
ar
X

iv
:2

00
6.

16
49

5v
1

 [
st

at
.M

L
]

 3
0

Ju
n

20
20

Guarantees for Tuning the Step Size using a Learning-to-Learn

Approach

Xiang Wang∗ Shuai Yuan† Chenwei Wu‡ Rong Ge§

July 1, 2020

Abstract

Learning-to-learn – using optimization algorithms to learn a new optimizer – has successfully trained efficient

optimizers in practice. This approach relies on meta-gradient descent on a meta-objective based on the trajectory

that the optimizer generates. However, there were few theoretical guarantees on how to avoid meta-gradient ex-

plosion/vanishing problems, or how to train an optimizer with good generalization performance. In this paper we

study the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss. Our results show

that although there is a way to design the meta-objective so that the meta-gradient remain polynomially bounded,

computing the meta-gradient directly using backpropagation leads to numerical issues that look similar to gradient

explosion/vanishing problems. We also characterize when it is necessary to compute the meta-objective on a separate

validation set instead of the original training set. Finally, we verify our results empirically and show that a similar

phenomenon appears even for more complicated learned optimizers parametrized by neural networks.

1 Introduction

Choosing the right optimization algorithm and related hyper-parameters is important for training a deep neural net-

work. Recently, a series of works (e.g., Andrychowicz et al. (2016); Wichrowska et al. (2017)) proposed to use learn-

ing algorithms to find a better optimizer. These papers use a learning-to-learn approach: they design a class of possible

optimizers (often parametrized by a neural network), and then optimize the parameters of the optimizer (later referred

to as meta-parameters) to achieve better performance. We refer to the optimization of the optimizer as the meta

optimization problem, and the application of the learned optimizer as the inner optimization problem. The learning-

to-learn approach solves the meta optimization problem by defining a meta-objective function based on the trajectory

that the inner-optimizer generates, and then using back-propagation to compute the meta-gradient.

Although the learning-to-learn approach has shown empirical success, there are very few theoretical guarantees

for learned optimizers. In particular, since the optimization for meta-parameters is usually a nonconvex problem, does

it have bad local optimal solutions? Current ways of optimizing meta-parameters rely on unrolling the trajectory of

the inner-optimizer, which is very expensive and often lead to exploding/vanishing gradient problems, is there a way

to alleviate these problems? Can we have a provable way of designing meta-objective to make sure that the inner

optimizers can achieve good generalization performance?

In this paper we answer some of these problems in a simple setting, where we use the learning-to-learn approach

to tune the step size of the standard gradient descent/stochastic gradient descent algorithm. We will see that even in

this simple setting, many of the challenges still remain and we can get better learned optimizers by choosing the right

meta-objective function. Though our results are proved only in the simple setting, we empirically verify the results

using complicated learned optimizers with neural network parametrizations.

∗Duke University. Email: xwang@cs.duke.edu
†Duke University. Email: shuai@cs.duke.edu
‡Duke University. Email: chenwei.wu592@duke.edu
§Duke University. Email: rongge@cs.duke.edu

1

http://arxiv.org/abs/2006.16495v1

1.1 Challenges of learning-to-learn approach and our results

Metz et al. (2019) highlighted several challenges in the meta-optimization for learning-to-learn approach. First, they

observed that the optimal parameters for the learned optimizer (or even just the step size for gradient descent) can

depend on the number of training steps t of the inner-optimization problem. This was also separately proved theoreti-

cally in a least-squares setting in Ge et al. (2019). Because of this, one needs to do the meta-training for an optimizer

that runs for enough number of steps (similar to the number of steps that it would take when we apply the learned

optimizer). However, when the number of steps is large, the meta-gradient can often explode or vanish, which makes

it difficult to solve the meta-optimization problem.

Our first result shows that this is still true in the case of tuning step size for gradient descent on a simple quadratic

objective. In this setting, we show that there is a unique local and global minimizer for the step size, and we also give

a simple way to get rid of the gradient explosion/vanishing problem.

Theorem 1 (Informal). For tuning the step size of gradient descent on a quadratic objective, if the meta-objective is

the loss of the last iteration, then the meta-gradient can explode/vanish. If the meta-objective is the log of the loss of

the last iteration, then the meta-gradient is polynomially bounded. Further, doing meta-gradient descent with a step

size of 1/
√
k (where k is the number of meta-gradient steps) provably converges to the optimal step size.

Surprisingly, even though taking the log of the objective solves the gradient explosion/vanishing problem, one can-

not simply implement such an algorithm using auto-differentiation tools such as those used in TensorFlow (Abadi et al.,

2016). The reason is that even though the meta-gradient is polynomially bounded, if we compute the meta-gradient

using the standard back-propagation algorithm, the meta-gradient will be the ratio of two exponentially large/small

numbers, which causes numerical issues. Detailed discussion for the first result appears in Section 3.

Another challenge is about the generalization performance of the learned optimizer. If one just tries to optimize

the performance of the learned optimizer on the training set (we refer to this as the train-by-train approach), then the

learned optimizer might overfit. Metz et al. (2019) proposed to use a train-by-validation approach instead, where the

meta-objective is defined to be the performance of the learned optimizer on a separate validation set.

Our second result considers a simple least squares setting where y = 〈w∗, x〉+ ξ and ξ ∼ N (0, σ2). We show that

when the number of samples is small and the noise is large, it is important to use train-by-validation; while when the

number of samples is much larger train-by-train can also learn a good optimizer.

Theorem 2 (Informal). For a simple least squares problem in d dimensions, if the number of samples n is a constant

fraction of d (e.g., d/2), and the samples have large noise, then the train-by-train approach performs much worse

than train-by-validation. On the other hand, when number of samples n is large, train-by-train can get close to error

dσ2/n, which is optimal.

We discuss the details in Section 4. In Section 5 we show that such observations also hold empirically for more

complicated learned optimizers – for an optimizer parametrized by neural network, the generalization performance of

train-by-validation is better when there is more noise or when there are fewer training data.

1.2 Related work

Learning-to-learn for supervised learning The idea of using a neural network to parametrize an optimizer started

in Andrychowicz et al. (2016), which used an LSTM to directly learn the update rule. Before that, the idea of using

optimization to tune parameters for optimzers also appeared in Maclaurin et al. (2015). Later, Li and Malik (2016);

Bello et al. (2017) applied techniques from reinforcement learning to learn an optimizer. Wichrowska et al. (2017)

used a hierarchical RNN as the optimizer. Metz et al. (2019) adopted a small MLP as the optimizer and used dynamic

weighting of two gradient estimators to stabilize and speedup the meta-training process.

Learning-to-learn in other settings Ravi and Larochelle (2016) used LSTM as a meta-learner to learn the update

rule for training neural networks in the few-shot learning setting, Wang et al. (2016) learned an RL algorithm by

another meta-learning RL algorithm, and Duan et al. (2016) learned a general-purpose RNN that can adapt to different

RL tasks.

2

Gradient-based meta-learning Finn et al. (2017) proposed Model-Agnostic Meta-Learning (MAML) where they

parameterize the update rule (optimizer) for network parameters and learn a shared initialization for the optimizer using

the tasks sampled from some distribution. Subsequent works generalized or improved MAML, e.g., Rusu et al. (2018)

learned a low-dimensional latent representation for gradient-based meta-learning, and Li et al. (2017) generalized

MAML and enabled the concurrent learning of learning rate and update direction.

