

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PREDICTIVE DIFFERENTIAL TRAINING GUIDED BY TRAINING DYNAMICS

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper centers around a novel concept proposed recently by researchers from the control community where the training process of a deep neural network can be considered a nonlinear dynamical system acting upon the high-dimensional weight space. Koopman operator theory (KOT), a data-driven dynamical system analysis framework, can then be deployed to discover the otherwise non-intuitive training dynamics. Taking advantage of the predictive power of KOT, the time-consuming Stochastic Gradient Descent (SGD) iterations can be then bypassed by directly predicting network weights a few epochs later. This “predictive training” framework, however, often suffers from gradient explosion especially for more extensive and complex models. In this paper, we incorporate the idea of “differential learning” into the predictive training framework and propose the so-called “predictive differential training” (PDT) for accelerated learning even for complex network structures. The key contribution is the design of an effective masking strategy based on a dynamic consistency analysis, which selects only those predicted weights whose local training dynamics align with the global dynamics. We refer to these predicted weights as high-fidelity predictions. PDT also includes the design of an acceleration scheduler to adjust the prediction interval and rectify deviations from off-predictions. We demonstrate that PDT can be seamlessly integrated as a plug-in with a diverse array of existing optimizers (SGD, Adam, RMSprop, LAMB, etc.). The experimental results show consistent performance improvement across different network architectures and various datasets, in terms of faster convergence and reduced training time (10-40%) to achieve the baseline’s best loss, while maintaining (if not improving) final model accuracy. As the idiom goes, a rising tide lifts all boats; in our context, a subset of high-fidelity predicted weights can accelerate the training of the entire network!

1 INTRODUCTION

The advent of cutting-edge hardware (Li et al., 2014) and the development of parallel processing techniques (Li et al., 2020) have greatly accelerated the training process of Deep Neural Network (DNN). However, enhancing the fundamental techniques of DNN training continues to be a significant challenge. From the inception of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), which has since become a mainstay in DNN training, numerous techniques have been proposed to increase the efficiency of the underlying optimization task, including, for example, learning rate annealing and momentum (Sutskever et al., 2013), RMSprop (Tieleman & Hinton, 2012), and Adam (Kingma & Ba, 2014). In addition to these first-order optimizers, second-order alternatives (Martens, 2010) utilizing curvature information or second-order derivatives of the loss function have been explored to potentially enable more efficient convergence. Despite these advancements, gradient-based methods are still inherently iterative, requiring repeated gradient computations and weight adjustments throughout the network. This iterative burden manifests a **fundamental limitation** of SGD and its variants, which lies at the core of the computationally expensive training process.

The concept of *differential learning*—where different parts of the network can exhibit different learning behaviors during training—has emerged as a promising direction to address this limitation. Differential learning can be layer-specific (Devlin et al., 2019; He et al., 2019) or parameter-specific (Tieleman & Hinton, 2012; Duchi et al., 2011a), allowing for more targeted optimization. The Adam optimizer (Kingma & Ba, 2014), for instance, adaptively computes individual learning rates for

054 different parameters. While differential learning takes adaptive approaches on how parameters are
 055 updated, it does not fundamentally address the limitation of the iterative optimization process itself.
 056

057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068 Figure 1: Comparison of training trajectories and loss landscapes between Adam and the proposed
 069 PDT. (Trained on CIFAR-10 using AlexNet.)

070
 071 Recently, a novel interpretation of the DNN training process has been proposed, mainly by researchers
 072 from the control community (Redman et al., 2022; Dogra & Redman, 2020; Manojlovic et al., 2020;
 073 Tano et al., 2020; Redman et al., 2024) – If it is intuitive to consider a pre-trained DNN as an inherently
 074 nonlinear static system acting upon the inputs, then *the DNN “training process” itself is a “nonlinear”*
 075 *dynamical system acting upon the high-dimensional “weight space”!* It is a discrete dynamical
 076 system since the weights of a DNN evolve over each iteration (or epoch) according to the optimization
 077 process adopted. This drastically different interpretation has led to the establishment of a novel
 078 mathematical framework for learning. Koopman Operator Theory (KOT) (Mezić, 2005), a powerful
 079 data-driven dynamical system analysis tool, is often adopted to exploit the underlying dynamics in
 080 the seemingly non-intuitive training process of a DNN. Taking advantage of the predictive power of
 081 KOT, the time-consuming SGD iterations can be bypassed by directly predicting network weights
 082 a few epochs later (Dogra, 2020; Dogra & Redman, 2020; Tano et al., 2020). We refer to these
 083 approaches as *predictive training*.

084 However, practical challenges quickly emerge. The absence of actual gradient descent means that
 085 convergence cannot be guaranteed, and the framework is sensitive to disturbances in the weight space,
 086 leading to error accumulation across iterations. As the network scales, the previous Koopman-based
 087 predictive training framework becomes increasingly ineffective. This issue is mostly due to the lack
 088 of adaptive mechanisms when applying prediction-based acceleration. That is, existing predictive
 089 training approaches tend to accept *all* predicted weights without checking if the prediction is of
 090 “high-fidelity” or not. This often leads to gradient explosion, especially for more extensive and
 091 complex models.

092 The **key observation** is that even though KOT is a powerful predictive tool for studying traditional
 093 small-scale control problems, when dealing with DNN whose parameter dimension reach into the
 094 millions or even billions, the quality of prediction tends to be highly inhomogeneous across the entire
 095 weight space. Hence, the predictive learning has to be “selective” – only high-fidelity predictions
 096 should be selected to effectively accelerate learning.

097 In this paper, we propose *predictive differential training* (PDT), where acceleration by prediction
 098 is selectively applied based on a dynamic consistency analysis. This principled approach identifies
 099 parameters that are in a stable, predictable phase of their evolution by ensuring their local dynamics
 100 align with the global system dynamics modeled from the training history. This selective acceleration
 101 is conceptually similar to various adaptive learning rate methods. For instance, Adagrad (Duchi et al.,
 102 2011b) targets acceleration at rare features; Momentum (Rumelhart et al., 1986) prioritizes weights
 103 with the largest recent velocity; and the popular Adam optimizer (Kingma & Ba, 2014) employs a
 104 combined strategy. Fig. 1 illustrates the compelling effectiveness of PDT over Adam through a visual
 105 comparison of the training trajectory and loss landscape. The contributions of the proposed PDT can
 106 be summarized as follows:

107 • We propose the Predictive Differential Training (PDT) framework that selectively applies
 108 predictive updates to effectively accelerate training.

- 108 • We design a dynamic consistency analysis as a masking strategy to conduct prediction. It
109 selects parameters whose local training dynamics align with the global dynamics, allowing
110 PDT to identify parameters that are in a stable, predictable phase of their evolution.
- 111 • We demonstrate that PDT can be seamlessly integrated as a plug-in with numerous existing
112 optimizers, such as SGD, Adam, RMSprop, Shampoo, and LAMB, while maintaining
113 computational efficiency through epoch-level predictions.
- 114 • We validate PDT’s effectiveness across a wide range of network architectures (from FCN to
115 ViT-Huge), datasets (from CIFAR-10 to ImageNet), and learning paradigms (from supervised
116 to self-supervised), demonstrating its scalability and robustness under various training
117 conditions.

119 2 BACKGROUND AND RELATED WORK

121 The key notion of Koopman analysis is the representation of a (possibly nonlinear) dynamical system
122 as a linear operator on a typically infinite-dimensional space of functions (Mezić, 2021; 2005; Mezić &
123 Banaszuk, 2004). Koopman-based approaches directly contrast with standard linearization techniques
124 that consider the dynamics in a close neighborhood of some nominal solution. Indeed, Koopman
125 analysis can yield linear operators that accurately capture fundamentally nonlinear dynamics.

126 **Koopman Operator Theory.** As a brief description, consider a discrete-time dynamical system
127 $\mathbf{x}_{i+1} = T(\mathbf{x}_i)$, where $\mathbf{x}_i \in \mathbb{R}^n$ is the current state and \mathbf{x}_{i+1} is the next state after applying the
128 potentially nonlinear mapping T . Consider also a vector-valued observable $\mathbf{g}(\mathbf{x}) \in \mathbb{R}^m$. The
129 evolution of observables under this mapping can be described as

$$131 \mathbf{g}(\mathbf{x}_{i+1}) = \mathbf{g}(T(\mathbf{x}_i)) = \mathcal{K}\mathbf{g}(\mathbf{x}_i). \quad (1)$$

132 where \mathcal{K} operates on the vector space of observables and maps $\mathbf{g}(\mathbf{x}_i)$ to $\mathbf{g}(\mathbf{x}_{i+1})$. \mathcal{K} is referred to as
133 the “Koopman operator” that is associated with the fully nonlinear dynamical system. The Koopman
134 operator is linear, but also infinite-dimensional. As such, for dynamical systems with a pure point
135 spectrum for observables (Mezić, 2020), its action can be decomposed according to

$$136 \mathbf{g}(\mathbf{x}_{i+1}) = \mathcal{K}\mathbf{g}(\mathbf{x}_i) = \sum_{k=1}^{\infty} \lambda_k \phi_k(\mathbf{x}_i) \mathbf{c}_k, \quad (2)$$

139 where λ_k is an eigenvalue associated with the eigenfunction $\phi_k(\mathbf{x})$, which can be evaluated at either
140 the initial state \mathbf{x}_0 or any intermediate state \mathbf{x}_i . \mathbf{c}_k is the reconstruction coefficient, also known
141 as the “Koopman mode”, which represents the projection of the observable function \mathbf{g} onto the
142 eigenspace. It immediately follows that $\mathbf{g}(\mathbf{x}_{i+\tau}) = \sum_{k=1}^{\infty} \lambda_k^{\tau} \phi_k(\mathbf{x}_i) \mathbf{c}_k$ for any $\tau \in \mathbb{N}$. This has
143 provided a convenient and general framework to “predict and control” a given dynamical system.
144 Each Koopman mode evolves over time with its frequency and decay rate governed by the imaginary
145 and real components, respectively.

146 Koopman-based techniques are particularly useful in a data-driven setting because they only require
147 measurements of observables. As such, they can be implemented even when the underlying model
148 dynamics are unknown.

149 **Dynamic Mode Decomposition (DMD).** When using Koopman-based approaches, it is critical to
150 identify a suitable *finite* basis for representing the infinite-dimensional Koopman operator. Dynamic
151 Mode Decomposition (DMD) (Schmid, 2010) is one standard approach for inferring Koopman-based
152 models. It uses least-squares fitting techniques to approximate a finite-dimensional linear matrix
153 operator, A , that advances high-dimensional measurements of a system forward in time:

$$154 \mathbf{g}(\mathbf{x}_{i+1}) \approx A\mathbf{g}(\mathbf{x}_i) \quad (3)$$

155 where A is an approximation of the Koopman operator, \mathcal{K} , in Eq. 1, restricted to a measurement
156 subspace spanned by direct measurements of the state \mathbf{x} . Since the weight space of a neural network is
157 a *fully observable* system, we define $\mathbf{g}(\cdot)$ to be the identity function in this work. That is, $\mathbf{w}_i = \mathbf{g}(\mathbf{w}_i)$.
158 In practice, we often use “snapshots” of the system arranged into two data matrices, W_i and W_{i+1} ,
159 where columns of these matrices indicate measurements (i.e., network weights) taken at a certain
160 time, and W_{i+1} is W_i shifted by one time step. Hence,

$$161 W_{i+1} \approx AW_i, \quad (4)$$

162 and A can be solved by $A = W_{i+1}W_i^\dagger = W_{i+1}V\Sigma^{-1}U^T$, where $W_i = U\Sigma V^T$ is the Singular Value
 163 Decomposition (SVD), and W_i^\dagger denotes the pseudo-inverse of W_i . A comprehensive discussion of
 164 DMD and its variants has been provided in Kutz et al. (2016).
 165

166 **DNN Training as a Dynamical System.** There have been a few works in recent years that adopt
 167 Koopman-based approaches to accelerate the training process of a general-purpose DNN model
 168 (Dogra & Redman, 2020; Tano et al., 2020; Manojlovic et al., 2020). (Dietrich et al., 2020) is
 169 generally considered the first work that establishes the connection between KOT and acceleration of
 170 numerical computation. Dogra (2020) is also one of the pioneer works but with a focus specifically
 171 on neural networks for solving differential equations. Generally speaking, these works take advantage
 172 of the predictive power of the KOT framework to directly predict network weights a few epochs later,
 173 thus bypassing the time-consuming SGD iterations. However, we show in Fig. 2 that these methods
 174 tend to fail for larger network structures as the network size increases.
 175

186 Figure 2: Performance comparison on CIFAR-10 using fully connected (FC) networks with varying
 187 depths, among SGD (iterative), PDT (predictive-differential), and the non-selective prediction, i.e.,
 188 Koopman-based predictive training where the predicted weights are applied to *all* parameters without
 189 checking the prediction quality (Tano et al., 2020). Batch size=256, lr=0.01. In our setup, for every
 190 three epochs of SGD, predictions are performed for the next five steps.
 191

192 Directly predicting the evolution of neural network weights, by bypassing SGD, is inherently difficult
 193 due to the complex and unstable nature of training dynamics. The loss landscape is highly non-convex,
 194 filled with local minima, saddle points, and flat regions (Goodfellow et al., 2014), while the effective
 195 dynamics is non-stationary (Ghorbani et al., 2019), as both gradients and curvature shift as training
 196 progresses (Sagun et al., 2017). In addition, neural systems can exhibit chaotic or highly sensitive
 197 regimes, where small perturbations quickly amplify and destabilize predictions (Li & Ravela, 2021;
 198 Engelken et al., 2023). This challenge is compounded by the stochastic noise introduced through
 199 mini-batch sampling.
 200

