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ABSTRACT

This paper centers around a novel concept proposed recently by researchers from
the control community where the training process of a deep neural network can be
considered a nonlinear dynamical system acting upon the high-dimensional weight
space. Koopman operator theory (KOT), a data-driven dynamical system analysis
framework, can then be deployed to discover the otherwise non-intuitive training
dynamics. Taking advantage of the predictive power of KOT, the time-consuming
Stochastic Gradient Descent (SGD) iterations can be then bypassed by directly
predicting network weights a few epochs later. This “predictive training” frame-
work, however, often suffers from gradient explosion especially for more extensive
and complex models. In this paper, we incorporate the idea of “differential learn-
ing” into the predictive training framework and propose the so-called “predictive
differential training” (PDT) for accelerated learning even for complex network
structures. The key contribution is the design of an effective masking strategy based
on a dynamic consistency analysis, which selects only those predicted weights
whose local training dynamics align with the global dynamics. We refer to these
predicted weights as high-fidelity predictions. PDT also includes the design of
an acceleration scheduler to adjust the prediction interval and rectify deviations
from off-predictions. We demonstrate that PDT can be seamlessly integrated as a
plug-in with a diverse array of existing optimizers (SGD, Adam, RMSprop, LAMB,
etc.). The experimental results show consistent performance improvement across
different network architectures and various datasets, in terms of faster convergence
and reduced training time (10-40%) to achieve the baseline’s best loss, while main-
taining (if not improving) final model accuracy. As the idiom goes, a rising tide lifts
all boats; in our context, a subset of high-fidelity predicted weights can accelerate
the training of the entire network!

1 INTRODUCTION

The advent of cutting-edge hardware (Li et al., 2014) and the development of parallel processing tech-
niques (Li et al., 2020) have greatly accelerated the training process of Deep Neural Network (DNN).
However, enhancing the fundamental techniques of DNN training continues to be a significant chal-
lenge. From the inception of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), which
has since become a mainstay in DNN training, numerous techniques have been proposed to increase
the efficiency of the underlying optimization task, including, for example, learning rate annealing
and momentum (Sutskever et al., 2013), RMSprop (Tieleman & Hinton, 2012), and Adam (Kingma
& Ba, 2014). In addition to these first-order optimizers, second-order alternatives (Martens, 2010)
utilizing curvature information or second-order derivatives of the loss function have been explored to
potentially enable more efficient convergence. Despite these advancements, gradient-based meth-
ods are still inherently iterative, requiring repeated gradient computations and weight adjustments
throughout the network. This iterative burden manifests a fundamental limitation of SGD and its
variants, which lies at the core of the computationally expensive training process.

The concept of differential learning—where different parts of the network can exhibit different
learning behaviors during training—has emerged as a promising direction to address this limitation.
Differential learning can be layer-specific (Devlin et al., 2019; He et al., 2019) or parameter-specific
(Tieleman & Hinton, 2012; Duchi et al., 2011a), allowing for more targeted optimization. The Adam
optimizer (Kingma & Ba, 2014), for instance, adaptively computes individual learning rates for
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different parameters. While differential learning takes adaptive approaches on how parameters are
updated, it does not fundamentally address the limitation of the iterative optimization process itself.

Figure 1: Comparison of training trajectories and loss landscapes between Adam and the proposed
PDT. (Trained on CIFAR-10 using AlexNet.)

Recently, a novel interpretation of the DNN training process has been proposed, mainly by researchers
from the control community (Redman et al., 2022; Dogra & Redman, 2020; Manojlovic et al., 2020;
Tano et al., 2020; Redman et al., 2024) – If it is intuitive to consider a pre-trained DNN as an inherently
nonlinear static system acting upon the inputs, then the DNN “training process” itself is a “nonlinear”
dynamical system acting upon the high-dimensional “weight space”! It is a discrete dynamical
system since the weights of a DNN evolve over each iteration (or epoch) according to the optimization
process adopted. This drastically different interpretation has led to the establishment of a novel
mathematical framework for learning. Koopman Operator Theory (KOT) (Mezić, 2005), a powerful
data-driven dynamical system analysis tool, is often adopted to exploit the underlying dynamics in
the seemingly non-intuitive training process of a DNN. Taking advantage of the predictive power of
KOT, the time-consuming SGD iterations can be bypassed by directly predicting network weights
a few epochs later (Dogra, 2020; Dogra & Redman, 2020; Tano et al., 2020). We refer to these
approaches as predictive training.

However, practical challenges quickly emerge. The absence of actual gradient descent means that
convergence cannot be guaranteed, and the framework is sensitive to disturbances in the weight space,
leading to error accumulation across iterations. As the network scales, the previous Koopman-based
predictive training framework becomes increasingly ineffective. This issue is mostly due to the lack
of adaptive mechanisms when applying prediction-based acceleration. That is, existing predictive
training approaches tend to accept all predicted weights without checking if the prediction is of
“high-fidelity” or not. This often leads to gradient explosion, especially for more extensive and
complex models.

The key observation is that even though KOT is a powerful predictive tool for studying traditional
small-scale control problems, when dealing with DNN whose parameter dimension reach into the
millions or even billions, the quality of prediction tends to be highly inhomogeneous across the entire
weight space. Hence, the predictive learning has to be “selective” – only high-fidelity predictions
should be selected to effectively accelerate learning.

In this paper, we propose predictive differential training (PDT), where acceleration by prediction
is selectively applied based on a dynamic consistency analysis. This principled approach identifies
parameters that are in a stable, predictable phase of their evolution by ensuring their local dynamics
align with the global system dynamics modeled from the training history. This selective acceleration
is conceptually similar to various adaptive learning rate methods. For instance, Adagrad (Duchi et al.,
2011b) targets acceleration at rare features; Momentum (Rumelhart et al., 1986) prioritizes weights
with the largest recent velocity; and the popular Adam optimizer (Kingma & Ba, 2014) employs a
combined strategy. Fig. 1 illustrates the compelling effectiveness of PDT over Adam through a visual
comparison of the training trajectory and loss landscape. The contributions of the proposed PDT can
be summarized as follows:

• We propose the Predictive Differential Training (PDT) framework that selectively applies
predictive updates to effectively accelerate training.
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• We design a dynamic consistency analysis as a masking strategy to conduct prediction. It
selects parameters whose local training dynamics align with the global dynamics, allowing
PDT to identify parameters that are in a stable, predictable phase of their evolution.

• We demonstrate that PDT can be seamlessly integrated as a plug-in with numerous existing
optimizers, such as SGD, Adam, RMSprop, Shampoo, and LAMB, while maintaining
computational efficiency through epoch-level predictions.

• We validate PDT’s effectiveness across a wide range of network architectures (from FCN to
ViT-Huge), datasets (from CIFAR-10 to ImageNet), and learning paradigms (from supervised
to self-supervised), demonstrating its scalability and robustness under various training
conditions.

2 BACKGROUND AND RELATED WORK

The key notion of Koopman analysis is the representation of a (possibly nonlinear) dynamical system
as a linear operator on a typically infinite-dimensional space of functions (Mezić, 2021; 2005; Mezić &
Banaszuk, 2004). Koopman-based approaches directly contrast with standard linearization techniques
that consider the dynamics in a close neighborhood of some nominal solution. Indeed, Koopman
analysis can yield linear operators that accurately capture fundamentally nonlinear dynamics.

Koopman Operator Theory. As a brief description, consider a discrete-time dynamical system
xi+1 = T (xi), where xi ∈ Rn is the current state and xi+1 is the next state after applying the
potentially nonlinear mapping T . Consider also a vector-valued observable g(x) ∈ Rm. The
evolution of observables under this mapping can be described as

g(xi+1) = g(T (xi)) = Kg(xi). (1)

where K operates on the vector space of observables and maps g(xi) to g(xi+1). K is referred to as
the “Koopman operator” that is associated with the fully nonlinear dynamical system. The Koopman
operator is linear, but also infinite-dimensional. As such, for dynamical systems with a pure point
spectrum for observables (Mezić, 2020), its action can be decomposed according to

g(xi+1) = Kg(xi) =

∞∑
k=1

λkϕk(xi)ck, (2)

where λk is an eigenvalue associated with the eigenfunction ϕk(x), which can be evaluated at either
the initial state x0 or any intermediate state xi. ck is the reconstruction coefficient, also known
as the “Koopman mode”, which represents the projection of the observable function g onto the
eigenspace. It immediately follows that g(xi+τ ) =

∑∞
k=1 λ

τ
kϕk(xi)ck for any τ ∈ N. This has

provided a convenient and general framework to “predict and control” a given dynamical system.
Each Koopman mode evolves over time with its frequency and decay rate governed by the imaginary
and real components, respectively.

Koopman-based techniques are particularly useful in a data-driven setting because they only require
measurements of observables. As such, they can be implemented even when the underlying model
dynamics are unknown.

Dynamic Mode Decomposition (DMD). When using Koopman-based approaches, it is critical to
identify a suitable finite basis for representing the infinite-dimensional Koopman operator. Dynamic
Mode Decomposition (DMD) (Schmid, 2010) is one standard approach for inferring Koopman-based
models. It uses least-squares fitting techniques to approximate a finite-dimensional linear matrix
operator, A, that advances high-dimensional measurements of a system forward in time:

g(xi+1) ≈ Ag(xi) (3)

where A is an approximation of the Koopman operator, K, in Eq. 1, restricted to a measurement
subspace spanned by direct measurements of the state x. Since the weight space of a neural network is
a fully observable system, we define g(.) to be the identity function in this work. That is, wi = g(wi).
In practice, we often use “snapshots” of the system arranged into two data matrices, Wi and Wi+1,
where columns of these matrices indicate measurements (i.e., network weights) taken at a certain
time, and Wi+1 is Wi shifted by one time step. Hence,

Wi+1 ≈ AWi, (4)
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and A can be solved by A = Wi+1W
†
i = Wi+1V Σ−1UT , where Wi = UΣV T is the Singular Value

Decomposition (SVD), and W †
i denotes the pseudo-inverse of Wi. A comprehensive discussion of

DMD and its variants has been provided in Kutz et al. (2016).

DNN Training as a Dynamical System. There have been a few works in recent years that adopt
Koopman-based approaches to accelerate the training process of a general-purpose DNN model
(Dogra & Redman, 2020; Tano et al., 2020; Manojlovic et al., 2020). (Dietrich et al., 2020) is
generally considered the first work that establishes the connection between KOT and acceleration of
numerical computation. Dogra (2020) is also one of the pioneer works but with a focus specifically
on neural networks for solving differential equations. Generally speaking, these works take advantage
of the predictive power of the KOT framework to directly predict network weights a few epochs later,
thus bypassing the time-consuming SGD iterations. However, we show in Fig. 2 that these methods
tend to fail for larger network structures as the network size increases.