Learning assisted algorithms design Similar ideas can also be extended to applications of learning in algorithms

design, where one tries to develop a meta-algorithm selecting an algorithm from a family of parametrized algorithms.

For theoretical guarantees on these meta-algorithms, Gupta and Roughgarden (2017) first established this framework

which models the algorithm-selection process as a statistical learning problem. In particular, their framework can

bound the number of tasks it takes to tune a step size for gradient descent. However, they didn’t consider the meta-

optimization problem. Based on Gupta and Roughgarden (2017), people have developed and analyzed the meta-

algorithms for partitioning and clustering (Balcan et al., 2016), tree search (Balcan et al., 2018a), pruning (Alabi et al.,

2019), machanism design (Balcan et al., 2018c), ridge regression (Denevi et al., 2018), stochastic gradient descent

(Denevi et al., 2019), and private optimization (Balcan et al., 2018b).

Tuning step size/step size schedule for SGD Shamir and Zhang (2013) showed that SGD with polynomial step

size scheduling can almost match the minimax rate in convex non-smooth settings, which was later tightened by

Harvey et al. (2018) for standard step size scheduling. Assuming that the horizon T is known to the algorithm, the

information-theoretically optimal bound in convex non-smooth setting was later achieved by Jain et al. (2019) which

used another step size schedule, and Ge et al. (2019) showed that exponentially decaying step size scheduling can

achieve near optimal rate for least squares regression.

2 Preliminaries

In this section, we first introduce some notations, then formulate the learning-to-learn framework.

2.1 Notations

For any integer n, we use [n] to denote {1, 2, · · · , n}. We use ‖·‖ to denote the ℓ2 norm for a vector and the spectral

norm for a matrix. We use 〈·, ·〉 to denote the inner product of two vectors. For a symmetric matrix A ∈ R
d×d, we

denote its eigenvalues as λ1(A) ≥ · · · ≥ λd(A). We denote the d-dimensional identity matrix as Id. We also denote

the identity matrix simply as I when the dimension is clear from the context. We use O(·),Ω(·),Θ(·) to hide constant

factor dependencies. We use poly(·) to represent a polynomial on the relevant parameters with constant degree.

2.2 Learning-to-learn framework

We consider the learning-to-learn approach applied to training a distribution of learning tasks. Each task is specified

by a tuple (D, Strain, Svalid, ℓ). Here D is a distribution of samples in X × Y , where X is the domain for the sample

and Y is the domain for the label/value. The sets Strain and Svalid are samples generated independently from D, which

serve as the training and validation set (the validation set is optional). The learning task looks to find a parameter

w ∈ W that minimizes the loss function ℓ(w, x, y) : W × X × Y → R, which gives the loss of the parameter w

for sample (x, y). The training loss for this task is f̂(w) := 1
|Strain|

∑

(x,y)∈Strain
ℓ(w, x, y), while the population loss is

f(w) := E(x,y)∼D[ℓ(w, x, y)].
The goal of inner-optimization is to minimize the population loss f(w). For the learned optimizer, we consider it

as an update rule u(·) on weight w. The update rule is a parameterized function that maps the weight at step τ and

its history to the step τ + 1 : wτ+1 = u(wτ ,∇f̂(wτ),∇f̂(wτ−1), · · · ; θ). In most parts of this paper, we consider

the update rule u as gradient descent mapping with step size as the trainable parameter (here θ = η which is the step

size for gradient descent). That is, uη(w) = w − η∇f̂(w) for gradient descent and uη(w) = w − η∇wℓ(w, x, y) for

stochastic gradient descent where (x, y) is a sample randomly chosen from the training set Strain.

3

In the outer (meta) level, we consider a distribution T of tasks. For each task P ∼ T , we can define a meta-

loss function ∆(θ, P). The meta-loss function measures the performance of the optimizer on this learning task. The

meta objective, for example, can be chosen as the target training loss f̂ at the last iteration (this is the train-by-train

approach), or the loss on the validation set (train-by-validation).

The training loss for the meta-level is the average of the meta-loss across m different specific tasks P1, P2, ..., Pm,

that is, F̂ (θ) = 1
m

∑m
i=1 ∆(θ, Pk). The population loss for the meta-level is the expectation over all the possible

specific tasks F (θ) = EP∼T [∆(θ, P)].
In order to train an optimizer by gradient descent, we need to compute the gradient of meta-objective F̂ in terms

of meta parameters θ. The meta parameter is updated once after applying the optimizer on the inner objective t times

to generate the trajectory w0, w1, ..., wt. The meta-gradient is then computed by unrolling the optimization process

and back-propagating through the t applications of the optimizer. As we will see later, this unroll procedure is costly

and can introduce meta-gradient explosion/vanishing problems.

3 Alleviating gradient explosion/vanishing problem for quadratic objective

First we consider the meta-gradient explosion/vanishing problem. More precisely, we say the meta-gradient ex-

plodes/vanishes if it is exponentially large/small with respect to the number of steps t of the inner-optimizer.

In this section, we consider a very simple instance of the learning-to-learn approach, where the distribution T
only contains a single task P , and the task also just defines a single loss function f 1. Therefore, in this section

F̂ (η) = F (η) = ∆(η, P). We will simplify notation and only use F̂ (η).
The inner task P is a simple quadratic problem, where the starting point is fixed at w0, and the loss function is

f(w) = 1
2w

⊤Hw for some fixed positive definite matrix H . Without loss of generality, assume w0 has unit ℓ2 norm.

Suppose the eigenvalue decomposition of H is
∑d

i=1 λiuiu
⊤
i . Throughout this section we assume L = λ1(H) and

α = λd(H) are the largest and smallest eigenvalues of H with L > α. For each i ∈ [d], let ci be 〈w0, ui〉 and

let cmin = min(|c1|, |cd|). We assume cmin > 0 for simplicity. If w0 is randomly and uniformly sampled from the

unit sphere, with 0.99 probability cmin is Θ(1/
√
d). Let {wτ,η} be the GD sequence running on f(w) starting from

w0 with step size η. We consider several ways of defining meta-objective, including using the loss of the last point

directly, or using the log of this value. We first show that although choosing F̂ (η) = f(wt,η) does not have any bad

local optimal solution, it has the gradient explosion/vanishing problem.

Theorem 3. Let the meta objective be F̂ (η) = f(wt,η) =
1
2w

⊤
t,ηHwt,η. We know F̂ (η) is a strictly convex function in

η with an unique minimizer. However, for any step size η < 2/L, |F̂ ′(η)| ≤ t
∑d

i=1 c
2
iλ

2
i |1 − ηλi|2t−1; for any step

size η > 2/L, |F̂ ′(η)| ≥ c21L
2t(ηL − 1)2t−1 − L2t.

Note that in Theorem 3, when η < 2/L, |F̂ ′(η)| is exponentially small because |1− ηλi| < 1 for all i ∈ [d]; when

η > 2/L, |F̂ ′(η)| is exponentially large because ηL−1 > 1. Intuitively, gradient explosion/vanishing happens because

the meta-loss function becomes too small or too large. A natural idea to fix the problem is to take the log of the meta-

loss function to reduce its range. We show that this indeed works. More precisely, if we choose F̂ (η) = 1
t log f(wt,η),

then we have

Theorem 4. Let the meta objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer η∗ and F̂ ′(η) =

O
(

L3

c2minα(L−α)

)

for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with meta step size µk = 1/
√
k. Suppose

the starting step size η0 ≤ M. Given any 1/L > ǫ > 0, there exists k′ = M6

ǫ2 poly(1
cmin

, L, 1
α ,

1
L−α) such that for all

k ≥ k′, |ηk − η∗| ≤ ǫ.