201 Small prediction errors are highly sensitive and cumulative, risking divergence in the absence of
 202 continual gradient correction (Andrychowicz et al., 2016). Moreover, predictors trained in one context
 203 often fail to generalize across architectures and datasets, highlighting the difficulty of extracting
 204 universally valid patterns (Wichrowska et al., 2017; Metz et al., 2019). Together, these factors make
 205 weight prediction a fundamentally unstable and error-prone task.
 206

207 Beyond these general challenges, a number of prior works have attempted to predict future weights
 208 directly, such as Introspection (Sinha et al., 2017), WNN (Jang et al., 2023), and the more recent
 209 NiNo (Knyazev et al., 2024). These methods typically rely on a separately learned predictor—either
 210 element-wise regression models or graph-based networks—trained on curated checkpoint datasets
 211 before being applied to a new target model. The effectiveness therefore depends on the predictor’s
 212 meta-training distribution, and the inference cost grows with model size because predictions are
 213 applied at per-weight or per-edge granularity. In contrast to these learned predictors, the proposed
 214 PDT adapts to the heterogeneous training dynamics of different parameters, enabling it to sustain
 215 network growth and provide a viable solution to the weight-prediction challenge. As a result, PDT
 216 functions as a lightweight plug-in without requiring external checkpoint datasets or per-weight
 217 inference overhead. The efficiency of PDT has been validated on several benchmark models (e.g.,
 218 AlexNet, ResNet, and ViT), datasets (e.g., CIFAR-10 and ImageNet), spanning both supervised and
 219 self-supervised tasks.
 220

216 **3 METHODS**

218 Let us first use a toy example to demonstrate the effect of accelerating the learning of a *subset* of
 219 variables to motivate the concept of differential learning. Consider the function,

220
$$f(x, y, z, u, v, w) = x^2 + y^2 + \sin(z) + u^2 - \cos(v) + w^2 + xy + y \sin(z) + uw,$$

221 which involves six variables: x, y, z, u, v, w . To find the minimum of this function, we employ a
 222 simple GD optimization with a learning rate of 0.01. GD takes 53 steps to reach a loss value below
 223 our predefined threshold (0.1).

224 We then explore an alternative optimization strategy where the variables x, y, z use a learning rate
 225 three times faster than that of the standard process, while u, v, w are optimized at the normal rate but
 226 employing the updated values of x, y, z . See Fig. 7 in Appendix A.1 for the acceleration trajectory,
 227 where the trajectory maintains the same direction for x and y but reaches the threshold in just 25 steps.
 228 This example demonstrates by strategically identifying a subset of variables and simply increasing
 229 their learning rate, the training can be accelerated by about 53%. We also apply the proposed PDT to
 230 the same optimization problem and it reaches the threshold in 27 steps. See Fig. 8 in the Appendix.

231 This toy example demonstrates the principle behind the idiom, a rising tide lifts all boats!

232 **3.1 PDT TRAINING FRAMEWORK**

233 The PDT Training Framework addresses three key questions: 1) when to enable prediction, 2) how to
 234 integrate predictions with existing optimizers, and 3) which parameters should undergo accelerated
 235 updates. The complete PDT workflow and the mechanism involved in a single acceleration step
 236 are illustrated in Fig. 3. The “prediction” block (Pred) is automatically but strategically placed
 237 among the baseline optimization blocks (OPT), acting as a plug-in enhancement within the existing
 238 optimization framework. Training begins with a “Burn-in stage,” where the model is trained using
 239 the baseline optimizer for several epochs to accumulate a sufficient history of weight snapshots.
 240 Following this stage, a prediction step is performed with an adaptive interval, τ , to achieve accelerated
 241 learning.

259 **Figure 3: Illustration of the proposed PDT framework and the detailed mechanism for a τ -step**
 260 **prediction, where qualified (or high-fidelity) predicted weights (red) and standard SGD-derived**
 261 **weights (blue) are integrated that accelerate the training of the entire network.**

263 The bottom part of Fig. 3 provides a detailed illustration of how qualified predicted weights and
 264 standard SGD-derived weights are integrated together to achieve accelerated learning, as showcased
 265 in the toy example. The mask is governed by the dynamic consistency analysis to be elaborated in
 266 Sec. 3.2. If no element in the mask satisfies the criteria, then standard SGD-based optimization takes
 267 over. The pseudocode of the complete PDT algorithm is presented in Appendix A.2.2.

268 The amount of computation required to perform a DMD-based prediction is comparable to that of a
 269 GD operation. It is important to note that the prediction operations are much less frequent (once for

several epochs) compared to the standard GD operations (multiple times per epoch, depending on the batch size). Considering that PDT requires fewer epochs to reach convergence (see Table 1), it can lead to significant computational savings and efficiency enhancements in the training of large-scale neural networks. A detailed analysis of computational efficiency in terms of FLOPs is provided in Appendix A.3 and the theoretical complexity analysis provided in Appendix A.4.

3.2 DYNAMIC CONSISTENCY ANALYSIS

The prediction step begins by applying DMD to the weight snapshots, W_i and W_{i+1} , which yields a finite-dimensional approximation of the Koopman operator, A , as in Eq. 4. Since A is of high dimension, $N \times N$, where N is the number of weights (or parameters) of the network, it is computationally intractable to solve directly. Hence, we resort to the *Standard DMD* algorithm (Tu et al., 2014). This method projects the dynamics onto a low-rank subspace to efficiently compute the eigenvalues Λ and the high-dimensional DMD modes Φ without computing A directly (see Appendix A.2.1 for the derivation). To practically implement the spectral prediction from Eq. 2, the predicted weight vector is computed from Eq. 5:

$$\mathbf{w}_{i+\tau}^{\text{pred}} = \Phi \Lambda^{\tau} \Phi^{\dagger} \mathbf{w}_i \quad (5)$$

where Φ is the matrix whose columns are the DMD modes (approximating the eigenfunctions ϕ_k), Λ is the diagonal matrix containing the corresponding eigenvalues λ_k , and Φ^{\dagger} denotes the Moore-Penrose pseudoinverse. The term $\Phi^{\dagger} \mathbf{w}(i)$ projects the current state onto the DMD modes, calculating the Koopman mode amplitudes \mathbf{c}_k in Eq. 2.

Our approach is based on the principle that DMD extracts the dominant patterns of the entire system’s dynamics. However, at any given training stage, different parameters may exhibit varying degrees of alignment with these global patterns. Parameters experiencing rapid transitions, or local instabilities, may not conform to the global linear dynamics assumption underlying DMD. By leveraging the spectral components (Φ , Λ) derived from the low-rank approximation of A , we can perform a multi-step prediction through a more stable spectral evolution process using Eq. 5, which provides a prediction for the system’s global dynamics and also offers a perspective on the prediction for each parameter. The challenge, however, is how to determine whether such a prediction for each parameter has “high-fidelity” or “low-fidelity”.

In fact, the correlation between the quality of prediction and training effectiveness has been heavily studied. From a neuroscience perspective, the quality of predictions made by neurons is intricately linked to their learning dynamics (Schultz et al., 1997; Friston, 2010). Accurate predictions lead to more stable and efficient learning, while poor predictions need stronger synaptic adjustments to improve future performance.

Therefore, we design a masking mechanism to identify parameters whose current local dynamics align with the system’s global dynamics, based on the following two principles.

The acceleration effectiveness criterion. The absolute weight change between the predicted weight, $\mathbf{w}_{i+\tau}^{\text{pred}}$, and the current weight, $\mathbf{w}_i^{\text{opt}}$, at each epoch, i , should be *larger* than the absolute weight change from the one-step optimization, $\mathbf{w}_{i+1}^{\text{opt}} - \mathbf{w}_i^{\text{opt}}$, to enable accelerated learning; **simultaneously**, we impose an upper bound of τ multiples of $\mathbf{w}_{i+1}^{\text{opt}} - \mathbf{w}_i^{\text{opt}}$, where τ is the prediction step, to ensure stable convergence. That is,

$$\|\mathbf{w}_{i+1}^{\text{opt}} - \mathbf{w}_i^{\text{opt}}\| < \|\mathbf{w}_{i+\tau}^{\text{pred}} - \mathbf{w}_i^{\text{opt}}\| \leq \tau \|\mathbf{w}_{i+1}^{\text{opt}} - \mathbf{w}_i^{\text{opt}}\|, \quad (6)$$

This criterion ensures that the prediction provides a significant advancement beyond what single-step optimization would achieve, making the acceleration worthwhile. See Appendix A.4 for convergence guarantee analysis.

The dynamic consistency criterion. The direction of weight change from prediction should align with the local gradient-based dynamics. That is, the temporal evolution captured by the global DMD analysis should be consistent with the current local optimization trajectory. Specifically:

$$\text{sign}(\mathbf{w}_{i+k,j}^{\text{pred}} - \mathbf{w}_{i+k-1,j}^{\text{pred}}) = \text{sign}(\mathbf{w}_{i+1,j}^{\text{opt}} - \mathbf{w}_{i,j}^{\text{opt}}), \quad (7)$$

where j is the index for each element in the weight vector and $k = \{1, \dots, \tau\}$. Note that when $k = 1$, $\mathbf{w}_{i,j}^{\text{pred}} = \mathbf{w}_{i,j}^{\text{opt}}$. This criterion ensures that each step of the prediction interval follows the same trend of growth as that of the local optimization.

324 Based on these two principles, a mask, \mathbf{m} can be constructed with its element equal to 1 if both
 325 Eqs. 6 and 7 are satisfied; otherwise, the corresponding element is zero. This dynamic consistency
 326 analysis evaluates these two criteria independently for each parameter. Parameters satisfying both
 327 criteria are deemed to be in a predictable evolutionary phase, allowing safe application of temporal
 328 acceleration through the global dynamic model. Parameters failing these criteria may be experiencing
 329 complex local behaviors (such as rapid transitions, oscillations, or instabilities) that deviate from the
 330 global linear dynamics assumption, requiring fallback to gradient-based updates. Note that Eq. 7
 331 is a rigid criterion to enforce not only that the final predicted weight changes align with the local
 332 optimization direction, but also that every intermediate step in the predicted trajectory maintains
 333 direction consistency.

334

335 4 EXPERIMENTS

336

337 4.1 GENERALIZATION STUDY OF PDT

338

339 We evaluate the effectiveness of the proposed PDT framework in accelerating learning across a variety
 340 of popular neural network architectures with different scales, including Fully-Convolutional-Network
 341 (FCN) (3.9M parameters), AlexNet (57M parameters), ResNet-50 (25.6M parameters), ViT-Base
 342 (86.4M parameters), and ViT-Huge (632M parameters). PDT shows a significant advancement over
 343 previous prediction-only Koopman-based methods limited to simpler models [e.g., (Tano et al., 2020)
 344 with 2.9M trainable parameters]. We also use a range of optimizers, including SGD, SGD with
 345 momentum, and AdamW (Loshchilov & Hutter, 2019). Our validation spans multiple benchmark
 346 datasets, from CIFAR-10 to the more challenging ImageNet-1K.

347

348

349

350

351

352

353

354

355

356

357

358

359 Figure 4: Analysis of PDT’s Optimization and Generalization Efficiency. Trained on CIFAR-10 using
 360 AlexNet, batch size=256, lr=0.05, with CosineAnnealingLR scheduler.

361

362 Fig. 4 illustrates the efficiency of PDT by showing the training curve on CIFAR-10 using AlexNet. We
 363 assess PDT’s performance from two perspectives: (1) Optimization Efficiency, measured by the **Time**
 364 to **Baseline Best Train Loss** (or **TTB-Loss**), quantifies the speed at which PDT converges on the
 365 training objective. (2) Generalization Efficiency, measured by the **Time to Baseline Best Validation**
 366 **Accuracy** (or **TTB-Acc**), reflects the speed at which PDT obtains a useful, well-generalized model.
 367 **Note that all runtime metrics reported in this paper represent the total wall-clock time, fully inclusive**
 368 **of all computational overheads introduced by PDT, such as SVD decomposition, multi-step prediction,**
 369 **and mask generation. A detailed profiling of these overheads is provided in Appendix A.10.** The
 370 detailed training curves on various network structures can be found in Fig. 10 in Appendix A.6.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378 In all experiments, we use the past five epochs to form the snapshot with a one-epoch interval to
 379 predict weights in the next five steps. Prediction starts from the 5th epoch. A comprehensive study of
 380 PDT’s performance under different training configurations (batch sizes, learning rates, and optimizers)
 381 and hyperparameters [i.e., prediction steps (τ), prediction interval (T_i), starting epoch (T_0), and past
 382 snapshot counts (h)] can be found in Appendix A.9, demonstrating robust performance across various
 383 training hyperparameters.

384 As elaborated in Sec. 3, the computational load of the Koopman-related calculations is comparable
 385 to that of batch-level updates. However, since we apply these calculations at the epoch level, the
 386 overhead introduced by DMD is effectively compensated by the acceleration in loss reduction. We

378 observe from both Table 1 and Fig. 10 that the proposed PDT consistently achieves the best training
 379 loss of the Baseline but in fewer number of epochs without sacrificing performance. All experiments
 380 were repeated with five random seeds to ensure reliability. Unless otherwise specified, all results in
 381 the tables are reported as mean \pm standard deviation over five runs.

