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ABSTRACT

The growing demand for transparency and interpretability in critical domains has
driven increased interests in comprehending the explainability of Message-Passing
(MP) Graph Neural Networks (GNNs). Although substantial research efforts have
been made to generate explanations for individual graph instances, identifying
global explaining concepts for a GNN still poses great challenges, especially when
concepts are desired in a graphical form on the dataset level. While most prior
works treat GNNs as black boxes, in this paper, we propose to unbox GNNs
by analyzing and extracting critical subtrees incurred by the inner workings of
message passing, which correspond to critical subgraphs in the datasets. By
aggregating subtrees in an embedding space with an efficient algorithm, which
does not require complex subgraph matching or search, we can make intuitive
graphical explanations for Message-Passing GNNs on local, class and global levels.
We empirically show that our proposed approach not only generates clean subgraph
concepts on a dataset level in contrast to existing global explaining methods which
generate non-graphical rules (e.g., language or embeddings) as explanations, but it
is also capable of providing explanations for individual instances with a comparable
or even superior performance as compared to leading local-level GNN explainers.

1 INTRODUCTION

With the rapid advancements in artificial intelligence, the demand for transparent and explainable AI
(XAI) has grown significantly. In sensitive domains like finance, security, and healthcare, where data
is often structured as graphs, Message-Passing Graph Neural Networks (MPGNNs) have emerged
as a prominent solution due to their straightforward design, remarkable effectiveness, and efficient
performance. Understanding and explaining how they make predictions are essential to ensuring
fairness, reliability, and maintaining control over AI tools on graph-structured data.

Existing works on GNN explainability can be categorized mainly into local-level explainability (Ying
et al., 2019; Luo et al., 2020; Vu & Thai, 2020; Yuan et al., 2021; Shan et al., 2021; Bajaj et al., 2021;
Lin et al., 2021; Wang et al., 2021; Feng et al., 2022; Xie et al., 2022; Zhang et al., 2022a; Lu et al.,
2024b) and global-level explainability (Magister et al., 2021; Azzolin et al., 2023; Xuanyuan et al.,
2023; Yuan et al., 2020; Wang & Shen, 2022; Huang et al., 2023). While local-level explainability
focuses on identifying critical nodes, edges or subgraphs behind the GNN prediction on each
individual graph instance, global-level explainability aims to provide a comprehensive explanation of
a GNN’s behavior on the entire dataset. However, current global-level GNN explanation methods
either do not provide graphical explanations (Yuan et al., 2020; Magister et al., 2021; Wang & Shen,
2022) or cannot apply the extracted global rules to explaining individual data instances (Azzolin et al.,
2023; Xuanyuan et al., 2023), making it hard to assess their faithfulness.

In this paper, we aim to solve the challenging problem of providing clear global explanations of
GNNs on the dataset or class level in the format of behaviour differentiating subgraphs (rather than
nodes, language rules or prototype embeddings), which is essential to molecular biochemistry and
complex networks, e.g., to molecular property prediction and drug discovery. This is an unsolved
challenge in the literature because there is an overwhelming complexity of enumerating and searching
for subgraphs that are critical to GNN decisions.

Specifically, we propose subTree-based eXplainer (TreeX) (pronounced Trix), to unbox the inner
mechanisms of MPGNNs by analyzing the subtrees generated through the message-passing process.
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Concept 1 Concept 2 Concept 3 Concept 4

Explanation for Class 1 (0.01* 1 )       +(0.83*  . )       +(0.6*    )       +(-0.2*  . )

 Correctly Predicted 

Data Instance

Predict: Class 1 

Membership mask

Global concept embedding
Graph Embedding

Maximizing Class 1 

Prediction Probability

(0.01* 1 )       +(0.83*  . )       +(0.6*    )       +(-0.2*  . )1 1 1 0
Class 1: 0.99

Class 2: 0.01

Prediction Probability

Meaning: The existence of Concept 2 and Concept 3 makes GNN predict Class 1.

Figure 1: An illustrative example of the global explanations produced by TreeX and how the global
explanations can be employed to explain individual instances. The global rule offers the optimal
weights of different concepts to enhance the probability of predicting target class.

This approach yields intuitive subgraph concepts as global explanations, which can be straightfor-
wardly employed to explain individual instances. We present an illustrative example of the global
and local explanations produced by TreeX in Figure 1. We summarize our contributions as follows:

• Subtree Extraction instead of Subgraph Search: We perform subtree extraction to obtain
subgraph concepts instead of traditional subgraph enumeration or search, reducing the search
space per input graph from n! to n, where n is the number of nodes in a graph. This is due
to the observation that there is a correspondence between L-layer subtrees incurred by GNN
message passing and subgraphs.

• Root Node Emebdding as Subtree Embedding: For a L-layer GNN, each subtree incurred
by message passing can be represented by its root node embedding at layer L. By repre-
senting subtrees using their root node embeddings, we not only avoid introducing another
auxiliary mechanism to produce subgraph embeddings, but also convert another highly
complex problem of identifying common structures among subgraphs into numerically clus-
tering the subtrees in the embedding space, which can be done by off-the-shelf clustering
methods. The rationale is that if the subtree embeddings are similar, they contribute to the
GNN pooling layer similarly and their subgraph structures are also similar.

• GNN explanations provided at both Global-Level and Local-Level: Our proposed TreeX
produces more intuitive subgraph concepts as global explanations, which are closer to
the ground-truth crucial subgraphs and are more succinct and less noisy than state-of-the-
art global-level baselines, suggesting better interpretability. Unlike existing global-level
methods that do not explain individual graph samples, we also introduce how to utilize
our extracted global explanations to identify critical interpretable structures in individual
instances.

2 RELATED WORK

Local-level GNN Explainability. Post-hoc local-level, or instance-level, GNN explainability refers
to the research problem of identifying crucial input nodes, edges, or subgraphs that significantly
influence a GNN’s prediction for a specific data instance. Most existing works in this domain view
the target GNN as a black box. They typically design algorithms (Bui et al., 2024; Lu et al., 2024a;
Feng et al., 2022; Yuan et al., 2021; Zhang et al., 2022b) or auxiliary models (Ying et al., 2019; Luo
et al., 2020; Shan et al., 2021; Lin et al., 2021) to select a ratio of input nodes or edges, aiming to
minimize loss on mutual information or fidelity performance. Some other works extend the concept
of explaining neural networks from the vision domain to graph-structured data (Pope et al., 2019;
Sundararajan et al., 2017; Yuan et al., 2022). However, they used to neglect the unique message-
passing process of MPGNNs, which is essential for gaining deeper insights into the inner workings
of these graph neural networks. More importantly, their explainability is limited to instances.

Global-level GNN Explainability. Post-hoc global-level, or model-level, GNN explainability is a
relatively nascent research direction, with limited exploration and investigation. One line of existing
global-level methods produce graph examples via either graph generation (Yuan et al., 2020; Wang &
Shen, 2022; Nian et al., 2024) or graph edits (Huang et al., 2023) as the model-level explanations.
While they generate numerous examples for each target class, they do not offer clear concepts, thus
requiring human observers to draw conclusions (Xuanyuan et al., 2023; Kakkad et al., 2023). Another
line of works provide factual global explanations by identifying important global concepts based on
actual data (Kakkad et al., 2023). While subgraph explanations are gaining attention in local-level
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explainability for their intuitive appeal (Yuan et al., 2021; Shan et al., 2021; Li et al., 2023; Zhang
et al., 2022b), producing subgraphs as global concepts remains challenging due to the computational
cost of searching among the possible subgraphs in the dataset. For example, GCExplainer (Magister
et al., 2021) requires human-intervention to reduce the cost when determining the important subgraph
concepts. These factual approaches provide explanations in various forms, such as boolean rules
between latent clusters (Azzolin et al., 2023), and expert-defined natural language rules (Xuanyuan
et al., 2023). However, these forms of explanations are less intuitive and understandable than graph
concepts that our paper aims to extract. Another challenge with these methods is the quantitative
assessment of the extracted global explanations, particularly when ground-truth explanations for the
tasks are unavailable. This is because these approaches do not offer algorithms for applying global
explanations to individual data instances, making it hard to measure their explanation fidelity.