For convenience, in the above algorithmic result, we reset η to zero once η goes negative. Note that although we

show the gradient is bounded and there is a unique optimizer, the problem of optimizing η is still not convex because

the meta-gradient is not monotone. We use ideas from quasi-convex optimization to show that meta-gradient descent

can find the unique optimal step size for this problem.

1In the notation of Section 2, one can think that D contains a single point (0, 0) and the loss function f(w) = ℓ(w, 0, 0).

4

Surprisingly, even though we showed that the meta-gradient is bounded, it cannot be effectively computed by doing

back-propagation due to numerical issues. More precisely:

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-gradient using

back-propagation, there are intermediate results that are exponentially large/small in number of inner-steps t.

Indeed, in Section 5 we empirically verify that standard auto-differentiation tools can still fail in this setting. This

suggests that one should be more careful about using standard back-propagation in the learning-to-learn approach.

The proofs of the results in this section are deferred into Appendix A.

4 Train-by-train vs. train-by-validation

Next we consider the generalization ability of simple optimizers. In this section we consider a simple family of

least squares problems. Let T be a distribution of tasks where every task (D(w∗), Strain, Svalid, ℓ) is determined by a

parameter w∗ ∈ R
d which is chosen uniformly at random on the unit sphere. For each individual task, (x, y) ∼ D(w∗)

is generated by first choosing x ∼ N (0, Id) and then computing y = 〈w∗, x〉 + ξ where ξ ∼ N (0, σ2) with σ ≥ 1.

The loss function ℓ(w, x, y) is just the squared loss ℓ(w, x, y) = 1
2 (y − 〈w, x〉)2. That is, the tasks are just standard

least-squares problems with ground-truth equal to w∗ and noise level σ2.

For the meta-loss function, we consider two different settings. In the train-by-train setting, the training set Strain

contains n independent samples, and the meta-loss function is chosen to be the training loss. That is, in each task P ,

we first choose w∗ uniformly at random, then generate (x1, y1), ..., (xn, yn) as the training set Strain. The meta-loss

function ∆TbT (n)(η, P) is defined to be

∆TbT (n)(η, P) =
1

2n

n
∑

i=1

(yi − 〈wt,η, xi〉)2.

Here wt,η is the result of running t iterations of gradient descent starting from point 0 with step size η. Note we

truncate a sequence and declare the meta loss is high once the wight norm exceeds certain threshold. Specifically, if

at the τ -th step, ‖wτ,η‖ ≥ 40σ, we freeze the training on this task and set w
(k)
τ ′,η = 40σu for all τ ≤ τ ′ ≤ t, for some

arbitrary vector u with unit norm. As before, the empirical meta objective in train-by-train setting is the average of the

meta-loss across m different specific tasks P1, P2, ..., Pm, that is,

F̂TbT (n)(η) =
1

m

m
∑

k=1

∆TbT (n)(η, Pk). (1)

In the train-by-validation setting, the specific tasks are generated by sampling n1 training samples and n2 vali-

dation samples for each task, and the meta-loss function is chosen to be the validation loss. That is, in each specific

task P , we first choose w∗ uniformly at random, then generate (x1, y1), ..., (xn1 , yn1) as the training set Strain and

(x′
1, y

′
1), ..., (x

′
n2
, y′n2

) as the validation set Svalid. The meta-loss function ∆TbV (n1,n2)(η, P) is defined to be

∆TbV (n1,n2)(η, P) =
1

2n2

n2
∑

i=1

(y′i − 〈wt,η, x
′
i〉)2.

Here again wt,η is the result of running t iterations of the gradient descent on the training set starting from point 0, and

we use the same truncation as before. The empirical meta objective is defined as

F̂TbV (n1,n2)(η) =
1

m

m
∑

k=1

∆TbV (n1,n2)(η, Pk), (2)

where each Pk is independently sampled according to the described procedure.

We first show that when the number of samples is small (in particular n < d) and the noise is a large enough

constant, train-by-train can be much worse than train-by-validation, even when n1 + n2 = n (the total number of

samples used in train-by-validation is the same as train-by-train)

5

Theorem 5. Let F̂TbT (n)(η) and F̂TbV (n1,n2)(η) be as defined in Equation (1) and Equation (2) respectively. Assume

n, n1, n2 ∈ [d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training

tasks m ≥ c3 log(mt) and dimension d ≥ c4 log(mt) for certain constants c2, c3, c4. With probability at least 0.99 in

the sampling of training tasks, we have

η∗train = Θ(1) and E
∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(1)σ2,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η);

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argminη≥0 F̂TbV (n1,n2)(η). In both equations the expectation is taken over new tasks.

In the lower bound of E
∥

∥wt,η∗

train
− w∗∥

∥

2
, Ω(1) hides no dependency on σ. Note that in this case, the number of

samples n is smaller than d, so the least square problem is under-determined and the optimal training loss would go

to 0 (there is always a way to simultaneously satisfy all n equations). This is exactly what train-by-train would do – it

will choose a large constant learning rate which guarantees the optimizer converges exponentially to the empirical risk

minimizer (ERM). However, when the noise is large making the training loss go to 0 will overfit to the noise and hurt

the generalization performance. Train-by-validation on the other hand will choose a smaller learning rate which allows

it to leverage the information in the training samples without overfitting to noise. Theorem 5 is proved in Appendix B.

We also prove similar results for SGD in Appendix D

We emphasize that neural networks are often over-parameterized, which corresponds to the case when d > n.

Indeed Liu and Belkin (2018) showed that variants of stochastic gradient descent can converge to the empirical risk

minimizer with exponential rate in this case. Therefore in order to train neural networks, it is better to use train-by-

validation. On the other hand, we show when the number of samples is large (n ≫ d), train-by-train can also perform

well.

Theorem 6. Let F̂TbT (n)(η) be as defined in Equation 1. Assume noise level is a constant c1. Given any 1 > ǫ > 0,

assume training set size n ≥ cd
ǫ2 log(nmǫd), unroll length t ≥ c2 log(

n
ǫd), number of training tasks m ≥ c3n

2

ǫ4d2 log(tnmǫd)
and dimension d ≥ c4 for certain constants c, c2, c3, c4. With probability at least 0.99 in the sampling of training

tasks, we have

E
∥

∥wt,η∗

train
− w∗∥

∥

2 ≤ (1 + ǫ)
dσ2

n
,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

Therefore if the learning-to-learn approach is applied to a traditional optimization problem that is not over-

parameterized, it is OK to use train-by-train. In this case, the empirical risk minimizer (ERM) already has good

generalization performance, and train-by-train optimizes the convergence towards the ERM. We defer the proof of

Theorem 6 into Appendix C.

5 Experiments

Optimizing step size for quadratic objective We first validate the results in Section 3. We fixed a 20-dimensional

quadratic objective as the inner problem and vary the number of inner steps t and initial value η0. We compute the

meta-gradient directly using a formula which we derive in supplementary material. We use the algorithm suggested in

Theorem 4, except we choose the meta-step size to be 1/(100
√
k) as the constants in the Theorem were not optimized.

