Under review as a conference paper at ICLR 2026

PREDICTIVE DIFFERENTIAL TRAINING GUIDED BY
TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper centers around a novel concept proposed recently by researchers from
the control community where the training process of a deep neural network can be
considered a nonlinear dynamical system acting upon the high-dimensional weight
space. Koopman operator theory (KOT), a data-driven dynamical system analysis
framework, can then be deployed to discover the otherwise non-intuitive training
dynamics. Taking advantage of the predictive power of KOT, the time-consuming
Stochastic Gradient Descent (SGD) iterations can be then bypassed by directly
predicting network weights a few epochs later. This “predictive training” frame-
work, however, often suffers from gradient explosion especially for more extensive
and complex models. In this paper, we incorporate the idea of “differential learn-
ing” into the predictive training framework and propose the so-called “predictive
differential training” (PDT) for accelerated learning even for complex network
structures. The key contribution is the design of an effective masking strategy based
on a dynamic consistency analysis, which selects only those predicted weights
whose local training dynamics align with the global dynamics. We refer to these
predicted weights as high-fidelity predictions. PDT also includes the design of
an acceleration scheduler to adjust the prediction interval and rectify deviations
from off-predictions. We demonstrate that PDT can be seamlessly integrated as a
plug-in with a diverse array of existing optimizers (SGD, Adam, RMSprop, LAMB,
etc.). The experimental results show consistent performance improvement across
different network architectures and various datasets, in terms of faster convergence
and reduced training time (10-40%) to achieve the baseline’s best loss, while main-
taining (if not improving) final model accuracy. As the idiom goes, a rising tide lifts
all boats; in our context, a subset of high-fidelity predicted weights can accelerate
the training of the entire network!

1 INTRODUCTION

The advent of cutting-edge hardware (L1 et al.,[2014)) and the development of parallel processing tech-
niques (Li et al.| [2020) have greatly accelerated the training process of Deep Neural Network (DNN).
However, enhancing the fundamental techniques of DNN training continues to be a significant chal-
lenge. From the inception of Stochastic Gradient Descent (SGD) (Robbins & Monro, [1951)), which
has since become a mainstay in DNN training, numerous techniques have been proposed to increase
the efficiency of the underlying optimization task, including, for example, learning rate annealing
and momentum (Sutskever et al.,2013), RMSprop (Tieleman & Hinton, 2012), and Adam (Kingma
& Bal 2014). In addition to these first-order optimizers, second-order alternatives (Martens} 2010)
utilizing curvature information or second-order derivatives of the loss function have been explored to
potentially enable more efficient convergence. Despite these advancements, gradient-based meth-
ods are still inherently iterative, requiring repeated gradient computations and weight adjustments
throughout the network. This iterative burden manifests a fundamental limitation of SGD and its
variants, which lies at the core of the computationally expensive training process.

The concept of differential learning—where different parts of the network can exhibit different
learning behaviors during training—has emerged as a promising direction to address this limitation.
Differential learning can be layer-specific (Devlin et al.,2019; |He et al.| |2019)) or parameter-specific
(Tieleman & Hinton, 2012} Duchi et al.,2011a), allowing for more targeted optimization. The Adam
optimizer (Kingma & Ba, 2014), for instance, adaptively computes individual learning rates for

Under review as a conference paper at ICLR 2026

different parameters. While differential learning takes adaptive approaches on how parameters are
updated, it does not fundamentally address the limitation of the iterative optimization process itself.

Projection of High-Dimensional Loss Landscape onto 2D Space

2.0{ —e— Adam /
—e— Ours Epog29, Loss<1.16
15 %
K3

Epoch=0, Loss=2.30

Epoch=10, Loss=2.03

PC2

=15

-2 -1 0 1 2 3 4 5

Figure 1: Comparison of training trajectories and loss landscapes between Adam and the proposed
PDT. (Trained on CIFAR-10 using AlexNet.)

Recently, a novel interpretation of the DNN training process has been proposed, mainly by researchers
from the control community (Redman et al., 2022; Dogra & Redman), [2020; Manojlovic et al., 2020;
Tano et al., 2020; Redman et al.,[2024) — If it is intuitive to consider a pre-trained DNN as an inherently
nonlinear static system acting upon the inputs, then the DNN “training process” itself is a “nonlinear”
dynamical system acting upon the high-dimensional “weight space”! It is a discrete dynamical
system since the weights of a DNN evolve over each iteration (or epoch) according to the optimization
process adopted. This drastically different interpretation has led to the establishment of a novel
mathematical framework for learning. Koopman Operator Theory (KOT) (Mezicl 2005), a powerful
data-driven dynamical system analysis tool, is often adopted to exploit the underlying dynamics in
the seemingly non-intuitive training process of a DNN. Taking advantage of the predictive power of
KOT, the time-consuming SGD iterations can be bypassed by directly predicting network weights
a few epochs later (Dogra, [2020; |Dogra & Redmanl [2020; [Tano et al.| [2020). We refer to these
approaches as predictive training.

However, practical challenges quickly emerge. The absence of actual gradient descent means that
convergence cannot be guaranteed, and the framework is sensitive to disturbances in the weight space,
leading to error accumulation across iterations. As the network scales, the previous Koopman-based
predictive training framework becomes increasingly ineffective. This issue is mostly due to the lack
of adaptive mechanisms when applying prediction-based acceleration. That is, existing predictive
training approaches tend to accept all predicted weights without checking if the prediction is of
“high-fidelity” or not. This often leads to gradient explosion, especially for more extensive and
complex models.

The key observation is that even though KOT is a powerful predictive tool for studying traditional
small-scale control problems, when dealing with DNN whose parameter dimension reach into the
millions or even billions, the quality of prediction tends to be highly inhomogeneous across the entire
weight space. Hence, the predictive learning has to be “selective” — only high-fidelity predictions
should be selected to effectively accelerate learning.

In this paper, we propose predictive differential training (PDT), where acceleration by prediction
is selectively applied based on a dynamic consistency analysis. This principled approach identifies
parameters that are in a stable, predictable phase of their evolution by ensuring their local dynamics
align with the global system dynamics modeled from the training history. This selective acceleration
is conceptually similar to various adaptive learning rate methods. For instance, Adagrad (Duchi et al.,
2011b) targets acceleration at rare features; Momentum (Rumelhart et al., |1986)) prioritizes weights
with the largest recent velocity; and the popular Adam optimizer (Kingma & Bal 2014) employs a
combined strategy. Fig. [T]illustrates the compelling effectiveness of PDT over Adam through a visual
comparison of the training trajectory and loss landscape. The contributions of the proposed PDT can
be summarized as follows:

* We propose the Predictive Differential Training (PDT) framework that selectively applies
predictive updates to effectively accelerate training.

Under review as a conference paper at ICLR 2026

* We design a dynamic consistency analysis as a masking strategy to conduct prediction. It
selects parameters whose local training dynamics align with the global dynamics, allowing
PDT to identify parameters that are in a stable, predictable phase of their evolution.

* We demonstrate that PDT can be seamlessly integrated as a plug-in with numerous existing
optimizers, such as SGD, Adam, RMSprop, Shampoo, and LAMB, while maintaining
computational efficiency through epoch-level predictions.

* We validate PDT’s effectiveness across a wide range of network architectures (from FCN to
ViT-Huge), datasets (from CIFAR-10 to ImageNet), and learning paradigms (from supervised
to self-supervised), demonstrating its scalability and robustness under various training
conditions.

2 BACKGROUND AND RELATED WORK

The key notion of Koopman analysis is the representation of a (possibly nonlinear) dynamical system
as a linear operator on a typically infinite-dimensional space of functions (Mezi¢,[2021;2005; Mezi¢ &
Banaszuk, |2004). Koopman-based approaches directly contrast with standard linearization techniques
that consider the dynamics in a close neighborhood of some nominal solution. Indeed, Koopman
analysis can yield linear operators that accurately capture fundamentally nonlinear dynamics.

