the same
width).

Since the data sets that we compare contain dif-
ferent numbers of languages, the values on the y-
axis (counts of languages) are normalised in order
to neutralise the effect of the size of the samples
and focus rather on the diversity. We multiply all
counts in the smaller set with the scalar c:

_ maz(|A],|B)
min(|A].|B])

In this way, we increase the counts in the smaller
set proportionally to obtain the same number of
data points in both distributions and comparable
numbers in each bin.°

Once we have represented our two sets in this
way, we compare them using a generalised ver-
sion of Jaccard similarityy. This score shows how
much the two distributions overlap. Intuitively, it
is the ratio between the intersection and the union
of the two distributions (shown in the bottom part
of Figure 2).

The original Jaccard index (Jaccard, 1912) com-
pares two sets, but its generalised versions are suit-
able for comparing sets of measurements. Thus,
we use the minmax version of the score (Jm),
initially proposed by Tanimoto (1958) for compar-
ing vectors of binary values and then generalised

)

® Another way to normalise the counts would be to divide
them by the size of the set, but we chose the first option in
order to preserve the notion of number of languages, which is
helpful for the subsequent explanations.

to weight vectors by Grefenstette (1994). In our
version, we compare two data sets as two vectors
of weights: each bin is one dimension in the vec-
tors and the number of languages in that bin is its
weight.

Formally, we first map all the languages in all
data sets to real numbers m : L — R, so that
{Y = m(z) : © € X} = {(vi,v5)}, where
x is a language (r € L), y is its corresponding
measurement (y € R) and the range of the in-
dex i is 1...|X|. We then group the measure-
ments into bins by applying a given threshold:
{Z =tly) : y € Y} = {(vi,2;)}, where z is
the bin to which the measurement is assigned, the
range of 1is 1...|X | and therange of jis 1...|Z]|.

With this formalisation, we define the Jaccard
minmax similarity of two data sets, Jy,, (A, B), as
a similarity between two vectors of weights:

Z‘jzzll min(a;, bj)
Z';Z:|1 maz(a;, bj)
The sum in the numerator represents the inter-
section and the sum in the denominator the union
of the two sets of measurements. The weights a
and b represent the number of measurements in the
bin j. In the example in Figure 2, this gives the
following vectors:
a:a; =0, a2 =30,a3 =60,a4 =50,a5 =0
b:b1:O,bg:O,b3:40,b4:40,b5:50
With these weights, we obtain the following sim-
ilarity score:

Imm(a,b) =

2

_ _0+0+40+40+0 __
0430460450450 3)

_ 80 _
= 20 =0.42

Jmm(a, b)

The values of Jy,,, fall in the range [0, 1], with
higher values indicating more similarity between A
and B, and, indirectly, better coverage of linguistic
diversity in A.

5 Mean Word Length as a Language
Attribute

We now turn to the question of how to define and
calculate a numerical attribute for calculating Jac-
card minmax similarity. This needs to be one num-
ber that tells us something about the structural prop-
erties of each language.” Good candidates for such

"More generally, multiple attributes can be used too. In this
scenario, languages would be embedded in a multidimensional
space and clustered (instead of mono-dimensional bins that
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Figure 3: Mean word length measures at different text sizes in WALS-SC. The languages on the x-axis are sorted
according to the increasing value calculated on the biggest sample (10K). The values in the two smaller samples

(2K and 500) depart very little from the main trend.

attributes are diversity indices derived from typo-
logical databases and various complexity measures
calculated from text (see Section 2). A limitation
of the measures proposed before is that they all
require considerable resources: either a detailed
grammar description or a relatively big sample of
text necessary to collect comparable statistics. In
particular, token-to-type ratio (TTR) and text en-
tropy are known to grow as a function of text size
(Tweedie and Baayen, 1998; Bentz et al., 2017).
While this growth is predictable, it makes the mea-
sure dependent on the data size.

What we propose instead is to measure the mean
word length as a single attribute that differentiates
between languages. This approach might appear
simplistic given the ongoing discussion on the sta-
tus of words as linguistic units (Haspelmath, 2017;
Wray, 2015). In an NLP setting, we argue that
word length is still a practical and meaningful mea-
sure that can be easily calculated and applied to
any language, regardless of the size of the available
resources. We come back to the limitations of this
approach in Section 8.