An example training curve of η for t = 80 and η0 = 0.1 is shown in Figure 1, and we can see that η converges

quickly within 300 steps. Similar convergence also holds for larger t or much larger initial η0. Figure 2 shows that as

observed in Metz et al. (2019), the optimal step size depends on the number of inner-training steps.

In contrast, we also implemented the meta-training with Tensorflow, where the code was adapted from the previous

work of Wichrowska et al. (2017). Experiments show that in many settings (especially with large t and large η0) the

implementation does not converge.

6

0 100 200 300

Meta steps

0

0.2

0.4
Ours
Tensorflow

Figure 1: Training η (t = 80, η0 = 0.1)

0 50 100 150 200

Inner training length t

0.029

0.03

0.031

O
pt

im
al

*

Figure 2: Optimal η∗ for different t

Train-by-train vs. train-by-validation, synthetic data Here we validate our theoretical results in Section 4 using

the least-squares model defined there. In all experiments we fix the input dimension d to be 1000.

In the first experiment, we fix the size of the data (n = 500 for train-by-train, n1 = n2 = 250 for train-by-

validation). Under different noise levels, we find the optimal η∗ by a grid search on its meta-objective for train-by-train

and train-by-validation settings respectively. We then use the optimal η∗ found in each of these two settings to test on

10 new least-squares problem. The mean RMSE, as well as its range over the 10 test cases, are shown in Figure 3. We

can see that for all of these cases, the train-by-train model overfits easily, while the train-by-validation model performs

much better and does not overfit. Also, when the noise becomes larger, the difference between these two settings

becomes more significant.

0 1 2 3 4
0

2

4

6

R
M

S
E

 (
tr

ai
n)

TbT
TbV

0 1 2 3 4
0

2

4

6

R
M

S
E

 (
te

st
)

TbT
TbV

Figure 3: Training and testing RMSE for different σ values (500 samples)

In the next experiment, we fix σ = 1 and change the sample size. For train-by-validation, we always split the

samples evenly into training and validation set. The results are shown in Figure 4. We can see that the gap between

these two settings is decreasing as we use more data, as expected by Theorem 6.

0 2500 5000 7500 10000

Sample size

0

0.5

1

1.5

2

R
M

S
E

 (
tr

ai
n)

TbT
TbV

0 2500 5000 7500 10000

Sample size

0

0.5

1

1.5

2

R
M

S
E

 (
te

st
)

TbT
TbV

Figure 4: Training and testing RMSE for different samples sizes (σ = 1)

Train-by-train vs. train-by-validation, MLP optimizer on MNIST Finally we consider a more complicated multi-

layer perceptron (MLP) optimizer on MNIST data set. We use the same MLP optimizer as in Metz et al. (2019), details

of this optimizer is discussed in supplementary material.

7

As the inner problem, we use a two-layer fully-connected network of 100 and 20 hidden units with ReLU activa-

tions. The inner objective is the classic 10-class cross entropy loss, and we use mini-batches of 32 samples at inner

training.

To see whether the comparison between train-by-train and train-by-validation behaves similarly to our theoretical

results, we consider different number of samples and different levels of label noise. First, consider optimizing the

MNIST dataset with small number samples. In this case, the train-by-train setting uses 1,000 samples (denoted as

“TbT1000”), and we use another 1,000 samples as the validation set for the train-by-validation case (denoted as

“TbV1000+1000”). To be fair to train-by-train we also consider TbT2000 where the train-by-train algorithm has

access to 2000 data points. Figure 5 shows the results – all the models have training accuracy close to 1, but both

TbT1000 and TbT2000 overfits the data significantly, whereas TbV1000+1000 performs well.

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT1000
TbV1000+1000
TbT2000

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
(t

es
t)

SGD
TbT1000
TbV1000+1000
TbT2000

Figure 5: Training and testing accuracy for different models (1000 samples, no noise)

To show that when the noise is higher, the advantage of train-by-validation increases, we keep the same sample

size and consider a “noisier” version of MNIST, where we randomly change the label of a sample with probability 0.2

(the new label is chosen uniformly at random, including the original label). The results are shown in Figure 6. We

can see that both train-by-train models, as well as SGD, overfit easily with training accuracy close to 1 and their test

performances are low. The train-by-validation model performs much better.

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT1000
TbV1000+1000
TbT2000

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
(t

es
t)

SGD
TbT1000
TbV1000+1000
TbT2000

Figure 6: Training and testing accuracy for different models (1000 samples, 20% noise)

Finally we run experiments on the complete MNIST data set (without label noise). For the train-by-validation

setting, we split the data set to 50,000 training samples and 10,000 validation samples. As shown in Figure 7, in this

case train-by-train and train-by-validation performs similarly (in fact both are slightly weaker than the tuned SGD

baseline). This shows that when the sample size is sufficiently large, train-by-train can get comparable results as

train-by-validation.

Acknowledgements

Rong Ge, Xiang Wang and Chenwei Wu are supported in part by NSF Award CCF-1704656, CCF-1845171 (CA-

REER), CCF-1934964 (Tripods), a Sloan Research Fellowship, and a Google Faculty Research Award. Part of the

8

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.9

0.92

0.94

0.96

0.98

1

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT60000
TbV50000+10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.9

0.92

0.94

0.96

0.98

1

A
cc

ur
ac

y
(t

es
t)

SGD
TbT60000
TbV50000+10000

Figure 7: Training and testing accuracy for different models (all samples, no noise)

work was done when Rong Ge and Xiang Wang were visiting Instituted for Advanced Studies for “Special Year on

Optimization, Statistics, and Theoretical Machine Learning” program. We acknowledge the valuable early discussions

with Yatharth Dubey.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.

(2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), pages 265–283.

Alabi, D., Kalai, A. T., Ligett, K., Musco, C., Tzamos, C., and Vitercik, E. (2019). Learning to prune: Speeding up

repeated computations. arXiv preprint arXiv:1904.11875.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.

(2016). Learning to learn by gradient descent by gradient descent. In Advances in neural information processing

systems, pages 3981–3989.

Balcan, M.-F., Dick, T., Sandholm, T., and Vitercik, E. (2018a). Learning to branch. arXiv preprint arXiv:1803.10150.

Balcan, M.-F., Dick, T., and Vitercik, E. (2018b). Dispersion for data-driven algorithm design, online learning, and

private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages

603–614. IEEE.

Balcan, M.-F., Nagarajan, V., Vitercik, E., and White, C. (2016). Learning-theoretic foundations of algorithm config-

uration for combinatorial partitioning problems. arXiv preprint arXiv:1611.04535.

Balcan, M.-F., Sandholm, T., and Vitercik, E. (2018c). A general theory of sample complexity for multi-item profit

maximization. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 173–174.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. (2017). Neural optimizer search with reinforcement learning. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 459–468. JMLR. org.

Denevi, G., Ciliberto, C., Grazzi, R., and Pontil, M. (2019). Learning-to-learn stochastic gradient descent with biased

regularization. arXiv preprint arXiv:1903.10399.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. (2018). Incremental learning-to-learn with statistical guarantees.

arXiv preprint arXiv:1803.08089.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2016). rl2: Fast reinforcement learning

via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1126–1135. JMLR. org.