(a) 2-layer FC (b) 4-layer FC (c) 6-layer FC

Figure 2: Performance comparison on CIFAR-10 using fully connected (FC) networks with varying
depths, among SGD (iterative), PDT (predictive-differential), and the non-selective prediction, i.e.,
Koopman-based predictive training where the predicted weights are applied to all parameters without
checking the prediction quality (Tano et al., 2020). Batch size=256, lr=0.01. In our setup, for every
three epochs of SGD, predictions are performed for the next five steps.

Directly predicting the evolution of neural network weights, by bypassing SGD, is inherently difficult
due to the complex and unstable nature of training dynamics. The loss landscape is highly non-convex,
filled with local minima, saddle points, and flat regions (Goodfellow et al., 2014), while the effective
dynamics is non-stationary (Ghorbani et al., 2019), as both gradients and curvature shift as training
progresses (Sagun et al., 2017). In addition, neural systems can exhibit chaotic or highly sensitive
regimes, where small perturbations quickly amplify and destabilize predictions (Li & Ravela, 2021;
Engelken et al., 2023). This challenge is compounded by the stochastic noise introduced through
mini-batch sampling.

Small prediction errors are highly sensitive and cumulative, risking divergence in the absence of
continual gradient correction (Andrychowicz et al., 2016). Moreover, predictors trained in one context
often fail to generalize across architectures and datasets, highlighting the difficulty of extracting
universally valid patterns (Wichrowska et al., 2017; Metz et al., 2019). Together, these factors make
weight prediction a fundamentally unstable and error-prone task.

Beyond these general challenges, a number of prior works have attempted to predict future weights
directly, such as Introspection (Sinha et al., 2017), WNN (Jang et al., 2023), and the more recent
NiNo (Knyazev et al., 2024). These methods typically rely on a separately learned predictor—either
element-wise regression models or graph-based networks—trained on curated checkpoint datasets
before being applied to a new target model. The effectiveness therefore depends on the predictor’s
meta-training distribution, and the inference cost grows with model size because predictions are
applied at per-weight or per-edge granularity. In contrast to these learned predictors, the proposed
PDT adapts to the heterogeneous training dynamics of different parameters, enabling it to sustain
network growth and provide a viable solution to the weight-prediction challenge. As a result, PDT
functions as a lightweight plug-in without requiring external checkpoint datasets or per-weight
inference overhead. The efficiency of PDT has been validated on several benchmark models (e.g.,
AlexNet, ResNet, and ViT), datasets (e.g., CIFAR-10 and ImageNet), spanning both supervised and
self-supervised tasks.
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3 METHODS

Let us first use a toy example to demonstrate the effect of accelerating the learning of a subset of
variables to motivate the concept of differential learning. Consider the function,

f(x, y, z, u, v, w) = x2 + y2 + sin(z) + u2 − cos(v) + w2 + xy + y sin(z) + uvw,

which involves six variables: x, y, z, u, v, w. To find the minimum of this function, we employ a
simple GD optimization with a learning rate of 0.01. GD takes 53 steps to reach a loss value below
our predefined threshold (0.1).

We then explore an alternative optimization strategy where the variables x, y, z use a learning rate
three times faster than that of the standard process, while u, v, w are optimized at the normal rate but
employing the updated values of x, y, z. See Fig. 7 in Appendix A.1 for the acceleration trajectory,
where the trajectory maintains the same direction for x and y but reaches the threshold in just 25 steps.
This example demonstrates by strategically identifying a subset of variables and simply increasing
their learning rate, the training can be accelerated by about 53%. We also apply the proposed PDT to
the same optimization problem and it reaches the threshold in 27 steps. See Fig. 8 in the Appendix.

This toy example demonstrates the principle behind the idiom, a rising tide lifts all boats!

3.1 PDT TRAINING FRAMEWORK

The PDT Training Framework addresses three key questions: 1) when to enable prediction, 2) how to
integrate predictions with existing optimizers, and 3) which parameters should undergo accelerated
updates. The complete PDT workflow and the mechanism involved in a single acceleration step
are illustrated in Fig. 3. The “prediction” block (Pred) is automatically but strategically placed
among the baseline optimization blocks (OPT), acting as a plug-in enhancement within the existing
optimization framework. Training begins with a “Burn-in stage,” where the model is trained using
the baseline optimizer for several epochs to accumulate a sufficient history of weight snapshots.
Following this stage, a prediction step is performed with an adaptive interval, τ , to achieve accelerated
learning.

Figure 3: Illustration of the proposed PDT framework and the detailed mechanism for a τ -step
prediction, where qualified (or high-fidelity) predicted weights (red) and standard SGD-derived
weights (blue) are integrated that accelerate the training of the entire network.

The bottom part of Fig. 3 provides a detailed illustration of how qualified predicted weights and
standard SGD-derived weights are integrated together to achieve accelerated learning, as showcased
in the toy example. The mask is governed by the dynamic consistency analysis to be elaborated in
Sec. 3.2. If no element in the mask satisfies the criteria, then standard SGD-based optimization takes
over. The pseudocode of the complete PDT algorithm is presented in Appendix A.2.2.

The amount of computation required to perform a DMD-based prediction is comparable to that of a
GD operation. It is important to note that the prediction operations are much less frequent (once for
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several epochs) compared to the standard GD operations (multiple times per epoch, depending on the
batch size). Considering that PDT requires fewer epochs to reach convergence (see Table 1), it can
lead to significant computational savings and efficiency enhancements in the training of large-scale
neural networks. A detailed analysis of computational efficiency in terms of FLOPs is provided in
Appendix A.3 and the theoretical complexity analysis provided in Appendix A.4.

3.2 DYNAMIC CONSISTENCY ANALYSIS

The prediction step begins by applying DMD to the weight snapshots, Wi and Wi+1, which yields a
finite-dimensional approximation of the Koopman operator, A, as in Eq. 4. Since A is of high dimen-
sion, N ×N , where N is the number of weights (or parameters) of the network, it is computationally
intractable to solve directly. Hence, we resort to the Standard DMD algorithm (Tu et al., 2014). This
method projects the dynamics onto a low-rank subspace to efficiently compute the eigenvalues Λ
and the high-dimensional DMD modes Φ without computing A directly (see Appendix A.2.1 for the
derivation). To practically implement the spectral prediction from Eq. 2, the predicted weight vector
is computed from Eq. 5:

wpred
i+τ = ΦΛτΦ†wi (5)

where Φ is the matrix whose columns are the DMD modes (approximating the eigenfunctions ϕk),
Λ is the diagonal matrix containing the corresponding eigenvalues λk, and Φ† denotes the Moore-
Penrose pseudoinverse. The term Φ†w(i) projects the current state onto the DMD modes, calculating
the Koopman mode amplitudes ck in Eq. 2.

Our approach is based on the principle that DMD extracts the dominant patterns of the entire system’s
dynamics. However, at any given training stage, different parameters may exhibit varying degrees of
alignment with these global patterns. Parameters experiencing rapid transitions, or local instabilities,
may not conform to the global linear dynamics assumption underlying DMD. By leveraging the
spectral components (Φ, Λ) derived from the low-rank approximation of A, we can perform a
multi-step prediction through a more stable spectral evolution process using Eq. 5, which provides a
prediction for the system’s global dynamics and also offers a perspective on the prediction for each
parameter. The challenge, however, is how to determine whether such a prediction for each parameter
has “high-fidelity” or “low-fidelity”.

In fact, the correlation between the quality of prediction and training effectiveness has been heavily
studied. From a neuroscience perspective, the quality of predictions made by neurons is intricately
linked to their learning dynamics (Schultz et al., 1997; Friston, 2010). Accurate predictions lead
to more stable and efficient learning, while poor predictions need stronger synaptic adjustments to
improve future performance.

Therefore, we design a masking mechanism to identify parameters whose current local dynamics
align with the system’s global dynamics, based on the following two principles.

The acceleration effectiveness criterion. The absolute weight change between the predicted weight,
wpred

i+τ , and the current weight, wopt
i , at each epoch, i, should be larger than the absolute weight

change from the one-step optimization, wopt
i+1 −wopt

i , to enable accelerated learning; simultaneously,
we impose an upper bound of τ multiples of wopt

i+1 −wopt
i , where τ is the prediction step, to ensure

stable convergence. That is,

∥wopt
i+1 −wopt

i ∥ <∥w
pred
i+τ −wopt

i ∥≤τ∥w
opt
i+1 −wopt

i ∥, (6)

This criterion ensures that the prediction provides a significant advancement beyond what single-step
optimization would achieve, making the acceleration worthwhile. See Appendix A.4 for convergence
guarantee analysis.

The dynamic consistency criterion. The direction of weight change from prediction should align
with the local gradient-based dynamics. That is, the temporal evolution captured by the global DMD
analysis should be consistent with the current local optimization trajectory. Specifically:

sign(wpred
i+k,j −wpred

i+k−1,j) = sign(wopt
i+1,j −wopt

i,j ), (7)

where j is the index for each element in the weight vector and k = {1, · · · , τ}. Note that when
k = 1, wpred

i,j = wopt
i,j . This criterion ensures that each step of the prediction interval follows the

same trend of growth as that of the local optimization.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Based on these two principles, a mask, m can be constructed with its element equal to 1 if both
Eqs. 6 and 7 are satisfied; otherwise, the corresponding element is zero. This dynamic consistency
analysis evaluates these two criteria independently for each parameter. Parameters satisfying both
criteria are deemed to be in a predictable evolutionary phase, allowing safe application of temporal
acceleration through the global dynamic model. Parameters failing these criteria may be experiencing
complex local behaviors (such as rapid transitions, oscillations, or instabilities) that deviate from the
global linear dynamics assumption, requiring fallback to gradient-based updates. Note that Eq. 7
is a rigid criterion to enforce not only that the final predicted weight changes align with the local
optimization direction, but also that every intermediate step in the predicted trajectory maintains
direction consistency.

4 EXPERIMENTS

4.1 GENERALIZATION STUDY OF PDT

We evaluate the effectiveness of the proposed PDT framework in accelerating learning across a variety
of popular neural network architectures with different scales, including Fully-Convolutional-Network
(FCN) (3.9M parameters), AlexNet (57M parameters), ResNet-50 (25.6M parameters), ViT-Base
(86.4M parameters), and ViT-Huge (632M parameters). PDT shows a significant advancement over
previous prediction-only Koopman-based methods limited to simpler models [e.g., (Tano et al., 2020)
with 2.9M trainable parameters]. We also use a range of optimizers, including SGD, SGD with
momentum, and AdamW (Loshchilov & Hutter, 2019). Our validation spans multiple benchmark
datasets, from CIFAR-10 to the more challenging ImageNet-1K.

Figure 4: Analysis of PDT’s Optimization and Generalization Efficiency. Trained on CIFAR-10 using
AlexNet, batch size=256, lr=0.05, with CosineAnnealingLR scheduler.

