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Abstract

Academic documents are packed with texts,001
equations, tables, and figures, requiring com-002
prehensive understanding for accurate Opti-003
cal Character Recognition (OCR). While end-004
to-end OCR methods offer improved accu-005
racy over layout-based approaches, they often006
grapple with significant repetition issues, espe-007
cially with complex layouts in Out-Of-Domain008
(OOD) documents. To tackle this, we propose009
LOCR1, a model integrating location guiding010
into the transformer architecture during autore-011
gression, training on a dataset comprising over012
77M text-location pairs from 125K academic013
document pages, including bounding boxes014
for words, tables and mathematical symbols.015
LOCR adeptly handles various formatting ele-016
ments and generates content in Markdown lan-017
guage. It outperforms existing models in our018
testset with an edit distance of 0.125, BLEU019
of 0.827 and F1 of 0.897. LOCR also reduces020
repetition frequency from 51% to 2% in the021
arXiv dataset and from 56% to 7% in OOD022
documents. Additionally, LOCR features an in-023
teractive OCR mode, facilitating the generation024
of complex documents through a few location025
prompts from human.026

1 Introduction027

Academic literature comprises a wealth of high-028

quality content, yet much of it is provided in for-029

mats like PDF that are not machine-readable. Par-030

ticularly, most academic documents of the previous031

centuries are scanned version. Digitizing academic032

documents are important for scientific research, lit-033

erature retrieval, and large-language model training.034

However, academic document layout tends to be035

highly intricate, including text, equations, images,036

tables, and annotations, posing challenges for ob-037

taining accurate OCR results.038

1Source codes and datasets will be available upon publica-
tion

One approach to document OCR is to first analyze 039

the layout of the document and then extract the text 040

content (Zhu et al., 2022,mindee, 2023). While pro- 041

gresses has been made in any of the two stages or 042

handling specific types of elements, such as table 043

detection and recognition (Yang et al., 2022), hand- 044

written formula recognition (Sakshi and Kukreja, 045

2023) and structured information extraction (Lu 046

et al., 2022; Liao et al., 2023), it is very difficult 047

for models to understand all the elements in an aca- 048

demic document and connect the different chunks 049

into a coherent sequence. 050

Recently, an end-to-end transformer structure, 051

Donut (Kim et al., 2022), was proposed for docu- 052

ment understanding. It effectively address the com- 053

plexity of combining multiple models and the issue 054

of error propagation. Without to much changes in 055

the model, Nougat (Blecher et al., 2023) processes 056

academic PDFs into markup language. However, 057

such methods are prone to hallucination and repeti- 058

tions. 059

In fact, getting trapped in a repetitive loop is a com- 060

mon problem with Transformer-based models sam- 061

pling with greedy search decoding (Holtzman et al., 062

2019). Thus, it is challenging for an autoregressive 063

language model to accurately capture all the con- 064

tent of text-intensive documents. To make full use 065

of the positional information in various layouts and 066

address the issue of repetitive loop, we introduce 067

LOCR, a location-guided document understanding 068

model, together with an original large-scale dataset 069

and an interactive OCR mode to align with human 070

intension (see Figure 1 for an overview). 071

The most significant feature that distinguishes our 072

model from previous works is the incorporation 073

of positional autoregression alongside text autore- 074

gression. Different from two-stage OCR, LOCR 075

simultaneously predicts the current token and the 076

position of the next token, which is used to prompt 077
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Location-based Scientific Document Dataset：

• 77M text-location pairs

• 125K academic document pages

• Bounding box including table, mathematical 

        expressions and various special formatting

• A data engine for collecting positional annotated 

        data for documents outside the domain
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Figure 1: An overview of three components of our work: a large-scale dataset with positional annotation and a data
engine, a location-guided OCR model for various layouts, and an interactive mode for humans to prompt the model
and modify data collection.