We define words to be sequences of Unicode
characters, delimited by spaces or other language-
specific word delimiters, as defined by common
multilingual tokenisers. We split words into se-
quences of characters and take the length of charac-
ter sequences as word length.® We apply this same

we use). Then, the comparison would be performed using
more general methods for external cluster validation (Halkidi
et al., 2001).

8We use the units defined by the Unicode Standard as

definition to all scripts (see Section 8).

Word length is related to the structures of lan-
guages in several ways. The most prominent re-
lation holds between word length and morpholog-
ical types: longer words can be expected in lan-
guages with rich morphology (large morphological
paradigms, productive derivation), while shorter
words are found in languages with less morphol-
ogy. Along another dimension of morphological
diversity, we find longer words in (poly)synthetic
languages vs. shorter words in analytic languages.
Finally, morphological fusion in combination with
rich morphology can lead to middle-length words.
The interrelatedness between morphological types
and other elements of grammar, e.g., word order
(Sinnemaéki, 2010; Ehret and Szmrecsanyi, 2016;
Futrell et al., 2015), makes word length a more
global attribute describing indirectly other proper-
ties of languages beyond morphology.

The relation between word length and word fre-
quency follows from communicative efficiency of
language (Zipf, 1949; Grzybek, 2007; Piantadosi
et al., 2011; Bentz and Ferrer Cancho, 2016) con-
necting word length to unigram entropy and TTR,
which both rely on word frequency.

This brings us to an important advantage of word
length over other text statistics: it manifests itself
in very small samples of text and remains stable
across different sizes. A sample of contiguous text
of only 500 tokens gives us already a very good
estimation of the overall mean word length. To

“user-perceived characters” (NFC).



see this, consider Figure 3, which shows the val-
ues of the mean word length for the WALS-SC
languages on random samples of the length 500,
2000 and 10000 tokens (values at 10000 are almost
identical to overall values). Appendix C shows that
languages are almost identically ranked with all the
sample sizes.

Being a text feature, the mean word length can
be calculated without matching languages in the
sample to linguistic databases, which is very con-
venient for automatic screening of large samples.
We can tell how diverse our samples are even if we
do not know exactly what languages they contain.

6 Tests: Data and Methods

We calculate the Jaccard minmax score for a num-
ber of popular data sets in NLP.!” Without attempt-
ing to provide an exhaustive evaluation, we review
data sets that are multilingual (containing ten or
more languages), relatively widely used and re-
cently released or updated. The list is given in
Table 1 and discussed in more detail in Section 7.

Descriptions of the data sets often do not in-
clude all the information that was needed for our
comparison. In particular, the number of language
families is often not stated. To add this information,
we extracted language names from the data files,
converted these names into ISO 639-3 codes man-
ually, and then retrieved the corresponding fami-
lies from the Glottolog database (top level family).
Therefore, the numbers in the second and the third
column marked with an asterisk are added or mod-
ified by us. The numbers without an asterisk are
reported in the respective publications.

Conversion to ISO 639-3 codes led to some
changes in the number of languages, compared
to those cited in the data descriptions. For instance,
the mBERT training data has only 97 distinct lan-
guages, not the 104 as mentioned in the original
description.

Sampling from NLP data sets Since our numer-
ical attribute (mean word length) can be calculated
on small samples, we take a single random sample
for each data set considered. To do this, we select
a random position in the data set and extract con-
tiguous text of the length up to 10K tokens starting
from the random position. In case a data set does
not contain such long texts (or sequences of para-

01 the final version, the link to the shared code will be
provided here.

graphs), we take smaller samples. The smallest
samples are 200-300 tokens long.

Word and character segmentation We to-
kenise all the collected samples into word-level
tokens using the Python library Polyglot (Al-Rfou,
2015). If a resulting token does not contain any
alphanumeric characters, we discard it as punctu-
ation. All the remaining tokens are further seg-
mented into characters using the Python library
segments (Moran and Cysouw, 2018).

Bin width We set the bin width for calculating
Jmm to 1. This is a rather coarse level of granular-
ity, which helps smaller samples get better scores
and also accommodate some noise that can be
found in such diverse samples. In addition to this,
we also tried 0.5 as the width. We do not report the
latter results, but the main trends did not change.

7 Findings: How Linguistically Diverse
are NLP Data Sets?

Table 1 lists all the reviewed data sets together with
some information about WALS-SC.

