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Abstract

Academic documents are packed with texts,
equations, tables, and figures, requiring com-
prehensive understanding for accurate Opti-
cal Character Recognition (OCR). While end-
to-end OCR methods offer improved accu-
racy over layout-based approaches, they often
grapple with significant repetition issues, espe-
cially with complex layouts in Out-Of-Domain
(OOD) documents. To tackle this, we propose
LOCR!, a model integrating location guiding
into the transformer architecture during autore-
gression, training on a dataset comprising over
77M text-location pairs from 125K academic
document pages, including bounding boxes
for words, tables and mathematical symbols.
LOCR adeptly handles various formatting ele-
ments and generates content in Markdown lan-
guage. It outperforms existing models in our
testset with an edit distance of 0.125, BLEU
of 0.827 and F1 of 0.897. LOCR also reduces
repetition frequency from 51% to 2% in the
arXiv dataset and from 56% to 7% in OOD
documents. Additionally, LOCR features an in-
teractive OCR mode, facilitating the generation
of complex documents through a few location
prompts from human.

1 Introduction

Academic literature comprises a wealth of high-
quality content, yet much of it is provided in for-
mats like PDF that are not machine-readable. Par-
ticularly, most academic documents of the previous
centuries are scanned version. Digitizing academic
documents are important for scientific research, lit-
erature retrieval, and large-language model training.
However, academic document layout tends to be
highly intricate, including text, equations, images,
tables, and annotations, posing challenges for ob-
taining accurate OCR results.

!Source codes and datasets will be available upon publica-
tion

One approach to document OCR is to first analyze
the layout of the document and then extract the text
content (Zhu et al., 2022,mindee, 2023). While pro-
gresses has been made in any of the two stages or
handling specific types of elements, such as table
detection and recognition (Yang et al., 2022), hand-
written formula recognition (Sakshi and Kukreja,
2023) and structured information extraction (Lu
et al., 2022; Liao et al., 2023), it is very difficult
for models to understand all the elements in an aca-
demic document and connect the different chunks
into a coherent sequence.

Recently, an end-to-end transformer structure,
Donut (Kim et al., 2022), was proposed for docu-
ment understanding. It effectively address the com-
plexity of combining multiple models and the issue
of error propagation. Without to much changes in
the model, Nougat (Blecher et al., 2023) processes
academic PDFs into markup language. However,
such methods are prone to hallucination and repeti-
tions.

In fact, getting trapped in a repetitive loop is a com-
mon problem with Transformer-based models sam-
pling with greedy search decoding (Holtzman et al.,
2019). Thus, it is challenging for an autoregressive
language model to accurately capture all the con-
tent of text-intensive documents. To make full use
of the positional information in various layouts and
address the issue of repetitive loop, we introduce
LOCR, a location-guided document understanding
model, together with an original large-scale dataset
and an interactive OCR mode to align with human
intension (see Figure 1 for an overview).

The most significant feature that distinguishes our
model from previous works is the incorporation
of positional autoregression alongside text autore-
gression. Different from two-stage OCR, LOCR
simultaneously predicts the current token and the
position of the next token, which is used to prompt
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Figure 1: An overview of three components of our work: a large-scale dataset with positional annotation and a data
engine, a location-guided OCR model for various layouts, and an interactive mode for humans to prompt the model

and modify data collection.

the decoding of the next token. Taking document
images as input, our model output document con-
tent in Markdown format, including special formats
such as superscripts and subscripts.

Besides, we introduce effective strategies for anti-
repetition. With positional supervision, we perform
importance decay on positions that have been vis-
ited during the autoregressive process or are blank
in the image. The repetition behavior decreases
from 51% of documents to 2% in the arXiv test set,
and from 56% to 7% for out-of-domain documents.
For documents with complex layouts, we also intro-
duce an interactive OCR mode. In this mode, the
model would continue to decode the text where the
user has dragged a box. With these enhancement
strategies, the generation ability of the model is
significantly improved.

Additionally, we propose a data engine for con-
structing academic document OCR dataset with
positional annotations. We collect a large-scale
dataset of 125K academic document pages with
77M text-location pairs. To the best of our knowl-
edge, it is the first dataset including bounding box
of each mathematical symbol in academic docu-
ments.

In summary, the main contributions of this paper
are:

¢ We introduce LOCR, a transformer-structured
OCR model with positional supervision. Our
model achieves the state-of-the-art score in aca-
demic document understanding task in arXiv test
set (see Section 5.2) and alleviates the repetitive
degradation problem to a great extent (see Sec-
tion 5.3).

* We innovatively introduce an interactive OCR

mode, enabling the model to handle any out-of-
domain documents. Humans only need to pro-
vide the position box for the next word without
any cumbersome operations (see Section 5.4).