the decoding of the next token. Taking document078

images as input, our model output document con-079

tent in Markdown format, including special formats080

such as superscripts and subscripts.081

Besides, we introduce effective strategies for anti-082

repetition. With positional supervision, we perform083

importance decay on positions that have been vis-084

ited during the autoregressive process or are blank085

in the image. The repetition behavior decreases086

from 51% of documents to 2% in the arXiv test set,087

and from 56% to 7% for out-of-domain documents.088

For documents with complex layouts, we also intro-089

duce an interactive OCR mode. In this mode, the090

model would continue to decode the text where the091

user has dragged a box. With these enhancement092

strategies, the generation ability of the model is093

significantly improved.094

Additionally, we propose a data engine for con-095

structing academic document OCR dataset with096

positional annotations. We collect a large-scale097

dataset of 125K academic document pages with098

77M text-location pairs. To the best of our knowl-099

edge, it is the first dataset including bounding box100

of each mathematical symbol in academic docu-101

ments.102

In summary, the main contributions of this paper103

are:104

• We introduce LOCR, a transformer-structured105

OCR model with positional supervision. Our106

model achieves the state-of-the-art score in aca-107

demic document understanding task in arXiv test108

set (see Section 5.2) and alleviates the repetitive109

degradation problem to a great extent (see Sec-110

tion 5.3).111

• We innovatively introduce an interactive OCR112

mode, enabling the model to handle any out-of- 113

domain documents. Humans only need to pro- 114

vide the position box for the next word without 115

any cumbersome operations (see Section 5.4). 116

• We will release a large-scale dataset composed of 117

125K pages of academic documents. Each piece 118

of data contains a page image, the correspond- 119

ing texts in Markdown format, and the bounding 120

boxes of all words and mathematical symbols 121

(see Section 3). 122

2 Related Work 123

2.1 General-purpose OCR 124

Optical Character Recognition (OCR) caters to a 125

diverse array of applications, including document 126

digitization (Smith, 2007; Moysset et al., 2017), 127

handwriting recognition, and scene text recogni- 128

tion (Bautista and Atienza, 2022; Hernandez Diaz 129

et al., 2021; Li et al., 2021). The classic OCR 130

methods consist of two stages: text detection and 131

text recognization. The text detection algorithm 132

obtains the position of text boxes from the image, 133

and then the recognition algorithm recognizes the 134

content within the text boxes. Researches in these 135

sub-fields has achieved satisfactory results, such 136

as EAST (Zhou et al., 2017) for text detection, 137

CRNN (Shi et al., 2015) for text recognization, 138

and LayoutLM family (Xu et al., 2019; Xu et al., 139

2020; Huang et al., 2022) for document element 140

identification. There also has been various inter- 141

grated toolbox to connect above functions, such as 142

DocXChain (Yao, 2023) and EffOCR (Bryan et al., 143

2023). 144

2.2 Academic document OCR 145

For academic document understanding, additional 146

tasks like table and mathematical equation parsing 147
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are also involved. Marker (Paruchuri and Lampa,148