Fig. 4 illustrates the efficiency of PDT by showing the training curve on CIFAR-10 using AlexNet. We
assess PDT’s performance from two perspectives: (1) Optimization Efficiency, measured by the Time
to Baseline Best Train Loss (or TTB-Loss), quantifies the speed at which PDT converges on the
training objective. (2) Generalization Efficiency, measured by the Time to Baseline Best Validation
Accuracy (or TTB-Acc), reflects the speed at which PDT obtains a useful, well-generalized model.
Note that all runtime metrics reported in this paper represent the total wall-clock time, fully inclusive
of all computational overheads introduced by PDT, such as SVD decomposition, multi-step prediction,
and mask generation. A detailed profiling of these overheads is provided in Appendix A.10. The
detailed training curves on various network structures can be found in Fig. 10 in Appendix A.6.

In all experiments, we use the past five epochs to form the snapshot with a one-epoch interval to
predict weights in the next five steps. Prediction starts from the 5th epoch. A comprehensive study of
PDT’s performance under different training configurations (batch sizes, learning rates, and optimizers)
and hyperparameters [i.e., prediction steps (τ ), prediction interval (Ti), starting epoch (T0), and past
snapshot counts (h)] can be found in Appendix A.9, demonstrating robust performance across various
training hyperparameters.

As elaborated in Sec. 3, the computational load of the Koopman-related calculations is comparable
to that of batch-level updates. However, since we apply these calculations at the epoch level, the
overhead introduced by DMD is effectively compensated by the acceleration in loss reduction. We

7
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observe from both Table 1 and Fig. 10 that the proposed PDT consistently achieves the best training
loss of the Baseline but in fewer number of epochs without sacrificing performance. All experiments
were repeated with five random seeds to ensure reliability. Unless otherwise specified, all results in
the tables are reported as mean ± standard deviation over five runs.

Table 1: Runtime comparison. FCN and AlexNet are trained on a single Nvidia RTX A6000 GPU,
while ResNet-50, ViT-Base, and ViT-Huge are trained on three Nvidia H100 (80 GB) GPUs. Using
the same experimental setup and hyperparameter configurations as in Fig. 10.

Model Baseline
Optimizer

TTB-Loss (s) TTB-Acc (s) Runtime Reduction (%)

Baseline PDT Baseline PDT Train Loss Val. Acc.

FCN SGD 2174.32 1313.52 2088.58 1424.14 39.59 31.81
AlexNet SGD 683.93 430.91 531.30 347.11 37.00 34.67

ResNet-50 SGD-M 110063.72 88752.33 121449.60 92133.34 19.36 24.14
ViT-Base AdamW 259241.21 232810.62 296028.36 243097.58 10.20 17.88
ViT-Huge AdamW 725564.86 653854.05 741220.54 660711.80 9.88 10.86

The last column in Fig. 10 illustrates a so-called “masked ratio curve” unique to PDT, where it tracks
the percentage of predictions accepted according to the masking strategy described in Sec. 3.2. We
make two interesting observations. First, we observe that the masked ratio always starts with higher
values in the early stage of the training process, then generally decreases as training progresses. This
trend aligns naturally with how GD-based baselines behave. That is, in the early stage of the training
process, the loss landscape is typically easier to optimize, leading to faster reduction in loss and more
stable gradient directions, which in turn allows more weights to pass the masking criteria, hence
a higher masking ratio. Later in training, as the GD-based optimizer approaches (local) minima,
gradients tend to oscillate more around the optimum, making it more challenging to predict, hence
less percentage of predicted weights being accepted. More interestingly, we observe that smaller
networks on simpler tasks (FCN/AlexNet on CIFAR-10) show a relatively more gradual reduction
in the masked ratio, while larger networks on more complex tasks (ResNet-50/ViT on ImageNet)
exhibit a much sharper reduction of masked ratio, especially at the early stage of the training process.
This pattern implies that for large networks on large datasets, the training dynamics are inherently
complex and challenging to predict. The higher masked ratio at the initial training stage is primarily
attributed to the steep loss landscape and large gradients. As the model converges and gradients
diminish, the intrinsic complexity of the training dynamics becomes dominant, resulting in a rapid
reduction in the percentage of weights that can be convincingly predicted (according to the proposed
masking strategy). A detailed analysis of how the mask distribution evolves across different layers of
the network during training is provided in Appendix A.7.

To further demonstrate the versatility of PDT as a plug-in enhancement, we extended our evaluation
to include a broader range of optimizers [SGD, SGD with momentum, Adam, AdamW, RMSprop,
Shampoo (Gupta et al., 2018), and LAMB (You et al., 2020)] while keeping the network architecture
and other configurations fixed. The results in Table 2 show that PDT consistently reduces the time to
reach baseline best loss across these optimizers.

We also extend our evaluation to the domain of self-supervised learning (SSL). We select Sim-
Siam (Chen & He, 2021), a prominent non-contrastive method, as our testbed. SimSiam’s training
dynamics, which are driven by a stop-gradient mechanism and a negative cosine similarity objective,
are fundamentally different from those of supervised learning. The results, summarized in Table 3,
demonstrate that PDT’s advantages generalize effectively to SSL.

In addition, further analysis of PDT’s performance under non-i.i.d. training conditions is pre-
sented in Appendix A.8. The cross-domain evaluation on natural language processing tasks is in
Appendix A.13.

4.2 MASKING STRATEGY: RANDOM SELECTION AND VALIDATION LOSS?

In this experiment, we study the effectiveness of the proposed masking strategy by comparing it
with randomly selecting a subset of predicted weights. We perform a series of runs where subsets of
Koopman predicted weights are randomly selected. The regions highlighted in green in Fig. 5 show
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Table 2: Impact of baseline optimizers on PDT performance. Trained on CIFAR-10 using AlexNet,
batch size=256, momentum=0.9, with CosineAnnealingLR scheduler.

Optimizer lr Final Accuracy Best Train Loss TTB-Loss (s) Runtime
Reduction (%)

SGD 0.1 0.7930 ± 0.0023 0.0002 ± 0.0000 665.27 ± 9.08 19.67PDT 0.7978 ± 0.0032 0.0002 ± 0.0000 534.41 ± 12.64

Momentum 0.001 0.6672 ± 0.0068 0.8609 ± 0.0166 752.74 ± 9.62 41.06PDT 0.7298 ± 0.0051 0.5358 ± 0.0165 443.68 ± 8.75

Adam 0.0005 0.7952 ± 0.0063 0.0001 ± 0.0000 779.13 ± 11.81 14.87PDT 0.8050 ± 0.0050 0.0002 ± 0.0000 663.28 ± 15.30

AdamW 5e-5 0.8031 ± 0.0021 0.0077 ± 0.0002 652.92 ± 5.26 28.36PDT 0.8149 ± 0.0037 0.0013 ± 0.0002 467.76 ± 6.05

RMSprop 0.0001 0.7996 ± 0.0032 4.1e-5 ± 1.6e-5 661.08 ± 0.42 15.35PDT 0.8108 ± 0.0026 2.4e-5 ± 0.6e-5 559.61 ± 0.00

Shampoo 0.001 0.8012 ± 0.0071 0.0040 ± 0.0005 736.56 ± 10.58 16.03PDT 0.8101 ± 0.0043 0.0033 ± 0.0003 618.49 ± 12.72

LAMB 0.001 0.8034 ± 0.0025 0.1215 ± 0.0085 663.25 ± 5.44 44.24PDT 0.8140 ± 0.0027 0.0036 ± 0.0006 369.82 ± 10.59

Table 3: Performance comparison of SimSiam pre-training on CIFAR-10 with a ResNet-18 backbone,
trained for 200 epochs, lr=0.03, batch size=256, momentum=0.9, with CosineAnnealingLR scheduler.

Optimizer Final Accuracy TTB-Loss (s) TTB-Acc (s) Runtime Reduction (%)

Train Loss Val. Acc.

SGD Momentum 0.7285 ± 0.0166 9611.35 ± 837.98 7353.12 ± 1063.96 48.78 16.10PDT 0.7685 ± 0.0144 4922.92 ± 712.55 6169.04 ± 1142.97

the outcomes of these trials. Quite frequently, these runs result in gradient explosions, leading to non-
recoverable errors (NaN values) in subsequent epochs. This experiment underscores the importance
of a principled masking strategy in Koopman Training. Random masking, without considering the
training dynamics can lead to severe divergence and training failure. Our findings highlight that
strategic selection based on “high-fidelity” predictions is crucial to the success of PDT.

Figure 5: PDT vs. random mask prediction (with the same mask ratio). Trained on CIFAR-10 using
AlexNet, batch size=256, lr = 0.01.

We implement another baseline scheduling scheme that switches between prediction and SGD based
on the validation loss trend: apply prediction when validation loss decreases and roll back to SGD
updates when validation loss starts to increase. Fig. 6 illustrates the training dynamics under this
strategy. Initially, DMD is engaged due to its slight advantage in reducing validation loss. However,
as training progresses, a significant surge in loss is observed, suggesting a misalignment between the
DMD-predicted weights and the optimal trajectory for the network. Even after reverting to SGD, the
model failed to recover, indicating that relying solely on validation loss as a trigger for switching
between PDT and SGD is inadequate.
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Figure 6: Performance comparison on CIFAR-10 using AlexNet: SGD vs. Koopman-based prediction
(switching between prediction and SGD based on validation loss). L: Train loss. R: Validation loss.

5 CONCLUSION

This paper proposed a novel predictive differential training (PDT) framework based on the study of
training dynamics. PDT incorporate the idea of “differential learning” into the predictive training
framework for accelerated learning even for complex network structures. The key contribution is
the design of an effective masking strategy based on a dynamic consistency analysis, which selects
only those predicted weights of high-fidelity whose local training dynamics align with the global
dynamics. Analogous to the saying a rising tide lifts all boats, in our setting, a subset of high-fidelity
predicted weights facilitates more efficient training across the entire network!

The training process of a deep network with millions to billions of parameters indeed presents an
intriguing dynamical system that the control community has not faced before. This would stimulate
further investigation into the development of better data-driven dynamical system analysis algorithms
in addition to DMD. Innovative approaches, such as streaming DMD (Hemati et al., 2014; Liew et al.,
2022), can not only reduce the memory footprint of constructing trajectory matrices, but also improve
computational efficiency.
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A APPENDIX

A.1 CONVERGENCE PATH OF THE TOY EXAMPLE

To better illustrate the effectiveness of differential learning strategies, we designed a toy optimization
problem with six variables. See Sec. 3.1 for the description of the problem. Starting from the
initial point [2.0, 2.0, 1.0, 0.5,−0.5, 1.5] with a learning rate of 0.01. Fig. 7 shows the optimization
trajectories in the x-y plane, where the background color represents the function value at each point.
The blue line with dots represents the GD trajectory, while the red dashed line shows the path of
accelerated GD where x, y, z variables use 3x learning rate. All points on the trajectories represent the
state after each optimization step. The arrows indicate where each method reaches the threshold value
(0.1). Building upon this observation, we apply our proposed PDT method to the same optimization
problem. Fig. 8 presents the comparison between standard GD and our proposed PDT method on the
same toy optimization problem. Fig. 8(a) uses the same visualization scheme as Fig. 7, showing how
PDT follows a similar path but reaches the threshold faster (PDT reaches the threshold in 27 steps).
Fig. 8(b) clearly demonstrates the acceleration effect, where PDT’s loss decreases more rapidly than
GD. The horizontal dashed line indicates the threshold value used as the stopping criterion.