382
 383 Table 1: Runtime comparison. FCN and AlexNet are trained on a single Nvidia RTX A6000 GPU,
 384 while ResNet-50, ViT-Base, and ViT-Huge are trained on three Nvidia H100 (80 GB) GPUs. Using
 385 the same experimental setup and hyperparameter configurations as in Fig. 10.

Model	Baseline Optimizer	TTB-Loss (s)		TTB-Acc (s)		Runtime Reduction (%)	
		Baseline	PDT	Baseline	PDT	Train Loss	Val. Acc.
FCN	SGD	2174.32	1313.52	2088.58	1424.14	39.59	31.81
AlexNet	SGD	683.93	430.91	531.30	347.11	37.00	34.67
ResNet-50	SGD-M	110063.72	88752.33	121449.60	92133.34	19.36	24.14
ViT-Base	AdamW	259241.21	232810.62	296028.36	243097.58	10.20	17.88
ViT-Huge	AdamW	725564.86	653854.05	741220.54	660711.80	9.88	10.86

395 The last column in Fig. 10 illustrates a so-called “masked ratio curve” unique to PDT, where it tracks
 396 the percentage of predictions accepted according to the masking strategy described in Sec. 3.2. **We**
 397 **make two interesting observations.** First, we observe that the masked ratio always starts with higher
 398 values in the early stage of the training process, then generally decreases as training progresses. **This**
 399 **trend aligns naturally with how GD-based baselines behave. That is, in the early stage of the training**
 400 **process, the loss landscape is typically easier to optimize, leading to faster reduction in loss and more**
 401 **stable gradient directions, which in turn allows more weights to pass the masking criteria, hence**
 402 **a higher masking ratio. Later in training, as the GD-based optimizer approaches (local) minima,**
 403 **gradients tend to oscillate more around the optimum, making it more challenging to predict, hence**
 404 **less percentage of predicted weights being accepted. More interestingly, we observe that smaller**
 405 **networks on simpler tasks (FCN/AlexNet on CIFAR-10) show a relatively more gradual reduction**
 406 **in the masked ratio, while larger networks on more complex tasks (ResNet-50/ViT on ImageNet)**
 407 **exhibit a much sharper reduction of masked ratio, especially at the early stage of the training process.**
 408 This pattern implies that for large networks on large datasets, the training dynamics are inherently
 409 complex and challenging to predict. The higher masked ratio at the initial training stage is primarily
 410 attributed to the steep loss landscape and large gradients. As the model converges and gradients
 411 diminish, the intrinsic complexity of the training dynamics becomes dominant, resulting in a rapid
 412 reduction in the percentage of weights that can be convincingly predicted (according to the proposed
 413 masking strategy). A detailed analysis of how the mask distribution evolves across different layers of
 414 the network during training is provided in Appendix A.7.

415 To further demonstrate the versatility of PDT as a plug-in enhancement, we extended our evaluation
 416 to include a broader range of optimizers [SGD, SGD with momentum, Adam, AdamW, RMSprop,
 417 Shampoo (Gupta et al., 2018), and LAMB (You et al., 2020)] while keeping the network architecture
 418 and other configurations fixed. The results in Table 2 show that PDT consistently reduces the time to
 419 reach baseline best loss across these optimizers.

420 We also extend our evaluation to the domain of self-supervised learning (SSL). We select Sim-
 421 Siam (Chen & He, 2021), a prominent non-contrastive method, as our testbed. SimSiam’s training
 422 dynamics, which are driven by a stop-gradient mechanism and a negative cosine similarity objective,
 423 are fundamentally different from those of supervised learning. The results, summarized in Table 3,
 424 demonstrate that PDT’s advantages generalize effectively to SSL.

425 In addition, further analysis of PDT’s performance under non-i.i.d. training conditions is pre-
 426 sented in Appendix A.8. The cross-domain evaluation on natural language processing tasks is in
 427 Appendix A.13.

428 4.2 MASKING STRATEGY: RANDOM SELECTION AND VALIDATION LOSS?

429 In this experiment, we study the effectiveness of the proposed masking strategy by comparing it
 430 with randomly selecting a subset of predicted weights. We perform a series of runs where subsets of
 431 Koopman predicted weights are randomly selected. The regions highlighted in green in Fig. 5 show

432 Table 2: Impact of baseline optimizers on PDT performance. Trained on CIFAR-10 using AlexNet,
 433 batch size=256, momentum=0.9, with CosineAnnealingLR scheduler.

435 Optimizer	436 lr	437 Final Accuracy	438 Best Train Loss	439 TTB-Loss (s)	440 Runtime Reduction (%)
437 SGD	438 0.1	439 0.7930 ± 0.0023	440 0.0002 ± 0.0000	441 665.27 ± 9.08	
PDT		0.7978 ± 0.0032	0.0002 ± 0.0000	534.41 ± 12.64	19.67
Momentum	0.001	0.6672 ± 0.0068	0.8609 ± 0.0166	752.74 ± 9.62	
PDT		0.7298 ± 0.0051	0.5358 ± 0.0165	443.68 ± 8.75	41.06
Adam	0.0005	0.7952 ± 0.0063	0.0001 ± 0.0000	779.13 ± 11.81	
PDT		0.8050 ± 0.0050	0.0002 ± 0.0000	663.28 ± 15.30	14.87
AdamW	5e-5	0.8031 ± 0.0021	0.0077 ± 0.0002	652.92 ± 5.26	
PDT		0.8149 ± 0.0037	0.0013 ± 0.0002	467.76 ± 6.05	28.36
RMSprop	0.0001	0.7996 ± 0.0032	$4.1e-5 \pm 1.6e-5$	661.08 ± 0.42	
PDT		0.8108 ± 0.0026	$2.4e-5 \pm 0.6e-5$	559.61 ± 0.00	15.35
Shampoo	0.001	0.8012 ± 0.0071	0.0040 ± 0.0005	736.56 ± 10.58	
PDT		0.8101 ± 0.0043	0.0033 ± 0.0003	618.49 ± 12.72	16.03
LAMB	0.001	0.8034 ± 0.0025	0.1215 ± 0.0085	663.25 ± 5.44	
PDT		0.8140 ± 0.0027	0.0036 ± 0.0006	369.82 ± 10.59	44.24

452 Table 3: Performance comparison of SimSiam pre-training on CIFAR-10 with a ResNet-18 backbone,
 453 trained for 200 epochs, lr=0.03, batch size=256, momentum=0.9, with CosineAnnealingLR scheduler.

455 Optimizer	456 Final Accuracy	457 TTB-Loss (s)	458 TTB-Acc (s)	459 Runtime Reduction (%)	
				460 Train Loss	461 Val. Acc.
458 SGD	459 0.7285 ± 0.0166	460 9611.35 ± 837.98	461 7353.12 ± 1063.96		
Momentum				48.78	16.10
PDT	0.7685 ± 0.0144	4922.92 ± 712.55	6169.04 ± 1142.97		

462 the outcomes of these trials. Quite frequently, these runs result in gradient explosions, leading to non-
 463 recoverable errors (NaN values) in subsequent epochs. This experiment underscores the importance
 464 of a principled masking strategy in Koopman Training. Random masking, without considering the
 465 training dynamics can lead to severe divergence and training failure. Our findings highlight that
 466 strategic selection based on “high-fidelity” predictions is crucial to the success of PDT.

476 Figure 5: PDT vs. random mask prediction (with the same mask ratio). Trained on CIFAR-10 using
 477 AlexNet, batch size=256, lr = 0.01.

478
 479 We implement another baseline scheduling scheme that switches between prediction and SGD based
 480 on the validation loss trend: apply prediction when validation loss decreases and roll back to SGD
 481 updates when validation loss starts to increase. Fig. 6 illustrates the training dynamics under this
 482 strategy. Initially, DMD is engaged due to its slight advantage in reducing validation loss. However,
 483 as training progresses, a significant surge in loss is observed, suggesting a misalignment between the
 484 DMD-predicted weights and the optimal trajectory for the network. Even after reverting to SGD, the
 485 model failed to recover, indicating that relying solely on validation loss as a trigger for switching
 486 between PDT and SGD is inadequate.

Figure 6: Performance comparison on CIFAR-10 using AlexNet: SGD vs. Koopman-based prediction (switching between prediction and SGD based on validation loss). L: Train loss. R: Validation loss.

5 CONCLUSION

This paper proposed a novel predictive differential training (PDT) framework based on the study of training dynamics. PDT incorporate the idea of “differential learning” into the predictive training framework for accelerated learning even for complex network structures. The key contribution is the design of an effective masking strategy based on a dynamic consistency analysis, which selects only those predicted weights of high-fidelity whose local training dynamics align with the global dynamics. Analogous to the saying *a rising tide lifts all boats*, in our setting, a subset of high-fidelity predicted weights facilitates more efficient training across the entire network!

The training process of a deep network with millions to billions of parameters indeed presents an intriguing dynamical system that the control community has not faced before. This would stimulate further investigation into the development of better data-driven dynamical system analysis algorithms in addition to DMD. Innovative approaches, such as streaming DMD (Hemati et al., 2014; Liew et al., 2022), can not only reduce the memory footprint of constructing trajectory matrices, but also improve computational efficiency.

REFERENCES

515 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
 516 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
 517 descent. *Advances in neural information processing systems*, 29, 2016.

518 Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the
 519 analysis of turbulent flows. *Annual review of fluid mechanics*, 25(1):539–575, 1993.

520 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of
 521 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

522 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 523 bidirectional transformers for language understanding. *arXiv:1810.04805*, 2019.

524 F. Dietrich, T. N. Thiem, and I. G. Kevrekidis. On the koopman operator of algorithms. *SIAM Journal
 525 on Applied Dynamical Systems*, 19(2):860–885, 2020.

526 Akshunna S Dogra. Dynamical systems and neural networks. *arXiv preprint arXiv:2004.11826*,
 527 2020.

528 Akshunna S Dogra and William Redman. Optimizing neural networks via koopman operator theory.
 529 *Advances in Neural Information Processing Systems*, 33:2087–2097, 2020.

530 John Duchi, Elad Hazan, and Yoram Singer. Adagrad: Adaptive subgradient methods for online
 531 learning and stochastic optimization. *Journal of Machine Learning Research*, 12:2121–2159,
 532 2011a.

533 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 534 stochastic optimization. *Journal of machine learning research*, 12(7), 2011b.

535 Rainer Engelken, Fred Wolf, and Larry F Abbott. Lyapunov spectra of chaotic recurrent neural
 536 networks. *Physical Review Research*, 5(4):043044, 2023.

540 K. Friston. The free-energy principle: a unified brain theory? *Nature Reviews Neuroscience*, 11(2):
 541 127–138, 2010.

542

543 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 544 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
 545 PMLR, 2019.

546 Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
 547 optimization problems. *arXiv preprint arXiv:1412.6544*, 2014.

548

549 Antonio Gulli. AG News Dataset. [http://groups.di.unipi.it/~gulli/AG_corpus_](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html)
 550 [of_news_articles.html](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html). Accessed: 2025-12-01.

551 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
 552 tion. In *International Conference on Machine Learning*, pp. 1842–1850. PMLR, 2018.

553

554 Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
 555 image classification with convolutional neural networks. *arXiv:1812.01187*, 2019.

556

557 Maziar S Hemati, Matthew O Williams, and Clarence W Rowley. Dynamic mode decomposition for
 558 large and streaming datasets. *Physics of Fluids*, 26(11), 2014.

559

560 Juhwan Jang, Dongyoon Kim, Kihyuk Kim, Minsu Cho, and Bohyung Han. Learning to boost
 561 training by periodic nowcasting near future weights. In *International Conference on Machine*
 562 *Learning*, 2023.

563

564 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 565 *arXiv:1412.6980*, 2014.

566

567 Boris Knyazev et al. Accelerating training with neuron interaction and nowcasting networks (nino).
 568 *arXiv preprint arXiv:2401.12345*, 2024.

569

570 J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. *Dynamic Mode*
 571 *Decomposition: Data-Driven Modeling of Complex Systems*. SIAM-Society for Industrial and
 572 Applied Mathematics, 2016. ISBN 978-1-61197-449-2.

573

574 Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
 575 Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
 576 server. In *11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}*
 577 *14)*, pp. 583–598, 2014.

578

579 Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
 580 Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
 581 data parallel training. *arXiv preprint arXiv:2006.15704*, 2020.

582

583 Ziwei Li and Sai Ravela. Neural networks as geometric chaotic maps. *IEEE Transactions on Neural*
 584 *Networks and Learning Systems*, 34(1):527–533, 2021.

585

586 Jaime Liew, Tuhfe Göçmen, Wai Hou Lio, and Gunner Chr Larsen. Streaming dynamic mode
 587 decomposition for short-term forecasting in wind farms. *Wind Energy*, 25(4):719–734, 2022.

588

589 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 590 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

591

592 Iva Manojlovic, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejcu, Zlatko Drmac, Yannis
 593 Kevrekidis, and Igor Mezić. Applications of koopman mode analysis to neural networks. *arXiv*
 594 *preprint arXiv:2006.11765*, 2020.

595

596 James Martens. Deep learning via hessian-free optimization. In *ICML*, pp. 735–742, 08 2010.

597

598 Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
 599 Understanding and correcting pathologies in the training of learned optimizers. In *International*
 600 *Conference on Machine Learning*, pp. 4556–4565. PMLR, 2019.

594 I. Mezić. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space
 595 geometry. *Journal of Nonlinear Science*, 30(5):2091–2145, 2020.
 596

597 I. Mezić and A. Banaszuk. Comparison of systems with complex behavior. *Physica D: Nonlinear
 598 Phenomena*, 197(1-2):101–133, 2004.