2023) is a pipeline of text extracting, layout de-149

tection and blocks combination, which converts150

PDF, EPUB, and MOBI to Markdown with a series151

of deep learning models. Such OCR-based ap-152

proaches have shown promising performance but153

suffer from complexity and error propagation to154

the subsequent process. To address this issue, doc-155

ument understanding models based on transformer156

structure were proposed. Donut (Kim et al., 2022)157

is an encoder-decoder model that directly decode158

the expected sequences from visual inputs. Nougat159

(Blecher et al., 2023) is a specific model trained160

on academic documents to process academic PDFs161

into markup language. It combines an image en-162

coder and a token decoder, with the ability to parse163

images of math equations and tables.164

With the emergence of general large model, some165

Large Vision-Language Models (LVLMs) marks a166

significant milestone across a range of OCR tasks.167

MEGVII proposed Vary (Wei et al., 2023), a doc-168

ument parsing method by scaling up the vision169

vocabulary of LVLMs, equipping the large model170

with the fine-grained perception and understanding.171

As the state-of-the-art multimodality model, GPT-172

4v (Yang et al., 2023) performs well in recognizing173

and understanding Latin contents. But it shows lim-174

itations when dealing with complex tasks such as175

table structure recognition and end-to-end seman-176

tic entity recognition (Shi et al., 2023). When it177

comes to unstructured layouts or inconsistent text178

distribution, GPT-4v tends to omit lengthy tables179

and only reconstruct the short beginning of that.180

Without the box detection of two-stage OCR, such181

methods are prone to hallucination and repetitions.182

This phenomenon indicates that it is crucial for the183

model to find the correct position in order to gener-184

ate the correct sequences, especially for ambiguous185

layouts and out-of-domain documents.186

2.3 Promptable model187

Interactive models play a significant role in align-188

ing behavior of artifical intelligence with human189

intentions, which have shown promising perfor-190

mance within a variety of domains. SAM(Kirillov191

et al., 2023) presents an interactive segmentation192

model capable of accommodating point, box, and193

text-based input. DINOv (Li et al., 2023) achieves194

visual in-context prompting in both referring and195

general segmentation. T-Rex (Jiang et al., 2023) ex-196

plores object detection and counting, which can in-197

teractively refine the counting results by prompting 198

on missing or falsely-detected objects. In contrast, 199

the field of OCR revolves less interactive explo- 200

rations, despite the dealing with complex layout 201

has an urge for human prompts and interactions. 202

3 Dataset 203

3.1 Data collection 204

To the best of our knowledge, there is no paired 205

dataset containing markup-formatted document 206

contents along with corresponding bounding boxes 207

(bbox) for each word and mathematical symbol. 208

We proposed a data engine to collect such paired 209

data. The process is shown in Figure 2. 210

We get the Tex source files of academic papers 211

from arXiv. In the first step, we assign a unique 212

RGB color identifier to each word or mathematical 213

symbol automatically by using xcolor package in 214

LaTeX (see Step1). In the second step, we follow 215

the same pipeline as Nougat (Blecher et al., 2023) 216

and compile LaTeX files into PDF and Markdown 217

files respectively. Since PDF is a rich text format 218

that supports color changes, we obtain colorful 219

PDF files. Meanwhile Markdown is a plain text 220

format and the RGB identifiers are compiled into 221

text forms (see Step2). In the third step, we use the 222

PyMuPDF package of python to parse the colorful 223

PDF files and extract the pair of (color, bbox). At 224

the same time, we parse the Markdown file with 225

regular expressions to get the paired (color, text) 226

data. Finally, we merge the two pairs of data by the 227

key of RGB color to get paired (text, bbox) data 228

(see Step3). 229

We collected academic papers released on arXiv 230

from 2007 to 2023. During data processing, some 231

articles failed the conversion due to user-defined 232

macros or non-standardized formats. After all con- 233

version and data cleaning, our dataset is composed 234

of 125738 pages, which include, but are not limited 235

to, the bounding box of plain text, Greek letters, 236

arithmetic symbols, superscripts, subscripts, and 237

tabular symbols. For invisible Markdown symbols 238

like title symbols or line breaks, we assign the po- 239

sition of the next visible token to them. Examples 240

of our dataset is available in Appedix A1. 241

3.2 Data augmentation 242

Image augmentation To simulate the imperfec- 243

tions and variability of scanned documents, we 244

follow (Simard et al., 2003) to apply data augmen- 245
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LaTeX

\section{Criticality in deep learning nets}
\subsection{From feed-forward to…}

We will focus now on a a feed-forward network, 
with two layers, $a_i$ and $b_j$ connected…

LaTeX

\section{\textcolor[RGB]{180,000,000}{Criticality}…}
\subsection{\ textcolor[RGB]{180,000,050}{From}…}

\textcolor[RGB]{180,000,100}{We} 
\textcolor[RGB]{180,000,105}{will}… 
$\textcolor[RGB]{180,000,185}{a}_{i}$ 
\textcolor[RGB]{180,000,190}{and}…

PDF

3 Criticality in deep learning nets

3.1 From feed-forward to fully connected…

We will focus now on a feed-forward network, with

two layers, 𝑎𝑖 and 𝑏𝑗 connected…

Markdown

## 3 textcolor[RGB]180,000,010Criticality…
### textcolor[RGB]180,000,050From…

textcolor[RGB]180,000,100We
textcolor[RGB]180,000,105will
\(textcolor[RGB]{180,000,185}{a}_{i}\) 
textcolor[RGB]180,000,190and…

Step1 Add Color to Each Word

Step0        The Original LaTeX Step2        Compile Markdown and PDF Step3 Match Pairs

PyMuPDF    (color,bbox)

re    (color,text)

PyMuPD (color,bbox)

re         (color,text)

Data       (text, bbox)

+

=

Figure 2: Data Processing. Step1: Add a unique RGB identifier to each word by parsing the Tex file. Step2:
Convert source file into Markdown and PDF formats respectively. Step3: Extract color-bbox pairs from colored
PDF, color-text pairs from Markdown, and merge the two to get the text-bbox pairs.