9

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P. (2019). The step decay schedule: A near optimal, geometrically

decaying learning rate procedure for least squares. In Advances in Neural Information Processing Systems, pages

14951–14962.

Gupta, R. and Roughgarden, T. (2017). A pac approach to application-specific algorithm selection. SIAM Journal on

Computing, 46(3):992–1017.

Harvey, N. J., Liaw, C., Plan, Y., and Randhawa, S. (2018). Tight analyses for non-smooth stochastic gradient descent.

arXiv preprint arXiv:1812.05217.

Jain, P., Nagaraj, D., and Netrapalli, P. (2019). Making the last iterate of sgd information theoretically optimal. arXiv

preprint arXiv:1904.12443.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of lipschitz mappings into a hilbert space. Contemporary

mathematics, 26(189-206):1.

Li, K. and Malik, J. (2016). Learning to optimize. arXiv preprint arXiv:1606.01885.

Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd: Learning to learn quickly for few-shot learning. arXiv preprint

arXiv:1707.09835.

Liu, C. and Belkin, M. (2018). Accelerating sgd with momentum for over-parameterized learning. arXiv preprint

arXiv:1810.13395.

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Gradient-based hyperparameter optimization through reversible

learning. In International Conference on Machine Learning, pages 2113–2122.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and Sohl-Dickstein, J. (2019). Understanding and correcting

pathologies in the training of learned optimizers. In International Conference on Machine Learning, pages 4556–

4565.

Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot learning.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell, R. (2018). Meta-learning

with latent embedding optimization. arXiv preprint arXiv:1807.05960.

Shamir, O. and Zhang, T. (2013). Stochastic gradient descent for non-smooth optimization: Convergence results and

optimal averaging schemes. In International conference on machine learning, pages 71–79.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint

arXiv:1011.3027.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science, volume 47.

Cambridge university press.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and

Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G., Denil, M., de Freitas, N., and Sohl-

Dickstein, J. (2017). Learned optimizers that scale and generalize. In Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pages 3751–3760. JMLR. org.

10

In the supplementary material, we first give the missing proofs for the theorems in the main paper. Later in

Appendix F we give details for the experiments.

Notations: Besides the notations defined in Section 2, we define more notations that will be used in the proofs.

For a matrix X ∈ R
n×d with n ≤ d, we denote its singular values as σ1(X) ≥ · · · ≥ σn(X).

For a positive semi-definite matrix A ∈ R
d×d, we denote u⊤Au as ‖u‖2A . For a matrix X ∈ R

d×n, let ProjX ∈
R

d×d be the projection matrix onto the column span of X . That means, ProjX = SS⊤, where the columns of S form

an orthonormal basis for the column span of X.
For any event E , we use 1 {E} to denote its indicator function: 1 {E} equals 1 when E holds and equals 0 otherwise.

We use Ē to denote the complementary event of E .

A Proofs for Section 3 – alleviating gradient explosion/vanishing problem

for quadratic objective

In this section, we prove the results in Section 3. Recall the meta learning problem as follows:

The inner task is a fixed quadratic problem, where the starting point is fixed at w0, and the loss function is

f(w) = 1
2w

⊤Hw for some fixed positive definite matrix H ∈ R
d×d. Suppose the eigenvalue decomposition of

H is
∑d

i=1 λiuiu
⊤
i . In this section, we assume L = λ1(H) and α = λd(H) are the largest and smallest eigenvalues

of H with L > α. We assume the starting point w0 has unit ℓ2 norm. For each i ∈ [d], let ci be 〈w0, ui〉 and let

cmin = min(|c1|, |cd|). We assume cmin > 0 for simplicity, which is satisfied if w0 is chosen randomly from the unit

sphere.

Let {wτ,η} be the GD sequence running on f(w) starting from w0 with step size η. For the meta-objective, we

consider using the loss of the last point directly, or using the log of this value. In Section A.1, we first show that al-

though choosing F̂ (η) = f(wt,η) does not have any bad local optimal solution, it has the gradient explosion/vanishing

problem (Theorem 3). Then, in Section A.2, we show choosing F̂ (η) = 1
t log f(wt,η) leads to polynomially bounded

meta-gradient and further show meta-gradient descent converges to the optimal step size (Theorem 4). Although the

meta-gradient is polynomially bounded, if we simply use back-propogation to compute the meta-gradient, the inter-

mediate results can still be exponentially large/small (Corollary 1). This is also proved in Section A.2.

A.1 Meta-gradient vanishing/explosion

In this section, we show although choosing F̂ (η) = f(wt,η) does not have any bad local optimal solution, it has the

meta-gradient explosion/vanishing problem. Recall Theorem 3 as follows.

Theorem 3. Let the meta objective be F̂ (η) = f(wt,η) =
1
2w

⊤
t,ηHwt,η. We know F̂ (η) is a strictly convex function in

η with an unique minimizer. However, for any step size η < 2/L, |F̂ ′(η)| ≤ t
∑d

i=1 c
2
iλ

2
i |1 − ηλi|2t−1; for any step

size η > 2/L, |F̂ ′(η)| ≥ c21L
2t(ηL − 1)2t−1 − L2t.

Intuitively, if we writewt,η in the basis of the eigen-decomposition ofH , then each coordinate evolve exponentially

in t. The gradient of the standard objective is therefore also exponential in t.

Proof of Theorem 3. According to the gradient descent iterations, we have

wt,η = wt−1,η − η∇f(wt−1,η) = wt−1,η − ηHwt−1,η = (I − ηH)wt−1,η = (I − ηH)tw0.

Therefore, F̂ (η) := f(wt,η) =
1
2w

⊤
0 (I − ηH)2tHw0. Taking the derivative of F̂ (η),

F̂ ′(η) = −tw⊤
0 (I − ηH)2t−1H2w0 = −t

d
∑

i=1

c2iλ
2
i (1− ηλi)

2t−1,

11

where ci = 〈w0, ui〉 . Taking the second derivative of F (η),

F ′′(η) =t(2t− 1)w⊤
0 (I − ηH)2t−2H3w0 = t(2t− 1)

d
∑

i=1

c2iλ
3
i (1− ηλi)

2t−2.

Since L > α, we have F̂ ′′(η) > 0 for any η. That means F̂ (η) is a strictly convex function in η with a unique

minimizer.

For any fixed η ∈ (0, 2/L) we know |1− ηλi| < 1 for all i ∈ [d]. We have

∣

∣

∣
F̂ ′(η)

∣

∣

∣
≤ t

d
∑

i=1

c2iλ
2
i |1− ηλi|2t−1.

For any fixed η ∈ (2/L,∞), we know ηL− 1 > 1. We have

F̂ ′(η)

=− tc21L
2(1 − ηL)2t−1 − t

∑

i6=1:(1−ηλi)≤0

c2iλ
2
i (1− ηλi)

2t−1 − t
∑

i6=1:(1−ηλi)>0

c2iλ
2
i (1 − ηλi)

2t−1

≥tc21L
2(ηL− 1)2t−1 − t

d
∑

i=1

c2iλ
2
i ≥ tc21L

2(ηL− 1)2t−1 − L2t,

where the last inequality uses
∑d

i=1 c
2
i = 1. �

A.2 Alleviating meta-gradient vanishing/explosion

We prove when the the meta objective is chosen as 1
t log f(wt,η), the meta-gradient is polynomially bounded. Fur-

thermore, we show meta-gradient descent can converge to the optimal step size within polynomial iterations. Recall

Theorem 4 as follows.