3 PRELIMINARIES

Graph Neural Networks. Let G = (V,E) be a graph with the associated nodes set V , edges
set E, and N = |V | represents the number of nodes. A GNN model f(X,A) maps the node
features X ∈ RN×d of dimension d and the adjacency matrix A ∈ RN×N indicating the existence
or absence of edges E to a target output, such as node labels, graph labels, or edge labels. Let l be a
message-passing layer in the GNN. At layer l, the GNN aggregates the neighbourhood information
for each node v ∈ V with the representation h

(l−1)
v , and embeds the information into the next layer

representation h
(l)
v . In this paper, we focus on WL-based GNNs (or MPGNNs). Typical WL-based

GNNs (Kipf & Welling, 2017; Xu et al., 2019; Hamilton et al., 2017) aggregate the information from
the 1-hop neighbours N of v as:

h(l)
v = UPDATE(l)

(
h(l−1)

v , AGG(l)
({

h(l−1)
u : u ∈ N (v)

}))
, (1)

where UPDATE(l) and AGG(l) represent the updating and aggregation functions. In particular, an
example maximally powerful MPGNN, GIN (Xu et al., 2019), updates node representations as:

h(l)
v = MLP(l)

(
1 + ϵ(l)

)
· h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

 . (2)

Subtrees. Given a graph G = (V,E), a full l-hop subtree T (l)
v = (V

T
(l)
v
, E

T
(l)
v
) rooted at v ∈ V , is

the entire underlying tree structure within l-hop distance from v, where V
T

(l)
v
, E

T
(l)
v

are multisets, i.e.,
a set with possibly repeating elements. Every element in V

T
(l)
v

is also an element in V ; every element
in E

T
(l)
v

is also an element in E. Figure 2 provides some examples of the full 2-hop rooted subtrees.
The repetitions of the same node in the original graph are treated as distinct nodes in the subtrees,
such that the pattern is still a cycle-free tree. Each subtree of G corresponds to a subgraph in the
original graph G. In the 1-WL test (Leman & Weisfeiler, 1968), subtrees are used to distinguish the
underlying subgraphs.

4 PROPOSED METHOD

In this section, we propose a subTree-based eXplainer (TreeX) to explain MPGNNs. Overall, we
mine over subtrees incurred by message-passing in GNN layers instead of enumerating subgraphs to
reduce search space. As illustrated in Figure 2, TreeX consists of three phases: i) subtree-based local
concept mining; ii) global concept extraction; iii) global rule generation for each class. In the main
text of our paper, we focus on explaining the maximally powerful MPGNNs, whose last layer node
embeddings are as expressive as the same layer 1-WL test (Leman & Weisfeiler, 1968). We move the
analysis of explaining the less powerful MPGNNs to Appendix A.

4.1 SUBTREE-BASED EXPLAINER

Local Concept Mining Based on Subtrees. In the first phase, we aim to extract local subgraph
concepts by mining over the rooted subtrees. Specifically, for a well-trainedL layer GNN, we consider

3
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Figure 2: Overview of our proposed approach. This figure illustrates our approach for a 2 Layer
GNN. The “subtrees” in this figure refer to the full l-hop subtrees. Phase 1: Collect subtrees in the
graph, and extract local concept by identifying the overlapping substructures. Phase 2: Extract global
concepts by clustering the local concepts. Phase 3: Generate global rules for each target class.

the last layer node embeddings as the representation of the corresponding full L-hop subtrees. We
provide an analysis on the reason of doing so in Section 4.2. Then, we cluster these last layer node
embeddings within the same graph. A typical choice of the clustering algorithm is the k-means
algorithm (MacQueen et al., 1967; Forgy, 1965; MacKay, 2003), where given k initialized clusters
with centroids of m(0)

1 , . . . ,m
(0)
k and a database, we assign each object xp in the database to the

cluster Si, whose centroid is closest to it, based on the least squared Euclidean distance.

Next, for each local cluster Si where i ∈ {1, . . . , k} in each data instance G = (V,E), we figure
out the edges Êi covered by the most subtrees in Si, and use them to induce the corresponding
subgraph-level concept G[Êi] for this cluster. Formally, the count of an edge e over the subtrees
represented by the last layer node embeddings x1, . . . ,xp, . . . ,xn in Si, is calculated by:

γ(e|Si) = |{xp : e ∈ ψ(xp),∀xp ∈ Si}| , (3)

where n is the number of subtrees in Si, ψ(xp) is the set of all the edges in the subtree represented
by xp. Then Êi is defined as:

Êi = {e : γ(e|Si) = max({γ(ej |Si),∀ej ∈ Si}),∀e ∈ E} . (4)

Finally, we save the local graph concept oi = G[Êi], and centroid moi of Si as its embedding.

Global Concept Extraction. After the local concept mining phase across the entire dataset D with
|D| data instances, we obtain a total of k · |D| local graph concepts, where k is the number of local
clusters. In this subsection, we further cluster them to global-level concepts. In this phase, we utilize
the k-means algorithm described previously due to its simplicity and efficacy in grouping objects.

We cluster the k · |D| local concepts into m global concepts U1, . . . , Um. We save the local concept
that is closest to the center of Uj as the representative of it, and take the centroid mgj of Uj as its
embedding. Formally, the representative global concept ĝj of the cluster Uj is

ĝj = argmino

∥∥mo −mgj

∥∥2 , (5)

where o is the local graph concept.

In the previous phase, local concept embeddings are determined by the centroids of local clusters,
while representative local graph concepts are identified based on overlapping substructures. Conse-
quently, multiple local concepts might share the same representative while having slightly different
embeddings. This could result in them being grouped into different global clusters in the subsequent
global clustering phase. To merge duplicated global concepts, we use an isomorphism test on the
representative graph substructures of the global concepts. If two global concepts share the same graph
representative, we merge them by averaging their embeddings. Following this merging process, we
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ultimately obtain m̂ global concepts in this phase. Given the WL test’s effectiveness in determining
graph isomorphism in most real-world cases (Zopf, 2022), we employ it for the isomorphism test in
our experiments due to its efficiency.

Global Rule Generation for Each Class. Now we have obtained m̂ global graph concepts that are
closely related to the GNN’s prediction. However, the mapping between these global graph concepts
and each output class remains unclear. In other words, we aim to determine how each global concept,
either positively or negatively, influences each specific output class.

To achieve this goal, we feed the trainable weighted sum of the embeddings of the m̂ global graph
concepts to the original classifier of GNNs, and optimize for the trainable weights at each output
class, respectively. Formally, consider a well-trained GNN f(·) = Φ ◦ READOUT ◦Ψ(·), where Φ
refers to a L-layer message-passing module, Ψ refers to a classifier module, the classifier prediction
on the weighted global concepts at instance i is

ŷi = Ψ(wtKiM) , (6)

in which wt is the trainable vector of length m̂, Ki ∈ Nm refers to the number of subtrees that
contain each of the global concepts in the data instance Gi, M refers to the global concepts for
M = STACK (mg1 , . . . ,mgm̂). We then aim to optimize the negative log likelihood (NLL) loss with
a L2-penalty on wt:

L(ŷi, yt) = − log
exp(ŷyt)∑C
c=1 exp(ŷc)

+ λ ∥wt∥2 , (7)

where yt refers to the target class, λ is a weighing factor. We incorporate a penalty term for the
following reason. As previously mentioned, wtKiM represents the weighted sum of the global
graph concepts. By controlling the overall weights, our objective is to encourage the critical con-
cepts to occupy only a minor portion of the “dataset embedding”, which can mimic the READOUT
functions typically employed in GNNs. In order words, we introduce this penalty term based on the
intuition that GNNs can effectively represent GNNs at each target class using a limited number of
significant concepts, with the remaining non-significant substructures exerting minimal influence on
the prediction of the target class.