tation to document images, including of erosion,246

dilation, gaussian noise, gaussian blur, bitmap con-247

version, image compression, grid distortion and248

elastic transform. Each of the transformations is249

applied with a certain probability.250

Text augmentation To address the issue of the251

model getting stuck in repetitive loops, we ran-252

domly skip 0 to 5 tokens and their correspond-253

ing positions in the ground truth labels. Different254

from the perturbation method in Nougat, which255

randomly replaces tokens rather than skip tokens,256

our method shows a more pronounced effect (see257

Section 5.3).258

Position augmentation Since bounding boxes are259

involved in the autoregressive process, there may260

be some imprecise output. In some cases, a user261

may also draw a loose box in the interactive mode.262

Therefore, it is reasonable to add noise to the bound-263

ing boxes during the training phase. We add Gaus-264

sian noise with a mean of 0 and a standard deviation265

of 0.5 times the side length to each box.266

4 Methodology267

4.1 Model structure268

The over view of our model is shown in Figure 3,269

with a transformer-based backbone and an addi-270

tional prompt module to process positional informa-271

tion. Given an image as input, the image encoder272

transforms it as image embedding. Semantic infor-273

mation and visual information are integrated within274

the decoder, enabling simultaneous prediction of275

the current token and its next position. 276

Backbone Theoretically, our prompt module can 277

be applied to any multimodal models with trans- 278

former structure, consisting of an image encoder 279

and a text decoder. When no positional infor- 280

mation is provided, the backbone model would 281

autonomously generate sequences. In this paper, 282

we choose Nougat (Blecher et al., 2023) as the 283

backbone, which uses the implementation of Swin 284

Transformer (Liu et al., 2021) as image encoder 285

and mBART (Lewis et al., 2019) as decoder. Given 286

an image of x ∈ R3,H0,W0 , the image encoder 287

transfers it into dense embedding himg ∈ RH,W,d, 288

which is then decoded into a sequence of token em- 289

beddings ht ∈ Rd. Finally, the sequence of token 290

embeddings is projected into a logit matrix with 291

the size of the vocabulary v. 292

Prompt Module Without location guiding, the 293

backbone model may get confused about where 294

to find the next token. The prompt module is de- 295

signed to perceive spatial information prompted by 296

previous steps or human, so that the model can find 297

the next token successfully. The prompt module 298

consists of two-dimensional positional encoding 299

and position detection heads. 300

We opt for positional encodings with Fourier Fea- 301

tures (Tancik et al., 2020) to represent the positions 302

of both token bounding boxes and the image. The 303

token bounding box, defined by its top-left and 304

bottom-right corners, is transformed into a dense 305

position embedding hbox ∈ Rd. For the image em- 306
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Figure 3: Model Architecture. Left: Image encoder and decoder of transformer structure. Right: Position detection
head and token projection. Purple: Prompt module consisting of positional encodings and position detection head.
Red: Interactive mode with human-reviewed input.