Theorem 4. Let the meta objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer η∗ and F̂ ′(η) =

O
(

L3

c2minα(L−α)

)

for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with meta step size µk = 1/
√
k. Suppose

the starting step size η0 ≤ M. Given any 1/L > ǫ > 0, there exists k′ = M6

ǫ2 poly(1
cmin

, L, 1
α ,

1
L−α) such that for all

k ≥ k′, |ηk − η∗| ≤ ǫ.

When we take the log of the function value, the derivative of the function value with respect to η becomes much

more stable. We will first show some structural result on F̂ (η) – it has a unqiue minimizer and the gradient is

polynomially bounded. Further the gradient is only close to 0 when the point η is close to the unique minimizer. Then

using such structural result we prove that meta-gradient descent converges.

Proof of Theorem 4. The proof consists of three claims. In the first claim, we show that F̂ has a unique minimizer

and the minus meta derivative always points to the minimizer. In the second claim, we show that F̂ has bounded

derivative. In the last claim, we show that for any η that is outside the ǫ-neighborhood of η∗, |F̂ ′(η)| is lower bounded.

Finally, we combine these three claims to finish the proof.

Claim 1. The meta objective F̂ has only one stationary point that is also its unique minimizer η∗. For any η ∈ [0, η∗),
F̂ ′(η) < 0 and for any η ∈ (η∗,∞), F̂ ′(η) > 0. Furthermore, we know η∗ ∈ [1/L, 1/α].

We can compute the derivative of F̂ in η as follows,

F̂ ′(η) =
−2w⊤

0 (I − ηH)2t−1H2w0

w⊤
0 (I − ηH)2tHw0

=
−2
∑d

i=1 c
2
iλ

2
i (1− ηλi)

2t−1

∑d
i=1 c

2
i λi(1− ηλi)2t

. (3)

12

It’s not hard to verify that the denominator
∑d

i=1 c
2
i λi(1−ηλi)

2t is always positive. Denote the numerator−2
∑d

i=1 c
2
iλ

2
i (1−

ηλi)
2t−1 as g(η). Since g′(η) > 0 for any η ∈ [0,∞), we know g(η) is strictly increasing in η. Combing with the fact

that g(0) < 0 and g(∞) > 0, we know there is a unique point (denoted as η∗) where g(η∗) = 0 and g(η) < 0 for all

η ∈ [0, η∗) and g(η) > 0 for all η ∈ (η∗,∞). Since the denominator in F̂ ′(η) is always positive and the numerator

equals g(η), we know there is a unique point η∗ where F̂ ′(η∗) = 0 and F̂ ′(η) < 0 for all η ∈ [0, η∗) and F̂ ′(η) > 0
for all η ∈ (η∗,∞). It’s clear that η∗ is the minimizer of F̂ .

Also, it’s not hard to verify that for any η ∈ [0, 1/L), F̂ ′(η) < 0 and for any η ∈ (1/α,∞), F̂ ′(η) > 0. This

implies that η∗ ∈ [1/L, 1/α].

Claim 2. For any η ∈ [0,∞), we have

|F̂ ′(η)| ≤ 4L3

c2minα(L − α)
:= Dmax.

For any η ∈ [0, 2
α+L], we have |1− ηλi| ≤ 1− ηα for all i. Dividing the numerator and denominator in F̂ ′(η) by

(1− ηα)2t, we have

∣

∣

∣
F̂ ′(η)

∣

∣

∣
= 2

∣

∣

∣

∑d
i=1

c2iλ
2
i

1−ηα (
1−ηλi

1−ηα)2t−1
∣

∣

∣

c2dα+
∑d−1

i=1 c2i λi(
1−ηλi

1−ηα)2t
≤ 2

∑d
i=1 c

2
i λ

2
i

c2dα(1− ηα)
≤ 2(α+ L)

∑d
i=1 c

2
iλ

2
i

c2dα(L − α)
≤ 4L3

c2dα(L − α)
,

where the second last inequality uses η ≤ 2
α+L .

Similarly for any η ∈ (2
α+L ,∞), we have |1− ηλi| ≤ ηL − 1 for all i. Dividing the numerator and denominator

in F̂ ′(η) by (ηL− 1)2t, we have

F̂ ′(η) = 2

∣

∣

∣

∑d
i=1

c2iλ
2
i

ηL−1 (
1−ηλi

ηL−1)
2t−1

∣

∣

∣

c21L+
∑d

i=2 c
2
iλi(

1−ηλi

ηL−1)
2t

≤ 2
∑d

i=1 c
2
iλ

2
i

c21L(ηL− 1)
≤ 2(α+ L)

∑d
i=1 c

2
iλ

2
i

c21L(L− α)
≤ 4L3

c21L(L− α)

where the last inequality uses η ≥ 2
α+L .

Overall, we know for any η ≥ 0,

|F̂ ′(η)| ≤ 4L3

L− α
max

(

1

c2dα
,

1

c21L

)

≤ 4L3

c2minα(L − α)
.

Claim 3. Given M̂ ≥ 2/α and 1/L > ǫ > 0, for any η ∈ [0, η∗ − ǫ] ∪ [η∗ + ǫ, M̂], we have

|F ′(η)| ≥ min

(

2ǫc2dα
3

L
,

2ǫc21L
2

(M̂L− 1)2

)

≥ 2ǫc2minmin

(

α3

L
,

1

M̂2

)

:= Dmin(M̂).

If η ∈ [0, η∗ − ǫ] and η ≤ 2
α+L , we have

F̂ ′(η) = −2

∑d
i=1 c

2
iλ

2
i (1 − ηλi)

2t−1

∑d
i=1 c

2
iλi(1− ηλi)2t

= −2

∑d
i=1 c

2
iλ

2
i (1 − ηλi)

2t−1 −∑d
i=1 c

2
iλ

2
i (1− η∗λi)

2t−1

∑d
i=1 c

2
iλi(1 − ηλi)2t

,

where the second inequality holds because
∑d

i=1 c
2
iλ

2
i (1− η∗λi)

2t−1 = 0. For the numerator, we have

d
∑

i=1

c2iλ
2
i (1− ηλi)

2t−1 −
d
∑

i=1

c2iλ
2
i (1− η∗λi)

2t−1 ≥c2dα
2
(

(1− ηα)2t−1 − (1− η∗α)2t−1
)

≥c2dα
2
(

(1− ηα)2t−1 − (1− ηα− ǫα)2t−1
)

;

13

for the denominator, we have

d
∑

i=1

c2iλi(1− ηλi)
2t ≤

(

d
∑

i=1

c2iλi

)

(1− ηα)2t,

where the second inequality holds because |1 − ηλi| ≤ 1 − ηα for all i. Overall, we have when η ∈ [0, η∗ − ǫ] and

η ≤ 2
α+L ,

∣

∣

∣
F̂ ′(η)

∣

∣

∣
≥2

c2dα
2
(

(1− ηα)2t−1 − (1− ηα− ǫα)2t−1
)

(

∑d
i=1 c

2
iλi

)

(1− ηα)2t

≥ 2ǫc2dα
3

(

∑d
i=1 c

2
iλi

)

(1− ηα)
≥ 2ǫc2dα

3

L
,

where the last inequality holds because (1− ηα) ≤ 1 and
∑d

i c
2
iλi ≤ L.