Figure 7: The differential learning trajectory of the toy example provided in Sec. 3.1. Only the x and
y dimensions are shown.

(a) (b)

Figure 8: Performance comparison between GD (53 steps) and PDT (27 steps) on the toy optimization
problem. (a) Optimization trajectories in the x-y plane. (b) Loss values during optimization.
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A.2 IMPLEMENTATION DETAILS OF PDT

A.2.1 DERIVATION OF THE DMD ALGORITHM

In the main text, we introduced the Koopman operator approximation A = Wi+1W
†
i . However, as

noted, A is an N ×N matrix (where N is the number of parameters, typically millions or billions),
making direct computation intractable. In our implementation (see Appendix A.2.2), we employ the
DMD algorithm (Tu et al., 2014) to compute the spectral decomposition of A in a low-rank subspace.
This section provides the step-by-step derivation linking the snapshot matrices Wi,Wi+1 in Eq. 4 to
the spectral components Φ,Λ used in Eq. 5.

Let wi ∈ RN be the flattened weight vector of the neural network at the current epoch i. To capture
the training dynamics, we construct two snapshot matrices using the weight trajectories from the
past h epochs: Input Matrix (corresponding to Wi in Eq. 4) contains the sequence of weights from
the history buffer, excluding the last weight state; Shifted Matrix (corresponding to Wi+1 in Eq. 4)
contains the same sequence shifted forward by one time step, ending with the current weight wi. For
the remainder of this derivation, we refer to these matrices as Wi and Wi+1 to maintain consistency
with the main text. Both matrices are in RN×(h−1), where h≪ N (e.g., h = 5).

We first compute the reduced SVD of Wi:

Wi ≈ UΣV T (8)

where U ∈ RN×r, Σ ∈ Rr×r, and V ∈ R(h−1)×r. Here r ≤ h is the truncation rank. This step
reduces the dimensionality from the vast parameter space N to the small snapshot space r.

Instead of computing A = Wi+1W
†
i = Wi+1V Σ−1UT , we project the high-dimensional operator A

onto the low-dimensional subspace spanned by the proper orthogonal decomposition (POD) modes
U (Berkooz et al., 1993). We compute the proxy matrix Ã ∈ Rr×r:

Ã = UTAU = UT (Wi+1W
†
i )U = UTWi+1V Σ−1 (9)

Computationally, this involves multiplying the large matrix Wi+1 by small matrices V and Σ−1, then
projecting onto U . This results in a tiny r × r matrix that captures the essential dynamics of the full
system.

Since Ã is small (r × r), we can efficiently compute its eigendecomposition:

ÃΨ = ΨΛ (10)

where Λ = diag(λ1, . . . , λr) contains the eigenvalues (which approximate the eigenvalues of the full
operator A), and Ψ ∈ Cr×r contains the eigenvectors of Ã.

The eigenvectors Ψ are in the low-dimensional subspace. To map the eigenvectors back to the full
parameter space, we use the Standard DMD formulation, which is computationally efficient and
numerically stable:

Φ = UΨ (11)

This yields the DMD modes Φ ∈ CN×r. This step is crucial as it provides the mapping basis for our
prediction equation. (Note: The Exact DMD formulation Φ = Wi+1V Σ−1Ψ is also an option, but
incurs additional computational cost).

With Φ and Λ computed, we predict the future state τ steps ahead, starting from the current weight
wi. The prediction equation (matching Eq. 5 in the main text) is derived as:

wpred
i+τ = Re{ΦΛτΦ†wi} (12)

Here, the term c = Φ†wi represents the projection of the current weights onto the DMD modes (i.e.,
finding the mode amplitudes, which corresponds to the coefficients ck in Eq. 2). Since the modes Φ
are generally non-orthogonal (as A is not symmetric), Φ† denotes the Moore-Penrose pseudoinverse,
which provides the least-squares solution c = argminc̃ |wi − Φc̃|2. Finally, we take the real part of
the result, as the neural network weights must be real-valued.

A.2.2 ALGORITHM PSEUDOCODE
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Algorithm 1 PDT algorithm

Require: baseline optimizer Obase, past snapshot counts h, start epoch for prediction T0, predicted
steps τ , prediction interval Ti, number of parameters N

Ensure: Trained model parameters w
1: Initialize weight history matrix WN×h, counter ce = 0
2: for epoch i = 0 to T do
3: if i ≥ T0 and ce ≥ Ti then
4: Obtain wopt(i− 1) from history matrix WN×h

5: Train model for one epoch using Obase, save weights after training as wopt(i)
6: Calculate DMD from WN×h to obtain modes Φ and eigenvalues Λ
7: 1) Decompose: c← Φ†wopt(i) {Project current state onto modes}
8: 2) Evolve: Compute future state wpred(i+ τ)← Re(ΦΛτc)
9: 3) Masking: Create mask M by comparing dynamics (Eqs. 6 and 7):

10: SGD step: ∆sgd = wopt(i)−wopt(i− 1)
11: PDT step: ∆pdt = wpred(i+ τ)−wopt(i)
12: 4) Assemble: Update weights selectively
13: w(i)←M ⊙wpred(i+ τ) + (1−M)⊙wopt(i)
14: Update model parameters with updated w(i)
15: ce ← 0
16: else
17: Train model for one epoch using Obase

18: ce ← ce + 1
19: end if
20: Update weight history matrix WN×h

21: end for

(a)

(b)

Figure 9: Performance comparison between baseline optimization and PDT, with (a) epochs and
(b) TFLOPs as x-axis. Trained on CIFAR-10 using AlexNet, batch size=256, lr=0.05, with Cosine
Annealing scheduler.

A.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

To provide a detailed analysis of PDT’s computational efficiency, we compare the computational cost
in terms of FLOPs (Floating-point operations per second) between the baseline optimizer and PDT.
Fig. 9 shows the training dynamics with respect to both epochs and total computation cost (measured
in TFLOPs). The experiments in Fig. 9 are conducted on AlexNet with CIFAR-10 using batch size
of 256, learning rate of 0.05, with Cosine annealing scheduler. While the per-epoch computation of
PDT is slightly higher (69.71 TFLOPs) than that of SGD (56.74 TFLOPs) due to the additional DMD
calculations and prediction operations, it achieves faster convergence in terms of total computation.
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Specifically, PDT requires 2596.30 TFLOPs to reach the baseline’s best loss, compared to SGD’s
3404.32 TFLOPs, representing a 23.74% reduction in computational cost. Moreover, PDT achieves
better final accuracy (79.70% vs 78.75%) despite using fewer FLOPs to reach convergence.

The results also validate our design choice of keeping the past snapshot count (h) small (set to 5 in
our experiments). Even with this small h value, which minimizes the computational cost of DMD
calculations, PDT achieves substantial acceleration in terms of FLOPs.

A.4 COMPUTATIONAL COMPLEXITY ANALYSIS

To provide a rigorous understanding of PDT’s efficiency, we analyze its complexity in terms of both
computation time and memory usage. We consider a DNN with N parameters trained on a dataset
with S samples.

Time Complexity. The computational load for processing each batch using standard SGD is directly
proportional to both the batch size (B) and the number of parameters (N ), resulting in a complexity
of O(B ×N) per batch, or O(S ×N) per epoch.

Integrating Koopman operator predictions into the DNN training process entails constructing a
snapshot matrix from h past epochs of the parameter trajectories, with the matrix dimension being
N × h. As derived explicitly in Appendix A.2.1, the prediction process involves several steps. The
dominant operations and their complexities are:

• SVD of Wi: O(N × h2)

• Computing Ã: O(N × h2)

• Eigendecomposition of Ã: O(h3)

• Computing Modes Φ: O(N × h2)

• Prediction (Solve Φ†): O(N × h2)

The total complexity is O(N × h2). Since h is a small constant (e.g., h = 5) in our experiments
while N can reach millions or even billions, the quadratic impact of h remains manageable relative
to N . Since the prediction step occurs only once per epoch (or every few epochs, depending on Ti),
the amortized cost is minimal compared to the O(S ×N) cost of the baseline optimization over the
full dataset.

Memory Complexity. The additional memory requirement for PDT is dominated by the storage
of the weight history matrix W, which stacks h snapshots of the model parameters. Thus, the
space complexity is O(N × h). For our default setting of h = 5, this corresponds to storing 5
additional copies of the model weights. On modern training hardware (e.g., NVIDIA A100 with
40GB+ VRAM), this overhead is manageable. For instance, a ResNet-50 model (N ≈ 25.5M)
requires approximately 100 MB per snapshot (in float32 precision), totaling ∼ 500 MB for h = 5,
which is minor compared to the memory consumed by activation maps and optimizer states. Note
that these snapshots are stored only temporarily and are overwritten after each DMD computation, so
the space cost does not accumulate over training.

A detailed runtime and memory profiling analysis is provided in Appendix A.10.

A.5 CONVERGENCE ANALYSIS

We analyze the convergence of the hybrid update that combines DMD-based predictions with gradient-
descent updates under the masking strategy in Sec. 3.2. Throughout this section, we use wi to denote
the current parameters and L(w) to denote the loss.

A.5.1 ASSUMPTIONS AND UPPER-BOUND CONSTRAINT

Assume that L : Rd → R has L–Lipschitz continuous gradients, i.e.,

∥∇L(x)−∇L(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd.
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Let wopt
i denote the parameters after one step of the baseline optimizer

wopt
i+1 = wopt

i − η∇L(wopt
i ),

with step size η > 0. Let wpred
i+τ denote the τ–step DMD prediction starting from wopt

i . As Eq. 6 in
Sec. 3.2, PDT enforces the magnitude bound

∥wpred
i+τ −wopt

i ∥ ≤ τη∥∇L(wopt
i )∥. (13)

In addition, for each element j accepted by the mask, the dynamic consistency criterion (Eq. 7)
ensures the sign alignment, sign(wpred

i+k,j − wpred
i+k−1,j) = sign(wopt

i+1,j − wopt
i,j ), where k = 1, · · · , τ .

Hence, we have

sign(wpred
i+τ,j − wopt

i,j ) = sign(wopt
i+1,j − wopt

i,j ) = sign(−η∇L(wopt
i,j ))

This leads to (
wpred

i+τ,j − wopt
i,j

)(
∇L(wopt

i,j )
)
≤ 0.

A.5.2 UPDATE RULE WITH MASKING

Let mi ∈ {0, 1}N denote the binary mask. PDT forms the next iterate by

wi+1 = mi ⊙wpred
i+τ + (1N −mi)⊙wopt

i+1, (14)

where ⊙ denotes elementwise multiplication. Define

di := wi+1 −wopt
i .

Elementwise,

di,j =

{
wpred

i+τ,j − wopt
i,j , mi,j = 1,

−η∇L(wopt
i,j ), mi,j = 0.