Koopman Operator Theory. As a brief description, consider a discrete-time dynamical system
x;+1 = T(x;), where x; € R" is the current state and x;,1 is the next state after applying the
potentially nonlinear mapping 7. Consider also a vector-valued observable g(x) € R™. The
evolution of observables under this mapping can be described as

g(xir1) = g(T'(x:)) = Kg(x;)- (D

where /C operates on the vector space of observables and maps g(x;) to g(x;+1). K is referred to as
the “Koopman operator” that is associated with the fully nonlinear dynamical system. The Koopman
operator is linear, but also infinite-dimensional. As such, for dynamical systems with a pure point
spectrum for observables (Mezic, |2020), its action can be decomposed according to

g(xit1) = Kg(x;) = Z Ak @k (Xi)Cr,)

k=1

where)\ is an eigenvalue associated with the eigenfunction ¢y (x), which can be evaluated at either
the initial state xy or any intermediate state x;. cj is the reconstruction coefficient, also known
as the “Koopman mode”, which represents the projection of the observable function g onto the
eigenspace. It immediately follows that g(x;++) = Y o Afdk(X;)ck for any 7 € N. This has
provided a convenient and general framework to “predict and control” a given dynamical system.
Each Koopman mode evolves over time with its frequency and decay rate governed by the imaginary
and real components, respectively.

Koopman-based techniques are particularly useful in a data-driven setting because they only require
measurements of observables. As such, they can be implemented even when the underlying model
dynamics are unknown.

Dynamic Mode Decomposition (DMD). When using Koopman-based approaches, it is critical to
identify a suitable finife basis for representing the infinite-dimensional Koopman operator. Dynamic
Mode Decomposition (DMD) (Schmid, 2010) is one standard approach for inferring Koopman-based
models. It uses least-squares fitting techniques to approximate a finite-dimensional linear matrix
operator, A, that advances high-dimensional measurements of a system forward in time:

g(xit1) = Ag(x;) (3)

where A is an approximation of the Koopman operator, K, in Eq.[I] restricted to a measurement
subspace spanned by direct measurements of the state x. Since the weight space of a neural network is
a fully observable system, we define g(.) to be the identity function in this work. That is, w; = g(w;).
In practice, we often use “snapshots” of the system arranged into two data matrices, W; and W, 1,
where columns of these matrices indicate measurements (i.e., network weights) taken at a certain
time, and W, is W; shifted by one time step. Hence,

Wi+1 ~ AWZ, (4)

Under review as a conference paper at ICLR 2026

and A can be solved by A = W; ;4 W;r = W; 1 VIIUT, where W; = UXV T is the Singular Value

Decomposition (SVD), and WJ denotes the pseudo-inverse of W;. A comprehensive discussion of
DMD and its variants has been provided in Kutz et al.[(2016).

DNN Training as a Dynamical System. There have been a few works in recent years that adopt
Koopman-based approaches to accelerate the training process of a general-purpose DNN model
(Dogra & Redman, 2020; [Tano et al.| |2020; Manojlovic et al., |2020). (Dietrich et al., [2020) is
generally considered the first work that establishes the connection between KOT and acceleration of
numerical computation. |Dogra (2020) is also one of the pioneer works but with a focus specifically
on neural networks for solving differential equations. Generally speaking, these works take advantage
of the predictive power of the KOT framework to directly predict network weights a few epochs later,
thus bypassing the time-consuming SGD iterations. However, we show in Fig. 2| that these methods
tend to fail for larger network structures as the network size increases.

— SGD — SGD 16 — SGD
—— Non-selective Prediction —— Non-selective Prediction —— Non-selective Prediction
PDT (Ours) PDT (Ours) 14 PDT (Ours)

18 12

Train Loss
Train Loss
Train Loss

0 5 10 20 25 30 0 5 10 20 25 30 0 5 10 20 25 30

15 15 15
Epoch Epoch Epoch

(a) 2-layer FC (b) 4-layer FC (c) 6-layer FC

Figure 2: Performance comparison on CIFAR-10 using fully connected (FC) networks with varying
depths, among SGD (iterative), PDT (predictive-differential), and the non-selective prediction, i.e.,
Koopman-based predictive training where the predicted weights are applied to all parameters without
checking the prediction quality (Tano et al.,[2020). Batch size=256, Ir=0.01. In our setup, for every
three epochs of SGD, predictions are performed for the next five steps.

Directly predicting the evolution of neural network weights, by bypassing SGD, is inherently difficult
due to the complex and unstable nature of training dynamics. The loss landscape is highly non-convex,
filled with local minima, saddle points, and flat regions (Goodfellow et al.,[2014), while the effective
dynamics is non-stationary (Ghorbani et al., 2019), as both gradients and curvature shift as training
progresses (Sagun et al., 2017). In addition, neural systems can exhibit chaotic or highly sensitive
regimes, where small perturbations quickly amplify and destabilize predictions (Li & Ravela} 2021}
Engelken et al.l[2023). This challenge is compounded by the stochastic noise introduced through
mini-batch sampling.

Small prediction errors are highly sensitive and cumulative, risking divergence in the absence of
continual gradient correction (Andrychowicz et al.,2016)). Moreover, predictors trained in one context
often fail to generalize across architectures and datasets, highlighting the difficulty of extracting
universally valid patterns (Wichrowska et al.l 2017; Metz et al., [2019). Together, these factors make
weight prediction a fundamentally unstable and error-prone task.

The proposed PDT, largely due to its adaptive attention to different training dynamics from different
parameters, is able to sustain network growth and provide a viable solution to the weight prediction
challenge. The efficiency of PDT has been validated on several benchmark models (e.g., AlexNet,
ResNet, and ViT), datasets (e.g., CIFAR-10 and ImageNet), spanning both supervised and self-
supervised tasks.

3 METHODS

Let us first use a toy example to demonstrate the effect of accelerating the learning of a subset of
variables to motivate the concept of differential learning. Consider the function,

f(z,y, 2z, u,v,w) = 22 4+ y* + sin(2) + u? — cos(v) + w? + xy + ysin(z) + vow,

Under review as a conference paper at ICLR 2026

which involves six variables: x,y, z, u, v, w. To find the minimum of this function, we employ a
simple GD optimization with a learning rate of 0.01. GD takes 53 steps to reach a loss value below
our predefined threshold (0.1).

We then explore an alternative optimization strategy where the variables z, y, z use a learning rate
three times faster than that of the standard process, while u, v, w are optimized at the normal rate but
employing the updated values of x,y, z. See Fig.[7]in Appendix [A.T]for the acceleration trajectory,
where the trajectory maintains the same direction for = and y but reaches the threshold in just 25 steps.
This example demonstrates by strategically identifying a subset of variables and simply increasing
their learning rate, the training can be accelerated by about 53%. We also apply the proposed PDT to
the same optimization problem and it reaches the threshold in 27 steps. See Fig. [8]in the Appendix.

This toy example demonstrates the principle behind the idiom, a rising tide lifts all boats!

3.1 PDT TRAINING FRAMEWORK

The PDT Training Framework addresses three key questions: 1) when to enable prediction, 2) how to
integrate predictions with existing optimizers, and 3) which parameters should undergo accelerated
updates. The complete PDT workflow and the mechanism involved in a single acceleration step
are illustrated in Fig.[3] The “prediction” block (Pred) is automatically but strategically placed
among the baseline optimization blocks (OPT), acting as a plug-in enhancement within the existing
optimization framework. Training begins with a “Burn-in stage,” where the model is trained using
the baseline optimizer for several epochs to accumulate a sufficient history of weight snapshots.
Following this stage, a prediction step is performed with an adaptive interval, 7, to achieve accelerated
learning.

Burn-in stage Prediction Interval (T;)

(ort 1> ---o{{opT o{ Pred |2 0PT | - ={[0PT |-{ Pred |-

Accelerated
learning

Combined Updates

o | Baseline
° optimization

Prediction

== High-fidelity predicted weights
- Low-fidelity predicted weights ,

/
== Base optimizer updated weights _

Figure 3: Illustration of the proposed PDT framework and the detailed mechanism for a 7-step
prediction, where qualified (or high-fidelity) predicted weights (red) and standard SGD-derived
weights (blue) are integrated that accelerate the training of the entire network.