4.2 ANALYSIS OF CRITICAL SUBTREE-BASED DESIGNS

The framework we introduced in Section 4.1 utilizes two critical designs: i) mining over subtrees
rather than subgraphs to extract concepts; ii) representing the full L-hop subtrees by the L-th layer
root node embeddings.

The first design, sharply reduces the search space, compared with mining over all possible subgraphs.
This is because in each graph instance with N nodes, there are exactly N full L-hop subtrees, while
up to N ! possible subgraphs. Although searching over possible subgraphs in a single instance is
feasible in local-level explainability (Yuan et al., 2021; Zhang et al., 2022b; Shan et al., 2021), it
becomes much more challenging in global-level explainability, where the dataset can be large. Our
TreeX, mining over subtrees, provides a practical direction for extracting global graph concepts.

The second design further improves the mining process compared with existing explainability
methods (Yuan et al., 2021; Azzolin et al., 2023). Typically, existing methods represent subgraphs
by feeding them into the original GNN to obtain subgraph embeddings, necessitating additional
calculations for each possible subgraph. In contrast, we directly use the node embeddings to represent
subtrees, which are easily obtained by feeding the graph to the GNN just once. In the remainder of
this section, we explain why we can use root node embeddings to represent subtrees, by showing that
the l-th layer root node embedding from a maximally powerful MPGNN is an exact mapping of the
corresponding full l-hop rooted subtree.
Definition 4.1 (Perfect Rooted Tree Representation). Let Tv denote a tree in a countable space X ,
which is rooted at node v, f(·) be the only function to generate the presentations of rooted trees in
the space, hv be the representation of Tv . We define hv be the Perfect Rooted Tree Representation of
Tv , if the following holds: For any arbitrary same-depth rooted tree Tu in the same countable space,
hv = hu if and only if Tv is isomorphic to Tu.

We then show that if both AGG and UPDATE in Equation (1) are injective, then the l-th layer node
embedding is a Perfect Rooted Tree Representation of the full l-hop rooted subtree by mathematical
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induction, which is described in Theorem 4.2. The proofs of all the lemmas and theorems can be
found in Appendix B.

Theorem 4.2. Given a graph G = (V,E) with the countable input node features X, and a L-layer
GNN f(·) that updates the layer-wise node-embeddings by Equation (1). Then ∀l ∈ {1, . . . L} and
∀v ∈ V , the l-th layer node embedding h

(l)
v is a Perfect Rooted Tree Representation of the full l-hop

subtree rooted at v, if the functions AGG and UPDATE in Equation (1) are injective.

As presented in Equation (2), the maximally powerful MPGNN, e.g., GIN, utilizes add-pooling
and MLP as the AGG and UPDATE functions, which are both injective for countable inputs. By
Theorem 4.2, we acquire that GIN uniquely maps the full l-hop subtrees to the l-th layer embeddings
of their root nodes. Therefore, we can directly use the root node embeddings to represent the
corresponding rooted subtrees. Due to the space limit, we have moved the discussion of representing
subtrees by the less powerful MPGNNs in Appendix A.1.

4.3 EXPLAINING LOCAL INSTANCES WITH GLOBAL RULES

In earlier sections, we discussed how we generate global rules for MPGNNs at the target class via a
weighted sum of global subgraph concepts. In this section, we introduce how to identify critical input
subgraphs for each individual instance with the global rules generated by our method.

For a specific data sample, we first perform local subtree mining on it like we did in Section 4.1, to
obtain the local concepts in the data instance. Following this, we calculate the distance from each
local concept to the previously extracted global concepts and fit the local concepts in this instance to
the nearest global concepts. Then, we can construct a concept mask K ∈ Rm for this data instance,
where, similar to Section 4.1, K indicates the numbers of subtrees in the concepts, m refers to the
total number of global concepts in the global rule. The importance It of the concepts in this data
instance for the target class yt can be calculated by It = Kwt, where wt ∈ Rm is the trained weight
for all concepts in the global rule for class yt. The concepts that do not exist in the data instance will
naturally receive zero importance as shown in Figure 1.

The explanations we produce are class-specific, meaning that for each instance, we offer a weighted
sum of the global concepts aimed at maximizing the prediction probability for each specific class. As
a result, we not only can explain the instances that are correctly predicted by GNNs, but can also
discover the cause of incorrect predictions. That is, we can investigate the importance of various
concepts for both the wrong class and the true class for a wrongly predicted data instance. Analyzing
the explanation for the wrong class can give us the information about which concepts make the
original GNN gain more confidence in predicting the wrong class, hence becomes less confident in
predicting the correct class. Analyzing the explanation for the true class can give us the information
about which critical concepts are overlooked by the original GNN, thus leading it to predict the
incorrect class.

5 EXPERIMENTS

In this section, we first compare the global explanations produced by TreeX with those from existing
global-level approaches, illustrating that TreeX can generate clear subgraph concepts while existing
methods cannot. Second, we assess the faithfulness of TreeX by comparing its fidelity with that of
leading local-level methods. Note that fidelity is a metric calculated on individual instances, so we
cannot compute fidelity for existing global-level methods, as they are unable to explain local instances
like TreeX. Third, we demonstrate how TreeX provides insights into the reasons for incorrect GNN
predictions. Finally, we offer an efficiency analysis of TreeX.

5.1 EXPERIMENTAL SETUP

Datasets. Similar to prior works (Azzolin et al., 2023; Xuanyuan et al., 2023), we mainly focus on
graph classifications and conduct experiments on two synthetic datasets BA-2Motifs (Luo et al., 2020)
and BAMultiShapes (Azzolin et al., 2023), as well as two real-world datasets Mutagenicity (Kazius
et al., 2005) and NCI1 (Wale et al., 2008; Pires et al., 2015) to demonstrate the efficacy of our
approach. The statistics of these datasets are in Appendix C. The BA-2Motifs and the BAMultiShapes
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Figure 3: Global explanations by TreeX (ours), GCNeuron and GLGExplainer. We run both baseline
methods so that they explain the same GNN models as our approach. Due to space limit, the
explanations on BAMultiShapes and NCI1 datasets are moved to the appendix.

datasets employ Barabasi-Albert (BA) graphs as base graphs. In the he BA-2Motifs dataset, Class 0
graphs are augmented with five-node cycle motifs, while Class 1 graphs are enriched with “house”
motifs. In the BAMultiShapes dataset, the graphs contain randomly positioned house, grid, and
wheel motifs. Class 0 includes plain BA graphs and those with individual motifs or a combination
of all three. In contrast, Class 1 comprises BA graphs enriched with any two of the three motifs.
Mutagenicity and NCI1 are real-world chemical and medical datasets, which are challenging for both
classification or explainability due to their complex graph structures. In the Mutagenicity dataset,
graphs in Class 0 are mutagenic molecules, and graphs in Class 1 are non-mutagenic molecules.
NCI1 contains a few thousand chemical compounds screened for activity against non-small cell lung
cancer and ovarian cancer cell lines. The intricacy of these datasets makes it challenging to derive
definitive classification rules, even for human experts.

Evaluation Metric. We use both prediction accuracy fidelity (Yeh et al., 2019; Zhou et al.,
2021) and prediction probability fidelity (Yuan et al., 2022) to evaluate the faithfulness of our
method in explaining model predictions on individual instances. They are respectively defined as
AccF idelity = 1

N

∑N
i=1 1 (ŷi = yi) and ProbF idelity = 1

N

∑N
i=1 fyi

(Gi)− fyi
(GX

i ), where yi
refers to GNN’s prediction on the original input, ŷi refers to the prediction on the explanation, Gi

refers to the original input, GX
i refers to the explanation.