(15)

For masked elements, |di,j | = |wpred
i+τ,j − wopt

i,j | ≤ τη|∇L(wopt
i,j )| by Eq. 13. For unmasked ones,

|di,j | = η|∇L(wopt
i,j )| ≤ τη|∇L(wopt

i,j )| since τ ≥ 1. Hence |di,j | ≤ τη|∇L(wopt
i,j )| for all j, and

∥di∥ ≤ τη∥∇L(wopt
i )∥. (16)

Furthermore, for elements where mi,j = 1, the acceleration effectiveness criterion (Eq. 6 lower
bound) implies |di,j | > η|∇Lj |. Combined with the sign consistency,

∇L(wopt
i,j ) di,j ≤ −η(∇L(w

opt
i,j ))

2,

for all j. Summing,
⟨∇L(wopt

i ),di⟩ ≤ −η∥∇L(wopt
i )∥2. (17)

A.5.3 DESCENT INEQUALITY AND CONVERGENCE

Because L has L–Lipschitz gradients, the standard descent lemma yields

L(x+ d) ≤ L(x) + ⟨∇L(x),d⟩+ L

2
∥d∥2. (18)

Applying Eq. 18 with x = wopt
i and d = di, and using Eq. 16– 17, we obtain

L(wi+1) ≤ L(wopt
i )− η∥∇L(wopt

i )∥2 + L

2
τ2η2∥∇L(wopt

i )∥2. (19)

Grouping the terms,

L(wi+1) ≤ L(wopt
i )− η

(
1− Lητ2

2

)
∥∇L(wopt

i )∥2. (20)
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A sufficient condition for the coefficient, 1− Lητ2

2 , to be positive is

η ≤ 2

Lτ2
. (21)

Under Eq. 21, we obtain the GD-style descent inequality

L(wi+1) ≤ L(wopt
i ). (22)

Thus {L(wi)} is monotonically non-increasing and bounded below, hence convergent. Standard
results for gradient-based methods with bounded steps and L-smooth losses (e.g., inexact gradient
descent) then imply that

∥∇L(wi)∥ → 0,

and every limit point of {wi} is stationary.

A.6 DETAILED TRAINING CURVES ON VARIOUS NETWORK STRUCTURES

Fig. 10 presents the detailed training curves and performance comparison of PDT and baseline
optimizer across various network structures.

A.7 ANALYSIS OF MASK DISTRIBUTION

We further analyze the mask distribution and dynamics in AlexNet. Fig. 11 shows how the ratio
of the predicted weights evolves over training epochs. The analysis is conducted using the same
experimental setup as in Fig. 10(b), where AlexNet is trained on CIFAR-10.

Fig. 11(a) presents the layer-wise evolution of the ratio of the predicted weights throughout the
training process. We observe a pattern here: the masked ratio of each layer starts relatively high,
maintaining a stable period, and then gradually declining. The decline phase at the later epochs
suggests that as the network approaches convergence, it relies more on gradient-based updates rather
than predictions. This aligns with the intuition that predictive updates can be beneficial in the early
phases for accelerating convergence but become less necessary as the model stabilizes. The early
convolutional layers (e.g., Conv0) exhibit more fluctuations in the percentage of predictive updates,
suggesting a higher sensitivity to training dynamics.

Fig. 11(b) tracks the evolution of predicted weights ratios by layer type. The overall percentage
of predictively updated weights is also included. Interestingly, convolutional layers consistently
maintain a higher prediction ratio compared to fully connected layers throughout the training process.
Due to the majority of the weights in the AlexNet network belonging to the fully connected layers
(54.6 million vs. 2.5 million), the overall masked ratio closely follows the trend of fully connected
layers.

To provide a finer-grained visualization of the mask distribution, Fig. 12 depicts the mask heatmap
for different layers at epoch 20. Each horizontal band represents a layer, where blue regions indicate
weights updated by SGD, and red regions correspond to weights updated by prediction results. We
can observe that the distribution of predictive updates is not uniform across layers, with some layers
showing clustered regions of predictive updates, potentially indicating structured weight adaptations.

A.8 EFFECT OF NON-I.I.D. TRAINING DATA

We further investigate the robustness of PDT under some challenging training conditions. For
example, when the batch is too small for a diverse dataset like ImageNet, the weight updates could be
chaotic since each consecutive batch is no longer an identical distribution. There are two experimental
designs that can test this: 1) test PDT on a very large dataset like ImageNet-22K and 2) design a
batching scheme to intentionally violate the i.i.d. assumption of mini-batches using a smaller dataset
such as CIFAR-10. In the second design, we maintain the normal batch size, but only put samples of
the same class in the batch. We also randomize the batch sequence instead of using any fixed order so
that there is no regular training set dynamics that DMD might pick up on.

Fig. 13 and Table 4 show the performance and runtime comparison between SGD and PDT under the
non-i.i.d. setting using the second experimental design since non-i.i.d. is guaranteed. We preserve
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(a) Trained on CIFAR-10 using FCN, batch size=256, lr=0.01, with CosineAnnealingLR scheduler.

(b) Trained on CIFAR-10 using AlexNet, batch size=256, lr=0.05, with CosineAnnealingLR scheduler.

(c) Trained on ImageNet-1K using ResNet-50, batch size=1800, lr=0.1, momentum=0.9, with CosineAn-
nealingLR scheduler.

(d) Trained on ImageNet-1K using ViT-Base, batch size=1800, lr=0.003, momentum=0.9, with CosineAn-
nealingLR scheduler.

Figure 10: Performance comparison between baseline optimization and PDT.

the original i.i.d. sampling of the validation set. All experiments are repeated with five random seeds
(0, 100, 200, 300, 400) to ensure statistical significance.

We make some interesting observations. First, despite the challenging non-i.i.d. setup, PDT still
achieves better performance than SGD in terms of faster convergence without sacrificing accuracy.
However, we also observe that in the non-i.i.d. case, learning starts out much more slowly for both
SGD and PDT and both take longer to converge. Second, in the non-i.i.d. case, the variance of each
of the performance curves is generally larger than those of the i.i.d. case. This is because the model
needs to handle more abrupt transitions between different class distributions.

Fig. 13 and Table 4 further demonstrate that PDT’s advantage extends beyond standard i.i.d. training
conditions, showing its robustness to challenging data sets where traditional assumptions about data
distribution are violated.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 11: Analysis of mask distribution in AlexNet. (a) Layer-wise mask evolution over training
epochs. (b) Comparison of prediction ratios between convolutional and fully connected layers.

Figure 12: A snapshot at epoch 20 with the mask heatmap for different layers.

A.9 EFFECT OF TRAINING HYPERPARAMETERS

Several primary hyperparameters require careful consideration in PDT:

Prediction Steps (τ ): Derived from DMD, the number of prediction steps significantly influences
the training speed. As shown in Fig. 14(a) in Appendix Sec. A.9, training accelerates within a certain
range of prediction steps. However, extending beyond a critical threshold, such as nine steps in our
study, can introduce large errors and potentially cause gradient explosion.

Prediction Interval (Ti): The interval between Prediction blocks impacts the effectiveness of
acceleration, as depicted in Fig. 14(b). A shorter interval can enhance training speed if the predictions
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(a) Under normal i.i.d. training data distribution.

(b) Under non-i.i.d. training data distribution.

Figure 13: Performance comparison between SGD and PDT under i.i.d. and non-i.i.d. training data
distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet,
batch size=128, lr=0.05, with CosineAnnelingLR scheduler. The shaded areas represent the standard
deviation across 5 runs with different random seeds (0, 100, 200, 300, 400).

Table 4: Performance and runtime comparison between SGD and PDT under i.i.d. and non-i.i.d.
training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using
AlexNet, batch size=128, lr=0.05, with CosineAnnelingLR scheduler.

Training Data
Distribution Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

i.i.d. SGD 0.7969 ± 0.0093 0.0039 ± 0.0017 662.48 ± 7.73 9.15PDT 0.8011 ± 0.0067 0.0016 ± 0.0017 601.86 ± 17.78

non-i.i.d. SGD 0.7067 ± 0.0062 0.1053 ± 0.0874 806.83 ± 13.15 27.90PDT 0.7159 ± 0.0103 0.0119 ± 0.0057 581.73 ± 19.34
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are accurate. Nevertheless, the quality of predictions may decline as the training progresses, rendering
the network more sensitive to errors, particularly as it nears convergence.

Starting Epoch (T0): The starting epoch for acceleration must be greater than or equal to the number
of epochs used to build the snapshot, as illustrated in Fig. 14(c). The initiation of acceleration is
influenced by factors such as initialization, learning rate, and model architecture.

Past Snapshot Counts (h): Fig. 14(d) indicates that the number of epochs needed to construct the
snapshot matrix for prediction also influences the train loss. This value cannot be too small or too
large. If it is too small, the snapshot will not have sufficient measurements to precisely estimate the
dynamics of the training process. If it is too large, DMD would have missed the local dynamics with
only a coarser grasp of the general training dynamics.

Overall, these PDT-related hyperparameters are robust across optimizers, architectures, and datasets.
Based on our experience, below are “Rule of Thumb” guidelines to help find the appropriate hyperpa-
rameters for different scenarios.

• Past Snapshot counts (h): h = 5 is a “sweet spot”. Smaller h is insufficient for capturing
dynamics, larger h includes “stale” weights from much earlier training and introduces
additional overhead. For networks with extremely dynamic changes, a larger value of h
(e.g., h=10) is also worth trying.

• Prediction Steps (τ ): We recommend starting with τ = 5 as a robust default value. This
value provides a good balance between acceleration benefit and prediction accuracy across
diverse architectures and datasets. Users can increase τ to 7 if their training loss curves are
very stable and exhibit minimal variance. Conversely, if gradient explosion or instability
occurs, reducing τ to 3 provides a more conservative acceleration while maintaining stability.
A practical configuration is to set τ ∈ [3, 7]. Too large leads to divergence, while too small
makes it meaningless.

• Prediction Interval (Ti): We recommend setting Ti = 1 as the default. If the training process
is unstable, then gradually increase the interval.

• Start Epoch (T0): The start epoch T0 should typically be equal to h to ensure sufficient
history is available for the first prediction.

To thoroughly evaluate the effectiveness and robustness of PDT under different training configurations,
we conduct comprehensive experiments across different learning rates from 0.001 to 0.1 (0.001, 0.01,
0.05, 0.1) and batch sizes from 32 to 512 (32, 64, 128, 256, 512). All experiments were repeated
with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance. All experiments are
performed on AlexNet with the CIFAR-10 dataset, using SGD as the baseline optimizer and trained
for 60 epochs. The PDT-related hyperparameters mentioned in Sec. A.9 were set to prediction step=5,
prediction interval=1, start epoch=5, and past snapshot counts=5.

(a) lr=0.01, int=1,
start=10, snap=10.

(b) lr=0.05, step=9,
start=10, snap=10.

(c) lr-=0.01, int=1,
step=5, snap=5.