Similarly, if η ∈ [0, η∗ − ǫ] and η ≥ 2
α+L , we have

∣

∣

∣
F̂ ′(η)

∣

∣

∣
≥2

c21L
2
(

(1− ηL)2t−1 − (1− ηL− ǫL)2t−1
)

(

∑d
i=1 c

2
i λi

)

(1− ηL)2t

=2
c21L

2
(

(ηL+ ǫL− 1)2t−1 − (ηL− 1)2t−1
)

(

∑d
i=1 c

2
i λi

)

(ηL − 1)2t

≥ 2ǫc21L
3

(

∑d
i=1 c

2
i λi

)

(ηL − 1)2
≥ 2ǫc21α

2L2

(L− α)2
,

where the last inequality holds because η ≤ η∗ − ǫ ≤ 1/α and
∑d

i c
2
iλi ≤ L.

If η ∈ [η∗ + ǫ,∞) and η ≤ 2
α+L , we have

∣

∣

∣
F̂ ′(η)

∣

∣

∣
≥2

c2dα
2
(

(1− ηα+ ǫα)2t−1 − (1 − ηα)2t−1
)

(

∑d
i=1 c

2
iλi

)

(1− ηα)2t

≥2ǫc2dα
3

L
,

If η ∈ [η∗ + ǫ,∞) and η ≥ 2
α+L , we have

∣

∣

∣
F̂ ′(η)

∣

∣

∣
≥2

c21L
2
(

(1− ηL + ηǫ)2t−1 − (1− ηL)2t−1
)

(

∑d
i=1 c

2
i λi

)

(1− ηL)2t

≥ 2ǫc21L
3

(

∑d
i=1 c

2
iλi

)

(ηL − 1)2
≥ 2ǫc21L

2

(M̂L− 1)2
,

where the last inequality uses the assumption that η ≤ M̂.
With the above three claims, we are ready to prove the optimization result. By Claim 1, we know F ′(η) < 0 for

any η ∈ [0, η∗) and F ′(η) > 0 for any η ∈ (η∗,∞). So the opposite gradient descent always points to the minimizer.

Since µk = 1/
√
k, when k ≥ k1 :=

D2
max

ǫ2 we know µk ≤ ǫ
Dmax

. By Claim 2, we know |F̂ ′(η)| ≤ Dmax for

all η ≥ 0, which implies |µkF̂
′(η)| ≤ ǫ for all k ≥ k1. That means, meta gradient descent will never overshoot the

minimizer by more than ǫ when k ≥ k1. In other words, after k1 meta iterations, once η enters the ǫ-neighborhood of

η∗, it will never leave this neighborhood.

14

We also know that at meta iteration k1, we have ηk1 ≤ max(1/α+Dmax,M) := M̂. Here, 1/α+Dmax comes

from the case that the eta starts from the left of η∗ and overshoot to the right of η∗ by Dmax. Since η∗ ∈ [1/L, 1/α],
we have |ηk1 −η∗| ≤ max(1/α, 1/α+Dmax−1/L,M−1/L) := R. By Claim 3, we know that |F̂ ′(η)| ≥ Dmin(M̂)

for any η ∈ [0, η∗ − ǫ] ∪ [η∗ + ǫ, M̂]. Choosing some k2 satisfying
∑k2

k=k1
1/

√
k ≥ R

Dmin
, we know for any k ≥ k2,

|ηk − η∗| ≤ ǫ. Plugging in all the bounds for Dmin, Dmax from Claim 3 and Claim 2, we know there exists k1 =
1
ǫ2 poly(1

cmin
, L, 1

α ,
1

L−α), k2 = M6

ǫ2 poly(1
cmin

, L, 1
α ,

1
L−α) satisfying these conditions. �

Next, we show although the meta-gradient is polynomailly bounded, the intermediate results can still vanish or

explode if we use back-propogation to compute the meta-gradient.

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-gradient using

back-propagation, there are intermediate results that are exponentially large/small in number of inner-steps t.

Proof of Corollary 1. This is done by direct calculation. If we use back-propagation to compute the derivative

of 1
t log(f(wt,η)), we need to first compute

∂f(wt,η)
∂

1
t log(f(wt,η)) that equals 1

tf(wt,η)
. Same as the analysis in

Theorem 3, we can show 1
tf(wt,η)

is exponentially large when η < 2/L and is exponentially small when η > 2/L. �

B Proofs of train-by-train v.s. train-by-validation (GD)

In this section, we show when the number of samples is small and when the noise level is a large constant, train-by-

train overfits to the noise in training tasks while train-by-validation generalizes well. We separately prove the results

for train-by-train and train-by-validation in Theorem 7 and Theorem 8, respectively. Then, Theorem 5 is simply a

combination of Theorem 7 and Theorem 8.

Recall that in the train-by-train setting, each task P contains a training set Strain with n samples. The inner

objective is defined as f̂(w) = 1
2n

∑

(x,y)∈Strain
(〈w, x〉 − y)

2
. Let {wτ,η} be the GD sequence running on f̂(w)

from initialization 0 (with truncation). The meta-loss on task P is defined as the inner objective of the last point,

∆TbT (n)(η, P) = f̂(wt,η) =
1
2n

∑

(x,y)∈Strain
(〈wt,η, x〉 − y)

2
. The empirical meta objective F̂TbT (n)(η) is the aver-

age of the meta-loss across m different tasks. We show that under F̂TbT (n)(η), the optimal step size is a constant and

the learned weight is far from ground truth w∗ on new tasks. We prove Theorem 7 in Section B.2.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 1 with n ∈ [d/4, 3d/4]. Assume noise level

σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 log(mt) and dimension

d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of the training tasks, we

have

η∗train = Θ(1) and E
∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(1)σ2,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In Theorem 7, Ω(1) is an absolute constant independent with σ. Intuitively, the reason that train-by-train performs

badly in this setting is because there is a way to set the step size to a constant such that gradient descent converges very

quickly to the empirical risk minimizer, therefore making the train-by-train objective very small. However, when the

noise is large and the number of samples is smaller than the dimension, the empirical risk minimizer (ERM) overfits

to the noise and is not the best solution.

In the train-by-validation setting, each task P contains a training set Strain with n1 samples and a validation set

with n2 samples. The inner objective is defined as f̂(w) = 1
2n1

∑

(x,y)∈Strain
(〈w, x〉 − y)

2
. Let {wτ,η} be the GD se-

quence running on f̂(w) from initialization 0 (with truncation). For each task P , the meta-loss ∆TbV (n1,n2)(η, P)
is defined as the loss of the last point wt,η evaluated on the validation set Svalid. That is, ∆TbV (n1,n2)(η, P) =
1

2n2

∑

(x,y)∈Svalid
(〈wt,η, x〉 − y)

2
. The empirical meta objective F̂TbV (n1,n2)(η) is the average of the meta-loss across

m different tasks P1, P2, ..., Pm. We show that under F̂TbV (n1,n2)(η), the optimal step size is Θ(1/t) and the learned

weight is better than initialization 0 by a constant on new tasks. Theorem 8 is proved in Section B.3.

15

Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 2 with n1, n2 ∈ [d/4, 3d/4]. Assume

noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 and dimension

d ≥ c4 log(t) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argminη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

Intuitively, train-by-validation is optimizing the right objective. As long as the meta-training problem has good

generalization performance (that is, good performance on a few tasks implies good performance on the distribution of

tasks), then train-by-validation should be able to choose the optimal learning rate. The step size of Θ(1/t) here serves

as regularization similar to early-stopping, which allows gradient descent algorithm to achieve better error on test data.