bedding himg ∈ RH,W,d, we divide it into grids of307

size (H, W) (shown in Figure 3), and apply posi-308

tional encodings to each grid box.309

The position detection heads are used to predict the310

position of the next token. Given that the weights311

of the cross-attention layers indicate the similarity312

between image grids and the current token, we uti-313

lize them as input for position detection. Inspired314

by CenterNet (Duan et al., 2019), an effective ob-315

ject detection algorithm, we use three convolutional316

heads with similar structure to predict the position317

of a token. The first convolution head conducts a318

classification task to find the grid containing the319

next token. The second and third convolution heads320

regress the size and center offset of the next bound-321

ing box respectively. Finally, the coordinates of322

the bounding box are calculated based on the cen-323

ter point and the width and height. To improve324

prediction accuracy, we upsample the image grid325

output by decoder, allowing finer-grained positition326

prediction.327

Information fusion The token information and spa-328

tial information is fused in cross-attention layers of329

decoder. In backbone models without prompt mod-330

ule, the cross-attention layers take solely image em-331

bedding as encoder hidden states and solely token332

embedding as hidden states input. Instead, we use333

the sum of the image embedding himg ∈ RH,W,d334

and its position embedding Hgrid ∈ RH,W,d as the335

encoder hidden states, and the sum of token embed-336

ding ht ∈ Rd and position embedding hbox ∈ Rd337

as the hidden states input. As a consequence, in338

cross-attention layers where token information in-339

teracts with the image contents, the positional in- 340

formation of tokens also interacts with that of the 341

image. 342

4.2 Decay strategy for anti-repetition 343

During the inference stage, we introduce position 344

decay strategies based on prior knowledge to guide 345

the prediction of positions. 346

Accumulation Decay The core of the accumula- 347

tion decay strategy is to record the count of tokens 348

that have appeared in each grid. When the position 349

detection head predicts subsequent positions, grids 350

where many tokens have already been located will 351

be penalized with a decay rate. The heatmap for 352

predicting the next grid is adjusted as follows: 353

hm = hm+ log(σ) · cnt (1) 354

Where the σ ∈ (0, 1] denotes decay rate and cnt 355

is the accumulative counts. When σ is set to 1, 356

the decay function is deactivated. Smaller σ value 357

means stronger decay effect. We recommend using 358

a decay rate between 0.75 and 0.95, depending on 359

the density of text in the target documents and the 360

formatting style. 361

Blank Decay Another intuitive idea is to apply po- 362

sitional decay to blank grids. We calculate the stan- 363

dard deviation for pixels within each grid, where 364

grids with smaller standard deviations (in extreme 365

cases, containing no characters at all) are consid- 366

ered less likely to contain the next token. Together 367

with blank decay strategy, the heatmap is adjusted 368

as follows: 369
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hm = hm+ log(σ) · cnt+ log(η · std) (2)370