(d) lr=0.01, step=5,
int=1, start=10.

Figure 14: The influence of different parameters. (a) prediction steps, (b) prediction interval, (c)
starting epoch, (d) past snapshot counts. Trained on CIFAR-10 using AlexNet, batch size=256.

The results in Table 5 show the impact of different batch sizes and learning rates on the performance
of PDT. At lower learning rates (0.001, 0.01, and 0.05), PDT consistently outperforms SGD in terms
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Table 5: Impact of learning rates and batch sizes on PDT performance. Trained on CIFAR-10 using
AlexNet. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

Batch
Size lr Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

32

0.001 SGD 0.6981 ± 0.0458 0.6376 ± 0.0127 1232.29 ± 4.45 40.64PDT 0.6903 ± 0.0885 0.2724 ± 0.0166 731.52 ± 12.84

0.01 SGD 0.8118 ± 0.0041 0.0046 ± 0.0008 1194.89 ± 21.09 24.25PDT 0.8146 ± 0.0048 0.0021 ± 0.0012 905.07 ± 120.51

0.05 SGD 0.8049 ± 0.0053 0.0156 ± 0.0029 1180.72 ± 12.31 64.57PDT 0.8020 ± 0.0052 0.0149 ± 0.0073 418.38 ± 0.00

0.1 SGD 0.1000 ± 0.0000 0.3346 ± 0.0098 1172.49 ± 39.08 -PDT 0.1000 ± 0.0000 0.3364 ± 0.0132 -

64

0.001 SGD 0.5384 ± 0.0173 1.2295 ± 0.0261 902.16 ± 19.68 35.82PDT 0.5329 ± 0.1152 0.8798 ± 0.0257 578.99 ± 55.74

0.01 SGD 0.7850 ± 0.0226 0.0087 ± 0.0030 800.35 ± 5.39 23.32PDT 0.8140 ± 0.0021 0.0015 ± 0.0010 613.70 ± 8.80

0.05 SGD 0.8067 ± 0.0035 0.0051 ± 0.0016 798.20 ± 3.50 27.54PDT 0.8029 ± 0.0029 0.0045 ± 0.0006 578.36 ± 16.48

0.1 SGD 0.6442 ± 0.2733 0.0484 ± 0.0522 910.37 ± 18.03 56.23PDT 0.7976 ± 0.0033 0.0218 ± 0.0011 398.48 ± 21.34

128

0.001 SGD 0.2882 ± 0.0212 1.8456 ± 0.0300 812.42 ± 21.20 17.48PDT 0.2951 ± 0.0440 1.6972 ± 0.0272 670.37 ± 23.93

0.01 SGD 0.7825 ± 0.0065 0.0675 ± 0.0052 661.09 ± 6.35 14.68PDT 0.8009 ± 0.0062 0.0058 ± 0.0008 564.02 ± 16.35

0.05 SGD 0.7969 ± 0.0093 0.0039 ± 0.0017 662.48 ± 7.73 9.15PDT 0.8011 ± 0.0067 0.0016 ± 0.0017 601.86 ± 17.78

0.1 SGD 0.7916 ± 0.0027 0.0083 ± 0.0014 803.93 ± 3.07 8.20PDT 0.7863 ± 0.0087 0.0096 ± 0.0016 737.97 ± 0.00

256

0.001 SGD 0.1171 ± 0.0092 2.2991 ± 0.0011 747.83 ± 20.30 7.08PDT 0.1453 ± 0.0213 2.2979 ± 0.0026 694.91 ± 14.63

0.01 SGD 0.6989 ± 0.0301 0.5814 ± 0.0147 660.37 ± 0.71 19.98PDT 0.7450 ± 0.0236 0.1855 ± 0.0172 528.41 ± 7.26

0.05 SGD 0.7931 ± 0.0034 0.0004 ± 0.0003 648.39 ± 8.57 21.71PDT 0.7916 ± 0.0016 0.0015 ± 0.0014 507.62 ± 11.36

0.1 SGD 0.3742 ± 0.3359 0.0508 ± 0.0576 771.77 ± 3.06 -PDT 0.3796 ± 0.3425 0.0012 ± 0.0011 -

512

0.001 SGD 0.1170 ± 0.0251 2.3017 ± 0.0005 748.44 ± 42.46 6.23PDT 0.1377 ± 0.0288 2.3020 ± 0.0001 701.82 ± 23.31

0.01 SGD 0.5710 ± 0.0203 1.1920 ± 0.0238 671.28 ± 9.03 18.89PDT 0.5985 ± 0.0078 0.8311 ± 0.0252 544.46 ± 12.10

0.05 SGD 0.7717 ± 0.0038 0.0311 ± 0.0174 668.59 ± 7.30 10.11PDT 0.7669 ± 0.0237 0.0034 ± 0.0014 601.01 ± 44.11

0.1 SGD 0.3721 ± 0.3332 0.0648 ± 0.0735 768.97 ± 3.12 -PDT 0.4420 ± 0.3420 0.0373 ± 0.0155 -
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of convergence speed across different batch sizes. PDT shows a significant reduction in the runtime to
reach baseline best loss, with an average runtime reduction of 22.76% compared to SGD. For higher
learning rates (0.1), both SGD and PDT struggled to achieve stable training, and PDT’s advantage
over SGD became less pronounced. Sometimes PDT can significantly reduce the convergence time
(for example, when batch size = 64), but other times the accuracy will drop significantly after reaching
a high point, or even result in gradient explosion. This suggests that the high learning rate introduced
significant stochasticity, reducing the effectiveness of PDT’s prediction mechanism. Smaller batch
sizes (32, 64) generally achieve more significant runtime reductions.

To address the stability issues observed at higher learning rates and larger batch sizes, different from
the previous fixed learning rate, we investigated the effectiveness of the learning rate scheduler. We
tested the Cosine Annealing learning rate scheduler with a minimum learning rate of 1e-3. Taking
batch size 256 as an example, we observe significantly improved stability and performance. The
results are shown in Table 6. The results are particularly noteworthy at higher learning rates (lr=0.1),
where the previous experiments in Table 5 show considerable variance. With the cosine annealing
scheduler, PDT achieves consistent accuracy improvements across all learning rates while maintaining
substantial runtime reductions.

Table 6: Impact of learning rates on PDT performance. Trained on CIFAR-10 using AlexNet, batch
size=256, with CosineAnnealingLR scheduler, minimum learning rate 1e-3. Note: bold numbers
indicate the best performance and underlined numbers indicate the second best performance for each
column.

Batch
Size lr Method Final Accuracy

(mean ± std)
Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

256

0.001 SGD 0.1217 ± 0.0126 2.2991 ± 0.0011 757.66 ± 26.54 9.88PDT 0.1461 ± 0.0213 2.2980 ± 0.0025 682.79 ± 2.13

0.01 SGD 0.6451 ± 0.0102 0.9276 ± 0.0212 745.97 ± 47.19 41.54PDT 0.6974 ± 0.0073 0.5853 ± 0.0159 436.07 ± 16.09

0.05 SGD 0.7852 ± 0.0016 0.0020 ± 0.0001 675.04 ± 27.56 37.13PDT 0.7936 ± 0.0030 0.0006 ± 0.0001 424.39 ± 20.40

0.1 SGD 0.7930 ± 0.0023 0.0002 ± 0.0000 665.27 ± 9.08 19.67PDT 0.7978 ± 0.0032 0.0002 ± 0.0000 534.41 ± 12.64

To further investigate PDT’s compatibility with different optimization methods, we compare its
performance when integrated with different optimizers (SGD, SGD with momentum, and Adam)
while keeping the network architecture and other configurations fixed. For SGD with momentum, we
set the momentum factor to 0.9. All experiments are conducted on AlexNet with CIFAR-10 using
batch size 256, maintaining the same PDT hyperparameters as in previous experiments. The learning
rate is 0.1 for SGD, 0.001 for SGD with Momentum, 0.0005 for Adam. The results are shown in
Table 7.

Table 7: Impact of baseline optimizers (SGD, SGD with Momentum, and Adam) on PDT performance.
Trained on CIFAR-10 using AlexNet, batch size=256, momentum=0.9, with CosineAnnealingLR
scheduler. Note: bold numbers indicate the best performance and underlined numbers indicate the
second best performance for each column.

lr Method Final Accuracy
(mean ± std)

Best Train Loss
(mean ± std)

Time to Baseline Best
Loss (s) (mean ± std)

Runtime
Reduction (%)

0.1 SGD 0.7930 ± 0.0023 0.0002 ± 0.0000 665.27 ± 9.08 19.67PDT 0.7978 ± 0.0032 0.0002 ± 0.0000 534.41 ± 12.64

0.001 Momentum 0.6672 ± 0.0068 0.8609 ± 0.0166 752.74 ± 9.62 41.06PDT 0.7298 ± 0.0051 0.5358 ± 0.0165 443.68 ± 8.75

0.0005 Adam 0.7952 ± 0.0063 0.0001 ± 0.0000 779.13 ± 11.81 14.87PDT 0.8050 ± 0.0050 0.0002 ± 0.0000 663.28 ± 15.30
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A.10 PROFILING AND OVERHEAD ANALYSIS

To validate our theoretical complexity analysis and quantitatively measure the overhead, we conduct
comprehensive profiling experiments across three diverse architectures: AlexNet (CNN, 57M pa-
rameters) on CIFAR-10, ResNet-50 (deep CNN, 25.6M parameters) on ImageNet-1k, and ViT-Base
(Transformer, 86.4M parameters) on ImageNet-1k. We measure wall-clock time, GPU memory usage,
and FLOPs for both the baseline optimizer and PDT.

A.10.1 MEASUREMENT METHODOLOGY

Memory Overhead. The Peak GPU memory captures true peak GPU usage during training, measured
via torch.cuda.max memory allocated(). Currently Allocated is the memory actively
allocated at the end of each epoch. Reserved by Allocator is the total memory reserved by PyTorch’s
caching allocator. The PDT Memory Overhead consists of Snapshot Storage (h copies of weights),
SVD Workspace (the temporary storage for intermediate matrices), and Other (includes optimizer
momentum buffers, weight cloning buffers, temporary tensors, and memory fragmentation). The
PDT memory overhead ratio is computed as the total PDT overhead divided by the baseline’s peak
GPU memory.

Runtime Overhead. The Total PDT Runtime Overhead is defined as the difference between the
PDT epoch time and the baseline SGD epoch time. We further decompose this into Core PDT
Operations (including SVD decomposition, DMD-based weight prediction, and gradient masking)
and Auxiliary Operations (including weight cloning for snapshot storage, CUDA synchronization,
and data movement between CPU/GPU). The PDT runtime overhead ratio is computed as total PDT
overhead divided by total epoch time.

FLOPs Overhead. Total floating-point operations for the entire training process.

All profiling experiments are conducted on a single GPU (Nvidia RTX A6000 or H100) to ensure
accurate measurement of peak memory and timing without the interference of distributed commu-
nication overheads. For PDT, we use a past snapshot counts of h = 5 and a prediction interval of
Ti = 1.