* We will release a large-scale dataset composed of
125K pages of academic documents. Each piece
of data contains a page image, the correspond-
ing texts in Markdown format, and the bounding
boxes of all words and mathematical symbols
(see Section 3).

2 Related Work

2.1 General-purpose OCR

Optical Character Recognition (OCR) caters to a
diverse array of applications, including document
digitization (Smith, 2007; Moysset et al., 2017),
handwriting recognition, and scene text recogni-
tion (Bautista and Atienza, 2022; Hernandez Diaz
et al., 2021; Li et al., 2021). The classic OCR
methods consist of two stages: text detection and
text recognization. The text detection algorithm
obtains the position of text boxes from the image,
and then the recognition algorithm recognizes the
content within the text boxes. Researches in these
sub-fields has achieved satisfactory results, such
as EAST (Zhou et al., 2017) for text detection,
CRNN (Shi et al., 2015) for text recognization,
and LayoutLM family (Xu et al., 2019; Xu et al.,
2020; Huang et al., 2022) for document element
identification. There also has been various inter-
grated toolbox to connect above functions, such as
DocXChain (Yao, 2023) and EffOCR (Bryan et al.,
2023).

2.2 Academic document OCR

For academic document understanding, additional
tasks like table and mathematical equation parsing



are also involved. Marker (Paruchuri and Lampa,
2023) is a pipeline of text extracting, layout de-
tection and blocks combination, which converts
PDF, EPUB, and MOBI to Markdown with a series
of deep learning models. Such OCR-based ap-
proaches have shown promising performance but
suffer from complexity and error propagation to
the subsequent process. To address this issue, doc-
ument understanding models based on transformer
structure were proposed. Donut (Kim et al., 2022)
is an encoder-decoder model that directly decode
the expected sequences from visual inputs. Nougat
(Blecher et al., 2023) is a specific model trained
on academic documents to process academic PDFs
into markup language. It combines an image en-
coder and a token decoder, with the ability to parse
images of math equations and tables.

With the emergence of general large model, some
Large Vision-Language Models (LVLMs) marks a
significant milestone across a range of OCR tasks.
MEGVII proposed Vary (Wei et al., 2023), a doc-
ument parsing method by scaling up the vision
vocabulary of LVLMs, equipping the large model
with the fine-grained perception and understanding.
As the state-of-the-art multimodality model, GPT-
4v (Yang et al., 2023) performs well in recognizing
and understanding Latin contents. But it shows lim-
itations when dealing with complex tasks such as
table structure recognition and end-to-end seman-
tic entity recognition (Shi et al., 2023). When it
comes to unstructured layouts or inconsistent text
distribution, GPT-4v tends to omit lengthy tables
and only reconstruct the short beginning of that.

Without the box detection of two-stage OCR, such
methods are prone to hallucination and repetitions.
This phenomenon indicates that it is crucial for the
model to find the correct position in order to gener-
ate the correct sequences, especially for ambiguous
layouts and out-of-domain documents.

2.3 Promptable model

Interactive models play a significant role in align-
ing behavior of artifical intelligence with human
intentions, which have shown promising perfor-
mance within a variety of domains. SAM(Kirillov
et al., 2023) presents an interactive segmentation
model capable of accommodating point, box, and
text-based input. DINOv (Li et al., 2023) achieves
visual in-context prompting in both referring and
general segmentation. T-Rex (Jiang et al., 2023) ex-
plores object detection and counting, which can in-

teractively refine the counting results by prompting
on missing or falsely-detected objects. In contrast,
the field of OCR revolves less interactive explo-
rations, despite the dealing with complex layout
has an urge for human prompts and interactions.

3 Dataset

3.1 Data collection

To the best of our knowledge, there is no paired
dataset containing markup-formatted document
contents along with corresponding bounding boxes
(bbox) for each word and mathematical symbol.
We proposed a data engine to collect such paired
data. The process is shown in Figure 2.

We get the Tex source files of academic papers
from arXiv. In the first step, we assign a unique
RGB color identifier to each word or mathematical
symbol automatically by using xcolor package in
LaTeX (see Stepl). In the second step, we follow
the same pipeline as Nougat (Blecher et al., 2023)
and compile LaTeX files into PDF and Markdown
files respectively. Since PDF is a rich text format
that supports color changes, we obtain colorful
PDF files. Meanwhile Markdown is a plain text
format and the RGB identifiers are compiled into
text forms (see Step2). In the third step, we use the
PyMuPDF package of python to parse the colorful
PDF files and extract the pair of (color, bbox). At
the same time, we parse the Markdown file with
regular expressions to get the paired (color, text)
data. Finally, we merge the two pairs of data by the
key of RGB color to get paired (text, bbox) data
(see Step3).