Baselines. We qualitatively compare with two recent factual global-level explainers GLGEx-
plainer (Azzolin et al., 2023) and GCNeuron (Xuanyuan et al., 2023). We also quantitatively compare
the explanation fidelity of our approaches on the local instances with the leading local-level baselines
such as GradCAM (Pope et al., 2019), GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al.,
2020), SubgraphX (Yuan et al., 2021), EiG-Search (Lu et al., 2024a).

Implementation Details. Please see Appendix C and D.2 for details.
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Table 1: Prediction accuracy fidelity (AccF idelity (↑)) performance of TreeX and the local-level
baselines on the BA-2Motifs, BAMultiShapes, Mutagenicity, NCI1 test datasets.

Method
BA-2Motifs BAMultiShapes Mutagenicity NCI1

Class 0 (↑) Class 1 (↑) Class 0 (↑) Class 1 (↑) Class 0 (↑) Class 1 (↑) Class 0 (↑) Class 1 (↑)

GradCAM (Pope et al., 2019) 1.00±0.00 0.92±0.00 1.00±0.00 0.00±0.00 0.81±0.00 0.77±0.02 0.94±0.00 0.16±0.00
GNNExplainer (Ying et al., 2019) 0.92±0.05 0.82±0.07 0.92±0.03 0.54±0.13 0.83±0.02 0.81±0.03 0.89±0.02 0.64±0.17
PGExplainer (Luo et al., 2020) 0.21±0.19 0.98±0.02 0.99±0.02 0.05±0.10 0.93±0.02 0.16±0.23 0.88±0.05 0.15±0.37
SubgraphX (Yuan et al., 2021) 0.56±0.12 0.90±0.08 0.99±0.01 0.04±0.07 1.00±0.01 0.45±0.16 0.99±0.01 0.07±0.28
EiG-Search (Lu et al., 2024a) 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.00 0.99±0.00 0.94±0.00 0.99±0.00 0.68±0.00

TreeX (ours) 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.01 1.00±0.00 0.93±0.05 0.94±0.05 1.00±0.00

Table 2: Prediction probability fidelity (ProbF idelity (↓)) performance of TreeX and the local-level
baselines on the BA-2Motifs, BAMultiShapes, Mutagenicity, NCI1 test datasets.

Method
BA-2Motifs BAMultiShapes Mutagenicity NCI1

Class 0 (↓) Class 1 (↓) Class 0 (↓) Class 1 (↓) Class 0 (↓) Class 1 (↓) Class 0 (↓) Class 1 (↓)

GradCAM (Pope et al., 2019) 0.00±0.00 0.08±0.00 0.00±0.00 0.97±0.00 0.06±0.00 0.12±0.00 0.01±0.00 0.74±0.00
GNNExplainer (Ying et al., 2019) 0.02±0.00 0.17±0.05 0.04±0.01 0.17±0.05 0.08±0.03 0.13±0.06 0.07±0.02 0.27±0.05
PGExplainer (Luo et al., 2020) 0.82±0.14 0.03±0.05 0.00±0.01 0.97±0.02 0.20±0.03 0.40±0.05 0.08±0.01 0.81±0.05
SubgraphX (Yuan et al., 2021) 0.16±0.06 0.00±0.04 -0.01±0.00 0.87±0.02 -0.03±0.02 0.31±0.04 -0.02±0.01 0.40±0.03
EiG-Search (Lu et al., 2024a) 0.00±0.00 0.00±0.00 -0.01±0.00 0.01±0.00 -0.12±0.00 0.01±0.00 -0.05±0.00 0.27±0.00

TreeX (ours) 0.00±0.00 0.00±0.00 -0.01±0.01 0.03±0.01 -0.25±0.03 -0.21±0.04 -0.08±0.02 -0.14±0.03

5.2 RESULTS

Comparison with Other Global Explainers. As summarized in Section 2, existing factual global-
level explainers produce explanations in different forms. We illustrate the global explanations
produced by our approach, and two existing factual global-level baselines in Figure 3. As shown in
this figure, GLGExplainer has limitations in delivering clear global explanations. This is because
they generate latent vectors as the prototypes, where they provide several random local explanations
for examples within the latent cluster, lacking clear motifs to represent each prototype. Therefore,
from the perspective of providing intuitive and clear explanations, their global-level explanations
remain implicit and require human experts to interpret and draw meaningful conclusions.

On the other hand, GCNeuron provides global explanations in the form of logical rules with human-
defined premises. However, without prior knowledge, it becomes challenging to define meaningful
natural language rules as premises when dealing with the BA-2Motifs dataset. Consequently, their
explanations rely on the abstract concepts like the “degree of nodes” or “degree of neighboring
nodes”, which can make them quite perplexing and challenging for humans to understand. When
applied to the Mutagenicity dataset, GCNeuron manually defines 44 premises, including terms like
“NO2”, “NO”, “is(C)”, “neighbour of C”, “2-hop from C”. However, GCNeuron fails to recognize
“NO2” as a Class 0 motif, even though it’s known to be relevant to mutagenic effects (Luo et al.,
2020).

Conversely, our TreeX is able to accurately extract the critical global motifs on BA-2Motifs mentioned
in Section 5.1. The global explanation produced by TreeX for this dataset indicates that: if a graph
contain the five-node cycle motif, then it is a Class 0 graph; if a graph contain the “house” motif
, then it is a Class 1 graph. Other substructures are not important. On the Mutagenicity dataset,
TreeX successfully identifies the “-NO2” and “-NH2” chemical groups as Class 0 patterns, which are
well-known to be related to the mutagenic effect of molecules, as discussed in previous studies (Ying
et al., 2019; Luo et al., 2020; Debnath et al., 1991). Additionally, it identifies “-N2O”, “-OCH3” as
the Class 0 motifs, and “-CH2”, “-OH” as the Class 1 motifs, albeit with relatively lower but still
positive confidence. These chemical groups have been widely studied in terms of their mutagenic
effects (Hill et al., 1998; Baden & Kundomal, 1987). Explicitly highlighting these chemical groups
provides a more comprehensive understanding of how GNNs make decisions and can be valuable for
debugging GNNs.

Due to the space limit, we have moved the comparisons on the BAMultiShapes and NCI1 datasets to
appendices. Please see Appendix D.1 for more results and discussions on these datasets.

It is worth-noting that as we discussed in Section 2, since these existing global-level approaches do
not offer algorithms for employing their extracted global explanations to the data instances in the test
set, we do not access the explanation fidelity of them.
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Table 3: Evaluation of TreeX in uncovering the cause of on the incorrect predictions. Note that the
prediction accuracy of these falsely predicted data instances is 0.

Dataset
BAMultiShapes Mutagenicity NCI1

Prediction Accuracy (Acc (↑))
Class 0 1.00±0.00 1.00±0.00 0.98±0.02
Class 1 1.00±0.00 0.90±0.05 0.74±0.08

 Data Instance

Wrongly Predicted 

By GNN

Predict: Class 0 

True Label: Class 1

Membership mask

Global concept embedding

(-0.2* 1  )       +(0.13*  . )      +(-0.2*    )       1 1 1
Class 0: 0.89

Class 1: 0.11

Concept 1 Concept 2 Concept 3

By Rule 

For Class 0

(0.15* 1 )       +(-0.1*  . )       +(-0.24*    )       1 1 1
Class 0: 0.26

Class 1: 0.74
By Rule 

For Class 1

Prediction 

Probability

Weighted

embedding

Figure 4: Visualization of employing the global explanations produced by TreeX to discover the
cause of the incorrect prediction of the GNN. Due to the space limit, we omit the concepts that are
not in this graph.