4.3 Loss function371

Our loss function consists of two parts: token loss372

and position loss.373

Token loss We use the cross-entropy loss of tokens374

to train the language decoder.375

Position loss For the three convolutional heads376

in the position detection module, we apply cross-377

entropy loss to the first classification head and su-378

pervise the subsequent two heads using the Inter-379

section over Union (IOU) metric. Additionally,380

we integrate the normalized Euclidean distance be-381

tween the center of the predicted box and that of the382

target box to mitigate the shortcomings of slow con-383

vergence and inaccurate regression inherent in IOU384

(Zheng et al., 2019). The position loss function is385

as follows:386

Lp = αLce
p + β(1− iou+ γd2) (3)387

As the prediction of the text at the beginning of a388

page is much more challenging and important, we389

assigned a higher weight θ for the initial text than390

the subsequent text.391

The final loss function is as follows:392

l = θ(Linit
p + Linit

t ) + Lsub
p + Lsub

t (4)393

4.4 Human interaction394

As a complement to our location-guided OCR395

method, we provide an interactive mode, which396

serves both for improving the model’s performance397

and as a part of our data construction engine.398

Model Assistant In the interactive mode, We pro-399

vide a browser-based tool to enable users to give400

real-time position prompts by simply dragging a401

box. LOCR takes the i-th token and the (i + 1)-402

th position as inputs, simultaneously predicting403

the (i + 1)-th token and the (i + 2)-th position.404

When the autoregressive process encounters a state405

of confusion, characterized by a predicted token406

or position confidence lower than a predetermine407

threshold, users can opt to provide a positional408

prompt. With the correct position provided, the409

autoregressive process would go on more smoothly 410

(see Section 5.4 for results). 411

Data construction With the model automatically 412

predicting positions, minimal human intervention 413

is required to acquire additional out-of-domain 414

data. Our positional encoding and detection mod- 415

ules can smoothly convert the bounding box be- 416

tween human-readable coordinate representations 417

and machine-friendly dense embedding, making 418

the idea easy to implement. This paves the way 419

for broader applications of location-based OCR 420

method. 421

5 Result and Evaluation 422

5.1 Implementation details 423

Baseline We use both the state-of-the-art inter- 424

grated toolbox Marker and end-to-end generation 425

model Nougat as our baselines. 426

Dataset Since our main baseline model, Nougat, 427

does not provide an open resource dataset, we eval- 428

uate our method with the dataset introduced in Sec- 429

tion 3, which shares the same data source and pro- 430

cessing pipeline as Nougat. The test set contains 431

1000 pages of academic documents and each piece 432

of data consists of a triplet (image, text, bounding 433

box). In the testing phase, only images are used 434

as inputs, while the text and bounding boxes serve 435

solely for evaluating model performance. There- 436

fore, our evaluation method is fair and reasonable. 437

Setup We resize the input dimensions of the images 438

to (H0, W0) = (896, 672), an aspect ratio that ac- 439

commodates the majority of academic paper sizes. 440

The maximal sequence length of transformer de- 441

coder is set to 4096 to allow the output of intensive 442

text in academic research papers. During inference 443

the text is generated using greedy decoding. 444

Training details We initialize the backbone pa- 445

rameters using the pretrained Nougat small model, 446

while the prompt module is initialized randomly. 447

Our model has 248 M parameters and was trained 448

for three days using 128 A100 80GB GPUs, with 449

a total batch size of 256. The maximum learning 450

rate is set to 5×10−4, with exponential decay until 451

reaching 1× 10−5. 452

5.2 Metrics 453

Following Nougat (Blecher et al., 2023), we use 454

Edit distance, BLEU, METEOR, Precision, Recall 455

and F-measure to characterize the quality of output 456
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Figure 4: Examples of our model output. Left: Origin image of document page. Right: Model output converted to
Markdown and rendered back into a PDF. More detailed examples are available in Appendix B

text.457

As shown in Table 1, while the number of LOCR’s458

parameters is only slightly more than the small ver-459

sion of Nougat, our model outperforms the base460

version of Nougat in all evaluation metrics when461

the decay rate is set to 0.85. In contrast, Marker,462

as a multi-stage pipeline, dose not convert all equa-463

tions to LaTeX and not all lines are joined prop-464

erly. For the autogressive method without position465

supervision, Nougat prones to hallucination and466

repetition. These results firmly demonstrate the467

effectiveness of LOCR model and the positional468

decay strategy.469

Besides, we use IOU metrics to measure the per-470

formance of our prompt module. LOCR achieves471

a IOU score of 0.702. Our method successfully472

handles various layouts, including pages with mul-473

tiple subfigures, tables, mathematical formulas, and474

references (Examples are available in Appendix B).475

5.3 Repetition 476

We evaluate the generation ability of our model and 477

present the frequency of repetitive degeneration in 478

Table 2. To cover as much subject content and 479

layout as possible, we selected 100 papers each 480

from natural sciences (quantum physics) and social 481

sciences (marketing), as out-of-domain test set. 482

As Table 2 shows, our method significantly reduces 483

repetitions. For arXiv test set, the frequency of 484

repetition reduces from 51.0% to 2.0%. For the 485

out-of-domain documents with subject of quantum 486

physics, where the document content is more chal- 487

lenging to comprehend, with longer and more com- 488

plex formulas, the frequency of repetition reduces 489

from 56.0% to 7.0%. 490

5.4 Interaction 491

Although the problem of repetitive degeneration 492

has been largely alleviated, we aim to complete the 493

remaining layouts in the interactive mode. When 494

the model encounters a layout that is difficult to 495

judge and the confidence of the predicted posi- 496

tion is lower than the threshold, simply dragging 497
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Method Edit dist↓ BLEU↑ METEOR↑ Precision↑ Recall↑ F1↑
Marker 0.221 0.696 0.783 0.838 0.804 0.814

Nougat small (247M*) 0.209 0.789 0.851 0.887 0.874 0.867
Nougat base (348M*) 0.201 0.801 0.856 0.893 0.880 0.876

LOCR (248M*, σ = 1) 0.153 0.786 0.864 0.890 0.871 0.880
LOCR (σ = 0.85) 0.125 0.827 0.893 0.898 0.897 0.897
LOCR (σ = 0.75) 0.127 0.824 0.890 0.895 0.894 0.894

Table 1: Comparative performance results on the arXiv test set. Our LOCR method demonstrates superior
performance across multiple metrics, significantly outperforming the baseline methods. Notably, LOCR with = 0.85
shows the best overall balance of high precision, recall, and F1 scores, along with the lowest edit distance and the
highest BLEU and METEOR scores, confirming the effectiveness of our approach, especially when positional decay
is finely tuned (σ = 0.85). The first entry for LOCR indicates performance without positional decay, illustrating the
impact of this feature on the model’s accuracy. * Number of parameters.