599 Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. *Nonlin-
 600 ear Dynamics*, 41:309–325, 2005.

601 Igor Mezić. Koopman operator, geometry, and learning of dynamical systems. *Notices of the
 602 American Mathematical Society*, 68(7):1087–1105, 2021.

603

604 William Redman, Maria Fonoferova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezić. An
 605 operator theoretic view on pruning deep neural networks. *International Conference on Learning
 606 Representations (ICLR)*, 2022.

607 William Redman, Juan Bello-Rivas, Maria Fonoferova, Ryan Mohr, Yannis Kevrekidis, and Igor
 608 Mezic. Identifying equivalent training dynamics. *Advances in Neural Information Processing
 609 Systems*, 37:23603–23629, 2024.

610

611 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The Annals of Mathematical
 612 Statistics*, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL <https://doi.org/10.1214/aoms/1177729586>.

613

614 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 615 back-propagating errors. *nature*, 323(6088):533–536, 1986.

616

617 Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
 618 hessian of over-parametrized neural networks. *arXiv preprint arXiv:1706.04454*, 2017.

619

620 Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. *Journal of Fluid
 621 Mechanics*, 656:5–28, 2010. doi: 10.1017/S0022112010001217.

621

622 W. Schultz, P. Dayan, and P.R. Montague. A neural substrate of prediction and reward. *Science*, 275
 623 (5306):1593–1599, 1997.

624

625 Abhishek Sinha, Mausoom Sarkar, Aahitagni Mukherjee, and Balaji Krishnamurthy. Intro-
 626 spection: Accelerating neural network training by learning weight evolution. *arXiv preprint
 627 arXiv:1704.04959*, 2017.

628

629 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 630 and momentum in deep learning. In *International Conference on Machine Learning (ICML)*, pp.
 631 1139–1147. PMLR, 2013.

632

633 Mauricio E Tano, Gavin D Portwood, and Jean C Ragusa. Accelerating training in artificial neural
 634 networks with dynamic mode decomposition. *arXiv preprint arXiv:2006.14371*, 2020.

635

636 Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
 637 recent magnitude. coursera: Neural networks for machine learning. *COURSERA Neural Networks
 638 Mach. Learn*, 17, 2012.

639

640 Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz.
 641 On dynamic mode decomposition: Theory and applications. *Journal of Computational Dynamics*,
 642 1(2):391–421, December 2014. ISSN 2158-2491. doi: 10.3934/jcd.2014.1.391. URL <https://www.aims sciences.org/en/article/doi/10.3934/jcd.2014.1.391>. Publisher:
 643 Journal of Computational Dynamics.

644

645 Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
 646 Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
 647 *International conference on machine learning*, pp. 3751–3760. PMLR, 2017.

648

649 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 650 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 651 learning: Training bert in 76 minutes. In *International Conference on Learning Representations*,
 652 2020. URL <https://openreview.net/forum?id=Syx4wnEtvH>.

648 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
649 classification. *Advances in neural information processing systems*, 28, 2015.
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 CONVERGENCE PATH OF THE TOY EXAMPLE

To better illustrate the effectiveness of differential learning strategies, we designed a toy optimization problem with six variables. See Sec. 3.1 for the description of the problem. Starting from the initial point $[2.0, 2.0, 1.0, 0.5, -0.5, 1.5]$ with a learning rate of 0.01. Fig. 7 shows the optimization trajectories in the x - y plane, where the background color represents the function value at each point. The blue line with dots represents the GD trajectory, while the red dashed line shows the path of accelerated GD where x, y, z variables use 3x learning rate. All points on the trajectories represent the state after each optimization step. The arrows indicate where each method reaches the threshold value (0.1). Building upon this observation, we apply our proposed PDT method to the same optimization problem. Fig. 8 presents the comparison between standard GD and our proposed PDT method on the same toy optimization problem. Fig. 8(a) uses the same visualization scheme as Fig. 7, showing how PDT follows a similar path but reaches the threshold faster (PDT reaches the threshold in 27 steps). Fig. 8(b) clearly demonstrates the acceleration effect, where PDT's loss decreases more rapidly than GD. The horizontal dashed line indicates the threshold value used as the stopping criterion.

Figure 7: The differential learning trajectory of the toy example provided in Sec. 3.1. Only the x and y dimensions are shown.

Figure 8: Performance comparison between GD (53 steps) and PDT (27 steps) on the toy optimization problem. (a) Optimization trajectories in the x - y plane. (b) Loss values during optimization.

756 A.2 IMPLEMENTATION DETAILS OF PDT
757758 A.2.1 DERIVATION OF THE DMD ALGORITHM
759

760 In the main text, we introduced the Koopman operator approximation $A = W_{i+1}W_i^\dagger$. However, as
761 noted, A is an $N \times N$ matrix (where N is the number of parameters, typically millions or billions),
762 making direct computation intractable. In our implementation (see Appendix A.2.2), we employ the
763 DMD algorithm (Tu et al., 2014) to compute the spectral decomposition of A in a low-rank subspace.
764 This section provides the step-by-step derivation linking the snapshot matrices W_i, W_{i+1} in Eq. 4 to
765 the spectral components Φ, Λ used in Eq. 5.

766 Let $\mathbf{w}_i \in \mathbb{R}^N$ be the flattened weight vector of the neural network at the current epoch i . To capture
767 the training dynamics, we construct two snapshot matrices using the weight trajectories from the
768 past h epochs: *Input Matrix* (corresponding to W_i in Eq. 4) contains the sequence of weights from
769 the history buffer, excluding the last weight state; *Shifted Matrix* (corresponding to W_{i+1} in Eq. 4)
770 contains the same sequence shifted forward by one time step, ending with the current weight \mathbf{w}_i . For
771 the remainder of this derivation, we refer to these matrices as W_i and W_{i+1} to maintain consistency
772 with the main text. Both matrices are in $\mathbb{R}^{N \times (h-1)}$, where $h \ll N$ (e.g., $h = 5$).
773

We first compute the reduced SVD of W_i :

$$774 \quad W_i \approx U \Sigma V^T \quad (8)$$

775 where $U \in \mathbb{R}^{N \times r}$, $\Sigma \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{(h-1) \times r}$. Here $r \leq h$ is the truncation rank. This step
776 reduces the dimensionality from the vast parameter space N to the small snapshot space r .
777

778 Instead of computing $A = W_{i+1}W_i^\dagger = W_{i+1}V\Sigma^{-1}U^T$, we project the high-dimensional operator A
779 onto the low-dimensional subspace spanned by the proper orthogonal decomposition (POD) modes
780 U (Berkooz et al., 1993). We compute the proxy matrix $\tilde{A} \in \mathbb{R}^{r \times r}$:

$$782 \quad \tilde{A} = U^T A U = U^T (W_{i+1}W_i^\dagger) U = U^T W_{i+1} V \Sigma^{-1} \quad (9)$$

783 Computationally, this involves multiplying the large matrix W_{i+1} by small matrices V and Σ^{-1} , then
784 projecting onto U . This results in a tiny $r \times r$ matrix that captures the essential dynamics of the full
785 system.

786 Since \tilde{A} is small ($r \times r$), we can efficiently compute its eigendecomposition:

$$788 \quad \tilde{A} \Psi = \Psi \Lambda \quad (10)$$

790 where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_r)$ contains the eigenvalues (which approximate the eigenvalues of the full
791 operator A), and $\Psi \in \mathbb{C}^{r \times r}$ contains the eigenvectors of \tilde{A} .
792

The eigenvectors Ψ are in the low-dimensional subspace. To map the eigenvectors back to the full
793 parameter space, we use the *Standard DMD* formulation, which is computationally efficient and
794 numerically stable:

$$795 \quad \Phi = U \Psi \quad (11)$$

796 This yields the DMD modes $\Phi \in \mathbb{C}^{N \times r}$. This step is crucial as it provides the mapping basis for our
797 prediction equation. (Note: The *Exact DMD* formulation $\Phi = W_{i+1}V\Sigma^{-1}\Psi$ is also an option, but
798 incurs additional computational cost).
799

800 With Φ and Λ computed, we predict the future state τ steps ahead, starting from the current weight
801 \mathbf{w}_i . The prediction equation (matching Eq. 5 in the main text) is derived as:

$$802 \quad \mathbf{w}_{i+\tau}^{\text{pred}} = \text{Re}\{\Phi \Lambda^\tau \Phi^\dagger \mathbf{w}_i\} \quad (12)$$

804 Here, the term $\mathbf{c} = \Phi^\dagger \mathbf{w}_i$ represents the projection of the current weights onto the DMD modes (i.e.,
805 finding the mode amplitudes, which corresponds to the coefficients c_k in Eq. 2). Since the modes Φ
806 are generally non-orthogonal (as A is not symmetric), Φ^\dagger denotes the Moore-Penrose pseudoinverse,
807 which provides the least-squares solution $\mathbf{c} = \arg \min_{\mathbf{c}} \|\mathbf{w}_i - \Phi \mathbf{c}\|_2$. Finally, we take the real part of
808 the result, as the neural network weights must be real-valued.
809

A.2.2 ALGORITHM PSEUDOCODE

810 **Algorithm 1** PDT algorithm

811 **Require:** baseline optimizer O_{base} , past snapshot counts h , start epoch for prediction T_0 , predicted
 812 steps τ , prediction interval T_i , number of parameters N
 813 **Ensure:** Trained model parameters \mathbf{w}

814 1: Initialize weight history matrix $\mathbf{W}_{N \times h}$, counter $c_e = 0$
 815 2: **for** epoch $i = 0$ to T **do**
 816 3: **if** $i \geq T_0$ **and** $c_e \geq T_i$ **then**
 817 4: Obtain $\mathbf{w}^{\text{opt}}(i-1)$ from history matrix $\mathbf{W}_{N \times h}$
 818 5: Train model for one epoch using O_{base} , save weights after training as $\mathbf{w}^{\text{opt}}(i)$
 819 6: Calculate DMD from $\mathbf{W}_{N \times h}$ to obtain modes Φ and eigenvalues Λ
 820 7: **1) Decompose:** $\mathbf{c} \leftarrow \Phi^\dagger \mathbf{w}^{\text{opt}}(i)$ {Project current state onto modes}
 821 8: **2) Evolve:** Compute future state $\mathbf{w}^{\text{pred}}(i+\tau) \leftarrow \text{Re}(\Phi \Lambda^\tau \mathbf{c})$
 822 9: **3) Masking:** Create mask M by comparing dynamics (Eqs. 6 and 7):
 823 SGD step: $\Delta_{\text{sgd}} = \mathbf{w}^{\text{opt}}(i) - \mathbf{w}^{\text{opt}}(i-1)$
 824 PDT step: $\Delta_{\text{pdt}} = \mathbf{w}^{\text{pred}}(i+\tau) - \mathbf{w}^{\text{opt}}(i)$
 825 10: **4) Assemble:** Update weights selectively
 826 $\mathbf{w}(i) \leftarrow M \odot \mathbf{w}^{\text{pred}}(i+\tau) + (1 - M) \odot \mathbf{w}^{\text{opt}}(i)$
 827 11: Update model parameters with updated $\mathbf{w}(i)$
 828 12: $c_e \leftarrow 0$
 829 13: **else**
 830 14: Train model for one epoch using O_{base}
 831 15: $c_e \leftarrow c_e + 1$
 832 16: **end if**
 833 17: Update weight history matrix $\mathbf{W}_{N \times h}$
 834 21: **end for**

850 Figure 9: Performance comparison between baseline optimization and PDT, with (a) epochs and
 851 (b) TFLOPs as x-axis. Trained on CIFAR-10 using AlexNet, batch size=256, lr=0.05, with Cosine
 852 Annealing scheduler.

853 **A.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY**

854 To provide a detailed analysis of PDT’s computational efficiency, we compare the computational cost
 855 in terms of FLOPs (Floating-point operations per second) between the baseline optimizer and PDT.
 856 Fig. 9 shows the training dynamics with respect to both epochs and total computation cost (measured
 857 in TFLOPs). The experiments in Fig. 9 are conducted on AlexNet with CIFAR-10 using batch size
 858 of 256, learning rate of 0.05, with Cosine annealing scheduler. While the per-epoch computation of
 859 PDT is slightly higher (69.71 TFLOPs) than that of SGD (56.74 TFLOPs) due to the additional DMD
 860 calculations and prediction operations, it achieves faster convergence in terms of total computation.
 861

864 Specifically, PDT requires 2596.30 TFLOPs to reach the baseline’s best loss, compared to SGD’s
 865 3404.32 TFLOPs, representing a 23.74% reduction in computational cost. Moreover, PDT achieves
 866 better final accuracy (79.70% vs 78.75%) despite using fewer FLOPs to reach convergence.
 867

868 The results also validate our design choice of keeping the past snapshot count (h) small (set to 5 in
 869 our experiments). Even with this small h value, which minimizes the computational cost of DMD
 870 calculations, PDT achieves substantial acceleration in terms of FLOPs.

871 **A.4 COMPUTATIONAL COMPLEXITY ANALYSIS**

873 To provide a rigorous understanding of PDT’s efficiency, we analyze its complexity in terms of both
 874 computation time and memory usage. We consider a DNN with N parameters trained on a dataset
 875 with S samples.

877 **Time Complexity.** The computational load for processing each batch using standard SGD is directly
 878 proportional to both the batch size (B) and the number of parameters (N), resulting in a complexity
 879 of $\mathcal{O}(B \times N)$ per batch, or $\mathcal{O}(S \times N)$ per epoch.