The bottom part of Fig. 3] provides a detailed illustration of how qualified predicted weights and
standard SGD-derived weights are integrated together to achieve accelerated learning, as showcased
in the toy example. The mask is governed by the dynamic consistency analysis to be elaborated in
Sec.[3.2] If no element in the mask satisfies the criteria, then standard SGD-based optimization takes
over. The pseudocode of the complete PDT algorithm is presented in Appendix [A22]

The amount of computation required to perform a DMD-based prediction is comparable to that of a
GD operation. It is important to note that the prediction operations are much less frequent (once for
several epochs) compared to the standard GD operations (multiple times per epoch, depending on the
batch size). Considering that PDT requires fewer epochs to reach convergence (see Table[)), it can
lead to significant computational savings and efficiency enhancements in the training of large-scale
neural networks. A detailed analysis of computational efficiency in terms of FLOPs is provided in
Appendix[A3]and the theoretical complexity analysis provided in Appendix [A-4]

Under review as a conference paper at ICLR 2026

3.2 DYNAMIC CONSISTENCY ANALYSIS

Our prediction step begins by applying DMD to the weight snapshots w, which yields a finite-
dimensional approximation of the Koopman operator. Instead of directly using the operator A for
prediction via matrix exponentiation (i.e., A™), which can be unstable for large systems as shown in
Fig.[2l we perform eigendecomposition of A that yields the DMD modes and their corresponding
eigenvalues. To practically implement the spectral prediction from Eq. [2] the predicted weight vector
is computed from Eq. [5}

Wl = AT BT w, 5)
where ® is the matrix whose columns are the DMD modes (approximating the eigenfunctions ¢y,),
and A is the diagonal matrix containing the corresponding eigenvalues \y. The term ®fw (i) projects
the current state onto the DMD modes, calculating the Koopman mode amplitudes cy, in Eq.

Our approach is based on the principle that DMD extracts the dominant patterns of the entire system’s
dynamics. However, at any given training stage, different parameters may exhibit varying degrees of
alignment with these global patterns. Parameters experiencing rapid transitions, or local instabilities,
may not conform to the global linear dynamics assumption underlying DMD. The eigendecomposition
of A yields the eigenvalues and eigenfunctions. With these components, we can perform a multi-step
prediction through a more stable spectral evolution process using Eq. [5} which provides a prediction
for the system’s global dynamics and also offers a perspective on the prediction for each parameter.
The challenge, however, is how to determine whether such a prediction for each parameter has
“high-fidelity” or “low-fidelity”.

In fact, the correlation between the quality of prediction and training effectiveness has been heavily
studied. From a neuroscience perspective, the quality of predictions made by neurons is intricately
linked to their learning dynamics (Schultz et al. {1997} |[Friston, 2010). Accurate predictions lead
to more stable and efficient learning, while poor predictions need stronger synaptic adjustments to
improve future performance.

Therefore, we design a masking mechanism to identify parameters whose current local dynamics
align with the system’s global dynamics, based on the following two principles.

The acceleration effectiveness criterion. The absolute weight change between the predicted weight,

pred “and the current weight, wiP', at each epoch, i, should be larger than the absolute weight change

47
.. . t t . .
from the one-step optimization, wi"'; — w;", to enable accelerated learning. That is,

W

pred opt opt

WD — wit(| > 7wty — wit|, (6)

This criterion ensures that the prediction provides a significant advancement beyond what single-step
optimization would achieve, making the acceleration worthwhile. See Appendix [A.5]for convergence
guarantee analysis.

The dynamic consistency criterion. The direction of weight change from prediction should align
with the local gradient-based dynamics. That is, the temporal evolution captured by the global DMD
analysis should be consistent with the current local optimization trajectory. Specifically:

. pred pred s opt opt
szgn(wiJrk,j - Wi+k71,j) = Slgn(WH»l,j - Wi,j)’ (N
where j is the index for each element in the weight vector and ¥ = {1,--- ,7}. This criterion

ensures that each step of the prediction interval follows the same trend of growth as that of the local
optimization.

Based on these two principles, a mask, m can be constructed with its element equal to 1 if both
Egs. [6]and [7) are satisfied; otherwise, the corresponding element is zero. This dynamic consistency
analysis evaluates these two criteria independently for each parameter. Parameters satisfying both
criteria are deemed to be in a predictable evolutionary phase, allowing safe application of temporal
acceleration through the global dynamic model. Parameters failing these criteria may be experiencing
complex local behaviors (such as rapid transitions, oscillations, or instabilities) that deviate from the
global linear dynamics assumption, requiring fallback to gradient-based updates. Note that Eq.
is a rigid criterion to enforce not only that the final predicted weight changes align with the local
optimization direction, but also that every intermediate step in the predicted trajectory maintains
direction consistency.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 GENERALIZATION STUDY OF PDT

We evaluate the effectiveness of the proposed PDT framework in accelerating learning across a variety
of popular neural network architectures with different scales, including Fully-Convolutional-Network
(FCN) (3.9M parameters), AlexNet (57M parameters), ResNet-50 (25.6M parameters), ViT-Base
(86.4M parameters), and ViT-Huge (632M parameters). PDT shows a significant advancement over
previous prediction-only Koopman-based methods limited to simpler models [e.g., (Tano et al., [2020)
with 2.9M trainable parameters]. We also use a range of optimizers, including SGD, SGD with
momentum, and AdamW (Loshchilov & Hutter, 2019). Our validation spans multiple benchmark
datasets, from CIFAR-10 to the more challenging ImageNet-1K.

0.825

100 0.800

107 —_—

A=3.6min A=:1 3min
(34.0% faster)] (43.3% faster)

—

Train Loss (log scale)

o o o o o
> I 3 99
S 2 N o 3
G & & o o

Best Validation Accuracy Achieved

- == SGD - SGD
PDT 0650 PDT

-- Baseline Best Loss --- Baseline Best Acc

0.625 :

0 200 400 600 200 300 400 500 600 700
Runtime (seconds) Runtime (seconds)

103

Figure 4: Analysis of PDT’s Optimization and Generalization Efficiency. Trained on CIFAR-10 using
AlexNet, batch size=256, Ir=0.05, with CosineAnnealingL.R scheduler.

Fig. @ illustrates the efficiency of PDT by showing the training curve on CIFAR-10 using AlexNet. We
assess PDT’s performance from two perspectives: (1) Optimization Efficiency, measured by the Time
to Baseline Best Train Loss (or TTB-Loss), quantifies the speed at which PDT converges on the
training objective. (2) Generalization Efficiency, measured by the Time to Baseline Best Validation
Accuracy (or TTB-Acc), reflects the speed at which PDT obtains a useful, well-generalized model.
The detailed training curves on various network structures can be found in Fig. [10{in Appendix

In all experiments, we use the past five epochs to form the snapshot with a one-epoch interval to
predict weights in the next five steps. Prediction starts from the 5th epoch. A comprehensive study of
PDT’s performance under different training configurations (batch sizes, learning rates, and optimizers)
and hyperparameters [i.e., prediction steps (7), prediction interval (77), starting epoch (7p), and past
snapshot counts (k)] can be found in Appendix[A.9] demonstrating robust performance across various
training hyperparameters.

As elaborated in Sec. [3] the computational load of the Koopman-related calculations is comparable
to that of batch-level updates. However, since we apply these calculations at the epoch level, the
overhead introduced by DMD is effectively compensated by the acceleration in loss reduction. We
observe from both Table[T]and Fig. [I0]that the proposed PDT consistently achieves the best training
loss of the Baseline but in fewer number of epochs without sacrificing performance. All experiments
were repeated with five random seeds to ensure reliability. Unless otherwise specified, all results in
the tables are reported as mean + standard deviation over five runs.

The last column in Fig. illustrates a so-called “masked ratio curve” unique to PDT, where it tracks
the percentage of predictions accepted according to the masking strategy described in Sec.[3.2] We
observe that the masked ratio always starts with higher values in the early stage of the training process,
then generally decreases as training progresses. This pattern implies that for large networks on large
datasets, the training dynamics is very complex and challenging to predict at the initial training
stage, resulting in a rapid reduction of the percentage of weights that can be convincingly predicted
(according to the proposed masking strategy). A detailed analysis of how the mask distribution
evolves across different layers of the network during training is provided in Appendix

To further demonstrate the versatility of PDT as a plug-in enhancement, we extended our evaluation
to include a broader range of optimizers [SGD, SGD with momentum, Adam, AdamW, RMSprop,

Under review as a conference paper at ICLR 2026

Table 1: Runtime comparison. FCN and AlexNet are trained on a single Nvidia RTX A6000 GPU,
while ResNet-50, ViT-Base, and ViT-Huge are trained on three Nvidia H100 (80 GB) GPUs. Using
the same experimental setup and hyperparameter configurations as in Fig.