We collected academic papers released on arXiv
from 2007 to 2023. During data processing, some
articles failed the conversion due to user-defined
macros or non-standardized formats. After all con-
version and data cleaning, our dataset is composed
of 125738 pages, which include, but are not limited
to, the bounding box of plain text, Greek letters,
arithmetic symbols, superscripts, subscripts, and
tabular symbols. For invisible Markdown symbols
like title symbols or line breaks, we assign the po-
sition of the next visible token to them. Examples
of our dataset is available in Appedix Al.

3.2 Data augmentation

Image augmentation To simulate the imperfec-
tions and variability of scanned documents, we
follow (Simard et al., 2003) to apply data augmen-
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Figure 2: Data Processing. Stepl: Add a unique RGB identifier to each word by parsing the Tex file. Step2:
Convert source file into Markdown and PDF formats respectively. Step3: Extract color-bbox pairs from colored
PDF, color-text pairs from Markdown, and merge the two to get the text-bbox pairs.

tation to document images, including of erosion,
dilation, gaussian noise, gaussian blur, bitmap con-
version, image compression, grid distortion and
elastic transform. Each of the transformations is
applied with a certain probability.

Text augmentation To address the issue of the
model getting stuck in repetitive loops, we ran-
domly skip O to 5 tokens and their correspond-
ing positions in the ground truth labels. Different
from the perturbation method in Nougat, which
randomly replaces tokens rather than skip tokens,
our method shows a more pronounced effect (see
Section 5.3).

Position augmentation Since bounding boxes are
involved in the autoregressive process, there may
be some imprecise output. In some cases, a user
may also draw a loose box in the interactive mode.
Therefore, it is reasonable to add noise to the bound-
ing boxes during the training phase. We add Gaus-
sian noise with a mean of 0 and a standard deviation
of 0.5 times the side length to each box.

4 Methodology
4.1 Model structure

The over view of our model is shown in Figure 3,
with a transformer-based backbone and an addi-
tional prompt module to process positional informa-
tion. Given an image as input, the image encoder
transforms it as image embedding. Semantic infor-
mation and visual information are integrated within
the decoder, enabling simultaneous prediction of

the current token and its next position.

Backbone Theoretically, our prompt module can
be applied to any multimodal models with trans-
former structure, consisting of an image encoder
and a text decoder. When no positional infor-
mation is provided, the backbone model would
autonomously generate sequences. In this paper,
we choose Nougat (Blecher et al., 2023) as the
backbone, which uses the implementation of Swin
Transformer (Liu et al., 2021) as image encoder
and mBART (Lewis et al., 2019) as decoder. Given
an image of z € R3>M0Wo_ the image encoder
transfers it into dense embedding 7,y € RHW.d
which is then decoded into a sequence of token em-
beddings h; € RY. Finally, the sequence of token
embeddings is projected into a logit matrix with
the size of the vocabulary v.

Prompt Module Without location guiding, the
backbone model may get confused about where
to find the next token. The prompt module is de-
signed to perceive spatial information prompted by
previous steps or human, so that the model can find
the next token successfully. The prompt module
consists of two-dimensional positional encoding
and position detection heads.

We opt for positional encodings with Fourier Fea-
tures (Tancik et al., 2020) to represent the positions
of both token bounding boxes and the image. The
token bounding box, defined by its top-left and
bottom-right corners, is transformed into a dense
position embedding hyp,, € RY. For the image em-
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Figure 3: Model Architecture. Left: Image encoder and decoder of transformer structure. Right: Position detection
head and token projection. Purple: Prompt module consisting of positional encodings and position detection head.

Red: Interactive mode with human-reviewed input.

bedding Ry € RTW4, we divide it into grids of
size (H, W) (shown in Figure 3), and apply posi-
tional encodings to each grid box.

The position detection heads are used to predict the
position of the next token. Given that the weights
of the cross-attention layers indicate the similarity
between image grids and the current token, we uti-
lize them as input for position detection. Inspired
by CenterNet (Duan et al., 2019), an effective ob-
ject detection algorithm, we use three convolutional
heads with similar structure to predict the position
of a token. The first convolution head conducts a
classification task to find the grid containing the
next token. The second and third convolution heads
regress the size and center offset of the next bound-
ing box respectively. Finally, the coordinates of
the bounding box are calculated based on the cen-
ter point and the width and height. To improve
prediction accuracy, we upsample the image grid
output by decoder, allowing finer-grained positition
prediction.

Information fusion The token information and spa-
tial information is fused in cross-attention layers of
decoder. In backbone models without prompt mod-
ule, the cross-attention layers take solely image em-
bedding as encoder hidden states and solely token
embedding as hidden states input. Instead, we use
the sum of the image embedding A,y € RHW:d
and its position embedding H ;g € RHW.d a5 the
encoder hidden states, and the sum of token embed-
ding h; € R? and position embedding hyoe € R?
as the hidden states input. As a consequence, in
cross-attention layers where token information in-

teracts with the image contents, the positional in-
formation of tokens also interacts with that of the
image.