Method arXiv quantum marketing
Nougat base 51.0% 56.0% 55.0%

LOCR 2.0% 7.0% 22.0%

Table 2: Robustness of LOCR across diverse domains, showcasing the significant reduction in generation failures
with our LOCR model. The model exhibits an impressive decrease in repetition-induced failures, achieving a
substantial improvement over the Nougat base across the arXiv, quantum, and marketing test sets. Specifically,
LOCR reduces the failure rates to 2% for arXiv, 7% for quantum, and 22% for marketing documents, indicating a
marked increase in reliability and accuracy in document generation tasks. These results underscore the efficacy of
our model in handling complex document structures with a high degree of success.

a bounding box allows the model to automatically498

return to the expected position and continue out-499

putting correct results. Interactive examples are500

available in501

6 Discussion502

In document OCR, each generated token corre-503

sponds to a specific location in the input image.504

In our work, we introduce LOCR, which incorpo-505

rates location guiding into the language model to506

enhance the performance of OCR tasks. Moreover,507

our approach significantly mitigates the problem of508

repetitive loops often encountered by transformer-509

based models during greedy search. LOCR also510

allows for interactive correction in cases of errors511

or low confidence outputs, particularly when deal-512

ing with OOD complex layouts. Users can prompt513

the location interactively, guiding the model gener-514

ates accurate OCR results.515

We believe that LOCR and interactive tool can be516

applied to digitize documents from various fields517

with complex layouts, thereby assisting academic518

research, literature retrieval, and large language519

model training. Furthermore, the OCR datasets520

with location guiding can facilitate the community521

develops better OCR models. In turn, the interac-522

tive semi-automatic data engine can be utilized to 523

construct datasets for fine-tuning OCR models to 524

specific domain literature, and enhancing the gen- 525

eralization capability of our model. We hope this 526

work can help the development of the area of OCR. 527

7 Limitations 528

Although the frequency of repetition has signifi- 529

cantly mitigated, it has not been entirely eradicated. 530

Secondly, our model hinges upon manual adjust- 531

ments to the decay rate parameter. Additionally, 532

our model encounters difficulties when the initial 533

word on a page is incomplete, leading to imperfect 534

handling. 535
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A Dataset Examples687

Figure A1: Dataset example. Bounding boxes of texts
are highlighted in pink, mathematical expressions in
blue, and tables in green.

B Output Examples688

C Interactive Mode689
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are imposed. Algebraic geometry codes over elliptic curves are natural gen-
eralizations of Reed-Solomon codes. Hence it is interesting to consider the
possible generalization of GM-MDS conjecture and then a beautiful theorem
to algebraic geometry codes over elliptic curves. Theorem 2.2 and Corollary
2.1 are natural extensions in this case, however the sufficient conditions in
Theorem 2.2 and Corollary 2.1 are clearly much stronger than the necessary.

A linear [n, k]q code over Fq is called r-MDS for some r in the range
1 ≤ r ≤ k, if dr = n− k + r. Then it is also s-MDS for any s ≥ r, see [23].
The linear MDS codes are then 1-MDS. Hence r-MDS codes for r ≥ 2 are
natural generalizations of linear MDS codes. A well-known result in weight
hierarchy or higher weights about algebraic-geometric codes due to Tsfas-
man and Vlǎdut is that these codes are g + 1-MDS if they are from genus
g curves, see [23] Corollary 4.2. As algebraic-geometric codes from genus
0 curves, the Reed-Solomon codes are MDS (1-MDS). The next interesting
cases are these algebraic-geometric 2-MDS codes from elliptic curves.

Since the GM-MDS conjecture are about 1-MDS linear codes, we can
consider the direct generalization of the GM-MDS conjecture for 2-MDS
linear codes. The generalized Hamming weights of 2-MDS linear (not MDS)
codes are as follows,

d1 = n− k,

d2 = n− k + 2,

· · · ,
dr = n− k + r,

· · · ,
dk = n.

Many algebraic-geometric [n, k]q codes from elliptic curves with code lenght
n > q + 2 have their generalized Hamming weights as above. However for
algebraic-geometric code from elliptic curve cases, not every subset of [n]
of the cardinality k can be the set of zero coordinate positions of nonzero
codeword, the condition |Si| ≤ k − 1 is a natural constraint.

Therefore the GHW -based support constrained conditions on the subset
systems for two or more subsets are the same as the MDS condition in the
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Figure B1: Examples of our model output. Left: Origin image of document page with tables and equations. Right:
Model output converted to Markdown and rendered back into a PDF.
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(a) Origin page with figures (b) Result

(c) Origin page with mathematical formulas (d) Result
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(e) Origin page with tables (f) Result

(g) Origin page with references (h) Result

Figure B2: Example of position prediction. Green box: Rough result of grid classification. Yellow: Final result of
box regression.
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(i) A case model predicting wrong position (j) Result

Figure C1: Visualization of interaction on out-of-domain documents. Red box: Wrong position. Blue box: Human
prompt input.
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