Model TTB-Loss (s) TTB-Acc (s) Runtime Reduction (%)
Baseline PDT Baseline PDT Train Loss ~ Val. Acc.
FCN 2174.32 1313.52 2088.58 1424.14 39.59 31.81
AlexNet 683.93 43091 531.30 347.11 37.00 34.67
ResNet-50 110063.72 88752.33 121449.60 92133.34 19.36 24.14
ViT-Base 259241.21 232810.62 296028.36 243097.58 10.20 17.88
ViT-Huge 725564.86 653854.05 741220.54 660711.80 9.88 10.86

Shampoo (Gupta et al.| [2018)), and LAMB (You et al.| 2020)] while keeping the network architecture
and other configurations fixed. The results in Table 2| show that PDT consistently reduces the time to
reach baseline best loss across these optimizers.

Table 2: Impact of baseline optimizers on PDT performance. Trained on CIFAR-10 using AlexNet,
batch size=256, momentum=0.9, with CosineAnnealingl.R scheduler.

. . . Runtime
Optimizer Ir Final Accuracy Best Train Loss TTB-Loss (s) Reduction (%)
SGD 01 0.7930 £ 0.0023 0.0002 £ 0.0000 665.27 £ 9.08 19.67
PDT ’ 0.7978 £0.0032 0.0002 £ 0.0000 534.41 + 12.64 ’
Momentum 0.001 0.6672 £ 0.0068 0.8609 £ 0.0166 752.74 4+ 9.62 41.06
PDT ' 0.7298 £ 0.0051 0.5358 £ 0.0165 443.68 £ 8.75 ’
Adam 0.0005 0.7952 £ 0.0063 0.0001 £ 0.0000 779.13 + 11.81 14.87
PDT ’ 0.8050 £ 0.0050 0.0002 £ 0.0000 663.28 + 15.30)
AdamW 50.5 0.8031 £ 0.0021 0.0077 £ 0.0002 652.92 £+ 5.26 28.36
PDT 0.8149 £ 0.0037 0.0013 £0.0002 467.76 & 6.05)
RMSprop 0.0001 0.7996 £ 0.0032 4.1e-5 £ 1.6e-5 661.08 £ 0.42 1535
PDT ’ 0.8108 £ 0.0026 2.4e-5 £ 0.6e-5 559.61 £ 0.00)
Shampoo 0.001 0.8012 £ 0.0071 0.0040 £ 0.0005 736.56 + 10.58 16.03
PDT) 0.8101 £ 0.0043 0.0033 £ 0.0003 618.49 £ 12.72)
LAMB 0.001 0.8034 £0.0025 0.1215 £ 0.0085 663.25 £ 5.44 44.24
PDT) 0.8140 £ 0.0027 0.0036 £ 0.0006 369.82 £ 10.59)

We also extend our evaluation to the domain of self-supervised learning (SSL). We select Sim-
Siam (Chen & Hel 2021)), a prominent non-contrastive method, as our testbed. SimSiam’s training
dynamics, which are driven by a stop-gradient mechanism and a negative cosine similarity objective,
are fundamentally different from those of supervised learning. The results, summarized in Table [3]
demonstrate that PDT’s advantages generalize effectively to SSL.

Table 3: Performance comparison of SimSiam pre-training on CIFAR-10 with a ResNet-18 backbone,
trained for 200 epochs, 1r=0.03, batch size=256, momentum=0.9, with CosineAnnealingL.R scheduler.

Runtime Reduction (%)

Optimizer Final Accuracy TTB-Loss (s) TTB-Acc (s)

Train Loss Val. Acc.

SGD Momentum 0.7285 + 0.0166 9611.35 £ 837.98
PDT 0.7685 £ 0.0144 4922.92 £ 712.55

7353.12 £ 1063.96

6169.04 + 114297 4878

16.10

In addition, further analysis of PDT’s performance under non-i.i.d. training conditions is presented in

Appendix

Under review as a conference paper at ICLR 2026

4.2 MASKING STRATEGY: RANDOM SELECTION AND VALIDATION LOSS?

In this experiment, we study the effectiveness of the proposed masking strategy by comparing it
with randomly selecting a subset of predicted weights. We perform a series of runs where subsets of
Koopman predicted weights are randomly selected. The regions highlighted in green in Fig. [5] show
the outcomes of these trials. Quite frequently, these runs result in gradient explosions, leading to non-
recoverable errors (NaN values) in subsequent epochs. This experiment underscores the importance
of a principled masking strategy in Koopman Training. Random masking, without considering the
training dynamics can lead to severe divergence and training failure. Our findings highlight that
strategic selection based on “high-fidelity” predictions is crucial to the success of PDT.

0.6 { — SGD
2.50 2.50 Prediction
>05 Random Mask Prediction
2.25 g 225 ‘\A 8 .
g S04
2 2.00 = 2.00 \/\ g /
-] e Sos
£175 BLs \ 5 7
IS 2 \j B o2 N
1.50 3150 bl
o /
1.25{ — SGD 1.25{ — s Z o1y~
Prediction Prediction
1.00 Random Mask Prediction 1.00 Random Mask Prediction 0.0

0 10 20 30 0 10 20 30 0 10 20 30
Epoch Epoch Epoch

Figure 5: PDT vs. random mask prediction (with the same mask ratio). Trained on CIFAR-10 using
AlexNet, batch size=256, Ir = 0.01.

We implement another baseline scheduling scheme that switches between prediction and SGD based
on the validation loss trend: apply prediction when validation loss decreases and roll back to SGD
updates when validation loss starts to increase. Fig.[6]illustrates the training dynamics under this
strategy. Initially, DMD is engaged due to its slight advantage in reducing validation loss. However,
as training progresses, a significant surge in loss is observed, suggesting a misalignment between the
DMD-predicted weights and the optimal trajectory for the network. Even after reverting to SGD, the
model failed to recover, indicating that relying solely on validation loss as a trigger for switching
between PDT and SGD is inadequate.

— sGD.
Prediction

\\ — se0
Prediction

[H 10

o
—

Validation Loss
<i)

Train Loss

Figure 6: Performance comparison on CIFAR-10 using AlexNet: SGD vs. Koopman-based prediction
(switching between prediction and SGD based on validation loss). L: Train loss. R: Validation loss.

5 CONCLUSION

This paper proposed a novel predictive differential training (PDT) framework based on the study of
training dynamics. PDT incorporate the idea of “differential learning” into the predictive training
framework for accelerated learning even for complex network structures. The key contribution is
the design of an effective masking strategy based on a dynamic consistency analysis, which selects
only those predicted weights of high-fidelity whose local training dynamics align with the global
dynamics. Analogous to the saying a rising tide lifts all boats, in our setting, a subset of high-fidelity
predicted weights facilitates more efficient training across the entire network!

The training process of a deep network with millions to billions of parameters indeed presents an
intriguing dynamical system that the control community has not faced before. This would stimulate
further investigation into the development of better data-driven dynamical system analysis algorithms
in addition to DMD.

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750-15758, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2019.

F. Dietrich, T. N. Thiem, and I. G. Kevrekidis. On the koopman operator of algorithms. SIAM Journal
on Applied Dynamical Systems, 19(2):860-885, 2020.

Akshunna S Dogra. Dynamical systems and neural networks. arXiv preprint arXiv:2004.11826,
2020.

Akshunna S Dogra and William Redman. Optimizing neural networks via koopman operator theory.
Advances in Neural Information Processing Systems, 33:2087-2097, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adagrad: Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159,
2011a.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011b.

Rainer Engelken, Fred Wolf, and Larry F Abbott. Lyapunov spectra of chaotic recurrent neural
networks. Physical Review Research, 5(4):043044, 2023.

K. Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2):
127-138, 2010.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232-2241.
PMLR, 2019.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. arXiv preprint arXiv:1412.6544, 2014.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. arXiv:1812.01187, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems. SIAM-Society for Industrial and
Applied Mathematics, 2016. ISBN 978-1-61197-449-2.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In /1th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
14), pp. 583-598, 2014.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Ziwei Li and Sai Ravela. Neural networks as geometric chaotic maps. IEEE Transactions on Neural
Networks and Learning Systems, 34(1):527-533, 2021.

10

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL |https://openreview.net/forum?id=
BkgoRiCqgY7.

Iva Manojlovic, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejcuk, Zlatko Drmac, Yannis
Kevrekidis, and Igor Mezi¢. Applications of koopman mode analysis to neural networks. arXiv
preprint arXiv:2006.11765, 2020.