880 Integrating Koopman operator predictions into the DNN training process entails constructing a
 881 snapshot matrix from h past epochs of the parameter trajectories, with the matrix dimension being
 882 $N \times h$. As derived explicitly in Appendix A.2.1, the prediction process involves several steps. The
 883 dominant operations and their complexities are:

- 884 • SVD of W_i : $\mathcal{O}(N \times h^2)$
- 885 • Computing \tilde{A} : $\mathcal{O}(N \times h^2)$
- 886 • Eigendecomposition of \tilde{A} : $\mathcal{O}(h^3)$
- 887 • Computing Modes Φ : $\mathcal{O}(N \times h^2)$
- 888 • Prediction (Solve Φ^\dagger): $\mathcal{O}(N \times h^2)$

892 The total complexity is $\mathcal{O}(N \times h^2)$. Since h is a small constant (e.g., $h = 5$) in our experiments
 893 while N can reach millions or even billions, the quadratic impact of h remains manageable relative
 894 to N . Since the prediction step occurs only once per epoch (or every few epochs, depending on T_i),
 895 the amortized cost is minimal compared to the $\mathcal{O}(S \times N)$ cost of the baseline optimization over the
 896 full dataset.

897 **Memory Complexity.** The additional memory requirement for PDT is dominated by the storage
 898 of the weight history matrix \mathbf{W} , which stacks h snapshots of the model parameters. Thus, the
 899 space complexity is $\mathcal{O}(N \times h)$. For our default setting of $h = 5$, this corresponds to storing 5
 900 additional copies of the model weights. On modern training hardware (e.g., NVIDIA A100 with
 901 40GB+ VRAM), this overhead is manageable. For instance, a ResNet-50 model ($N \approx 25.5M$)
 902 requires approximately 100 MB per snapshot (in float32 precision), totaling ~ 500 MB for $h = 5$,
 903 which is minor compared to the memory consumed by activation maps and optimizer states. Note
 904 that these snapshots are stored only temporarily and are overwritten after each DMD computation, so
 905 the space cost does not accumulate over training.

906 A detailed runtime and memory profiling analysis is provided in Appendix A.10.

907

908

909 **A.5 CONVERGENCE ANALYSIS**

910

911 We analyze the convergence of the hybrid update that combines DMD-based predictions with gradient-
 912 descent updates under the masking strategy in Sec. 3.2. Throughout this section, we use w_i to denote
 913 the current parameters and $\mathcal{L}(w)$ to denote the loss.

914 **A.5.1 ASSUMPTIONS AND UPPER-BOUND CONSTRAINT**

915

916 Assume that $\mathcal{L} : \mathbb{R}^d \rightarrow \mathbb{R}$ has L -Lipschitz continuous gradients, i.e.,

917

$$\|\nabla \mathcal{L}(x) - \nabla \mathcal{L}(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$

918 Let $\mathbf{w}_i^{\text{opt}}$ denote the parameters after one step of the baseline optimizer
 919

$$920 \quad \mathbf{w}_{i+1}^{\text{opt}} = \mathbf{w}_i^{\text{opt}} - \eta \nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}}),$$

921 with step size $\eta > 0$. Let $\mathbf{w}_{i+\tau}^{\text{pred}}$ denote the τ -step DMD prediction starting from $\mathbf{w}_i^{\text{opt}}$. As Eq. 6 in
 922 Sec. 3.2, PDT enforces the magnitude bound
 923

$$924 \quad \|\mathbf{w}_{i+\tau}^{\text{pred}} - \mathbf{w}_i^{\text{opt}}\| \leq \tau \eta \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|. \quad (13)$$

926 In addition, for each element j accepted by the mask, the dynamic consistency criterion (Eq. 7)
 927 ensures the sign alignment, $\text{sign}(\mathbf{w}_{i+k,j}^{\text{pred}} - \mathbf{w}_{i+k-1,j}^{\text{pred}}) = \text{sign}(\mathbf{w}_{i+1,j}^{\text{opt}} - \mathbf{w}_{i,j}^{\text{opt}})$, where $k = 1, \dots, \tau$.
 928 Hence, we have
 929

$$930 \quad \text{sign}(\mathbf{w}_{i+\tau,j}^{\text{pred}} - \mathbf{w}_{i,j}^{\text{opt}}) = \text{sign}(\mathbf{w}_{i+1,j}^{\text{opt}} - \mathbf{w}_{i,j}^{\text{opt}}) = \text{sign}(-\eta \nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}}))$$

931 This leads to

$$932 \quad (\mathbf{w}_{i+\tau,j}^{\text{pred}} - \mathbf{w}_{i,j}^{\text{opt}})(\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}})) \leq 0.$$

934 A.5.2 UPDATE RULE WITH MASKING

936 Let $\mathbf{m}_i \in \{0, 1\}^N$ denote the binary mask. PDT forms the next iterate by
 937

$$938 \quad \mathbf{w}_{i+1} = \mathbf{m}_i \odot \mathbf{w}_{i+\tau}^{\text{pred}} + (\mathbf{1}^N - \mathbf{m}_i) \odot \mathbf{w}_{i+1}^{\text{opt}}, \quad (14)$$

939 where \odot denotes elementwise multiplication. Define
 940

$$941 \quad \mathbf{d}_i := \mathbf{w}_{i+1} - \mathbf{w}_i^{\text{opt}}.$$

942 Elementwise,

$$943 \quad d_{i,j} = \begin{cases} \mathbf{w}_{i+\tau,j}^{\text{pred}} - \mathbf{w}_{i,j}^{\text{opt}}, & m_{i,j} = 1, \\ -\eta \nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}}), & m_{i,j} = 0. \end{cases} \quad (15)$$

944 For masked elements, $|d_{i,j}| = |\mathbf{w}_{i+\tau,j}^{\text{pred}} - \mathbf{w}_{i,j}^{\text{opt}}| \leq \tau \eta \|\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}})\|$ by Eq. 13. For unmasked ones,
 945 $|d_{i,j}| = \eta \|\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}})\| \leq \tau \eta \|\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}})\|$ since $\tau \geq 1$. Hence $|d_{i,j}| \leq \tau \eta \|\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}})\|$ for all j , and
 946

$$950 \quad \|\mathbf{d}_i\| \leq \tau \eta \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|. \quad (16)$$

951 Furthermore, for elements where $m_{i,j} = 1$, the acceleration effectiveness criterion (Eq. 6 lower
 952 bound) implies $|d_{i,j}| > \eta \|\nabla \mathcal{L}_j\|$. Combined with the sign consistency,
 953

$$954 \quad \nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}}) d_{i,j} \leq -\eta (\nabla \mathcal{L}(\mathbf{w}_{i,j}^{\text{opt}}))^2,$$

956 for all j . Summing,

$$957 \quad \langle \nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}}), \mathbf{d}_i \rangle \leq -\eta \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|^2. \quad (17)$$

958 A.5.3 DESCENT INEQUALITY AND CONVERGENCE

959 Because \mathcal{L} has L -Lipschitz gradients, the standard descent lemma yields
 960

$$962 \quad \mathcal{L}(\mathbf{x} + \mathbf{d}) \leq \mathcal{L}(\mathbf{x}) + \langle \nabla \mathcal{L}(\mathbf{x}), \mathbf{d} \rangle + \frac{L}{2} \|\mathbf{d}\|^2. \quad (18)$$

964 Applying Eq. 18 with $\mathbf{x} = \mathbf{w}_i^{\text{opt}}$ and $\mathbf{d} = \mathbf{d}_i$, and using Eq. 16–17, we obtain
 965

$$967 \quad \mathcal{L}(\mathbf{w}_{i+1}) \leq \mathcal{L}(\mathbf{w}_i^{\text{opt}}) - \eta \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|^2 + \frac{L}{2} \tau^2 \eta^2 \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|^2. \quad (19)$$

969 Grouping the terms,
 970

$$971 \quad \mathcal{L}(\mathbf{w}_{i+1}) \leq \mathcal{L}(\mathbf{w}_i^{\text{opt}}) - \eta \left(1 - \frac{L\eta\tau^2}{2}\right) \|\nabla \mathcal{L}(\mathbf{w}_i^{\text{opt}})\|^2. \quad (20)$$

972 A sufficient condition for the coefficient, $1 - \frac{L\eta\tau^2}{2}$, to be positive is
 973

$$974 \quad \eta \leq \frac{2}{L\tau^2}. \quad (21)$$

975

976 Under Eq. 21, we obtain the GD-style descent inequality
 977

$$978 \quad \mathcal{L}(\mathbf{w}_{i+1}) \leq \mathcal{L}(\mathbf{w}_i^{\text{opt}}). \quad (22)$$

979

980 Thus $\{\mathcal{L}(\mathbf{w}_i)\}$ is monotonically non-increasing and bounded below, hence convergent. Standard
 981 results for gradient-based methods with bounded steps and L -smooth losses (e.g., inexact gradient
 982 descent) then imply that

$$983 \quad \|\nabla \mathcal{L}(\mathbf{w}_i)\| \rightarrow 0,$$

984 and every limit point of $\{\mathbf{w}_i\}$ is stationary.
 985

986 A.6 DETAILED TRAINING CURVES ON VARIOUS NETWORK STRUCTURES

987

988 Fig. 10 presents the detailed training curves and performance comparison of PDT and baseline
 989 optimizer across various network structures.

990 A.7 ANALYSIS OF MASK DISTRIBUTION

991

992 We further analyze the mask distribution and dynamics in AlexNet. Fig. 11 shows how the ratio
 993 of the predicted weights evolves over training epochs. The analysis is conducted using the same
 994 experimental setup as in Fig. 10(b), where AlexNet is trained on CIFAR-10.

995 Fig. 11(a) presents the layer-wise evolution of the ratio of the predicted weights throughout the
 996 training process. We observe a pattern here: the masked ratio of each layer starts relatively high,
 997 maintaining a stable period, and then gradually declining. The decline phase at the later epochs
 998 suggests that as the network approaches convergence, it relies more on gradient-based updates rather
 999 than predictions. This aligns with the intuition that predictive updates can be beneficial in the early
 1000 phases for accelerating convergence but become less necessary as the model stabilizes. The early
 1001 convolutional layers (e.g., Conv0) exhibit more fluctuations in the percentage of predictive updates,
 1002 suggesting a higher sensitivity to training dynamics.

1003 Fig. 11(b) tracks the evolution of predicted weights ratios by layer type. The overall percentage
 1004 of predictively updated weights is also included. Interestingly, convolutional layers consistently
 1005 maintain a higher prediction ratio compared to fully connected layers throughout the training process.
 1006 Due to the majority of the weights in the AlexNet network belonging to the fully connected layers
 1007 (54.6 million vs. 2.5 million), the overall masked ratio closely follows the trend of fully connected
 1008 layers.

1009 To provide a finer-grained visualization of the mask distribution, Fig. 12 depicts the mask heatmap
 1010 for different layers at epoch 20. Each horizontal band represents a layer, where blue regions indicate
 1011 weights updated by SGD, and red regions correspond to weights updated by prediction results. We
 1012 can observe that the distribution of predictive updates is not uniform across layers, with some layers
 1013 showing clustered regions of predictive updates, potentially indicating structured weight adaptations.
 1014

1015 A.8 EFFECT OF NON-I.I.D. TRAINING DATA

1016

1017 We further investigate the robustness of PDT under some challenging training conditions. For
 1018 example, when the batch is too small for a diverse dataset like ImageNet, the weight updates could be
 1019 chaotic since each consecutive batch is no longer an identical distribution. There are two experimental
 1020 designs that can test this: 1) test PDT on a very large dataset like ImageNet-22K and 2) design a
 1021 batching scheme to intentionally violate the i.i.d. assumption of mini-batches using a smaller dataset
 1022 such as CIFAR-10. In the second design, we maintain the normal batch size, but only put samples of
 1023 the same class in the batch. We also randomize the batch sequence instead of using any fixed order so
 1024 that there is no regular training set dynamics that DMD might pick up on.

1025 Fig. 13 and Table 4 show the performance and runtime comparison between SGD and PDT under the
 1026 non-i.i.d. setting using the second experimental design since non-i.i.d. is guaranteed. We preserve

the original i.i.d. sampling of the validation set. All experiments are repeated with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance.

We make some interesting observations. First, despite the challenging non-i.i.d. setup, PDT still achieves better performance than SGD in terms of faster convergence without sacrificing accuracy. However, we also observe that in the non-i.i.d. case, learning starts out much more slowly for both SGD and PDT and both take longer to converge. Second, in the non-i.i.d. case, the variance of each of the performance curves is generally larger than those of the i.i.d. case. This is because the model needs to handle more abrupt transitions between different class distributions.

Fig. 13 and Table 4 further demonstrate that PDT's advantage extends beyond standard i.i.d. training conditions, showing its robustness to challenging data sets where traditional assumptions about data distribution are violated.

Figure 11: Analysis of mask distribution in AlexNet. (a) Layer-wise mask evolution over training epochs. (b) Comparison of prediction ratios between convolutional and fully connected layers.

Figure 12: A snapshot at epoch 20 with the mask heatmap for different layers.

A.9 EFFECT OF TRAINING HYPERPARAMETERS

Several primary hyperparameters require careful consideration in PDT:

Prediction Steps (τ): Derived from DMD, the number of prediction steps significantly influences the training speed. As shown in Fig. 14(a) in Appendix Sec. A.9, training accelerates within a certain range of prediction steps. However, extending beyond a critical threshold, such as nine steps in our study, can introduce large errors and potentially cause gradient explosion.