Comparing the data sets, we see that the Uni-
versal Dependencies data set agrees the most with
WALS-SC, showing thus more diversity than usu-
ally believed. On the other hand, the coverage of
the Bible 100 corpus is surprisingly low given the
fact that the majority of its languages are non-Indo-
European. Some much smaller language samples,
such as XNLI and XCOPA get a better score than
the Bible 100 sample.

If we compare our scores to Ponti et al. (2020),
we see considerable agreement, but also some dif-
ferences. Our score ranks XNLI and XCOPA
higher, while TyDiQA and XQuAD get relatively
low scores by both approaches, despite the careful
language selection in TyDiQA.

Figure 4 shows where the data sets diverge the
most. The main difference is whether a data set
includes languages with long words or not (mean
length > 8). Those samples that contain at least
some languages with long words score much bet-
ter on J;,,,, than those that remain completely on
the short-middle side. Given the relationships be-
tween word length and the structure of language
(discussed in Section 5), we believe this is just.
The second important factor is a strong peak of
the distribution indicating a bias towards one of
the length bins (Bible100 and XGLUE). The third
factor is a different (“wrong”) shape of the distri-



Name and main references N(L) N(F) Criteria/ goal TI ‘ Jmm

Universal Dependencies (UD) 106*  20* Bias towards Eurasia recognised -1 0.63

(Nivre et al., 2020) but not intended

Bible 100 (Christodouloupoulos 103*  30* Majority non-Indo-European -1 052

and Steedman, 2015)

mBERT (GitHub repo’) 97*% 15*% Top 100 size of Wikipedia plus -1 0.56
Thai and Mongolian

XTREME (Hu et al., 2020) 40 14 Diversity 042 | 041

XGLUE (Liang et al., 2020; 19 TE - -1 0.50

Wang et al., 2019)

XNLI (Conneau et al., 2018; 15 7* Span families, include low re- 0.39 | 0.58

Bowman et al., 2015; Williams source languages

et al., 2018)

XCOPA (Ponti et al., 2020) 11 11  Max diversity 0.41 | 0.57

TyDiQA (Clark et al., 2020) 11 10 Typological diversity 0.41 | 045

XQuAD (Artetxe et al., 2020; Ra-  12* 6* Extension to new languages 0.36 | 0.52

jpurkar et al., 2016)

WALS-SC (this paper) 86 51 WALS 100L sample coverage - ‘ -

Table 1: Multilingual NLP data sets with more than 10 languages in comparison to WALS-SC. N(L): the number
of languages in the data set. N(F): the number of families to which the languages belong. TI: typology index by
Ponti et al. (2020). J,,.,: Jaccard minmax similarity (this paper).
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Figure 4: Union and intersection between the distributions of the mean word length in WALS-SC and NLP data
sets.



bution (TyDiQA). The data set that agrees least
with WALS-SC is EXTREME, exhibiting all three
factors of disagreement.

Overall, it seems that the right-hand side of the
mean word length scale remains rather scarcely
represented in all data sets, including the WALS-
SC itself. In future data collection, more effort
should be put in representing languages with long
words, especially because most of them are likely
to be low-resource languages.

8 Discussion

We have highlighted the advantages of our pro-
posal for assessing linguistic diversity in NLP data
sets by comparing the distributions of mean word
length. Now we turn to this measure’s limitations.

The main issue with word length as defined
above is that Unicode characters represent dif-
ferent linguistic units, from low-level representa-
tions close to sounds in alphabetic scripts to high-
level meaningful units in logographic scripts. This
can, in principle, lead to overestimating or under-
estimating word length in some languages. While
we can compare and score NLP data sets without
knowing the true distribution of word lengths, a
better estimation of this value would provide more
sound and more interpretable measures of linguistic
diversity.

For charting the true distribution of word lengths
across languages, script normalisation would be
needed. One way to approach this task would be
to replace orthography with phonemic transcrip-
tion. In this scenario, text samples from NLP data
sets would be pre-processed with a grapheme-to-
phoneme (g2p) model and the word length would
be measured on its output. This approach is cur-
rently not feasible since the state-of-the art g2p
performance depends considerably on the type of
the script (Ashby et al., 2021). At the moment, g2p
processing would introduce more confusion than
normalization. However, the work on broad multi-
lingual coverage of g2p models is ongoing and one
might expect to see better solutions in the future. At
the same time, a stronger international standardisa-
tion of the phonemic transcription would be needed
in order to obtain actually comparable measures
(Moran and Cysouw, 2018). Current practices are
still rather varied (e.g., whether one uses narrow or
broad transcription).