James Martens. Deep learning via hessian-free optimization. In ICML, pp. 735-742, 08 2010.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556-4565. PMLR, 2019.

I. Mezi¢. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space
geometry. Journal of Nonlinear Science, 30(5):2091-2145, 2020.

I. Mezi¢ and A. Banaszuk. Comparison of systems with complex behavior. Physica D: Nonlinear
Phenomena, 197(1-2):101-133, 2004.

Igor Mezi¢. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin-
ear Dynamics, 41:309-325, 2005.

Igor Mezi¢. Koopman operator, geometry, and learning of dynamical systems. Notices of the
American Mathematical Society, 68(7):1087-1105, 2021.

William Redman, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezi¢. An
operator theoretic view on pruning deep neural networks. International Conference on Learning
Representations (ICLR), 2022.

William Redman, Juan Bello-Rivas, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, and Igor
Mezic. Identifying equivalent training dynamics. Advances in Neural Information Processing
Systems, 37:23603-23629, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400 — 407, 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/
10.1214/aoms/1177729586.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid
Mechanics, 656:5-28, 2010. doi: 10.1017/S0022112010001217.

W. Schultz, P. Dayan, and P.R. Montague. A neural substrate of prediction and reward. Science, 275
(5306):1593-1599, 1997.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International Conference on Machine Learning (ICML), pp.
1139-1147. PMLR, 2013.

Mauricio E Tano, Gavin D Portwood, and Jean C Ragusa. Accelerating training in artificial neural
networks with dynamic mode decomposition. arXiv preprint arXiv:2006.14371, 2020.

Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
recent magnitude. coursera: Neural networks for machine learning. COURSERA Neural Networks
Mach. Learn, 17, 2012.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International conference on machine learning, pp. 3751-3760. PMLR, 2017.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

Under review as a conference paper at ICLR 2026

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

12

https://openreview.net/forum?id=Syx4wnEtvH

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CONVERGENCE PATH OF THE TOY EXAMPLE

To better illustrate the effectiveness of differential learning strategies, we designed a toy optimization
problem with six variables. See Sec. [3.I] for the description of the problem. Starting from the
initial point [2.0,2.0,1.0,0.5, —0.5, 1.5] with a learning rate of 0.01. Fig. El shows the optimization
trajectories in the x-y plane, where the background color represents the function value at each point.
The blue line with dots represents the GD trajectory, while the red dashed line shows the path of
accelerated GD where X, y, z variables use 3x learning rate. All points on the trajectories represent the
state after each optimization step. The arrows indicate where each method reaches the threshold value
(0.1). Building upon this observation, we apply our proposed PDT method to the same optimization
problem. Fig. [§| presents the comparison between standard GD and our proposed PDT method on the
same toy optimization problem. Fig. [8a) uses the same visualization scheme as Fig.[7] showing how
PDT follows a similar path but reaches the threshold faster (PDT reaches the threshold in 27 steps).
Fig.[8[b) clearly demonstrates the acceleration effect, where PDT’s loss decreases more rapidly than
GD. The horizontal dashed line indicates the threshold value used as the stopping criterion.

—e— GD 306
—8— Accelerated GD
Y Initial point

Function Value

GD reached threshold at step 53

Figure 7: The differential learning trajectory of the toy example provided in Sec. Only the x and
y dimensions are shown.

—e— GD 306 16 —c
PoT POT

Y Initial point Threshold

Function Value
Loss

() (b)

Figure 8: Performance comparison between GD (53 steps) and PDT (27 steps) on the toy optimization
problem. (a) Optimization trajectories in the x-y plane. (b) Loss values during optimization.

A.2 ALGORITHM DESCRIPTIONS

13

Under review as a conference paper at ICLR 2026

Algorithm 1 PDT algorithm

Require: baseline optimizer Oy, e, past snapshot counts h, start epoch for prediction Tj, predicted
steps 7, prediction interval T;
Ensure: Trained model parameters w
1: Initialize weight history matrix Wy x, counter ¢, = 0
2: for epocht = 0to 7T do

3. ift > Tyand c, > T; then
4: Obtain woP!(t — 1) from W yp,
5: Train model for one epoch using Op, e, save weights after training as woP? (¢)
6: Calculate DMD from W p «j, to obtain modes ® and eigenvalues A
7: Predict future weights from w?™¢?(t) to wP™e4 (¢t 4+ 7 — 1)
8: 1) Decompose: ¢ < ®w(t — 1) {Project state onto modes}
9: 2) Evolve: ceyolved < AT c {Evolve amplitudes in spectral domain}
10: 3) Reconstruct: w?™¢4(t 4+ 7 — 1) + real(®cCeyonved) {Synthesize future state}
11: {Intermediate predictions for k € {1,...,7 — 1} are computed similarly for the mask
12: Create mask M based on woP(t — 1), woPl(t), wPred(t) .. wPred(t + 17— 1) (Eqs.éand
7)
13: Assemble new weights w(#) using mask M to combine w°P*(t) and wP"¢4(¢)
14: Update model parameters with updated w(t)
15: ce +— 0
16: else
17: Train model for one epoch using Opg e
18: Ce —Ce+ 1
19: end if
20: Update weight history matrix W,
21: end for

Train Loss

Train Loss

— sGD
PDT

275
2.50
225

9 2.00

175

150
125
1.00
075

— SGD
PDT

V\\/M

Test Accuracy
© o o o o o o
[-

°

Epoch

0 20 a0 60

— sGD
PDT

— SGD
POT

\
1\%/

Test Accuracy
° o o o o 2 o
S8R &85 3%

°

— sGD
PDT

1000 2000 3000 4000
Total Computation (TFLOPs)

1000 2000 3000 4000
Total Computation (TFLOPs)

(b)

1000 2000 3000 4000
Total Computation (TFLOPs)

Figure 9: Performance comparison between baseline optimization and PDT, with (a) epochs and
(b) TFLOPs as x-axis. Trained on CIFAR-10 using AlexNet, batch size=256, 1r=0.05, with Cosine
Annealing scheduler.

A.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

To provide a detailed analysis of PDT’s computational efficiency, we compare the computational cost
in terms of FLOPs (Floating-point operations per second) between the baseline optimizer and PDT.
Fig. [0 shows the training dynamics with respect to both epochs and total computation cost (measured
in TFLOPs). The experiments in Fig. [0]are conducted on AlexNet with CIFAR-10 using batch size
of 256, learning rate of 0.05, with Cosine annealing scheduler. While the per-epoch computation of
PDT is slightly higher (69.71 TFLOPs) than that of SGD (56.74 TFLOPs) due to the additional DMD

14

Under review as a conference paper at ICLR 2026

calculations and prediction operations, it achieves faster convergence in terms of total computation.
Specifically, PDT requires 2596.30 TFLOPs to reach the baseline’s best loss, compared to SGD’s
3404.32 TFLOPs, representing a 23.74% reduction in computational cost. Moreover, PDT achieves
better final accuracy (79.70% vs 78.75%) despite using fewer FLOPs to reach convergence.

The results also validate our design choice of keeping the past snapshot count (k) small (set to 5 in
our experiments). Even with this small h value, which minimizes the computational cost of DMD
calculations, PDT achieves substantial acceleration in terms of FLOPs.

A.4 COMPUTATIONAL COMPLEXITY ANALYSIS

To facilitate our discussion, we consider a DNN with [V parameters. The computational load for
processing each batch is directly proportional to both the batch size (B) and the number of parameters
(N), resulting in a complexity of O(B x N) per batch. When extended to the entire dataset with .S
samples across one epoch, the complexity scales to O(S x N).

Integrating Koopman operator predictions into the DNN training process entails constructing a data
matrix from h past epochs of the parameter trajectories, with the matrix dimension being N X h.
The primary computational burden arises from performing SVD on this matrix with a complexity
of O(N x h?). Given that N significantly exceeds h — with h usually being a small number (e.g.,
5), and N potentially reaching the millions or even billions—the quadratic impact of h remains
manageable relative to V.

A.5 CONVERGENCE ANALYSIS

We establish the convergence properties of our hybrid training methodology, which integrates DMD-
based predictions with traditional gradient descent updates.

A.5.1 UPPER BOUND CONSTRAINT

Let wfpt denote the optimal weights at iteration 7 using traditional gradient descent, and w

represent the predicted weights using DMD 7 steps ahead. We impose the following constraint:

pred
i+T

pred

T =W < 7w = wi| ®)

[[w il

This ensures that the magnitude of any 7-step prediction is bounded by 7 times the magnitude of a
single gradient step.