A.10.2 PROFILING RESULTS

1. AlexNet on CIFAR-10. Table 8 summarizes the results for AlexNet on CIFAR-10. The peak GPU
memory usage for PDT increases by approximately 8.4 GB compared to the baseline. This absolute
increase is primarily due to the snapshot storage (1.1 GB for h = 5) and the SVD workspace (1.7 GB
for intermediate matrices). The remaining overhead (∼ 5.6 GB) is attributed to temporary buffers
and memory fragmentation during the weight update process. While the relative increase (1145%)
appears large due to the small baseline footprint of AlexNet on CIFAR-10, the absolute peak usage
(9.1 GB) fits comfortably within the capacity of modern GPUs. This confirms that the O(N × h)
space complexity is practical, as described in Appendix A.4. The total PDT overhead is approximately
333 ms per epoch, with the PDT overhead ratio for only 4.30%. Decomposing this overhead reveals
that core PDT operations account for 194 ms (58.3%), while auxiliary operations (weight cloning
and synchronization) account for 138.8 ms (41.7%). Notably, the SVD operation itself takes only
∼ 98 ms, empirically confirming our theoretical claim that the SVD cost is computationally efficient
even for frequent predictions. The additional FLOPs introduced by PDT are negligible. The total
training FLOPs increase from 3.4043× 1015 (baseline) to 3.4047× 1015 (PDT), a 0.012% increase,
validating that the computational cost is dominated by gradient calculations in the baseline optimizer
rather than in the PDT operations.

2. ResNet-50 on ImageNet-1k. To further validate overhead analysis, we conducted comprehensive
profiling on ResNet-50 + ImageNet-1k with varying batch sizes (64, 128, 256). Table 9 presents
detailed memory and runtime measurements for both baseline and PDT. The absolute total PDT
memory overhead remains nearly constant (∼ 1.46 GB) across all batch sizes, validating that PDT’s
space complexity O(N × h) is independent of data scale. Consequently, the PDT memory overhead
ratio decreases monotonically as baseline memory increases with batch size from 47.9% (bs=64) to
13.0% (bs=256). In order to measure overhead more accurately, all experiments in this section were
run on a single GPU. For ResNet-50 and ViT results reported in Table 1, we used a batch size of
1800 (600 per GPU, trained on 3 GPUs), so we estimate the overhead ratio should be even lower. In
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Table 8: Memory and Runtime overhead of PDT compared to baseline. Trained on CIFAR-10 using
AlexNet, batch size=256, SGD baseline optimizer with lr=0.05, with CosineAnnealingLR scheduler.
All experiments ran on a single Nvidia RTX A6000 (48 GB) GPU.

Metric Baseline PDT

GPU Memory Usage
Peak GPU Memory (MB) 735.9 9158.2
Currently Allocated (MB) 468.7 5078.0
Reserved by Allocator (MB) 994.0 11454.0

PDT Memory Overhead
Total PDT Overhead (MB) — 8422.4
Overhead Ratio (%) — 1145%

PDT Memory Overhead Breakdown
Snapshot Storage (MB) — 1088.0
SVD Workspace (MB) — 1740.9
Other (MB) — 5593.4

PDT Runtime Overhead (per epoch)
Avg Time per Epoch (s) 7.465 7.746
Total PDT Overhead (s) — 0.333
PDT Overhead Ratio (%) — 4.30%

PDT Runtime Overhead Breakdown
Core PDT Operations (ms) — 194.0

↪→ SVD decomposition (ms) — 98.3
↪→ Prediction (ms) — 88.1
↪→ Masking (ms) — 7.6

Auxiliary Operations (ms) — 138.8

some cases in Table 9, the Avg. Epoch time of PDT was slightly shorter than baseline, likely due to
measurement variance. The total PDT runtime overhead (90–110 ms) is consistent and negligible.
The core PDT operations (SVD + prediction + masking) take only ∼ 51 ms per epoch, which is
insignificant compared to the (635s–804s) epoch time.

3. ViT-Base on ImageNet-1k. To validate the generality of our overhead analysis across different
architectures, we conducted profiling on ViT-Base (Transformer architecture) with ImageNet-1k at a
batch size of 256. Table 10 presents detailed memory and runtime measurements for both baseline
and PDT.

Despite ViT-Base having significantly more parameters (86.4M) than ResNet-50 (25.6M), the memory
overhead breakdown remains consistent with our theoretical analysis: snapshot storage and SVD
workspace dominate (40% and 53% respectively), with only 7% attributed to auxiliary memory. The
absolute memory overhead (4,954 MB) is larger than ResNet-50 (1,463 MB) as expected from the
O(N × h) scaling. The runtime overhead remains negligible at 0.11%.

A.10.3 SCALABILITY AND GENERALIZATION ANALYSIS

The profiling results align robustly with our theoretical analysis in Appendix A.4, confirming that
PDT is scalable to large modern architectures.

AlexNet has a large number of parameters (57M) relative to the small size of the CIFAR-10 dataset.
This results in a scenario with high memory requirements for SVD (proportional to N ) but a very short
epoch duration (low compute load). For a large-scale dataset like ImageNet, the computational load
per epoch increases dramatically, while the parameter count N (which dictates PDT overhead) does
not change with a specific network architecture. The disparity of the memory overhead ratio (AlexNet:
1,145%, ResNet-50: 13%, ViT-Base: 26%) can be explained by the composition of baseline memory.
For AlexNet on CIFAR-10, the baseline memory (736 MB) is dominated by model parameters
because the input image size (32× 32) generates very small activation maps. For ImageNet-1k with
(224 × 224) inputs, the baseline memory (11–19 GB) is dominated by activation memory, while
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Table 9: Memory and Runtime overhead of PDT compared to baseline across different batch sizes.
Trained on ImageNet-1k using ResNet-50, SGD with Momentum baseline optimizer with lr=0.1,
momentum=0.9, with CosineAnnealingLR scheduler. All experiments ran on a single Nvidia H100
(80 GB) GPU.

Baseline PDT

Metric bs=64 bs=128 bs=256 bs=64 bs=128 bs=256

GPU Memory Usage
Peak GPU Memory (MB) 3,062 5,792 11,258 4,528 7,255 12,721
Currently Allocated (MB) 400 436 512 2,439 2,436 2,439
Reserved by Allocator (MB) 3,404 6,766 13,424 7,392 10,864 15,298

PDT Memory Overhead
Total PDT Overhead (MB) — — — 1,466 1,463 1,463
Overhead Ratio (%) — — — 47.9% 25.3% 13.0%

PDT Memory Overhead Breakdown
Snapshot Storage (MB) — — — 585 585 585
SVD Workspace (MB) — — — 780 780 780
Other (MB) — — — 101 98 98

PDT Runtime Overhead (per epoch)
Avg Time per Epoch (s) 813.9 653.1 626.5 804.0 651.5 635.3
Total PDT Runtime Overhead (ms) — — — 90 90 110
Overhead Ratio (%) — — — 0.011% 0.013% 0.017%

PDT Runtime Overhead Breakdown
Core PDT Operations (ms) — — — 51.5 50.7 51.1

↪→ SVD decomposition (ms) — — — 31.0 30.4 30.7
↪→ Prediction (ms) — — — 19.7 19.5 19.6
↪→ Masking (ms) — — — 0.8 0.8 0.8

Auxiliary Operations (ms) — — — 38.5 39.3 58.9

parameter storage is a smaller fraction. Since PDT overhead scales only with parameters and not
activations, the relative overhead drops dramatically.

In conclusion, while PDT introduces a linear space complexityO(N × h), this overhead is amortized
in a large-scale training scenario where memory is dominated by activations and runtime is dominated
by gradient computation.
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Table 10: Memory and Runtime overhead of PDT compared to baseline on. Trained on ImageNet-1k
using ViT-Base, batch size=256, AdamW baseline optimizer with lr=0.0006, weight decay=0.05,
with CosineAnnealingLR scheduler. All experiments ran on a single Nvidia H100 (80 GB) GPU.

Metric Baseline PDT

GPU Memory Usage
Peak GPU Memory (MB) 19,022 23,976
Currently Allocated (MB) 1,536 8,406
Reserved by Allocator (MB) 19,462 35,328

PDT Memory Overhead
Total PDT Overhead (MB) — 4,954
Overhead Ratio (%) — 26.0%

PDT Memory Overhead Breakdown
Snapshot Storage (MB) — 1,981
SVD Workspace (MB) — 2,642
Other (MB) — 330

PDT Runtime Overhead (per epoch)
Avg Time per Epoch (s) 831.3 832.1
Total PDT Runtime Overhead (ms) — 877
Overhead Ratio (%) — 0.11%

PDT Runtime Overhead Breakdown
Core PDT Operations (ms) — 193.2

↪→ SVD decomposition (ms) — 127.4
↪→ Prediction (ms) — 62.8
↪→ Masking (ms) — 3.0

Auxiliary Operations (ms) — 683.6

A.11 ABLATION STUDY: MASKING CRITERION ANALYSIS

In Sec. 3.2, we introduce a masking mechanism including two principles: the acceleration effective-
ness criterion (Eq. 6) and the dynamic consistency criterion (Eq. 7). To investigate the contribution
and distinct role of each masking criterion, we conducted a comprehensive ablation study on AlexNet
trained on CIFAR-10, using SGD as the base optimizer. We compare four configurations: (1) Baseline
(standard SGD), (2) Accel Only (apply only acceleration effectiveness criterion for masking), (3)
Consistency Only (apply only dynamic consistency criterion for masking), and (4) Full PDT (our
complete PDT method with both criteria). Each configuration was evaluated with learning rates 0.01
and 0.05, prediction steps τ ∈ {3, 5}, and five random seeds (0, 100, 200, 300, 400), totaling 70
experimental runs.

Table 11 presents the success rate (proportion of runs that completed without crashing) and final
validation accuracy (computed only from successful runs) for each configuration. Consistency Only
achieves only 1 successful run (seed=300, LR=0.05, τ = 3) with 10% accuracy (random level),
demonstrating catastrophic failure. Accel Only achieves 80% success but shows particular instability
at τ = 5 with LR=0.05 (2/5 success), with successful runs achieving only 10% accuracy, indicating
its inability to predict longer steps. The full PDT achieves perfect robustness (20/20 success) and
the highest validation accuracy at both learning rates, outperforming the baseline performance, and
validating the necessity of combining both criteria.

Figure 15 visualizes the training dynamics across different learning rates and prediction steps (τ ).
Since there is no need to adhere to the dynamic consistency criterion, Accel only consistently has a
higher masked ratio than the full PDT. In all configurations, its train loss is higher than that of full
PDT. Specifically, in Fig. 15(d) (LR=0.05,τ = 5), the Accel Only validation accuracy collapses to
random chance (10%) after the initial epochs. Without the consistency criterion, too many predictions
with incorrect directions are accepted, which causes gradient explosion, especially when predicting
multiple steps. In contrast, Full PDT consistently achieves the lowest training loss and highest
validation accuracy across all configurations. The shaded variance regions for Full PDT are notably
tighter than those for Accel Only, demonstrating that combining both criteria makes the training
process significantly more stable.
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Table 11: Comprehensive masking ablation results on AlexNet trained on CIFAR-10. Success rates
are shown as successful/total runs. Final accuracy reported as mean± std across five seeds (successful
runs only).