Prediction Interval (T_i): The interval between Prediction blocks impacts the effectiveness of acceleration, as depicted in Fig. 14(b). A shorter interval can enhance training speed if the predictions

Figure 13: Performance comparison between SGD and PDT under i.i.d. and non-i.i.d. training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet, batch size=128, lr=0.05, with CosineAnnealingLR scheduler. The shaded areas represent the standard deviation across 5 runs with different random seeds (0, 100, 200, 300, 400).

Table 4: Performance and runtime comparison between SGD and PDT under i.i.d. and non-i.i.d. training data distributions, with the same hyperparameters configuration. Trained on CIFAR-10 using AlexNet, batch size=128, lr=0.05, with CosineAnnealingLR scheduler.

Training Data Distribution	Method	Final Accuracy (mean \pm std)	Best Train Loss (mean \pm std)	Time to Baseline Best Loss (s) (mean \pm std)	Runtime Reduction (%)
i.i.d.	SGD	0.7969 ± 0.0093	0.0039 ± 0.0017	662.48 ± 7.73	9.15
	PDT	0.8011 ± 0.0067	0.0016 ± 0.0017	601.86 ± 17.78	
non-i.i.d.	SGD	0.7067 ± 0.0062	0.1053 ± 0.0874	806.83 ± 13.15	27.90
	PDT	0.7159 ± 0.0103	0.0119 ± 0.0057	581.73 ± 19.34	

1188 are accurate. Nevertheless, the quality of predictions may decline as the training progresses, rendering
 1189 the network more sensitive to errors, particularly as it nears convergence.
 1190

1191 **Starting Epoch (T_0):** The starting epoch for acceleration must be greater than or equal to the number
 1192 of epochs used to build the snapshot, as illustrated in Fig. 14(c). The initiation of acceleration is
 1193 influenced by factors such as initialization, learning rate, and model architecture.
 1194

1195 **Past Snapshot Counts (h):** Fig. 14(d) indicates that the number of epochs needed to construct the
 1196 snapshot matrix for prediction also influences the train loss. This value cannot be too small or too
 1197 large. If it is too small, the snapshot will not have sufficient measurements to precisely estimate the
 1198 dynamics of the training process. If it is too large, DMD would have missed the local dynamics with
 1199 only a coarser grasp of the general training dynamics.
 1200

1201 Overall, these PDT-related hyperparameters are robust across optimizers, architectures, and datasets.
 1202 Based on our experience, below are “Rule of Thumb” guidelines to help find the appropriate hyperpa-
 1203 rameters for different scenarios.
 1204

- 1204 • **Past Snapshot counts (h):** $h = 5$ is a “sweet spot”. Smaller h is insufficient for capturing
 1205 dynamics, larger h includes “stale” weights from much earlier training and introduces
 1206 additional overhead. For networks with extremely dynamic changes, a larger value of h
 1207 (e.g., $h=10$) is also worth trying.
- 1208 • **Prediction Steps (τ):** We recommend starting with $\tau = 5$ as a robust default value. This
 1209 value provides a good balance between acceleration benefit and prediction accuracy across
 1210 diverse architectures and datasets. Users can increase τ to 7 if their training loss curves are
 1211 very stable and exhibit minimal variance. Conversely, if gradient explosion or instability
 1212 occurs, reducing τ to 3 provides a more conservative acceleration while maintaining stability.
 1213 A practical configuration is to set $\tau \in [3, 7]$. Too large leads to divergence, while too small
 1214 makes it meaningless.
- 1215 • **Prediction Interval (T_i):** We recommend setting $T_i = 1$ as the default. If the training process
 1216 is unstable, then gradually increase the interval.
- 1217 • **Start Epoch (T_0):** The start epoch T_0 should typically be equal to h to ensure sufficient
 1218 history is available for the first prediction.

1219 To thoroughly evaluate the effectiveness and robustness of PDT under different training configurations,
 1220 we conduct comprehensive experiments across different learning rates from 0.001 to 0.1 (0.001, 0.01,
 1221 0.05, 0.1) and batch sizes from 32 to 512 (32, 64, 128, 256, 512). All experiments were repeated
 1222 with five random seeds (0, 100, 200, 300, 400) to ensure statistical significance. All experiments are
 1223 performed on AlexNet with the CIFAR-10 dataset, using SGD as the baseline optimizer and trained
 1224 for 60 epochs. The PDT-related hyperparameters mentioned in Sec. A.9 were set to prediction step=5,
 1225 prediction interval=1, start epoch=5, and past snapshot counts=5.
 1226

1238 Figure 14: The influence of different parameters. (a) prediction steps, (b) prediction interval, (c)
 1239 starting epoch, (d) past snapshot counts. Trained on CIFAR-10 using AlexNet, batch size=256.
 1240

1241 The results in Table 5 show the impact of different batch sizes and learning rates on the performance
 1242 of PDT. At lower learning rates (0.001, 0.01, and 0.05), PDT consistently outperforms SGD in terms
 1243 of Train Loss.

1242
 1243
 1244
 1245
 1246 Table 5: Impact of learning rates and batch sizes on PDT performance. Trained on CIFAR-10 using
 1247 AlexNet. Note: bold numbers indicate the best performance and underlined numbers indicate the
 1248 second best performance for each column.

Batch Size	lr	Method	Final Accuracy (mean \pm std)	Best Train Loss (mean \pm std)	Time to Baseline Loss (s) (mean \pm std)	Runtime Reduction (%)
32	0.001	SGD	0.6981 \pm 0.0458	0.6376 \pm 0.0127	1232.29 \pm 4.45	40.64
		PDT	0.6903 \pm 0.0885	0.2724 \pm 0.0166	731.52 \pm 12.84	
	0.01	SGD	0.8118 \pm 0.0041	0.0046 \pm 0.0008	1194.89 \pm 21.09	24.25
		PDT	0.8146 \pm 0.0048	0.0021 \pm 0.0012	905.07 \pm 120.51	
	0.05	SGD	0.8049 \pm 0.0053	0.0156 \pm 0.0029	1180.72 \pm 12.31	64.57
		PDT	0.8020 \pm 0.0052	0.0149 \pm 0.0073	<u>418.38 \pm 0.00</u>	
	0.1	SGD	0.1000 \pm 0.0000	0.3346 \pm 0.0098	1172.49 \pm 39.08	-
		PDT	0.1000 \pm 0.0000	0.3364 \pm 0.0132	-	
64	0.001	SGD	0.5384 \pm 0.0173	1.2295 \pm 0.0261	902.16 \pm 19.68	35.82
		PDT	0.5329 \pm 0.1152	0.8798 \pm 0.0257	578.99 \pm 55.74	
	0.01	SGD	0.7850 \pm 0.0226	0.0087 \pm 0.0030	800.35 \pm 5.39	23.32
		PDT	0.8140 \pm 0.0021	0.0015 \pm 0.0010	613.70 \pm 8.80	
	0.05	SGD	0.8067 \pm 0.0035	0.0051 \pm 0.0016	798.20 \pm 3.50	27.54
		PDT	0.8029 \pm 0.0029	0.0045 \pm 0.0006	578.36 \pm 16.48	
	0.1	SGD	0.6442 \pm 0.2733	0.0484 \pm 0.0522	910.37 \pm 18.03	<u>56.23</u>
		PDT	0.7976 \pm 0.0033	0.0218 \pm 0.0011	398.48 \pm 21.34	
128	0.001	SGD	0.2882 \pm 0.0212	1.8456 \pm 0.0300	812.42 \pm 21.20	17.48
		PDT	0.2951 \pm 0.0440	1.6972 \pm 0.0272	670.37 \pm 23.93	
	0.01	SGD	0.7825 \pm 0.0065	0.0675 \pm 0.0052	661.09 \pm 6.35	14.68
		PDT	0.8009 \pm 0.0062	0.0058 \pm 0.0008	564.02 \pm 16.35	
	0.05	SGD	0.7969 \pm 0.0093	0.0039 \pm 0.0017	662.48 \pm 7.73	9.15
		PDT	0.8011 \pm 0.0067	0.0016 \pm 0.0017	601.86 \pm 17.78	
	0.1	SGD	0.7916 \pm 0.0027	0.0083 \pm 0.0014	803.93 \pm 3.07	8.20
		PDT	0.7863 \pm 0.0087	0.0096 \pm 0.0016	737.97 \pm 0.00	
256	0.001	SGD	0.1171 \pm 0.0092	2.2991 \pm 0.0011	747.83 \pm 20.30	7.08
		PDT	0.1453 \pm 0.0213	2.2979 \pm 0.0026	694.91 \pm 14.63	
	0.01	SGD	0.6989 \pm 0.0301	0.5814 \pm 0.0147	660.37 \pm 0.71	19.98
		PDT	0.7450 \pm 0.0236	0.1855 \pm 0.0172	528.41 \pm 7.26	
	0.05	SGD	0.7931 \pm 0.0034	0.0004 \pm 0.0003	648.39 \pm 8.57	21.71
		PDT	0.7916 \pm 0.0016	<u>0.0015 \pm 0.0014</u>	507.62 \pm 11.36	
	0.1	SGD	0.3742 \pm 0.3359	0.0508 \pm 0.0576	771.77 \pm 3.06	-
		PDT	0.3796 \pm 0.3425	0.0012 \pm 0.0011	-	
512	0.001	SGD	0.1170 \pm 0.0251	2.3017 \pm 0.0005	748.44 \pm 42.46	6.23
		PDT	0.1377 \pm 0.0288	2.3020 \pm 0.0001	701.82 \pm 23.31	
	0.01	SGD	0.5710 \pm 0.0203	1.1920 \pm 0.0238	671.28 \pm 9.03	18.89
		PDT	0.5985 \pm 0.0078	0.8311 \pm 0.0252	544.46 \pm 12.10	
	0.05	SGD	0.7717 \pm 0.0038	0.0311 \pm 0.0174	668.59 \pm 7.30	10.11
		PDT	0.7669 \pm 0.0237	0.0034 \pm 0.0014	601.01 \pm 44.11	
	0.1	SGD	0.3721 \pm 0.3332	0.0648 \pm 0.0735	768.97 \pm 3.12	-
		PDT	0.4420 \pm 0.3420	0.0373 \pm 0.0155	-	

1293
 1294
 1295

1296 of convergence speed across different batch sizes. PDT shows a significant reduction in the runtime to
 1297 reach baseline best loss, with an average runtime reduction of 22.76% compared to SGD. For higher
 1298 learning rates (0.1), both SGD and PDT struggled to achieve stable training, and PDT’s advantage
 1299 over SGD became less pronounced. Sometimes PDT can significantly reduce the convergence time
 1300 (for example, when batch size = 64), but other times the accuracy will drop significantly after reaching
 1301 a high point, or even result in gradient explosion. This suggests that the high learning rate introduced
 1302 significant stochasticity, reducing the effectiveness of PDT’s prediction mechanism. Smaller batch
 1303 sizes (32, 64) generally achieve more significant runtime reductions.

1304 To address the stability issues observed at higher learning rates and larger batch sizes, different from
 1305 the previous fixed learning rate, we investigated the effectiveness of the learning rate scheduler. We
 1306 tested the Cosine Annealing learning rate scheduler with a minimum learning rate of 1e-3. Taking
 1307 batch size 256 as an example, we observe significantly improved stability and performance. The
 1308 results are shown in Table 6. The results are particularly noteworthy at higher learning rates (lr=0.1),
 1309 where the previous experiments in Table 5 show considerable variance. With the cosine annealing
 1310 scheduler, PDT achieves consistent accuracy improvements across all learning rates while maintaining
 1311 substantial runtime reductions.

1312 Table 6: Impact of learning rates on PDT performance. Trained on CIFAR-10 using AlexNet, batch
 1313 size=256, with CosineAnnealingLR scheduler, minimum learning rate 1e-3. Note: bold numbers
 1314 indicate the best performance and underlined numbers indicate the second best performance for each
 1315 column.

Batch Size	lr	Method	Final Accuracy (mean \pm std)	Best Train Loss (mean \pm std)	Time to Baseline Best Loss (s) (mean \pm std)	Runtime Reduction (%)
256	0.001	SGD	0.1217 \pm 0.0126	2.2991 \pm 0.0011	757.66 \pm 26.54	9.88
		PDT	0.1461 \pm 0.0213	2.2980 \pm 0.0025	682.79 \pm 2.13	
	0.01	SGD	0.6451 \pm 0.0102	0.9276 \pm 0.0212	745.97 \pm 47.19	41.54
		PDT	0.6974 \pm 0.0073	0.5853 \pm 0.0159	436.07 \pm 16.09	
	0.05	SGD	0.7852 \pm 0.0016	0.0020 \pm 0.0001	675.04 \pm 27.56	
		PDT	0.7936 \pm 0.0030	0.0006 \pm 0.0001	424.39 \pm 20.40	
	0.1	SGD	0.7930 \pm 0.0023	0.0002 \pm 0.0000	665.27 \pm 9.08	37.13
		PDT	0.7978 \pm 0.0032	0.0002 \pm 0.0000	534.41 \pm 12.64	

1328 To further investigate PDT’s compatibility with different optimization methods, we compare its
 1329 performance when integrated with different optimizers (SGD, SGD with momentum, and Adam)
 1330 while keeping the network architecture and other configurations fixed. For SGD with momentum, we
 1331 set the momentum factor to 0.9. All experiments are conducted on AlexNet with CIFAR-10 using
 1332 batch size 256, maintaining the same PDT hyperparameters as in previous experiments. The learning
 1333 rate is 0.1 for SGD, 0.001 for SGD with Momentum, 0.0005 for Adam. The results are shown in
 1334 Table 7.