Faithfulness of TreeX. The results of the prediction accuracy fidelity and probability fidelity
are presented in Table 1 and Table 2 respectively, where we report the standard deviation over 5
runs. In both tables, we utilize the explainers to only explain the data instances that are correctly
predicted by the GNNs. It is observed that TreeX achieves nearly optimal prediction accuracy
fidelity and outstanding prediction probability fidelity performance across all the datasets, while the
baselines struggle to extract explanations meeting with GNN’s predictions. This shows that the global
explanations produced by our approach correctly match the behaviour of the GNNs. Additionally,
TreeX achieves even better ProbF idelity performance on the Mutagenicity and NCI1 datasets than
the state-of-the-art local-level explainer EiG-Search. It is because unlike the baselines that simply
identify the explanation subgraphs, our approach additionally learns the best weights of them for
more optimized prediction probability. Notably, a lower ProbF idelity smaller than 0 means that the
GNN is more confident in predicting the target classes based on the explanations than on the original
graphs. This emphasizes the exceptional ability of TreeX to highlight the critical concepts for the
target classes and produce faithful explanations.

Discover Reasons for Incorrect GNN Predictions. As we discussed in Section 4.3, unlike many
existing GNN explainability methods that solely focus on identifying which input substructures lead
to GNN’s predictions, our class-specific approach also explains why the GNN does not predict other
classes. That is, we provide some insights on how a GNN might be improved. TreeX aims to globally
provide users with an understanding of why the GNN makes correct predictions on some samples
and incorrect predictions on other samples. The global explanation produced by TreeX for a target
class is a set of subgraph concepts with their weights. Positive weights indicate that the GNN relies
on these subgraph concepts to predict the target class, while negative weights imply that the existence
of these subgraph concepts makes the GNN less confident in predicting the target class. We provide
two example global explanations for both Class 0 and Class 1 in Figure 4.

Following the global explanations, we can discover the reasons behind the incorrect predictions. For
example, for a data sample in Figure 4, the true label is 1, while the given GNN predicts 0. By
examining the existence of the subgraph concepts in this sample, we find that the GNN predicts Class
0 and is less confident in predicting Class 1 because it has Concept 2. We could also provide an
insight to the developer of the GNN that if the GNN can be improved either through neural parameters
or the design of the pooling mechanism, by increasing its interest in Concept 1 for Class 1, it may be
able to correct its prediction on this data sample.

In Table 3, we further report the rate of predicting the true labels using our extracted global explana-
tions of the corresponding classes, for the incorrect predictions of the original GNNs. The results
show that for most of the GNN’s incorrect predictions, our approach is able to show how adjusting
weights of various concepts can help to correct the predictions, highlighting the effectiveness of our
approach in uncovering causes of incorrect predictions.
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Table 4: Empirical efficiency comparison of TreeX (global) with and local-level methods. The
elapsed time is reported as the average per data instance.

Dataset TreeX (global) SubgraphX (local) EiG-Search (local)

BA-2Motifs 0.08s 63.7s 0.09s
Mutagenicity 0.14s 419.8s 0.14s

Visualization of Concept Scores on Instances. Please see Appendix D.3 for examples of visualiz-
ing our explanations on individual instances.

5.3 TIME ANALYSIS

The main focus of our work is to generate clear subgraph concepts as global explanations for GNNs at
the dataset and task levels. Although some approaches can explain GNNs at the global or model level,
they do not produce clear subgraph concepts, as discussed in Section 2 and demonstrated in Figure 3.
Therefore, we refrain from efficiency comparisons with those existing global-level approaches.

On the other hand, several local-level explanation methods attempt to extract critical subgraphs for
individual instances (Bui et al., 2024; Lu et al., 2024a; Zhang et al., 2022b; Yuan et al., 2021). While
these methods produce clear subgraph concepts, their explainability is limited to the instance level,
rather than the dataset or task level. Moreover, it is challenging to extract global subgraph concepts
from the local critical subgraphs generated by these methods. This is because local-level critical
subgraphs can be noisy, containing redundant substructures that are only crucial for certain local
predictions and not part of the core concepts at the global or task level. Removing such redundancy
to produce global-level subgraph concepts may require costly subgraph matching, which is known to
be NP-hard. In contrast, our approach removes redundant substructures by pruning the local subtrees,
as discussed in Section 4.1. The complexity of this redundancy removal process is less than O(enk),
much more efficient than the subgraph matching, where n and e are the number of nodes and edges
in each graph, and k is the number of local clusters.

Although local-level explanation approaches are not capable of producing global subgraph concepts
like our TreeX, we still perform an efficiency comparison of concept extraction between our method
and theirs. In Table 4, we compare the average elapsed time for explaining each data instance
on the BA-2Motifs and Mutagenicity datasets with two prominent local subgraph-level baselines,
SubgraphX (Yuan et al., 2021) and EiG-Search (Lu et al., 2024a). For the baselines, we use their
methods to explain all instances in the datasets and calculate the average elapsed time. For our
method, we first obtain the global explanations as discussed in Section 4.1, then apply the algorithm
described in Section 4.3 to produce local explanations for all instances, and finally divide the total
elapsed time by the number of instances.

In Table 4, we can observe that TreeX is much more efficient than SubgraphX, and as efficient
as EiG-Search, even though the latter ones only provides local-level graph explanations per graph
instance, while globally it is not able to generate behavior-defining subgraphs for the entire dataset
or task. In fact, TreeX has a more robust and stable local-level fidelity performance across different
benchmarks while the performance of GradCAM and EiG-Search may vary across benchmarks. This
again implies the value of further investigating and obtaining clean, less noisy and consistent global
graph explanations rather than per-instance explanations that existing works focus on.

6 CONCLUSION

In this paper, we introduce a novel approach TreeX for explaining MPGNNs from the perspective of
their distinct message-passing process. We extract intuitive and clear subgraph concepts by mining
over the full-L-hop subtrees at each graph instance, unlike existing approaches that identify latent
prototypes or human-defined rules. We utilize the last-layer node embeddings to help represent
the concepts, thereby avoiding additional complex calculations of the concept embeddings. Due
to this design, we are able to employ the global explanations extracted by our method to explain
the individual instances, while the existing global-level baselines fail to do so. Moreover, unlike
many existing GNN explaining approaches that solely focus on explaining the correct predictions of
GNNs, our approach offers insights of the causes of incorrect predictions. In the future, GNNs may
be refined with these insights to improve their classification performance.
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APPENDIX

A EXPLAINING LESS POWERFUL MPGNNS

The 1-WL test is able to decide the graph isomorphism in most real-world cases (Zopf, 2022).
Therefore, for the maximally expressive MPGNNs, we induce the subgraph-level concepts with the
full l-hop subtrees in Section 4.1. However, there exist many GNNs like GCN (Kipf & Welling, 2017)
and GraphSAGE (Hamilton et al., 2017) that are significantly less expressive than the 1-WL test. In
this subsection, we explain how these less expressive GNNs can be explained using our proposed
TreeX.

GCN (Kipf & Welling, 2017) updates node representations as:

h(l)
v = RELU

(
W ·MEAN

{
h(l−1)
u ,∀u ∈ N (v) ∪ {v}

})
, (8)

where W is a learnable matrix, and MEAN represents the element-wise mean-pooling.

GraphSAGE (Hamilton et al., 2017) updates node representations as the linear mapping on the
concatenation of the last-layer node embedding and the aggregation of the neighbouring node
embeddings:

h(l)
v = σ

(
W ·

[
h(l−1)
v ,MAX

({
σ
(
W · h(l−1)

u

)
,∀u ∈ N (v)

})])
, (9)

where MAX represents the element-wise max-pooling, σ refers to RELU.

A.1 RELATIONSHIP BETWEEN SUBTREES AND NODE EMBEDDINGS FOR LESS POWERFUL
MPGNNS

In Section 4.2, we have studied the node representations of the most expressive MPGNNs, i.e., the
ones as expressive as the 1-WL test, which is reviewed in Appendix B.1. In this subsection, we
discuss the less expressive GNNs by study the UPDATE and AGG functions of them.