4.2 Decay strategy for anti-repetition

During the inference stage, we introduce position
decay strategies based on prior knowledge to guide
the prediction of positions.

Accumulation Decay The core of the accumula-
tion decay strategy is to record the count of tokens
that have appeared in each grid. When the position
detection head predicts subsequent positions, grids
where many tokens have already been located will
be penalized with a decay rate. The heatmap for
predicting the next grid is adjusted as follows:

hm = hm + log(o) - cnt (1)

Where the o € (0, 1] denotes decay rate and cnt
is the accumulative counts. When o is set to 1,
the decay function is deactivated. Smaller o value
means stronger decay effect. We recommend using
a decay rate between 0.75 and 0.95, depending on
the density of text in the target documents and the
formatting style.

Blank Decay Another intuitive idea is to apply po-
sitional decay to blank grids. We calculate the stan-
dard deviation for pixels within each grid, where
grids with smaller standard deviations (in extreme
cases, containing no characters at all) are consid-
ered less likely to contain the next token. Together
with blank decay strategy, the heatmap is adjusted
as follows:



hm = hm + log(o) - ent + log(n - std)  (2)

4.3 Loss function

Our loss function consists of two parts: token loss
and position loss.

Token loss We use the cross-entropy loss of tokens
to train the language decoder.

Position loss For the three convolutional heads
in the position detection module, we apply cross-
entropy loss to the first classification head and su-
pervise the subsequent two heads using the Inter-
section over Union (IOU) metric. Additionally,
we integrate the normalized Euclidean distance be-
tween the center of the predicted box and that of the
target box to mitigate the shortcomings of slow con-
vergence and inaccurate regression inherent in [OU
(Zheng et al., 2019). The position loss function is
as follows:

Ly = oL + B(1 — iou + vd?) (3)

As the prediction of the text at the beginning of a
page is much more challenging and important, we
assigned a higher weight 6 for the initial text than
the subsequent text.

The final loss function is as follows:

L=0(Ly" + L) + Ly + L7 (4)

4.4 Human interaction

As a complement to our location-guided OCR
method, we provide an interactive mode, which
serves both for improving the model’s performance
and as a part of our data construction engine.

Model Assistant In the interactive mode, We pro-
vide a browser-based tool to enable users to give
real-time position prompts by simply dragging a
box. LOCR takes the i-th token and the (i + 1)-
th position as inputs, simultaneously predicting
the (i + 1)-th token and the (i 4+ 2)-th position.
When the autoregressive process encounters a state
of confusion, characterized by a predicted token
or position confidence lower than a predetermine
threshold, users can opt to provide a positional
prompt. With the correct position provided, the

autoregressive process would go on more smoothly
(see Section 5.4 for results).

Data construction With the model automatically
predicting positions, minimal human intervention
is required to acquire additional out-of-domain
data. Our positional encoding and detection mod-
ules can smoothly convert the bounding box be-
tween human-readable coordinate representations
and machine-friendly dense embedding, making
the idea easy to implement. This paves the way
for broader applications of location-based OCR
method.

5 Result and Evaluation

5.1 Implementation details

Baseline We use both the state-of-the-art inter-
grated toolbox Marker and end-to-end generation
model Nougat as our baselines.

Dataset Since our main baseline model, Nougat,
does not provide an open resource dataset, we eval-
uate our method with the dataset introduced in Sec-
tion 3, which shares the same data source and pro-
cessing pipeline as Nougat. The test set contains
1000 pages of academic documents and each piece
of data consists of a triplet (image, text, bounding
box). In the testing phase, only images are used
as inputs, while the text and bounding boxes serve
solely for evaluating model performance. There-
fore, our evaluation method is fair and reasonable.

Setup We resize the input dimensions of the images
to (Hy, Wy) = (896, 672), an aspect ratio that ac-
commodates the majority of academic paper sizes.
The maximal sequence length of transformer de-
coder is set to 4096 to allow the output of intensive
text in academic research papers. During inference
the text is generated using greedy decoding.

Training details We initialize the backbone pa-
rameters using the pretrained Nougat small model,
while the prompt module is initialized randomly.
Our model has 248 M parameters and was trained
for three days using 128 A100 80GB GPUs, with
a total batch size of 256. The maximum learning
rate is set to 5 x 10~%, with exponential decay until
reaching 1 x 1075,

5.2 Maetrics

Following Nougat (Blecher et al., 2023), we use
Edit distance, BLEU, METEOR, Precision, Recall
and F-measure to characterize the quality of output
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(Az) is much smaller, only of orderO(a;;"). Thus, just as in Brownian motion, the trajectory is
continuous but not differentiable. In ED particles have definite positions but their velocities are
completely undefined. Notice also that the particle fluctuations are isotropic and independent of
each other. The directionality of the motion and correlations among the particles are introduced by
a systematic drift along the gradient of the entropy of they variables.