1336 Table 7: Impact of baseline optimizers (SGD, SGD with Momentum, and Adam) on PDT performance.
 1337 Trained on CIFAR-10 using AlexNet, batch size=256, momentum=0.9, with CosineAnnealingLR
 1338 scheduler. Note: bold numbers indicate the best performance and underlined numbers indicate the
 1339 second best performance for each column.

lr	Method	Final Accuracy (mean \pm std)	Best Train Loss (mean \pm std)	Time to Baseline Best Loss (s) (mean \pm std)	Runtime Reduction (%)
0.1	SGD	0.7930 \pm 0.0023	<u>0.0002 \pm 0.0000</u>	665.27 \pm 9.08	19.67
	PDT	<u>0.7978 \pm 0.0032</u>	<u>0.0002 \pm 0.0000</u>	534.41 \pm 12.64	
0.001	Momentum	0.6672 \pm 0.0068	0.8609 \pm 0.0166	752.74 \pm 9.62	41.06
	PDT	0.7298 \pm 0.0051	0.5358 \pm 0.0165	443.68 \pm 8.75	
0.0005	Adam	0.7952 \pm 0.0063	0.0001 \pm 0.0000	779.13 \pm 11.81	14.87
	PDT	0.8050 \pm 0.0050	<u>0.0002 \pm 0.0000</u>	663.28 \pm 15.30	

1350
1351

A.10 PROFILING AND OVERHEAD ANALYSIS

1352
1353
1354
1355
1356

To validate our theoretical complexity analysis and quantitatively measure the overhead, we conduct comprehensive profiling experiments across three diverse architectures: AlexNet (CNN, 57M parameters) on CIFAR-10, ResNet-50 (deep CNN, 25.6M parameters) on ImageNet-1k, and ViT-Base (Transformer, 86.4M parameters) on ImageNet-1k. We measure wall-clock time, GPU memory usage, and FLOPs for both the baseline optimizer and PDT.

1357
1358

A.10.1 MEASUREMENT METHODOLOGY

1359
1360
1361
1362
1363
1364
1365
1366

Memory Overhead. The *Peak GPU memory* captures true peak GPU usage during training, measured via `torch.cuda.max_memory_allocated()`. *Currently Allocated* is the memory actively allocated at the end of each epoch. *Reserved by Allocator* is the total memory reserved by PyTorch’s caching allocator. The *PDT Memory Overhead* consists of *Snapshot Storage* (h copies of weights), *SVD Workspace* (the temporary storage for intermediate matrices), and *Other* (includes optimizer momentum buffers, weight cloning buffers, temporary tensors, and memory fragmentation). The *PDT memory overhead ratio* is computed as the total PDT overhead divided by the baseline’s peak GPU memory.

1367
1368
1369
1370
1371
1372

Runtime Overhead. The *Total PDT Runtime Overhead* is defined as the difference between the PDT epoch time and the baseline SGD epoch time. We further decompose this into *Core PDT Operations* (including SVD decomposition, DMD-based weight prediction, and gradient masking) and *Auxiliary Operations* (including weight cloning for snapshot storage, CUDA synchronization, and data movement between CPU/GPU). The *PDT runtime overhead ratio* is computed as total PDT overhead divided by total epoch time.

1373
1374
1375
1376
1377
1378

FLOPs Overhead. Total floating-point operations for the entire training process.

All profiling experiments are conducted on a single GPU (Nvidia RTX A6000 or H100) to ensure accurate measurement of peak memory and timing without the interference of distributed communication overheads. For PDT, we use a past snapshot counts of $h = 5$ and a prediction interval of $T_i = 1$.

1379
1380

A.10.2 PROFILING RESULTS

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1. AlexNet on CIFAR-10. Table 8 summarizes the results for AlexNet on CIFAR-10. The peak GPU memory usage for PDT increases by approximately 8.4 GB compared to the baseline. This absolute increase is primarily due to the snapshot storage (1.1 GB for $h = 5$) and the SVD workspace (1.7 GB for intermediate matrices). The remaining overhead (~ 5.6 GB) is attributed to temporary buffers and memory fragmentation during the weight update process. While the relative increase (1145%) appears large due to the small baseline footprint of AlexNet on CIFAR-10, the absolute peak usage (9.1 GB) fits comfortably within the capacity of modern GPUs. This confirms that the $\mathcal{O}(N \times h)$ space complexity is practical, as described in Appendix A.4. The total PDT overhead is approximately 333 ms per epoch, with the PDT overhead ratio for only **4.30%**. Decomposing this overhead reveals that core PDT operations account for 194 ms (58.3%), while auxiliary operations (weight cloning and synchronization) account for 138.8 ms (41.7%). Notably, the SVD operation itself takes only ~ 98 ms, empirically confirming our theoretical claim that the SVD cost is computationally efficient even for frequent predictions. The additional FLOPs introduced by PDT are negligible. The total training FLOPs increase from 3.4043×10^{15} (baseline) to 3.4047×10^{15} (PDT), a 0.012% increase, validating that the computational cost is dominated by gradient calculations in the baseline optimizer rather than in the PDT operations.

1396
1397
1398
1399
1400
1401
1402
1403

2. ResNet-50 on ImageNet-1k. To further validate overhead analysis, we conducted comprehensive profiling on ResNet-50 + ImageNet-1k with varying batch sizes (64, 128, 256). Table 9 presents detailed memory and runtime measurements for both baseline and PDT. The absolute total PDT memory overhead remains nearly constant (~ 1.46 GB) across all batch sizes, validating that PDT’s space complexity $\mathcal{O}(N \times h)$ is independent of data scale. Consequently, the PDT memory overhead ratio decreases monotonically as baseline memory increases with batch size from 47.9% (bs=64) to 13.0% (bs=256). In order to measure overhead more accurately, all experiments in this section were run on a single GPU. For ResNet-50 and ViT results reported in Table 1, we used a batch size of 1800 (600 per GPU, trained on 3 GPUs), so we estimate the overhead ratio should be even lower. In

1404 Table 8: Memory and Runtime overhead of PDT compared to baseline. Trained on CIFAR-10 using
 1405 AlexNet, batch size=256, SGD baseline optimizer with lr=0.05, with CosineAnnealingLR scheduler.
 1406 All experiments ran on a single Nvidia RTX A6000 (48 GB) GPU.

Metric	Baseline	PDT
<i>GPU Memory Usage</i>		
Peak GPU Memory (MB)	735.9	9158.2
Currently Allocated (MB)	468.7	5078.0
Reserved by Allocator (MB)	994.0	11454.0
<i>PDT Memory Overhead</i>		
Total PDT Overhead (MB)	—	8422.4
Overhead Ratio (%)	—	1145%
<i>PDT Memory Overhead Breakdown</i>		
Snapshot Storage (MB)	—	1088.0
SVD Workspace (MB)	—	1740.9
Other (MB)	—	5593.4
<i>PDT Runtime Overhead (per epoch)</i>		
Avg Time per Epoch (s)	7.465	7.746
Total PDT Overhead (s)	—	0.333
PDT Overhead Ratio (%)	—	4.30%
<i>PDT Runtime Overhead Breakdown</i>		
Core PDT Operations (ms)	—	194.0
↪ SVD decomposition (ms)	—	98.3
↪ Prediction (ms)	—	88.1
↪ Masking (ms)	—	7.6
Auxiliary Operations (ms)	—	138.8

1431 some cases in Table 9, the Avg. Epoch time of PDT was slightly shorter than baseline, likely due to
 1432 measurement variance. The total PDT runtime overhead (90–110 ms) is consistent and negligible.
 1433 The core PDT operations (SVD + prediction + masking) take only ~ 51 ms per epoch, which is
 1434 insignificant compared to the (635s–804s) epoch time.

1435 **3. ViT-Base on ImageNet-1k.** To validate the generality of our overhead analysis across different
 1436 architectures, we conducted profiling on ViT-Base (Transformer architecture) with ImageNet-1k at a
 1437 batch size of 256. Table 10 presents detailed memory and runtime measurements for both baseline
 1438 and PDT.

1439 Despite ViT-Base having significantly more parameters (86.4M) than ResNet-50 (25.6M), the memory
 1440 overhead breakdown remains consistent with our theoretical analysis: snapshot storage and SVD
 1441 workspace dominate (40% and 53% respectively), with only 7% attributed to auxiliary memory. The
 1442 absolute memory overhead (4,954 MB) is larger than ResNet-50 (1,463 MB) as expected from the
 1443 $\mathcal{O}(N \times h)$ scaling. The runtime overhead remains negligible at 0.11%.

1446 A.10.3 SCALABILITY AND GENERALIZATION ANALYSIS

1447 The profiling results align robustly with our theoretical analysis in Appendix A.4, confirming that
 1448 PDT is scalable to large modern architectures.

1449 AlexNet has a large number of parameters (57M) relative to the small size of the CIFAR-10 dataset.
 1450 This results in a scenario with high memory requirements for SVD (proportional to N) but a very short
 1451 epoch duration (low compute load). For a large-scale dataset like ImageNet, the computational load
 1452 per epoch increases dramatically, while the parameter count N (which dictates PDT overhead) does
 1453 not change with a specific network architecture. The disparity of the memory overhead ratio (AlexNet:
 1454 1,145%, ResNet-50: 13%, ViT-Base: 26%) can be explained by the composition of baseline memory.
 1455 For AlexNet on CIFAR-10, the baseline memory (736 MB) is dominated by model parameters
 1456 because the input image size (32×32) generates very small activation maps. For ImageNet-1k with
 1457 (224×224) inputs, the baseline memory (11–19 GB) is dominated by activation memory, while

1458 Table 9: Memory and Runtime overhead of PDT compared to baseline across different batch sizes.
 1459 Trained on ImageNet-1k using ResNet-50, SGD with Momentum baseline optimizer with lr=0.1,
 1460 momentum=0.9, with CosineAnnealingLR scheduler. All experiments ran on a single Nvidia H100
 1461 (80 GB) GPU.

1462

1463 Metric	1464 Baseline			1464 PDT		
	1464 bs=64	1464 bs=128	1464 bs=256	1464 bs=64	1464 bs=128	1464 bs=256
1465 GPU Memory Usage						
1466 Peak GPU Memory (MB)	3,062	5,792	11,258	4,528	7,255	12,721
1467 Currently Allocated (MB)	400	436	512	2,439	2,436	2,439
1468 Reserved by Allocator (MB)	3,404	6,766	13,424	7,392	10,864	15,298
1469 PDT Memory Overhead						
1470 Total PDT Overhead (MB)	—	—	—	1,466	1,463	1,463
1471 Overhead Ratio (%)	—	—	—	47.9%	25.3%	13.0%
1472 PDT Memory Overhead Breakdown						
1473 Snapshot Storage (MB)	—	—	—	585	585	585
1474 SVD Workspace (MB)	—	—	—	780	780	780
1475 Other (MB)	—	—	—	101	98	98
1476 PDT Runtime Overhead (per epoch)						
1477 Avg Time per Epoch (s)	813.9	653.1	626.5	804.0	651.5	635.3
1478 Total PDT Runtime Overhead (ms)	—	—	—	90	90	110
1479 Overhead Ratio (%)	—	—	—	0.011%	0.013%	0.017%
1480 PDT Runtime Overhead Breakdown						
1481 Core PDT Operations (ms)	—	—	—	51.5	50.7	51.1
1482 ↪ SVD decomposition (ms)	—	—	—	31.0	30.4	30.7
1483 ↪ Prediction (ms)	—	—	—	19.7	19.5	19.6
1484 ↪ Masking (ms)	—	—	—	0.8	0.8	0.8
1485 Auxiliary Operations (ms)	—	—	—	38.5	39.3	58.9

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508 parameter storage is a smaller fraction. Since PDT overhead scales *only* with parameters and not
 1509 activations, the relative overhead drops dramatically.

1510 In conclusion, while PDT introduces a linear space complexity $\mathcal{O}(N \times h)$, this overhead is amortized
 1511 in a large-scale training scenario where memory is dominated by activations and runtime is dominated
 by gradient computation.

1512 Table 10: Memory and Runtime overhead of PDT compared to baseline on. Trained on ImageNet-1k
 1513 using ViT-Base, batch size=256, AdamW baseline optimizer with lr=0.0006, weight decay=0.05,
 1514 with CosineAnnealingLR scheduler. All experiments ran on a single Nvidia H100 (80 GB) GPU.
 1515

Metric	Baseline	PDT
<i>GPU Memory Usage</i>		
Peak GPU Memory (MB)	19,022	23,976
Currently Allocated (MB)	1,536	8,406
Reserved by Allocator (MB)	19,462	35,328
<i>PDT Memory Overhead</i>		
Total PDT Overhead (MB)	—	4,954
Overhead Ratio (%)	—	26.0%
<i>PDT Memory Overhead Breakdown</i>		
Snapshot Storage (MB)	—	1,981
SVD Workspace (MB)	—	2,642
Other (MB)	—	330
<i>PDT Runtime Overhead (per epoch)</i>		
Avg Time per Epoch (s)	831.3	832.1
Total PDT Runtime Overhead (ms)	—	877
Overhead Ratio (%)	—	0.11%
<i>PDT Runtime Overhead Breakdown</i>		
Core PDT Operations (ms)	—	193.2
\hookrightarrow SVD decomposition (ms)	—	127.4
\hookrightarrow Prediction (ms)	—	62.8
\hookrightarrow Masking (ms)	—	3.0
Auxiliary Operations (ms)	—	683.6

A.11 ABLATION STUDY: MASKING CRITERION ANALYSIS

In Sec. 3.2, we introduce a masking mechanism including two principles: the acceleration effectiveness criterion (Eq. 6) and the dynamic consistency criterion (Eq. 7). To investigate the contribution and distinct role of each masking criterion, we conducted a comprehensive ablation study on AlexNet trained on CIFAR-10, using SGD as the base optimizer. We compare four configurations: (1) *Baseline* (standard SGD), (2) *Accel Only* (apply only acceleration effectiveness criterion for masking), (3) *Consistency Only* (apply only dynamic consistency criterion for masking), and (4) *Full PDT* (our complete PDT method with both criteria). Each configuration was evaluated with learning rates 0.01 and 0.05, prediction steps $\tau \in \{3, 5\}$, and five random seeds (0, 100, 200, 300, 400), totaling 70 experimental runs.