If the UPDATE function is injective, then the distinctness of the embeddings will not change after
feeding into the UPDATE function. Therefore, if a l-th layer node embedding after AGG can maps
two distinct subtrees at the same time, then after the injective UPDATE function, it will represent the
same pair of distinct subtrees. This forms the following corollary.
Corollary A.1. Given a graphG = (V,E), let f(·) denote a L-layer GNN that updates the countable
layer-wise node-embeddings by Equation (1). We define the intermediate l-th layer embedding
derived by the AGG function of node v ∈ V as h(l)

v,AGG, where h(l)
v = UPDATE(l)

(
h
(l)
v,AGG

)
. Then the

following holds:

(i) If UPDATE is injective, then h
(l)
v is a Perfect Rooted Tree Representation of the full l-hop

subtree rooted at v if and only if h
(l)
v,AGG is a Perfect Rooted Tree Representation of the full

l-hop subtree rooted at v.

(ii) If UPDATE is injective, then h
(l)
v is a mapping of both a full l-hop subtree and another

non-isomorphic l-hop subtree rooted at v, if and only if h(l)
v is a mapping of the same pair

of non-isomorphic subtrees at the same time.

Proof. Please see Appendix B.3 for the proof.

In the family of WL-based GNNs, a 1-layer MLP (with bias term) or a 2-layer MLP is typically
used as the UPDATE function, which are both injective functions. Some variants of GNNs, like
GraphSAGE (Hamilton et al., 2017), may additionally utilize a concatenation as shown in Equation (9),
which is also injective. Therefore, we assume the UPDATE function in Equation (1) of less powerful
MPGNNs is a injective function.

Next, we discuss the AGG function in Equation (1), including the commonly used add-pooling, mean-
pooling and max-pooling methods. The most expressive add-pooling is discussed in Section 4.2.
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Mean-pooling, as investigated in (Xu et al., 2019), captures the “distributions” of elements in a
multiset. In other words, there may exist another subtree T (l)′

v that contain the same set of unique
elements as the full l-hop subtree T (l)

v , where the distribution of unique elements in T (l)′
v is the same

as in T (l)
v . Such two subtrees will have the same root node embedding if using the mean-pooling,

which can be treated as a perfect representation of the node distribution in the full l-hop rooted
subgraphs. GCN is an example of using mean-pooling as shown in Equation (8).

Max-pooling treats a multiset as a set (Xu et al., 2019). This means if there exists two subtrees T (l)′
v

and T (l)
v contain same set of unique elements, they will have the same root node embedding, which

can be treated as a perfect representation of the unique node set in the full l-hop rooted subgraphs.
GraphSAGE is an example of max-pooling as shown in Equation (9).

It is worth noting that the MPGNNs with mean-pooling or max-pooling tend to be less expressive
hence are less preferred for most tasks. Therefore, our primary focus in this paper is to explain
GNNs that demonstrate expressiveness comparable to the WL-test algorithm. In these GNNs, node
embeddings precisely represent the full l-hop subtrees.

A.2 HASH MODEL TO EXPLAIN THE LESS POWERFUL MPGNNS

As we discussed in Appendix A.1, GNNs that update the node embeddings by mean-pooling may
produce the same root node embeddings for the subtrees with the same node distribution, and the
ones using max-pooling may produce the same root node embeddings for the subtrees with the same
node set. For these GNNs, there is a higher risk of clustering multiple entirely different substructures
to the same concept as those non-isomorphic subtrees may share the same root node embedding.

To mitigate this issue, we introduce a hash model that aids in distinguishing global graph concepts
induced by subtrees with similar node distributions or node sets but significantly different structures.
Specifically, after we obtain the local clusters, we feed to each local graph concept to a hash model
Ω(·) that returns the graph embedding of it. Then, we concatenate the hashed graph embedding of
the local concept to its original embedding to obtain the updated embedding for it. Let mo be the
original embedding of local concept o, then the updated embedding m̂o is

m̂o = CONCAT (mo,Ω(o)) . (10)

The steps afterwards remain the same as we discussed in Section 4.1. A hash model should be able to
distinguish graph concepts that have the same node distribution or the same node set. For example,
the WL-test can be used as a hash model.

B LEMMAS AND PROOFS

B.1 REVIEW OF THE WL ALGORITHM

Algorithm 1 The 1-dimensional Weisfeiler-Lehman Algorithm
1: Input: Graph G = (V, E), the number of iterations T
2: Output: Color mapping XG : V → C
3: Initialize: XG(v) := hash(G[v]) for all v ∈ V
4: for t← 1 to T do
5: for each v ∈ V do
6: X t

G(v) := hash
(
X t−1

G (v), {{X t−1
G (u) : u ∈ NG(v)}}

)
7: break upon convergence
8: Return: X T

G

B.2 PROOF OF THEOREM 4.2

Proof. We proof Theorem 4.2 by Mathmetical Induction. In the base step, we aim to prove
Lemma B.1. In the Inductive step, we aim to prove Lemma B.2.
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Lemma B.1 (Base step). Given a graph G = (V,E) with the countable input node features X, and
a L-layer GNN f(·) that updates the layer-wise node-embeddings by Equation (1). Then ∀v ∈ V , the
first layer node embedding h

(1)
v is a Perfect Rooted Tree Representation of the 1-hop subtree rooted

at v, if the functions AGG and UPDATE in Equation (1) are injective.

Proof. Let Tv be the 1-hop subtree rooted at v in G. Assume h
(1)
v is not a Perfect Rooted Tree

Representation of Tv . Then either of the cases should hold:

(i) There exist another 1-hop subtree Tu, embeded by f(·) as h(1)
u , which is non-isomorphic to

Tv , but h(1)
v = h

(1)
u ;

(ii) There exist an isomorphic subtree Tu, embeded by f(·) as h(1)
u , where h

(1)
v ̸= h

(1)
u .

According to Equation (1), we can calculate h
(1)
v and h

(1)
u by:

h(1)
v = UPDATE(1)

(
Xv,AGG(1) ({Xw : w ∈ N (v)})

)
,

h(1)
u = UPDATE(1)

(
Xu,AGG(1) ({Xw : w ∈ N (u)})

)
,

We firstly consider Case (i). If Tv and Tu are non-isomorphic 1-hop subtrees, then Xu ̸= Xv, or
the multisets {Xw : w ∈ N (v)} ≠ {Xw : w ∈ N (u)}. Recall that an injective function g(·) refers
to a function that that maps distinct elements of its domain to distinct elements. That is, x1 ̸= x2
implies g(x1) ̸= g(x2); x1 = x2 implies g(x1) = g(x2). If Xu ̸= Xv or {Xw : w ∈ N (v)} ̸=
{Xw : w ∈ N (u)}, since AGG and UPDATE are injective, we have h

(1)
v ̸= h

(1)
u . Hence we have

reached a contradiction.

Next, we consider Case (ii). If Tu is isomorphic to Tv, then Xu = Xv and the multisets
{Xw : w ∈ N (v)} = {Xw : w ∈ N (u)}. Since AGG and UPDATE are both injective, we have
h
(1)
v = h

(1)
u . Hence we have reached a contradiction.

Therefore, if the functions AGG and UPDATE in Equation (1) are injective, h(1)
v is a Perfect Rooted

Tree Representation of the 1-hop subtree rooted at v.

Lemma B.2 (Inductive step). Given a graph G = (V,E), assume the countable node representation
h
(l−1)
v for v ∈ V be the Perfect Rooted Tree Representation of the corresponding (l−1)-hop subtrees

rooted at v. We calculate the l-th layer representation of v, i.e., h(l)
v , using Equation (1). Then h

(l)
v is

a Perfect Rooted Tree Representation of the full l-hop subtree rooted at v if the functions AGG and
UPDATE are injective.