The introduction of the auxiliaryy variables, which has played a central role of conveying relevant
information about the drift, deserves a comment. It is important to realize that the same information
can be conveyed through other means, which demonstrates that quantum mechanics, as an effective
theory, turns out to be fairly robust?[35][36]. It is possible, for example, to avoid they variables
altogether and invoke a drift potential directly( see e.g.,[15]-[17]). The advantage of an explicit
reference to some vaguely definedy variables is their mere existence may be sufficient to account
for drift effects.

3 Entropic time

Having obtained a prediction, given by eq.(13), for what motion to expect in one infinitesim short
step we now consider motion over finite distances. This requires the introduction of a parametert, to
be called time, as a book-keeping tool to keep track of the accumulation of successive short steps.
Since the rules of inference are silent on the subject of time we need to justify why the parametert
deserves to be called time.

The construction of time involves three ingredients. First, we must identify something that one might
call an “instant”; second, it must be shown that these instants are ordered; and finally, one must
introduce a measure of separation between these successive instants — one must define “duration.”
Since the foundation for any theory of time is the theory of change — that is, dynamics — the
notion of time constructed below will reflect the infante of entropic dynamics. Such a construction
we will call entropic time.

3.1 Time as an ordered sequence of instants

Entropic dynamics is given by a succession of short steps described by P(2/|x), eq.(13). Consider,
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Figure 4: Examples of our model output. Left: Origin image of document page. Right: Model output converted to
Markdown and rendered back into a PDF. More detailed examples are available in Appendix B

text.

As shown in Table 1, while the number of LOCR’s
parameters is only slightly more than the small ver-
sion of Nougat, our model outperforms the base
version of Nougat in all evaluation metrics when
the decay rate is set to 0.85. In contrast, Marker,
as a multi-stage pipeline, dose not convert all equa-
tions to LaTeX and not all lines are joined prop-
erly. For the autogressive method without position
supervision, Nougat prones to hallucination and
repetition. These results firmly demonstrate the
effectiveness of LOCR model and the positional
decay strategy.

Besides, we use IOU metrics to measure the per-
formance of our prompt module. LOCR achieves
a IOU score of 0.702. Our method successfully
handles various layouts, including pages with mul-
tiple subfigures, tables, mathematical formulas, and
references (Examples are available in Appendix B).

5.3 Repetition

We evaluate the generation ability of our model and
present the frequency of repetitive degeneration in
Table 2. To cover as much subject content and
layout as possible, we selected 100 papers each
from natural sciences (quantum physics) and social
sciences (marketing), as out-of-domain test set.

As Table 2 shows, our method significantly reduces
repetitions. For arXiv test set, the frequency of
repetition reduces from 51.0% to 2.0%. For the
out-of-domain documents with subject of quantum
physics, where the document content is more chal-
lenging to comprehend, with longer and more com-
plex formulas, the frequency of repetition reduces
from 56.0% to 7.0%.

5.4 Interaction

Although the problem of repetitive degeneration
has been largely alleviated, we aim to complete the
remaining layouts in the interactive mode. When
the model encounters a layout that is difficult to
judge and the confidence of the predicted posi-
tion is lower than the threshold, simply dragging




Method Edit distf] BLEU{ METEORT Precisiont Recalll F11
Marker 0.221 0.696 0.783 0.838 0.804 0.814
Nougat small (247M*) 0.209 0.789 0.851 0.887 0.874  0.867
Nougat base (348M*) 0.201 0.801 0.856 0.893 0.880 0.876
LOCR (248M*, 0 = 1) 0.153 0.786 0.864 0.890 0.871  0.880
LOCR (o = 0.85) 0.125 0.827 0.893 0.898 0.897 0.897
LOCR (o = 0.75) 0.127 0.824 0.890 0.895 0.894 0.894

Table 1: Comparative performance results on the arXiv test set. Our LOCR method demonstrates superior
performance across multiple metrics, significantly outperforming the baseline methods. Notably, LOCR with =0.85
shows the best overall balance of high precision, recall, and F1 scores, along with the lowest edit distance and the
highest BLEU and METEOR scores, confirming the effectiveness of our approach, especially when positional decay
is finely tuned (o = 0.85). The first entry for LOCR indicates performance without positional decay, illustrating the
impact of this feature on the model’s accuracy. * Number of parameters.