As an initial assessment of what would change
if we used phonemic transcription, we have cre-

ated a small parallel corpus of transcriptions of the
short story The North Wind and the Sun, which
is traditionally used for illustrating the sounds of
various languages. For each language in our corpus
(21 languages), we calculate the mean word length
in two versions: orthographic and phonemic. We
then perform a correlation test between these two
variables and obtain a Spearman rank correlation
of p = 0.66. This is a relatively strong correlation,
but still indicating considerable differences. The
list of languages and their mean word lengths is
given in Appendix B. Such studies of a broader
scope, together with various quantitative studies of
the scripts (Sproat and Gutkin, 2021), will lead to
better comparability of word lengths.

Another limitation of relying on word length is
the fact that languages can be structurally different
while belonging to the same word length bin even
with normalised orthography. This could be a rea-
son why several data sets have strong peaks in the
middle of the word length distribution. Combin-
ing several numerical attributes with word length
would be a way to obtain more nuanced language
descriptions. For this, one would need to define
attributes that are mutually independent, while all
the text-based measures proposed so far are rather
strongly correlated (see Section 2). Future work in
this direction would need to address internal word
structure more directly.

9 Conclusion

We have shown that NLP data sets can be assigned a
linguistic diversity score by comparing their distri-
bution of word lengths with the distribution found
in the WALS-SC data set, which we compile as
an initial capture of the overall linguistic diversity.
The scores assigned by our method (J,,,,,,) largely
agree with previously proposed scores while pro-
viding a more fine-grained comparison and an ini-
tial upper bound. One finding that comes out of
our analysis is that languages on the high end of
the mean word length scale (> 8) are poorly rep-
resented even in the most diverse data sets. Thus,
the most important challenge for future work on
capturing full linguistic diversity is to broaden the
diversity spectrum, which will require annotating
and processing more low-resource languages of
certain types.
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A  WALS-SC overview

Genre Langs Tokens Scripts
conversation 7 5000 1
fiction 12 36 000000 7
grammar 5 700 1
non-fiction 67 101 000 000 13
professional 39 80 000 15
Total 86 137 000 000 15

Table 2: Overview of basic statistics of the WALS-SC
(as of November 2021).

B Orthographic vs. Phonemic Mean
Word Length

1SO396-3 MWL MWL Trans.
Orth  Phon type
1 aey 5.21 5.5 unk
2 arn 4.81 4.65 narrow
3 cmn 1.59 444 unk
4 deu 5 4.35 narrow
5 ell 4.62 423 unk
6 eng 4.19 3.46 narrow
7 eus 5.3 498 narrow
8 fra 4.55 3.18 broad
9 hau 3.8 4.07 narrow
10 heb 6.62 6.57 unk
11  hin 3.53 3.93 narrow
12 ind 5.92 5.25 unk
13 jpn 1.59 3.77 unk
14 Kkat 5.99 6.32 narrow
15 kor 2.85 6.56 unk
16 mya 10.22 8.15 unk
17 pes 3.99 5.03 unk
18 spa 4.62 4.36 narrow
19 tha 3.25 3.03 unk
20 tur 6.74 7.02 broad
21  vie 3.24 3.87 unk

Table 3: A comparison of the orthographic and the
phonemic word length. For those languages where both
broad and narrow transcriptions are available, we took
the narrow version.

C Language Rank Correlation with
Different Sample Size

To make sure that the stability across different sam-
ple sizes suggested by Figure 3 is not a mere con-
sequence of a relatively small range of variation,
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we perform correlation tests between different sam-
ples and in comparison to other measures (TTR
and unigram entropy (H)). Table 4 shows that the
ranks of languages change considerably less across
different sample sizes when considering the mean
word length than in the other two measures.

Samples | MWL [ H|TIR |
500 tokens vs. max. 0.99 | 0.85 | 0.84
2K tokens vs. max 0.99 | 095 | 0.94

Table 4: Spearman rank correlation showing how much
rankings of languages change with text measures taken
on random samples of different size.