A.5.2 CONVERGENCE PROOF
Let £ : R? — R be the loss function with L-Lipschitz continuous gradients. Consider the weight
update rule:

Wit1 =W; — 7 -m; Ouy C)

where m; € {0, 1}¢ is a binary mask, ® denotes element-wise multiplication, and u; is either the
gradient V.L(w;) or the bounded DMD prediction.

Theorem 1 Given the update rule above with learning rate n < % and the constraint in (1), the
sequence {w;} converges to a stationary point of L as i — oo.

[Proof Sketch] For iterations where u; = V.£(w;), standard convergence results for gradient descent
apply. For iterations using DMD predictions, the upper bound constraint ensures:

cwie) < 0w~ (' 1) 1920w (10)

Therefore, the sequence {£(w;)} is monotonically decreasing and bounded below, guaranteeing
convergence to a stationary point.

15

Under review as a conference paper at ICLR 2026

Proof Outline: Consider the sequence of weight updates given by:
w1 = wy — 1 X mask(t) x update(t),

where update(¢) is selected based on the masking strategy that either applies the gradient of the
loss function or the bounded DMD prediction. Given that each update is capped by the gradient’s
scaling factor, and assuming standard conditions such as Lipschitz continuity of the gradients and a
small enough learning rate, the sequence {w;} is guaranteed to make consistent progress towards
minimizing the loss function, thereby ensuring convergence.

This bounded predictive approach introduces a robust framework for integrating non-traditional
updates into the training of neural networks, offering a safeguard against the instability that unbounded
predictions might introduce. Future studies will explore the potential for adjusting the bounding factor
dynamically based on the training stage or observed performance metrics, potentially enhancing the
adaptability and efficiency of the training process.

A.6 DETAILED TRAINING CURVES ON VARIOUS NETWORK STRUCTURES

Fig. [10] presents the detailed training curves and performance comparison of PDT and baseline
optimizer across various network structures.

A.7 ANALYSIS OF MASK DISTRIBUTION

We further analyze the mask distribution and dynamics in AlexNet. Fig.[IT]shows how the ratio
of the predicted weights evolves over training epochs. The analysis is conducted using the same
experimental setup as in Fig. [I0[(b), where AlexNet is trained on CIFAR-10.

Fig. [[T(a) presents the layer-wise evolution of the ratio of the predicted weights throughout the
training process. We observe a pattern here: the masked ratio of each layer starts relatively high,
maintaining a stable period, and then gradually declining. The decline phase at the later epochs
suggests that as the network approaches convergence, it relies more on gradient-based updates rather
than predictions. This aligns with the intuition that predictive updates can be beneficial in the early
phases for accelerating convergence but become less necessary as the model stabilizes. The early
convolutional layers (e.g., Conv0) exhibit more fluctuations in the percentage of predictive updates,
suggesting a higher sensitivity to training dynamics.

Fig. [TT{b) tracks the evolution of predicted weights ratios by layer type. The overall percentage
of predictively updated weights is also included. Interestingly, convolutional layers consistently
maintain a higher prediction ratio compared to fully connected layers throughout the training process.
Due to the majority of the weights in the AlexNet network belonging to the fully connected layers
(54.6 million vs. 2.5 million), the overall masked ratio closely follows the trend of fully connected
layers.

To provide a finer-grained visualization of the mask distribution, Fig. [T2]depicts the mask heatmap
for different layers at epoch 20. Each horizontal band represents a layer, where blue regions indicate
weights updated by SGD, and red regions correspond to weights updated by prediction results. We
can observe that the distribution of predictive updates is not uniform across layers, with some layers
showing clustered regions of predictive updates, potentially indicating structured weight adaptations.

A.8 EFFECT OF NON-I.I.D. TRAINING DATA

We further investigate the robustness of PDT under some challenging training conditions. For
example, when the batch is too small for a diverse dataset like ImageNet, the weight updates could be
chaotic since each consecutive batch is no longer an identical distribution. There are two experimental
designs that can test this: 1) test PDT on a very large dataset like ImageNet-22K and 2) design a
batching scheme to intentionally violate the i.i.d. assumption of mini-batches using a smaller dataset
such as CIFAR-10. In the second design, we maintain the normal batch size, but only put samples of
the same class in the batch. We also randomize the batch sequence instead of using any fixed order so
that there is no regular training set dynamics that DMD might pick up on.

Fig.[[3]and Table] show the performance and runtime comparison between SGD and PDT under the
non-i.i.d. setting using the second experimental design since non-i.i.d. is guaranteed. We preserve

16

Under review as a conference paper at ICLR 2026

o

. — sGD — sGD 081 — SGD 0.35 PDT
10 PDT PDT PDT
9 --- Baseline Best Loss 5 > 07 0.30
© v ©
S g, Cos 2025
o 2 S ,' 3
2 5 <05 = 0.20
=101 S I\ °
2 ®3 s g
<} ° 5 04 % 0.15
S 2 © 3
£ s> 203 =010
TR | 2 02 0.05
10-2 1 .
| 0.1 0.00
0o 20 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

(a) Trained on CIFAR-10 using FCN, batch size=256, Ir=0.01, with CosineAnnealingL.R scheduler.

T
~ — SGD — sGD 0.8 POT

10° N PDT - PDT 07 0.20
o -=~_Baseline Best Loss >
© » ®
% 8 \ 506 2015
o S204 4 3]
o S g0s5 [<
= S °
2 ® A= | Soa 2010
2 Bas S / 1
S 2 ® / 3
£ g f\l\ i Soay | 2
T I} 0.05
g 10 I > 02 ,

v — sGD
0144 PDT
0.5 0.00
[20 40 60 4 20 40 60 [20 40 60
Epoch Epoch Epoch

(b) Trained on CIFAR-10 using AlexNet, batch size=256, Ir=0.05, with CosineAnnealingL.R scheduler.

8

| — SGD with Momentum —— SGD with Momentum 0.35 PDT
o 0.7
_ oo PDT 7 PDT e s
o) --- Baseline Best Loss >06 kP 030
8 w® 2 e o
@ 4x100 8 505 VAl 2025
o 45 S J ©
o c <04 < 0.20
3 3x10° L4 c / 2
3 3 203 %015
S 23 K 8
£ S \ 202 0.10
5 2x10° >, o = O
2 R sribinas_ s

____________________ N 0.1 —— SGD with Momentum 0.05

o 0.0 FoT 0.00
0 100 200 300 [100 200 300 [100 200 300 0 100 200 300
Epoch Epoch Epoch Epoch

(c) Trained on ImageNet-1K using ResNet-50, batch size=600, 1r=0.1, momentum=0.9, with CosineAn-
nealingL.R scheduler.

10t — Adamw — Adamw 071 — Adamw 025 PDT
= PDT 6 PDT 06 PDT
K --- Baseline Best Loss >
© as 2 0.20
a i a Cos e °
g i T4 g 4 e
g s fos) f S oxs
2 c
2 i T3] \ So03{ | g
s i 2 ™ B ¥ 0.10
10° i s . e —— | D s
£ ! >2 o =02
G : s
e e " > 01 0.05
1
t
i o 0.0 0.00
0 200 400 600 [200 400 600 [200 400 600 [200 400 600
Epoch Epoch Epoch Epoch

(d) Trained on ImageNet-1K using ViT-Base, batch size=600, Ir=0.003, momentum=0.9, with CosineAn-
nealingL.R scheduler.

Figure 10: Performance comparison between baseline optimization and PDT.

the original i.i.d. sampling of the validation set. All experiments are repeated with five random seeds
(0, 100, 200, 300, 400) to ensure statistical significance.

We make some interesting observations. First, despite the challenging non-i.i.d. setup, PDT still
achieves better performance than SGD in terms of faster convergence without sacrificing accuracy.
However, we also observe that in the non-i.i.d. case, learning starts out much more slowly for both
SGD and PDT and both take longer to converge. Second, in the non-i.i.d. case, the variance of each
of the performance curves is generally larger than those of the i.i.d. case. This is because the model
needs to handle more abrupt transitions between different class distributions.

Fig.[13]and Table [further demonstrate that PDT’s advantage extends beyond standard i.i.d. training
conditions, showing its robustness to challenging data sets where traditional assumptions about data
distribution are violated.