Method arXiv quantum marketing
Nougat base | 51.0% 56.0% 55.0%
LOCR 2.0% 7.0% 22.0%

Table 2: Robustness of LOCR across diverse domains, showcasing the significant reduction in generation failures
with our LOCR model. The model exhibits an impressive decrease in repetition-induced failures, achieving a
substantial improvement over the Nougat base across the arXiv, quantum, and marketing test sets. Specifically,
LOCR reduces the failure rates to 2% for arXiv, 7% for quantum, and 22% for marketing documents, indicating a
marked increase in reliability and accuracy in document generation tasks. These results underscore the efficacy of

our model in handling complex document structures with a high degree of success.

a bounding box allows the model to automatically
return to the expected position and continue out-
putting correct results. Interactive examples are
available in

6 Discussion

In document OCR, each generated token corre-
sponds to a specific location in the input image.
In our work, we introduce LOCR, which incorpo-
rates location guiding into the language model to
enhance the performance of OCR tasks. Moreover,
our approach significantly mitigates the problem of
repetitive loops often encountered by transformer-
based models during greedy search. LOCR also
allows for interactive correction in cases of errors
or low confidence outputs, particularly when deal-
ing with OOD complex layouts. Users can prompt
the location interactively, guiding the model gener-
ates accurate OCR results.

We believe that LOCR and interactive tool can be
applied to digitize documents from various fields
with complex layouts, thereby assisting academic
research, literature retrieval, and large language
model training. Furthermore, the OCR datasets
with location guiding can facilitate the community
develops better OCR models. In turn, the interac-

tive semi-automatic data engine can be utilized to
construct datasets for fine-tuning OCR models to
specific domain literature, and enhancing the gen-
eralization capability of our model. We hope this
work can help the development of the area of OCR.

7 Limitations

Although the frequency of repetition has signifi-
cantly mitigated, it has not been entirely eradicated.
Secondly, our model hinges upon manual adjust-
ments to the decay rate parameter. Additionally,
our model encounters difficulties when the initial
word on a page is incomplete, leading to imperfect
handling.
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Flavour symmetry breaking A.N. Cooke and P. E. L. Rakow

The tensors in this equation are three-dimensional arrays of integers and square-roots of integers,
objects somewhat analogous to three-dimensional Gell-Mann matrices.

Mass polynomials with the symmetry 10, T0. 35, 35 all have factors of (m, —m). So they only
appear if we consider the 1 + 1 + I case of symmetry breaking. At present we are only considering
the 2+ 1 case, m, = my # m, so we can neglect the 10, T0, 35, 35 representations,

We found just two singlet tensors in the expansion of 8©8 8, so at the symmetric point there
are only two independent coefficients (usually called F,D or f,d) needed to completely specify all
the matrix elements between the members of the octet. These give the classic SU(3) inter-relations
between octet amplitudes. These are generally found to work rather well. We should however be
able to do better by also including higher terms in the mass expansion.

There are 8 octets in the expansion of 8@ 8% 8, so if we work to first order &mg, the SU(3)
flavour violation, we have § new coefficients. There are still many fewer coefficients than there are
amplitudes. so there are numerous constraints and cross-relations between amplitudes. The singlet
and octet tensors are given explicitly in Table ?2. This table gives the amplitudes for the baryons

1 B
I Agyy| f dln o rson 5 s s 5
0 NgN | V3 -1 1 0 0 0 0 0 -1 0
0 Enz 0 201 0 23 0 0 0 0 0
0 AnA 0 -2|1 2 0 0 0 (U] 0
0 Ep= | -V3 1|1 0 0 0 00 1 0
1 1 V30 0o -2 o0 0 2 0 0
1 2 00 0 0 0 0 -2 V3 0
1 1 —V3 0 2 0 0 2 0

1 0 200 1 V3 i 0o 0 0

1 0 200 1 V3 i 0 0 o0

i -V2 V6|0 0 V2 0 W2 V2 o0

i V3 1|0 1 [ —V3 1

3 V310 1 0 —i -iV3 V3 -1 i
3 V2 Velo 0o V2 0 -2 V2 0 Vb
. V2 V6[o0o 0 VvZ o 2 V2 0 -iVve
i V3 -1|0 1 0 —i 3 V3 1 i
3 Vioo—1|o 1 0 i W3 V3 -1 i
3 VZ V6l 0 0 V2 0 W2 V2 0 -iV6

‘Table 2: Coefficients in the mass Taylor expansion of operator amplitudes: SU(3) singlet and octet. These
coefficients are sufficient for the linear expansion of hadronic amplitudes.

. A%, £+, Z°% the amplitudes for the other baryons can be deduced from isospin symmetry (which
we are, for now, treating as unbroken). We have used the notation for the matrix element transition
BB of

Ay

o = (BIMIB). @8)

‘The tensors in this equation are three-dimensional arrays of integers and square-roots of integers,
objects somewhat analogous to three-dimensional Gell-Mann matrices.