Configuration τ LR=0.01 LR=0.05 Overall

Success Rate Final Acc (%) Success Rate Final Acc (%) Success

Baseline (SGD) — 5/5 64.40± 0.71 5/5 78.68± 0.21 10/10

Accel Only 3 5/5 58.04± 1.29 5/5 78.23± 0.64 16/205 4/5 48.20± 8.19 2/5 10.00± 0.00

Consistency Only 3 0/5 Crashed 1/5 10.00 1/205 0/5 Crashed 0/5 Crashed

Full PDT 3 5/5 69.39± 0.79 5/5 78.98± 0.18 20/205 5/5 69.10± 1.33 5/5 79.48± 0.20

To further investigate the contribution of each masking criterion across different training stages, we
decompose the predictions rejected by PDT and examine which criterion rejects them. Figure 16
shows the temporal evolution of each criterion’s contribution throughout training. We analyze the
Full PDT configuration (LR=0.05) across five random seeds to understand how the acceptance and
rejection ratios evolve. Experimental results from τ=3 and τ=5 show a similar pattern. Ratio of
predictions rejected by Consistency Criterion (Eq. 7) due to opposite direction remains stable at
∼50% throughout training. Ratio of predictions rejected by Acceleration Criterion Lower Bound
(Eq. 6) (for being too small (< 1× SGD update)) decreases to near zero, indicating this bound is
primarily active early in training. Ratio of predictions rejected by Accel Upper Bound (for being too
large (> (τ)× SGD update)) increases dramatically (from ∼20% to ∼50%), becoming critical in the
later training stage.

The overall mask ratio decline is due to the increasing rejection by the upper bound of the acceleration
effectiveness criterion. The gradual decline in mask ratio reflects the changing optimization land-
scape: early in training, when the loss landscape is steep and gradients are large, DMD sometimes
underestimates the required step size. However, as training progresses and gradients shrink near
convergence, DMD predictions rarely fall below the minimum threshold. When near convergence,
gradients become small, noisy, and oscillatory. The upper bound becomes critical for preventing
divergence by rejecting these over-aggressive predictions.

From the above ablation results, compared to a single criterion, the complete PDT with both criteria
has smooth loss curves, faster convergence, and low variance across seeds. This provides strong
empirical evidence supporting our theoretical design and demonstrates that neither criterion alone
is sufficient. Both criteria play distinct, complementary roles. The dynamic consistency criterion
provides stable, stage-agnostic directional filtering. The acceleration effectiveness criterion ensures
predictions provide speedup by enforcing magnitude bounds. During the early training stage, the
lower bound guarantees that each accepted prediction moves the weights at least as far as a single
SGD step, enabling acceleration. The upper bound prevents over-aggressive updates that could cause
divergence and ensures stability throughout the training process.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) LR=0.01, prediction step (τ ) = 3.

(b) LR=0.01, prediction step (τ ) = 5.

(c) LR=0.05, prediction step (τ ) = 3.

(d) LR=0.05, prediction step (τ ) = 5.

Figure 15: Mean training curves (with standard deviation indicated by Shaded regions) and perfor-
mance comparison of baseline and pdt with different masking criteria. Trained on CIFAR-10 using
AlexNet, batch size = 256, with CosineAnnealingLR scheduler. Only successful runs are included.

(a) LR=0.05, prediction step (τ ) = 3. (b) LR=0.05, prediction step (τ ) = 5.

Figure 16: Temporal evolution of masking criteria contributions during training. Results from full
PDT (both criteria applied). Trained on CIFAR-10 using AlexNet, LR=0.05, batch size = 256, with
CosineAnnealingLR scheduler. Only successful runs are included.
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A.12 IMPACT OF DIFFERENT INITIAL LEARNING RATES ON MASKED RATIO

To investigate the impact of different initial learning rates on masked ratio behavior and computational
efficiency, we conducted systematic experiments on AlexNet trained on CIFAR-10. We compare
Baseline (SGD) and PDT (prediction steps τ = 5, prediction interval Ti = 1, past snapshot counts
h = 5, starting epoch T0 = 5) across four different learning rates: 0.001, 0.01, 0.05, and 0.1. All
experiments use batch size 256, CosineAnnealingLR scheduler with lrmin = 10−3, and train for 60
epochs. Each configuration was evaluated with three random seeds (0, 100, 200). We measure mask
acceptance ratio by training stage (early: epochs 5–20, mid: epochs 21–40, late: epochs 41–60) and
final validation accuracy.

As shown in Table 12, larger learning rates lead to higher mask acceptance ratios during early training.
Specifically, LR=0.1 achieves the highest early-training masked ratio (18.77%), followed by LR=0.05
(16.94%), LR=0.01 (8.12%), and LR=0.001 (0.06%). For relatively large learning rates (e.g., 0.05
and 0.1), this trend is not strictly observed. As training progresses, the masked ratios across different
learning rates decline to varying degrees. However, for extremely small learning rates (e.g., 0.001),
the masked ratio remains consistently low. PDT consistently improves over baseline across all
learning rates, demonstrating robustness.

Table 12: Mask acceptance ratio and validation accuracy across learning rates: mask acceptance ratio
by training stage and final test accuracy (mean ± std across 3 seeds). Training stages: Early (epochs
5–20), Mid (epochs 21–40), Late (epochs 41–60).

LR Early (%) Mid (%) Late (%) Overall (%) Base Acc (%) PDT Acc (%)

0.001 0.06± 0.00 0.07± 0.00 0.10± 0.02 0.08± 0.01 11.83± 1.04 14.92± 2.44
0.01 8.12± 0.20 7.10± 0.06 2.77± 0.02 5.77± 0.07 63.96± 0.14 68.43± 0.64
0.05 16.94± 0.20 8.52± 0.5 0.68± 0.15 7.94± 0.31 78.67± 0.13 79.24± 0.22
0.1 18.77± 0.24 7.10± 0.52 0.37± 0.05 7.91± 0.20 79.76± 0.27 80.06± 0.20

Figure 17: Mask acceptance ratio evolution across different learning rates (mean± std shading across
3 seeds). Trained on CIFAR-10 using AlexNet, batch size = 256, with CosineAnnealingLR scheduler.

Figure 17 visualizes the mask ratio evolution across different learning rates. Early training exhibits
the highest acceptance, as the loss landscape is steep and gradients provide a strong signal. By late
training (epochs 41–60), mask ratios converge to low values across all learning rates.

The temporal evolution of masking criteria contribution shown in Fig. 18 reveals why extremely small
learning rates (e.g., 0.001) lead to consistently low mask acceptance ratios during the entire training
stage. The mask acceptance behavior is governed by the interaction between the learning rate and
the Acceleration Effectiveness Criterion (Eq. 6). At LR=0.001, the figure shows that predictions are
overwhelmingly rejected by the consistency criterion and the Upper Bound of acceleration criterion
(Green line). When the learning rate is extremely low (e.g., 0.001), the gradient steps are small,
making the “allowable acceleration window” microscopic. Although DMD predicts a trajectory based
on historical dynamics, the magnitude of this prediction, even if small, easily exceeds the excessively
strict upper bound imposed by the tiny learning rate. In contrast, at LR=0.05 and 0.1, the upper bound
constraint is relaxed. The gradient signal is strong enough that the SGD step size is comparable to
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Figure 18: Temporal evolution of masking criteria contribution across learning rates. Trained on
CIFAR-10 using AlexNet, batch size = 256, with CosineAnnealingLR scheduler.

the DMD prediction scale. Consequently, a larger proportion of predictions fall comfortably between
the lower bound and the upper bound, resulting in a significantly higher masked ratio.

In conclusion, the stage-wise analysis reveals that masked ratios are highest during early training
and decline adaptively toward convergence, prioritizing stability over acceleration in the final stages.
Contrary to the intuition that smaller steps imply stability and higher acceptance, our analysis confirms
that larger learning rates are necessary to generate the clear dynamic signals required for high-fidelity
DMD predictions. PDT is most effective when the baseline optimizer takes steps large enough to
define a “permissible region” that accommodates the scale of DMD’s spectral predictions.

A.13 CROSS-DOMAIN EVALUATION ON NATURAL LANGUAGE PROCESSING

To demonstrate the generalization of PDT beyond computer vision, we evaluate its effectiveness on
text classification tasks. This experiment validates PDT’s applicability to a fundamentally different
data modality (discrete text) and architecture (Recurrent Neural Networks).

We employ a deep LSTM network for 4-class topic classification on the AG News dataset (Zhang et al.,
2015; Gulli). The architecture consists of an embedding layer, a 4-layer stacked LSTM (512 hidden
units per layer), and a linear classifier, totaling 8.25M parameters. This setup differs significantly
from CNNs, particularly in terms of gradient flow dynamics (backpropagation through time). We
use SGD with a learning rate of 0.1 and batch size 128 for 30 epochs. The PDT hyperparameters
are identical to those used in our vision experiments (τ = 5, h = 5, T0 = 5, Ti = 1) to assess the
robustness of PDT without domain-specific tuning. Results are averaged over 3 random seeds.

Table 13: Performance comparison on AG News dataset (text classification) using a deep LSTM
model. Trained on a single Nvidia RTX A6000 GPU for 30 epochs, lr=0.1, batch size=128, with
CosineAnnealingLR scheduler.

Optimizer Final Accuracy TTB-Loss (s) TTB-Acc (s) Runtime Reduction (%)

Train Loss Val. Acc.

SGD 86.10 ± 1.30 700.8 ± 72.1 694.4 ± 76.9 26.1 20.5PDT 88.44 ± 0.59 517.9 ± 102.2 551.7 ± 120.5
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Figure 19: Performance comparison between baseline optimizer and PDT. Trained on the AG
News dataset using an LSTM model. Trained on a single Nvidia RTX A6000 GPU for 30 epochs,
lr=0.1, batch size=128, with CosineAnnealingLR scheduler. The shaded areas represent the standard
deviation across three runs with different random seeds (0, 100, 200).

As summarized in Table 13, PDT successfully accelerates training in the NLP domain. PDT achieves
the baseline’s best training loss 26.1% faster and best validation accuracy 20.5% faster. This speedup
magnitude is comparable to that observed in our vision experiments (10–40%). PDT also achieves
a higher validation accuracy of (88.44% compared to the baseline’s 86.10%). Fig. 19 presents the
training dynamics comparison between baseline SGD and PDT on the AG News dataset.

The successful application of PDT to text classification with LSTMs provides strong evidence for its
cross-domain generalizability. Despite the different optimization landscape of LSTMs, PDT achieves
consistent speedups across both CNN-based vision tasks and RNN-based language tasks.
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