17

Under review as a conference paper at ICLR 2026

—=— Conv Layers
—e— FClayers
4~ Overall

Predicted Weights (%)
Predicted Weights (%)

10 20 30 40 50 60 10 20 30 40 50 60
Epoch Epoch

(@ (b)

Figure 11: Analysis of mask distribution in AlexNet. (a) Layer-wise mask evolution over training
epochs. (b) Comparison of prediction ratios between convolutional and fully connected layers.

Overall: Predict=18.16%, SGD=81.84%
=== SGD Update — === Predict Update

Layer name: features.0.weight (Predict=31.38%, SGD=68.62%)

=3

5000 10000 15000 20000
Weight Index

Layer name: features.3.weight (Predict=25.38%, SGD=74.62%)

o

50000 100000 150000 200000 250000 300000
Weight Index

Layer name: features.6.weight (Predict=24.70%, SGD=75.30%)

o

100000 200000 300000 400000 500000 600000
Weight Index

Layer name: features.8.weight (Predict=27.22%, SGD=72.78%)

o

100000 200000 300000 400000 500000 600000 700000 800000
Weight Index

Layer name: features.10.weight (Predict=27.67%, SGD=72.33%)

=)

100000 200000 300000 400000 500000
Weight Index

Layer name: classifier.1.weight (Predict=19.66%, SGD=80.34%)

e
=)

0.5 1.0 15 2.0 25 3.0 35
Weight Index le

~

Layer name: classifier.4.weight (Predict=13.55%, SGD=86.45%)

4
=)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 16
Weight Index le

~

Layer name: classifier.6.weight (Predict=27.30%, SGD=72.70%)

o

5000 10000 15000 20000 25000 30000 35000 40000
Weight Index

Figure 12: A snapshot at epoch 20 with the mask heatmap for different layers.

A.9 EFFECT OF TRAINING HYPERPARAMETERS

Several primary hyperparameters require careful consideration in PDT:

Prediction Steps (7): Derived from DMD, the number of prediction steps significantly influences
the training speed. As shown in Fig.[T4{a) in Appendix Sec.[A9] training accelerates within a certain
range of prediction steps. However, extending beyond a critical threshold, such as nine steps in our
study, can introduce large errors and potentially cause gradient explosion.

Prediction Interval (7;): The interval between Prediction blocks impacts the effectiveness of
acceleration, as depicted in Fig.[T4{b). A shorter interval can enhance training speed if the predictions

18

Under review as a conference paper at ICLR 2026

»
o

— SGD
PDT

22
2.0

o
N
G

o
N
=)

1.84 | 306 °
3 15 P g Bo1s
3 S16 /W gosi / 3
£ B | 1]
g 10 Bra ALY ; 044/ 010
12 AP Qo3 =
0.5 0.05
1.0 -
0.2 — sGD
08
00 —_— S— 01 PoT 0.00
0 20 40 60 0 20 40 60 0 20 40 60 20 40 60
Epoch Epoch Epoch Epoch
(a) Under normal i.i.d. training data distribution.
12 0175
~ — sGD — sGD 071 — sep PDT
20 POT 1o PDT POT 0.150
: 0.6
0.125
. ’ 3 : s
@15 " 805 =
S 3 5 & 0.100
= o6 So4 X 2
S0 7 < f £ o075
= = @]
4 “'\ V" @ 03 = 0050
05 G
2 AN 0.2 0.025
0.0) oaf -4 0.000
0 20 40 60 0 20 40 60 0 20 40 60 20 40 60
Epoch Epoch Epoch Epoch

(b) Under non-i.i.d. training data distribution.

Figure 13: Performance comparison between SGD and PDT under i.i.d. and non-i.i.d. training data
distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet,
batch size=128, Ir=0.05, with CosineAnnelingLR scheduler. The shaded areas represent the standard
deviation across 5 runs with different random seeds (0, 100, 200, 300, 400).

Table 4: Performance and runtime comparison between SGD and PDT under i.i.d. and non-i.i.d.
training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using
AlexNet, batch size=128, Ir=0.05, with CosineAnnelingL.R scheduler.

Training Data Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
Distribution etho (mean = std) (mean = std) Loss (s) (mean 4 std) Reduction (%)
Lid SGD 0.7969 + 0.0093 0.0039 + 0.0017 662.48 + 7.73 915
T PDT 0.8011 £+ 0.0067 0.0016 + 0.0017 601.86 + 17.78 ’
non-iid SGD 0.7067 + 0.0062 0.1053 4 0.0874 806.83 + 13.15 27.90
G PDT 0.7159 £+ 0.0103 0.0119 + 0.0057 581.73 £ 19.34)

19

Under review as a conference paper at ICLR 2026

are accurate. Nevertheless, the quality of predictions may decline as the training progresses, rendering
the network more sensitive to errors, particularly as it nears convergence.

Starting Epoch (7)): The starting epoch for acceleration must be greater than or equal to the number
of epochs used to build the snapshot, as illustrated in Fig. [I4[c). The initiation of acceleration is
influenced by factors such as initialization, learning rate, and model architecture.

Past Snapshot Counts (h): Fig.[14](d) indicates that the number of epochs needed to construct the
snapshot matrix for prediction also influences the train loss. This value cannot be too small or too
large. If it is too small, the snapshot will not have sufficient measurements to precisely estimate the
dynamics of the training process. If it is too large, DMD would have missed the local dynamics with
only a coarser grasp of the general training dynamics.

To thoroughly evaluate the effectiveness and robustness of PDT under different training configurations,
we conduct comprehensive experiments across different learning rates from 0.001 to 0.1 (0.001, 0.01,
0.05, 0.1) and batch sizes from 32 to 512 (32, 64, 128, 256, 512). All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance. All experiments are
performed on AlexNet with the CIFAR-10 dataset, using SGD as the baseline optimizer and trained
for 60 epochs. The PDT-related hyperparameters mentioned in Sec. ?? were set to prediction step=5,
prediction interval=1, start epoch=5, and past snapshot counts=5.

22
2.0

15 fa18
o

S
c16
—— Pred-step=1
—— Pred-step=3

Pred-step=5
—— Pred-step=7

— Pred-snap=3
1.4{ — Pred-snap=5
Pred-snap=7
1.24 — Pred-snap=9

Train Loss

I
F 14

12

— Pred-step=9
— sGD

1.0

— Pred-start=13
— sGD

— Pred-snap=10
— sGD

0 10
Epoch

20

30

0 10 20 30
Epoch

0 10 20 30
Epoch

(a) Ir=0.01, int=1,
start=10, snap=10.

(b) Ir=0.05, step=9,
start=10, snap=10.

(¢) Ir-=0.01, int=1,
step=3, snap=5.

(d) 1r=0.01, step=5,
int=1, start=10.

Figure 14: The influence of different parameters. (a) prediction steps, (b) prediction interval, (c)
starting epoch, (d) past snapshot counts. Trained on CIFAR-10 using AlexNet, batch size=256.

The results in Table[5]show the impact of different batch sizes and learning rates on the performance
of PDT. At lower learning rates (0.001, 0.01, and 0.05), PDT consistently outperforms SGD in terms
of convergence speed across different batch sizes. PDT shows a significant reduction in the runtime to
reach baseline best loss, with an average runtime reduction of 22.76% compared to SGD. For higher
learning rates (0.1), both SGD and PDT struggled to achieve stable training, and PDT’s advantage
over SGD became less pronounced. Sometimes PDT can significantly reduce the convergence time
(for example, when batch size = 64), but other times the accuracy will drop significantly after reaching
a high point, or even result in gradient explosion. This suggests that the high learning rate introduced
significant stochasticity, reducing the effectiveness of PDT’s prediction mechanism. Smaller batch
sizes (32, 64) generally achieve more significant runtime reductions.

To address the stability issues observed at higher learning rates and larger batch sizes, different from
the previous fixed learning rate, we investigated the effectiveness of the learning rate scheduler. We
tested the Cosine Annealing learning rate scheduler with a minimum learning rate of le-3. Taking
batch size 256 as an example, we observe significantly improved stability and performance. The
results are shown in Table[6] The results are particularly noteworthy at higher learning rates (Ir=0.1),
where the previous experiments in Table [5]show considerable variance. With the cosine annealing
scheduler, PDT achieves consistent accuracy improvements across all learning rates while maintaining
substantial runtime reductions.