Proof. Let T (l)
v be the full l-hop subtree rooted at v in G. Assume h

(l)
v is not a Perfect Rooted Tree

Representation of the full l-hop subtree rooted at v. Then, either of the following cases should hold:

(i) There exist another full l-hop subtree T (l)
u , embeded by f(·) as h(l)

u , which is non-isomorphic
to T (l)

v , but h(l)
v = h

(l)
u ;

(ii) There exist an isomorphic subtree T (l)
u , embeded by f(·) as h(l)

u , where h
(l)
v ̸= h

(l)
u .

According to Equation (1), we can calculate h
(1)
v and h

(1)
u by:

h(l)
v = UPDATE(l)

(
h(l−1)
v ,AGG(l)

({
h(l−1)
w : w ∈ N (v)

}))
,

h(l)
u = UPDATE(l)

(
h(l−1)
u ,AGG(l)

({
h(l−1)
w : w ∈ N (u)

}))
.

First, we consider Case (i). If T (l)
v and T

(l)
u are non-isomorphic full l-hop subtrees, then the

(l−1)-hop subtrees T (l−1)
v and T (l−1)

u are non-isomorphic, or the multisets
{
h
(l−1)
w : w ∈ N (v)

}
̸={

h
(l−1)
w : w ∈ N (u)

}
.
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Since h
(l−1)
v is the Perfect Rooted Tree Representation of the corresponding (l − 1)-hop subtrees

rooted at v, we have: If T (l−1)
v and T

(l−1)
u are non-isomorphic, then h

(l−1)
v ̸= h

(l−1)
u . Since

the functions AGG and UPDATE are injective, we have h
(l)
v ̸= h

(l)
u . Hence we have reached a

contradiction.

Next, we consider Case (ii). If T (l)
u is isomorphic to T (l)

v , then the (l − 1)-hop subtress T (l−1)
u

and T
(l−1)
v are also isomorphic. And we have and the multisets

{
h
(l−1)
w : w ∈ N (v)

}
={

h
(l−1)
w : w ∈ N (u)

}
. Since h

(l−1)
v is the Perfect Rooted Tree Representation of the corresponding

(l−1)-hop subtrees rooted at v, we have h(l−1)
v = h

(l−1)
u . Since AGG and UPDATE are both injective,

we have h
(l)
v = h

(l)
u . Hence we have reached a contradiction.

Therefore, if the functions AGG and UPDATE in Equation (1) are injective, h(l−1)
v for v ∈ V be the

Perfect Rooted Tree Representation of the corresponding (l − 1)-hop subtrees rooted at v, then h
(l)
v

is a Perfect Rooted Tree Representation of the 1-hop subtree rooted at v.

The following lemma shows that if the input of a GNN is countable, then the node embeddings are
also countable.

Lemma B.3. (Xu et al., 2019) Assume the input feature X is countable. Let g(l) be the function
parameterized by a GNN’s l-th layer for l = 1, . . . , L, where g(1) is defined on multisets X ⊂ X of
bounded size. The range of g(l), i.e., the space of node hidden features h(l)

v , is also countable for all
l = 1, . . . , L.

This lemma implies that if the input Xv for any v is countable, then h
(l)
v for any l is also countable,

making our assumption in Lemma B.2 valid.

Hence, we have proved Theorem 4.2 using Mathmetical Induction.

B.3 PROOF OF COROLLARY A.1

Proof. We first prove (i). Firstly, we assume h
(l)
v,AGG is a Perfect Rooted Tree Representation of

the full l-hop subtree Tv rooted at v. By Definition 4.1, for any arbitrary same-depth rooted tree
Tu in the same countable space, h(l)

v,AGG = h
(l)
u,AGG if and only if Tv is isomorphic to Tu. Since

UPDATE is injective, we have for any arbitrary same-depth rooted tree Tu in the same countable
space, h(l)

v = h
(l)
u if and only if Tv is isomorphic to Tu. Therefore, if UPDATE is injective and

h
(l)
v,AGG is a Perfect Rooted Tree Representation of the full l-hop subtree Tv rooted at v, then h

(l)
v is a

Perfect Rooted Tree Representation of the full l-hop subtree rooted at v.

Secondly, we assume h
(l)
v,AGG is not a Perfect Rooted Tree Representation of the full l-hop subtree Tv

rooted at v. Then Definition 4.1 does not hold, which means either of the following cases holds:

• Tv and Tu are isomorphic, but h(l)
v,AGG ̸= h

(l)
u,AGG;

• Tv and Tu are non-isomorphic, but h(l)
v,AGG = h

(l)
u,AGG.

Since UPDATE is injective, either of the following cases holds:

• Tv and Tu are isomorphic, but h(l)
v ̸= h

(l)
u ;

• Tv and Tu are non-isomorphic, but h(l)
v = h

(l)
u .
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Therefore, if UPDATE is injective and h
(l)
v,AGG is not a Perfect Rooted Tree Representation of the full

l-hop subtree Tv rooted at v, then h
(l)
v is not a Perfect Rooted Tree Representation of the full l-hop

subtree rooted at v.

Hence we can conclude that if UPDATE is injective, then h
(l)
v is a Perfect Rooted Tree Representation

of the full l-hop subtree rooted at v if and only if h
(l)
v,AGG is a Perfect Rooted Tree Representation of

the full l-hop subtree rooted at v.

Similarly, we prove (ii). Firstly, we assume h
(l)
v,AGG is a mapping of both a full l-hop subtree

T
(l)
v = (V

T
(l)
v
, E

T
(l)
v
) and another non-isomorphic l-hop subtree T (l)′

v = (V
T

(l)′
v
, E

T
(l)′
v

) rooted at

v. Let h(l)
v,AGG denote the intermediate l-th layer embedding derived by the AGG function on T (l)

v ,

h
(l)′
v,AGG denote the intermediate l-th layer embedding derived by the AGG function on T (l)′

v . Then we

get h(l)
v,AGG = h

(l)′
v,AGG. Since UPDATE is injective, h(l)

v = h
(l)′
v , where h

(l)′
v is the node embedding

computed using the same function as h(l)
v , but on T (l)′

v . Therefore, if UPDATE is injective and h
(l)
v,AGG

is a mapping of both a full l-hop subtree and another l-hop subtree rooted at v, then h
(l)
v is a mapping

of the same pair of non-isomorphic trees rooted at v.

Finally we assume h
(l)
v,AGG is not a mapping of both a full l-hop subtree and another l-hop subtree

rooted at v. In other words, T (l)
v and a non-isomorphic subtree T (l)′

v always have their distinct
representations h

(l)
v,AGG and h

(l)′
v,AGG, where h

(l)
v,AGG ̸= h

(l)′
v,AGG. Since UPDATE is injective, we have

h
(l)
v ̸= h

(l)′
v . Therefore, if UPDATE is injective and h

(l)
v,AGG is not a mapping of both a full l-hop

subtree and another l-hop subtree rooted at v, then h
(l)
v is a mapping of both a full l-hop subtree and

another non-isomorphic l-hop subtree rooted at v at the same time.

Hence we conclude that if UPDATE is injective, then h
(l)
v is a mapping of both a full l-hop subtree

and another non-isomorphic l-hop subtree rooted at v, if and only if h(l)
v is a mapping of both a full

l-hop subtree and another non-isomorphic l-hop subtree rooted at v at the same time.

C STATISTICS OF DATASETS AND MODELS

Dataset Statistics are presented in Table 5. Implementation details of the GNNs for explainablity
in this paper is shown in Table 6. The GNNs were trained and evaluated by randomly splitting
the datasets into training/validation/testing sets at 0.8/0.1/0.1 ratio. The random seed we used was
1234 while we split the data. For the baseline performance reported in Table 1 and 2, we utilize
their implementations in the DGL library (Wang et al., 2019) and evaluate their performance at
sparsity=0.5. All the experiments were conducted on a machine with an Intel Core i7-10700K
processor with 64 GB RAM and a single NVIDIA GeForce RTX 3090 GPU.