Mass polynomials with the symmetry10,10,35,35 all have factors of(m, — ). So they only appear
if we consider thel + 1+ 1 case of symmetry breaking. At present we are only considering the2 + 1
case,m,=my # m, so we can neglect thel0,10,35,35 representations.

We found just two singlet tensors in the expansion of$ 88, so at the symmetric point there are only
two independent coefficients(usually called /", D or f, d) needed to completely specify all the matrix
elements between the members of the octet. These give the classicSU(3) inter-relations between
octet amplitudes. These are generally found to work rather well. We should however be able to do
better by also including higher terms in the mass expansion.

There are8 octets in the expansion of8 88, so if we work to first orderdmn,, theSU(3) flavour viola-
tion, we have8 new coefficients. There are still many fewer coefficients than there are amplitudes,
S0 there are numerous constraints and cross-relations between amplitudes. The singlet and octet
tensors are given explicitly in Table2. This table gives the amplitudes for the baryons
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‘Table2: Coefficients in the mass Taylor expansion of operator amplitudes: SU(3) singlet and octet.
These coefficients are sufficient for the linear expansion of hadronic amplitudes.

p.A".S* ="; the amplitudes for the other baryons can be deduced from isospin symmetry(which we
are, for now, reating as unbroken). We have used the notation for the matrix element transition 3 —
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are imposed. Algebraic geometry codes over elliptic curves are natural gen-
eralizations of Reed-Solomon codes. Hence it is interesting to consider the
possible generalization of GM-MDS conjecture and then a beautiful theorem
to algebraic geometry codes over elliptic curves. Theorem 2.2 and Corollary
2.1 are natural extensions in this case, however the sufficient conditions in
Theorem 2.2 and Corollary 2.1 are clearly much stronger than the necessary.

A linear [n, k], code over F is called r-MDS for some r in the range
1<r <k ifd, =n—k+r. Then it is also s-MDS for any s > r, see [23].
The linear MDS codes are then 1-MDS. Hence r-MDS codes for r > 2 are
natural generalizations of linear MDS codes. A well-known result in weight
hierarchy or higher weights about algebraic-geometric codes due to Tsfas-
man and Vladut is that these codes are g + 1-MDS if they are from genus
g curves, see [23] Corollary 4.2. As algebraic-geometric codes from genus
0 curves, the Reed-Solomon codes are MDS (1-MDS). The next interesting
cases are these algebraic-geometric 2-MDS codes from elliptic curves.

Since the GM-MDS conjecture are about 1-MDS linear codes, we can
consider the direct generalization of the GM-MDS conjecture for 2-MDS
linear codes. The generalized Hamming weights of 2-MDS linear (not MDS)
codes are as follows,
di=n—k,
dy=n—k+2,

n—k+r,

i, =n.
Many algebraic-geometric [n, k], codes from elliptic curves with code lenght
n > ¢+ 2 have their generalized Hamming weights as above. However for
algebraic-geometric code from elliptic curve cases, not every subset of [n]
of the cardinality k can be the set of zero coordinate positions of nonzero
codeword, the condition |S;| < k — 1 is a natural constraint.

Therefore the GHW -based support constrained conditions on the subset
systems for two or more subsets are the same as the MDS condition in the

are imposed. Algebraic geometry codes over elliptic curves are natural generalizations
of Reed-Solomon codes. Hence it is interesting to consider the possible generalization
of GM-MDSO conjecture and then a beautiful theorem to algebraic geometry codes over
elliptic curves. Theorem?2.2 and Corollary2.1 are natural extensions in this case, however
the sufficient conditions in Theorem2.2 and Corollary2.1 are clearly much stronger than the
necessary.

Alinear(n, k], code overF, is calledr-MDS for somer in the rangel < r < k, ifd,=n — k +r.
Then it is alsos-MDS for anys > r, see[23]. The linear MDS codes are then1-MDS. Hencer-
MDS codes forr > 2 natural generalizations of linear MDS codes. A well-known result in
weight hierarchy or higher weights about algebraic-geometric codes due to Tsfassman and
Vialdtu is that these codes areg+1-MDS if they are from genusg curves, see[23] Corollary4.2.
As algebraic-geometric codes from genus0 curves, the Reed-Solomon codes are MDS(1-
MDS). The next interesting cases are these algebraic-geometric2-MDS codes from elliptic
curves.

Since the GM-MDS) are about1-MDS linear codes, we can consider the direct generalization
of the GM-MDS conjecture for2-MDS linear codes. The generalized Hamming weights
0f2-MDS linear(not MDS) codes are as follows,

dy=n—k,

dy=n—k+2,

dy

n.