To further investigate PDT’s compatibility with different optimization methods, we compare its
performance when integrated with different optimizers (SGD, SGD with momentum, and Adam)
while keeping the network architecture and other configurations fixed. For SGD with momentum, we
set the momentum factor to 0.9. All experiments are conducted on AlexNet with CIFAR-10 using
batch size 256, maintaining the same PDT hyperparameters as in previous experiments. The learning

20

Under review as a conference paper at ICLR 2026

Table 5: Impact of learning rates and batch sizes on PDT performance. Trained on CIFAR-10 using
AlexNet. Note: bold numbers indicate the best performance and underlined numbers indicate the

second best performance for each column.

Batch 1 Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
Size g etho (mean = std) (mean =+ std) Loss (s) (mean 4 std) Reduction (%)
0.001 SGD 0.6981 + 0.0458 0.6376 + 0.0127 1232.29 + 4.45 40.64
) PDT 0.6903 £ 0.0885 0.2724 + 0.0166 731.52 + 12.84)
0.01 SGD 0.8118 £ 0.0041 0.0046 + 0.0008 1194.89 + 21.09 2495
32 ' PDT 0.8146 + 0.0048 0.0021 % 0.0012 905.07 £ 120.51)
0.05 SGD 0.8049 + 0.0053 0.0156 + 0.0029 1180.72 £ 12.31 64.57
) PDT 0.8020 £ 0.0052 0.0149 + 0.0073 418.38 +0.00 -
0.1 SGD 0.1000 + 0.0000 0.3346 + 0.0098 1172.49 + 39.08)
) PDT 0.1000 £ 0.0000 0.3364 + 0.0132 -
0.001 SGD 0.5384 + 0.0173 1.2295 4+ 0.0261 902.16 + 19.68 35.82
’ PDT 0.5329 £ 0.1152 0.8798 % 0.0257 578.99 £ 55.74 ’
001 SGD 0.7850 £ 0.0226 0.0087 % 0.0030 800.35 +5.39 2332
64) PDT 0.8140 + 0.0021 0.0015 4+ 0.0010 613.70 + 8.80 ’
0.05 SGD 0.8067 £ 0.0035 0.0051 &+ 0.0016 798.20 £ 3.50 2754
) PDT 0.8029 + 0.0029 0.0045 + 0.0006 578.36 + 16.48 ’
01 SGD 0.6442 + 0.2733 0.0484 4+ 0.0522 910.37 + 18.03 56.23
' PDT 0.7976 £ 0.0033 0.0218 4+ 0.0011 398.48 + 21.34 —
0.001 SGD 0.2882 £ 0.0212 1.8456 &+ 0.0300 812.42 +21.20 17.48
’ PDT 0.2951 + 0.0440 1.6972 4+ 0.0272 670.37 £+ 23.93 ’
001 SGD 0.7825 £ 0.0065 0.0675 % 0.0052 661.09 £ 6.35 14.68
128) PDT 0.8009 + 0.0062 0.0058 + 0.0008 564.02 + 16.35)
0.05 SGD 0.7969 +£ 0.0093 0.0039 + 0.0017 662.48 +7.73 915
) PDT 0.8011 + 0.0067 0.0016 + 0.0017 601.86 + 17.78 ’
01 SGD 0.7916 £ 0.0027 0.0083 + 0.0014 803.93 + 3.07 8.20
' PDT 0.7863 + 0.0087 0.0096 + 0.0016 737.97 + 0.00 ’
0.001 SGD 0.1171 £ 0.0092 2.2991 + 0.0011 747.83 £ 20.30 708
’ PDT 0.1453 £+ 0.0213 2.2979 + 0.0026 69491 + 14.63 ’
0.01 SGD 0.6989 £ 0.0301 0.5814 + 0.0147 660.37 £ 0.71 19.98
256) PDT 0.7450 + 0.0236 0.1855 + 0.0172 528.41 +17.26 ’
0.05 SGD 0.7931 £ 0.0034 0.0004 + 0.0003 648.39 + 8.57 2171
) PDT 0.7916 + 0.0016 0.0015 4+ 0.0014 507.62 + 11.36 ’
0.1 SGD 0.3742 £ 0.3359 0.0508 % 0.0576 771.77 £ 3.06)
) PDT 0.3796 + 0.3425 0.0012 4+ 0.0011 -
0.001 SGD 0.1170 £ 0.0251 2.3017 + 0.0005 748.44 + 42.46 6.23
’ PDT 0.1377 £+ 0.0288 2.3020 4 0.0001 701.82 + 23.31 ’
0.01 SGD 0.5710 £ 0.0203 1.1920 + 0.0238 671.28 +9.03 18.89
512 ' PDT 0.5985 £ 0.0078 0.8311 % 0.0252 544.46 £+ 12.10 ’
0.05 SGD 0.7717 £ 0.0038 0.0311 4+ 0.0174 668.59 + 7.30 10.11
) PDT 0.7669 £ 0.0237 0.0034 + 0.0014 601.01 £ 44.11)
0.1 SGD 0.3721 £ 0.3332 0.0648 + 0.0735 768.97 + 3.12)
) PDT 0.4420 £ 0.3420 0.0373 £ 0.0155 -

21

Under review as a conference paper at ICLR 2026

Table 6: Impact of learning rates on PDT performance. Trained on CIFAR-10 using AlexNet, batch
size=256, with CosineAnnealingL.R scheduler, minimum learning rate le-3. Note: bold numbers
indicate the best performance and underlined numbers indicate the second best performance for each

column.
Batch | Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
Size d etho (mean = std) (mean =+ std) Loss (s) (mean 4 std) Reduction (%)

0.001 SGD 0.1217 £ 0.0126 2.2991 4+ 0.0011 757.66 + 26.54 988

’ PDT 0.1461 £ 0.0213 2.2980 + 0.0025 682.79 £+ 2.13)
0.01 SGD 0.6451 + 0.0102 0.9276 4+ 0.0212 745.97 + 47.19 41.54

256) PDT 0.6974 £ 0.0073 0.5853 + 0.0159 436.07 £ 16.09 -
0.05 SGD 0.7852 + 0.0016 0.0020 4 0.0001 675.04 £+ 27.56 3713
) PDT 0.7936 &+ 0.0030 0.0006 + 0.0001 424.39 £+ 20.40 e
01 SGD 0.7930 + 0.0023 0.0002 + 0.0000 665.27 +9.08 19.67

) PDT 0.7978 + 0.0032 0.0002 + 0.0000 534.41 + 12.64 ’

rate is 0.1 for SGD, 0.001 for SGD with Momentum, 0.0005 for Adam. The results are shown in

Table[7l

Table 7: Impact of baseline optimizers (SGD, SGD with Momentum, and Adam) on PDT performance.
Trained on CIFAR-10 using AlexNet, batch size=256, momentum=0.9, with CosineAnnealingL.R
scheduler. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

| Method Final Accuracy Best Train Loss ~ Time to Baseline Best Runtime
g etho (mean =+ std) (mean =+ std) Loss (s) (mean + std) Reduction (%)
0.1 SGD 0.7930 £+ 0.0023 0.0002 + 0.0000 665.27 +9.08 19.67
) PDT 0.7978 £+ 0.0032 0.0002 + 0.0000 534.41 + 12.64 —
0.001 Momentum 0.6672 + 0.0068 0.8609 + 0.0166 752.74 £ 9.62 41.06
’ PDT 0.7298 + 0.0051 0.5358 + 0.0165 443.68 + 8.75 :
0.0005 Adam 0.7952 £+ 0.0063 0.0001 + 0.0000 779.13 £ 11.81 14.87
) PDT 0.8050 + 0.0050 0.0002 + 0.0000 663.28 + 15.30 '

22

	Introduction
	Background and Related Work
	Methods
	PDT Training Framework
	Dynamic Consistency Analysis

	Experiments
	Generalization Study of PDT
	Masking Strategy: Random Selection and Validation Loss?

	Conclusion
	Appendix
	Convergence Path of the Toy Example
	Algorithm Descriptions
	Analysis of Computational Efficiency
	Computational Complexity Analysis
	Convergence Analysis
	Upper Bound Constraint
	Convergence Proof

	Detailed training curves on various Network Structures
	Analysis of Mask Distribution
	Effect of Non-i.i.d. Training Data
	Effect of Training Hyperparameters