Table 5: Statistics of datasets.

Datasets BA-2Motifs BAMultiShapes Mutagenicity NCI1
#nodes #edges #nodes #edges #nodes #edges #nodes #edges

mean 25 51 40 87.5 30.3 61.5 29.9 64.6
std 0 1 0 7.2 20.1 33.6 13.6 29.9
min 25 49 40 78 4 6 3 4
quantile25 25 50 40 78 19 38 21 46
median 25 50 40 90 27 56 27 58
quantile75 25 52 40 92 35 76 35 76
max 25 52 40 100 417 224 111 238
#graphs 1000 1000 4337 4110
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Table 6: Details of the GNN models used to produce our experimental results, where “hidden” is the
latent dimension size, and L is the number of GNN layers.

Datasets BA-2Motifs BAMultiShapes Mutagenicity NCI1
number of GNN layers 3 3 3 3
hidden 32 32 64 64
global pooling mean mean mean mean
layer type GIN GIN GIN GIN
learning rate 0.01 0.01 0.01 0.01
batch size 256 256 256 256
epochs 200 200 200 200

train acc 1.00 0.99 0.91 0.95
test acc 1.00 0.97 0.81 0.80

D MORE EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS ON BAMULTISHAPES AND NCI1

Figure 5 presents the global explanations produced by various global explainers on BAMultiShapes
and NCI1 datasets. For the NCI1 dataset, we cannot map the node type numbers to the actual atoms
because that information was not available. So, the explanations we provide only include the node
type numbers. GLGExplainer generates long Boolean formulas on BAMultiShapes dataset. However,
it fails to identify the house motif. Moreover, the predicates in the Class 1 formula, namely (P1 ∧P3),
(P2 ∧ P5) and (P5 ∧ P1), are not faithful to the ground-truth, as they require the presence of multiple
grids or multiple wheels in Class 1 graphs. Recall that the ground-truth rules of BAMultiShapes is
that Class 0 includes plain BA graphs and those with individual motifs or a combination of all three,
whereas Class 1 comprises BA graphs enriched with any two of the three motifs. Furthermore, the
Boolean formulas from GLGExplainer on NCI1 is a bit confusing, since P0 ∨ (P0 ∧ P1) is logically
equivalent to P0. Consequently, for the NCI1 dataset, GLGExplainer only provides random local
explanations of each prototype, where Prototype 0 stands for Class 0 and Prototype 1 stands for
Class 1. The insights provided by these random local explanations are less informative. On the other
hand, the global explanations from GCNeuron are relatively less intuitive as negations are frequently
involved, and they are challenging for humans to understand.

In contrast, our approach successfully identifies all the outstanding motifs for the BAMultiShapes
dataset, namely, the house, wheel, as well as grid motifs. In particular, TreeX recognize the patterns
in Barabasi-Albert (BA) graphs as the Class 0 motifs, and house, wheel, grid as the Class 1 motifs, by
identifying higher confidence on these motifs at each class. This is reasonable because, as shown
in Table 5, all the data samples in BAMultiShapes contain 40 nodes. Hence, if more house, wheel
or grid motifs are included in a graph, then less BA patterns will be in it. Given that all the Class 1
graphs contain two out of three motifs in house, wheel or grid, whereas most Class 0 graphs contain
at most one of the three motifs, it is reasonable for the GNNs to consider that the Class 0 graphs
contains a larger portion of BA patterns than the Class 1 graphs. Additionally, neither TreeX nor
GLGExplainer is able to capture the ground truth rule that graphs contain all of the three motifs
are Class 0 graphs, which is as expected, since as shown in Table 6, the GIN does not achieve
perfect accuracy on BAMultiShapes. These experimental results have demonstrate that our approach
has the potential to provide insights into some occasionally incorrect rules learned by the model.
For the NCI1 dataset, the inherent design of TreeX allows it to capture larger graph patterns than
GLGExplainer and GCNeuron.

D.2 HYPERPARAMETERS IN TREEX

TreeX involves several hyperparameters, including the number of local clusters k in local subtree
mining, the number of global clusters m in global clustering, and the weighting factor λ while
generating global rules. In this section, we present the hyperparameter settings used in our experiments
and explain how we determine them.
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Figure 5: Global explanations by TreeX (ours), GCNeuron and GLGExplainer on BAMultiShapes
and NCI1 datasets. We run both baseline methods so that they explain the same GNN models as our
approach.
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Number of local clusters k. The choice of this hyperparameter has minimal impact on the results
of the global-level explanation, as long as k is not excessively small. For instance, when we select k
from the range 3, 4, 5, 6, 7, 8, 9, 10, TreeX consistently identifies the five-node cycle and the house
motifs with high confidence. This is because the local clustering algorithm, whether k-means or
the EM algorithm, automatically adapts by shrinking to a smaller number of clusters when a larger
number is allowed. Generally, we recommend setting k to be 1 to 3, plus the number of classes. In
our experiments, we set k = 3 for BA-2Motifs and k = 5 for all other datasets.

Number of global clusters m. We determine the number of global concepts with the help of the
prediction accuracy fidelity performance. We plot the accuracy fidelity performance with respect to
the number of global concepts in Figure 6. It shows that TreeX can achieve high fidelity performance
even with a small number of global concepts.
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Figure 6: Fidelity performance of TreeX, with respect to the number of global concepts, using
Kmeans as the local clustering algorithm.

To prevent the number of global clusters from being too small, we evaluate the fidelity across various
values of m and choose the one that achieves nearly optimal fidelity performance. In our experiments,
we set m = 6, 30, 30, 30 for the four datasets repectively. It’s important to note that since m also
determines the dimension of the trainable parameter w, setting this value to be excessively large may
result in increased training time and is not recommended.
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Figure 7: Maximum of total subtree weights in each instance with respect to λ on each dataset.

Weighting factor λ. As we discussed in Section 4.1, we introduce a penalty term on the trainable
weights w to emulate global-level pooling commonly utilized in GNNs. For instance, in the case
of GNNs employing global mean pooling, we regulate λ to ensure that

∑
(wKi) for each instance

Gi does not exceed 1. It’s important to note that
∑

(wKi) is not strictly constrained to equal 1
because some unimportant features may not necessarily contribute to increasing the likelihood of
predicting the target class. And if the sum significantly exceeds 1, it may lead to unexpected behavior,
as the pooled embedding may fall outside the expected distribution. We aim to control λ so that
max([

∑
(wKi),∀Gi ∈ D]) is within the range of [0.1, 1]. Figure 7 shows the maximum of total

subtree weights in each instance with respect to λ on each dataset. Based on the results, we choose
λ = 0.01 for BA-2Motifs, λ = 1 for BAMultiShapes, Mutagenicity and NCI1.
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D.3 VISUALIZATION OF GLOBAL EXPLANATIONS ON DATA INSTANCES

Figure 8, 9, 10, 11 visualize the global explanations extracted using our approach on the actual data
instances. We can easily observe that the five-node cycles and house motifs are accurately highlighted
on the graphs at the corresponding classes in the BA-2Motifs dataset. For BAMultiShapes, the BA
patterns for Class 0, as well as house, wheel, grid motifs for Class 1 are clearly illustrated. On
Mutagenicity and NCI1, TreeX is able to highlight functional groups such as “-NO2”, “-NH2”,
“-NO”.
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Figure 8: Visualization of the global explanations extracted by TreeX on the actual data instances of
the BA-2Motifs dataset.
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Figure 9: Visualization of the global explanations extracted by TreeX on the actual data instances of
the BAMultiShapes dataset.
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Figure 10: Visualization of the global explanations extracted by TreeX on the actual data instances of
the Mutagenicity dataset.
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Figure 11: Visualization of the global explanations extracted by TreeX on the actual data instances of
the NCI1 dataset.
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