Many algebraic-geometric[n, k|, codes from elliptic curves with code lenghtn>g+2 have
their generalized Hamming weights as above. However for algebraic-geometric code from
elliptic curve cases, not every subset of[n] of the cardinalityk can be the set of zero coordinate
positions of nonzero , the iti |[<isa

Therefore the GHW-based support constrained conditions on the subset systems for two or
more subsets are the same as MDS condition.

Figure B1: Examples of our model output. Left: Origin image of document page with tables and equations. Right:
Model output converted to Markdown and rendered back into a PDF.
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FIG. 6. Two-point corrclation functions at p=0.35po with (left panel) and without (right panel)

Coulomb interaction for asymmetric nuclear matter with Y,=0.3.

the Coulomb interaction at a typical example density p=0.35py, in Fig. 6 . The amplitudes
of &, are found to be lower than those of &, due to the presence of uniformly distributed

dripped neutrons. The higher amplitudes of &;; in absence of the Coulomb interaction point
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(a) Origin page with figures

with damping terms [24] :

o oH oH

R = o, "Ry

5 IH OH

Py = “or, "opy (14)
where the damping coefficients pp and pp are positive definite and relate to the relaxation
time scale.

As the QMD Hamiltonian used here contains momentum-dependent interactions (Vpau

and Vyp), we cannot use the usual i for the i given as
Spolyw PL as)
2 N=Tlomy

where A is the number of particles. Instead we use the effective temperature defined as [30]
3 Low 1y 01
5 Tan=x a5 P P (16)
which reduces to the usual definition of Eq. ( 15 ) if the Hamiltonian does not contain
momentum-dependent interactions. Performing Metropolis Monte Carlo simulations it was

shown in Ref. [25] that Ty is i with the in the statistics.

In order to perform simulations at a specified temperature (Ts) we adopt the Nos
e-Hoover thermostat [31-33] after suitably modifying it to adapt to the effective temper-
ature [25] . The Hamiltonian including the thermostat is given by:
oYX SRR} 4 an
where U({R;}).{P;})=H~T is the potential depending on both positions and momenta, s
is the extended variable for the thermostat, p; is the ji to s, Q is the

effective “mass” associated with s taking a value ~ 10° MeV fm?, g=3A\ needed to generate
the canonical ensemble, and 3=1/Tw,. The equations of motion for the extended system

are written as:

R = E*% (18)
- u

Py = —a—m—ﬂ’n (19)
: 1 P, M\ g
§= 6[Z£‘(;.+P'23_"-)_§] (20)

s =€ (@1

(c) Origin page with mathematical formulas
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(d) Result



TABLE I. Parameter set for

TABLE 1. Parameter set for the interaction [24]

Cp (MeV) 207
po (MeV/c) 120
a0 (fm) 164
a (MeV) ~92.86
8 (MeV) 169.28
T 1.33333
€, (MeV) 25.0
¥ (Mev) —258.54
@ (Mev) 375.6
iy (fm1) 2.35
2 (fm™1) 0.4
Cu (fm?) 21

whereas the single-nucleon densities are given by

le) = 1000 = o[- e | a
. 1 ( 2
pilr) = Gty exxv[— )
)
with
Cu=g (147" C. (3)

The modified width Ciy of the Gaussian wave packet is introduced to adjust the effect of

density-dependent terms [24] . The Hamiltonian has 12 parameters shown in Table I . They
are determined to reproduce the saturation properties of nuclear matter as well as ground

state properties of finite nuclei.

In order to obtain the equilibrium configuration we adopt the QMD equations of motion

1 1

(e) Origin page with tables (f) Result

that the the densities at which the liquid-gas transition takes place at T=0, is higher if the
Coulomb interaction is not considered for the cases of ¥,=0.5 and 0.3. However, for Y,=0.1,
there is not much difference in the transition density. For this highly asymmetric matter
the difference between the phase diagrams with and without Coulomb is much smaller than
for the other two values of Y. This is the case because the Coulomb energy becomes less
important for highly asymmetric matter. We also showed that the main conclusion that
the Coulomb interaction reduces the critical temperature but the critical density remain

unchanged, is independent of nuclear model specifics.

Based on these findings we plan to investigate susceptibilities of particle numbers around

the phase transition line and critical end-point, as such studies are directly related to the

more general search for observable signals of structures in the phase diagram of strongly —

matter ing to rvables from heavy-ion collisions.
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Figure B2: Example of position prediction. Green box: Rough result of grid classification. Yellow: Final result of
box regression.
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(j) Result

(i) A case model predicting wrong position

Figure C1: Visualization of interaction on out-of-domain documents. Red box: Wrong position. Blue box: Human
prompt input.
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