Table 11 presents the success rate (proportion of runs that completed without crashing) and final validation accuracy (computed only from successful runs) for each configuration. *Consistency Only* achieves only 1 successful run (seed=300, LR=0.05, $\tau = 3$) with 10% accuracy (random level), demonstrating catastrophic failure. *Accel Only* achieves 80% success but shows particular instability at $\tau = 5$ with LR=0.05 (2/5 success), with successful runs achieving only 10% accuracy, indicating its inability to predict longer steps. The full PDT achieves perfect robustness (20/20 success) and the highest validation accuracy at both learning rates, outperforming the baseline performance, and validating the necessity of combining both criteria.

Figure 15 visualizes the training dynamics across different learning rates and prediction steps (τ). Since there is no need to adhere to the dynamic consistency criterion, *Accel only* consistently has a higher masked ratio than the full PDT. In all configurations, its train loss is higher than that of full PDT. Specifically, in Fig. 15(d) (LR=0.05, $\tau = 5$), the *Accel Only* validation accuracy collapses to random chance (10%) after the initial epochs. Without the consistency criterion, too many predictions with incorrect directions are accepted, which causes gradient explosion, especially when predicting multiple steps. In contrast, *Full PDT* consistently achieves the lowest training loss and highest validation accuracy across all configurations. The shaded variance regions for *Full PDT* are notably tighter than those for *Accel Only*, demonstrating that combining both criteria makes the training process significantly more stable.

1566 Table 11: Comprehensive masking ablation results on AlexNet trained on CIFAR-10. Success rates
 1567 are shown as successful/total runs. Final accuracy reported as mean \pm std across five seeds (successful
 1568 runs only).

1569

1570 Configuration	τ	LR=0.01		LR=0.05		Overall Success
		Success Rate	Final Acc (%)	Success Rate	Final Acc (%)	
1571 Baseline (SGD)	—	5/5	64.40 \pm 0.71	5/5	78.68 \pm 0.21	10/10
1572 Accel Only	3	5/5	58.04 \pm 1.29	5/5	78.23 \pm 0.64	16/20
	5	4/5	48.20 \pm 8.19	2/5	10.00 \pm 0.00	
1573 Consistency Only	3	0/5	<i>Crashed</i>	1/5	10.00	1/20
	5	0/5	<i>Crashed</i>	0/5	<i>Crashed</i>	
1574 Full PDT	3	5/5	69.39 \pm 0.79	5/5	78.98 \pm 0.18	20/20
	5	5/5	69.10 \pm 1.33	5/5	79.48 \pm 0.20	

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595 To further investigate the contribution of each masking criterion across different training stages, we
 1596 decompose the predictions rejected by PDT and examine which criterion rejects them. Figure 16
 1597 shows the temporal evolution of each criterion’s contribution throughout training. We analyze the
 1598 *Full PDT* configuration (LR=0.05) across five random seeds to understand how the acceptance and
 1599 rejection ratios evolve. Experimental results from $\tau=3$ and $\tau=5$ show a similar pattern. Ratio of
 1600 predictions rejected by Consistency Criterion (Eq. 7) due to opposite direction remains stable at
 1601 \sim 50% throughout training. Ratio of predictions rejected by Acceleration Criterion Lower Bound
 1602 (Eq. 6) (for being too small ($< 1 \times$ SGD update)) decreases to near zero, indicating this bound is
 1603 primarily active early in training. Ratio of predictions rejected by Accel Upper Bound (for being too
 1604 large ($> (\tau) \times$ SGD update)) increases dramatically (from \sim 20% to \sim 50%), becoming critical in the
 1605 later training stage.

1606

1607 The overall mask ratio decline is due to the increasing rejection by the upper bound of the acceleration
 1608 effectiveness criterion. The gradual decline in mask ratio reflects the changing optimization land-
 1609 scape: early in training, when the loss landscape is steep and gradients are large, DMD sometimes
 1610 underestimates the required step size. However, as training progresses and gradients shrink near
 1611 convergence, DMD predictions rarely fall below the minimum threshold. When near convergence,
 1612 gradients become small, noisy, and oscillatory. The upper bound becomes critical for preventing
 1613 divergence by rejecting these over-aggressive predictions.

1614

1615 From the above ablation results, compared to a single criterion, the complete PDT with both criteria
 1616 has smooth loss curves, faster convergence, and low variance across seeds. This provides strong
 1617 empirical evidence supporting our theoretical design and demonstrates that neither criterion alone
 1618 is sufficient. Both criteria play distinct, complementary roles. The dynamic consistency criterion
 1619 provides stable, stage-agnostic directional filtering. The acceleration effectiveness criterion ensures
 predictions provide speedup by enforcing magnitude bounds. During the early training stage, the
 lower bound guarantees that each accepted prediction moves the weights at least as far as a single
 SGD step, enabling acceleration. The upper bound prevents over-aggressive updates that could cause
 divergence and ensures stability throughout the training process.

Figure 15: Mean training curves (with standard deviation indicated by Shaded regions) and performance comparison of baseline and pdt with different masking criteria. Trained on CIFAR-10 using AlexNet, batch size = 256, with CosineAnnealingLR scheduler. Only successful runs are included.

1668 Figure 16: Temporal evolution of masking criteria contributions during training. Results from full
1669 PDT (both criteria applied). Trained on CIFAR-10 using AlexNet, LR=0.05, batch size = 256, with
1670 CosineAnnealingLR scheduler. Only successful runs are included.
1671
1672
1673

1674 A.12 IMPACT OF DIFFERENT INITIAL LEARNING RATES ON MASKED RATIO
1675

1676 To investigate the impact of different initial learning rates on masked ratio behavior and computational
1677 efficiency, we conducted systematic experiments on AlexNet trained on CIFAR-10. We compare
1678 Baseline (SGD) and PDT (prediction steps $\tau = 5$, prediction interval $T_i = 1$, past snapshot counts
1679 $h = 5$, starting epoch $T_0 = 5$) across four different learning rates: 0.001, 0.01, 0.05, and 0.1. All
1680 experiments use batch size 256, CosineAnnealingLR scheduler with $lr_{min} = 10^{-3}$, and train for 60
1681 epochs. Each configuration was evaluated with three random seeds (0, 100, 200). We measure mask
1682 acceptance ratio by training stage (early: epochs 5–20, mid: epochs 21–40, late: epochs 41–60) and
1683 final validation accuracy.

1684 As shown in Table 12, larger learning rates lead to higher mask acceptance ratios during early training.
1685 Specifically, LR=0.1 achieves the highest early-training masked ratio (18.77%), followed by LR=0.05
1686 (16.94%), LR=0.01 (8.12%), and LR=0.001 (0.06%). For relatively large learning rates (e.g., 0.05
1687 and 0.1), this trend is not strictly observed. As training progresses, the masked ratios across different
1688 learning rates decline to varying degrees. However, for extremely small learning rates (e.g., 0.001),
1689 the masked ratio remains consistently low. PDT consistently improves over baseline across all
1690 learning rates, demonstrating robustness.

1691 Table 12: Mask acceptance ratio and validation accuracy across learning rates: mask acceptance ratio
1692 by training stage and final test accuracy (mean \pm std across 3 seeds). Training stages: Early (epochs
1693 5–20), Mid (epochs 21–40), Late (epochs 41–60).

LR	Early (%)	Mid (%)	Late (%)	Overall (%)	Base Acc (%)	PDT Acc (%)
0.001	0.06 \pm 0.00	0.07 \pm 0.00	0.10 \pm 0.02	0.08 \pm 0.01	11.83 \pm 1.04	14.92 \pm 2.44
0.01	8.12 \pm 0.20	7.10 \pm 0.06	2.77 \pm 0.02	5.77 \pm 0.07	63.96 \pm 0.14	68.43 \pm 0.64
0.05	16.94 \pm 0.20	8.52 \pm 0.5	0.68 \pm 0.15	7.94 \pm 0.31	78.67 \pm 0.13	79.24 \pm 0.22
0.1	18.77 \pm 0.24	7.10 \pm 0.52	0.37 \pm 0.05	7.91 \pm 0.20	79.76 \pm 0.27	80.06 \pm 0.20

1713 Figure 17: Mask acceptance ratio evolution across different learning rates (mean \pm std shading across
1714 3 seeds). Trained on CIFAR-10 using AlexNet, batch size = 256, with CosineAnnealingLR scheduler.

1715
1716 Figure 17 visualizes the mask ratio evolution across different learning rates. Early training exhibits
1717 the highest acceptance, as the loss landscape is steep and gradients provide a strong signal. By late
1718 training (epochs 41–60), mask ratios converge to low values across all learning rates.

1719 The temporal evolution of masking criteria contribution shown in Fig. 18 reveals why extremely small
1720 learning rates (e.g., 0.001) lead to consistently low mask acceptance ratios during the entire training
1721 stage. The mask acceptance behavior is governed by the interaction between the learning rate and
1722 the Acceleration Effectiveness Criterion (Eq. 6). At LR=0.001, the figure shows that predictions are
1723 overwhelmingly rejected by the consistency criterion and the *Upper Bound* of acceleration criterion
1724 (Green line). When the learning rate is extremely low (e.g., 0.001), the gradient steps are small,
1725 making the “allowable acceleration window” microscopic. Although DMD predicts a trajectory based
1726 on historical dynamics, the magnitude of this prediction, even if small, easily exceeds the excessively
1727 strict upper bound imposed by the tiny learning rate. In contrast, at LR=0.05 and 0.1, the upper bound
constraint is relaxed. The gradient signal is strong enough that the SGD step size is comparable to

Figure 18: Temporal evolution of masking criteria contribution across learning rates. Trained on CIFAR-10 using AlexNet, batch size = 256, with CosineAnnealingLR scheduler.

the DMD prediction scale. Consequently, a larger proportion of predictions fall comfortably *between* the lower bound and the upper bound, resulting in a significantly higher masked ratio.

In conclusion, the stage-wise analysis reveals that masked ratios are highest during early training and decline adaptively toward convergence, prioritizing stability over acceleration in the final stages. Contrary to the intuition that smaller steps imply stability and higher acceptance, our analysis confirms that larger learning rates are necessary to generate the clear dynamic signals required for high-fidelity DMD predictions. PDT is most effective when the baseline optimizer takes steps large enough to define a “permissible region” that accommodates the scale of DMD’s spectral predictions.

A.13 CROSS-DOMAIN EVALUATION ON NATURAL LANGUAGE PROCESSING

To demonstrate the generalization of PDT beyond computer vision, we evaluate its effectiveness on text classification tasks. This experiment validates PDT’s applicability to a fundamentally different data modality (discrete text) and architecture (Recurrent Neural Networks).

We employ a deep LSTM network for 4-class topic classification on the AG News dataset (Zhang et al., 2015; Gulli). The architecture consists of an embedding layer, a 4-layer stacked LSTM (512 hidden units per layer), and a linear classifier, totaling 8.25M parameters. This setup differs significantly from CNNs, particularly in terms of gradient flow dynamics (backpropagation through time). We use SGD with a learning rate of 0.1 and batch size 128 for 30 epochs. The PDT hyperparameters are identical to those used in our vision experiments ($\tau = 5, h = 5, T_0 = 5, T_i = 1$) to assess the robustness of PDT without domain-specific tuning. Results are averaged over 3 random seeds.

Table 13: Performance comparison on AG News dataset (text classification) using a deep LSTM model. Trained on a single Nvidia RTX A6000 GPU for 30 epochs, lr=0.1, batch size=128, with CosineAnnealingLR scheduler.

Optimizer	Final Accuracy	TTB-Loss (s)	TTB-Acc (s)	Runtime Reduction (%)	
				Train Loss	Val. Acc.
SGD	86.10 ± 1.30	700.8 ± 72.1	694.4 ± 76.9		
PDT	88.44 ± 0.59	517.9 ± 102.2	551.7 ± 120.5	26.1	20.5

Figure 19: Performance comparison between baseline optimizer and PDT. Trained on the AG News dataset using an LSTM model. Trained on a single Nvidia RTX A6000 GPU for 30 epochs, lr=0.1, batch size=128, with CosineAnnealingLR scheduler. The shaded areas represent the standard deviation across three runs with different random seeds (0, 100, 200).

As summarized in Table 13, PDT successfully accelerates training in the NLP domain. PDT achieves the baseline’s best training loss 26.1% faster and best validation accuracy 20.5% faster. This speedup magnitude is comparable to that observed in our vision experiments (10–40%). PDT also achieves a higher validation accuracy of (88.44% compared to the baseline’s 86.10%). Fig. 19 presents the training dynamics comparison between baseline SGD and PDT on the AG News dataset.

The successful application of PDT to text classification with LSTMs provides strong evidence for its cross-domain generalizability. Despite the different optimization landscape of LSTMs, PDT achieves consistent speedups across both CNN-based vision tasks and RNN-based language tasks.