Notations We define more quantities that are useful in the analysis. In the train by train setting, given a task Pk :=

(D(w∗
k), S

(k)
train, ℓ). The training set S

(k)
train contains n samples {x(k)

i , y
(k)
i }ni=1 with y

(k)
i =

〈

w∗
k, x

(k)
i

〉

+ ξ
(k)
i .

Let X
(k)
train be an n× d matrix with its i-th row as (x

(k)
i)⊤. Let H

(k)
train := 1

n (X
(k)
train)

⊤X(k)
train be the covariance matrix

of the inputs in S
(k)
train. Let ξ

(k)
train be an n-dimensional column vector with its i-th entry equal to ξ

(k)
i .

Since n ≤ d, with probability 1, we know X
(k)
train is full row rank. Therefore, X

(k)
train has pseudo-inverse (X

(k)
train)

†

such that X
(k)
train(X

(k)
train)

† = In. It’s not hard to verify that there exists w
(k)
train = Proj

(X
(k)
train

)⊤
w∗

k + (X
(k)
train)

†ξ(k)train such that

y
(k)
i =

〈

w
(k)
train, x

(k)
i

〉

for every (x
(k)
i , y

(k)
i) ∈ S

(k)
train. Here, Proj

(X
(k)
train

)⊤
is the projection matrix onto the column span

of (X
(k)
train)

⊤. We also denote Proj
(X

(k)
train

)⊤
w∗

k as (w
(k)
train)

∗. We use B
(k)
t,η to denote (I − (I − ηH

(k)
train)

t). Let w
(k)
t,η be the

weight obtained by running GD on S
(k)
train with step size η (with truncation).

With the above notations, it’s not hard to verify that for task Pk, the inner objective f̂(w) = 1
2

∥

∥

∥
w − w

(k)
train

∥

∥

∥

2

H
(k)
train

.

The meta-loss on task Pk is just ∆TbT (n)(η, Pk) =
1
2

∥

∥

∥
wt,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

.

In the train-by-validation setting, each task Pk contains a training set S
(k)
train with n1 samples and a validation set

S
(k)
valid with n2 samples. Similar as above, for the training set S

(k)
train, we can define ξ

(k)
train, X

(k)
train, H

(k)
train, w

(k)
train, B

(k)
t,η , w

(k)
t,η ;

for the validation set S
(k)
valid, we can define ξ

(k)
valid, X

(k)
valid, H

(k)
valid, w

(k)
valid. With these notations, the inner objective is f̂(w) =

1
2

∥

∥

∥
w − w

(k)
train

∥

∥

∥

2

H
(k)
train

and the meta-loss is ∆TbV (n1,n2)(η, Pk) =
1
2

∥

∥

∥
wt,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

.

We also use these notations without index k to refer to the quantities defined on task P. In the proofs, we ignore

the subsripts on n, n1, n2 and simply write ∆TbT (η, Pk),∆TbV (η, Pk), F̂TbT , F̂TbV , FTbT , FTbV .

B.1 Overall Proof Strategy

In this section (and the next), we follow similar proof strategies that consists of three steps.

Step 1: First, we show for both train-by-train and train-by-validation, there is a good step size that achieves small

empirical meta-objective (however the step sizes and the empirical meta-objective they achieve are different in the two

settings). This does not necessarily mean that the actual optimal step size is exactly the good step size that we propose,

but it gives an upperbound on the empirical meta-objective for the optimal step size.

Step 2: Second, we define a threshold step size such that for any step size larger than it, the empirical meta-objective

must be higher than what was achieved at the good step size in Step 1. This immediately implies that the optimal step

size cannot exceed this threshold step size.

16

Step 3: Third, we show the meta-learning problem has good generalization performance, that is, if a learning rate η
performs well on the training tasks, it must also perform well on the task distribution, and vice versa. Thanks to Step 1

and Step 2, we know the optimal step size cannot exceed certain threshold and then only need to prove generalization

result within this range. The generalization result is not surprising as we only have a single trainable parameter η,

however we also emphasize that this is non-trivial as we will not restrict the step size η to be small enough that the

algorithms do not diverge. Instead we use a truncation to alleviate the diverging problem (this allows us to run the

algorithm on distribution of data whose largest possible learning rate is unknown).

Combing Step 1, 2, 3, we know the population meta-objective has to be small at the optimal step size. Finally,

we show that as long as the population meta-objective is small, the performance of the algorithms satisfy what we

stated in Theorem 5. The last step is easier for the train-by-validation setting, because its meta-objective is exactly the

correct measure that we are looking at; for the train-by-train setting we instead look at the property of empirical risk

minimizer (ERM), and show that anything close to the ERM is going to behave similarly.

B.2 Train-by-train (GD)

Recall Theorem 7 as follows.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 1 with n ∈ [d/4, 3d/4]. Assume noise level

σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 log(mt) and dimension

d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of the training tasks, we

have

η∗train = Θ(1) and E
∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(1)σ2,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

According to the data distribution, we know Xtrain is an n× d random matrix with each entry i.i.d. sampled from

standard Gaussian distribution. In the following lemma, we show that the covariance matrix Htrain is approximately

isotropic when d/4 ≤ n ≤ 3d/4. Specifically, we show
√
d√
L

≤ σi(Xtrain) ≤
√
Ld and 1

L ≤ λi(Htrain) ≤ L for

all i ∈ [n] with L = 100. We use letter L to denote the upper bound of ‖Htrain‖ to emphasize that this bounds the

smoothness of the inner objective. Throughout this section, we use letter L to denote constant 100. The proof of

Lemma 1 follows from random matrix theory. We defer its proof into Section B.2.4.

Lemma 1. Let X ∈ R
n×d be a random matrix with each entry i.i.d. sampled from standard Gaussian distribution.

Let H := 1/nX⊤X. Assume n = cd with c ∈ [14 ,
3
4]. Then, with probability at least 1 − exp(−Ω(d)), there exists

constant L = 100 such that √
d√
L

≤ σi(X) ≤
√
Ld and

1

L
≤ λi(H) ≤ L,

for all i ∈ [n].

In this section, we always assume the size of each training set is within [d/4, 3d/4] so Lemma 1 holds. Since

‖Htrain‖ is upper bounded by L with high probability, we know the GD sequence converges to wtrain for η ∈ [0, 1/L].
In Lemma 2, we prove that the empirical meta objective F̂TbT monotonically decreases as η increases until 1/L. Also,

we show F̂TbT is exponentially small in t at step size 1/L. This serves as step 1 in Section B.1. The proof is deferred

into Section B.2.1.

Lemma 2. With probability at least 1−m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and

F̂TbT (1/L) ≤ 2L2σ2

(

1− 1

L2

)t

.

When the step size is larger than 1/L, the GD sequence can diverge, which incurs a high loss in meta objective.

Later in Definition 1, we define a step size η̃ such that the GD sequence gets truncated with descent probability for any

step size that is larger than η̃. In Lemma 3, we show with high probability, the empirical meta objective is high for all

η > η̃. This serves as step 2 in the proof strategy described in Section B.1. The proof is deferred into Section B.2.2.

17

Lemma 3. With probability at least 1− exp(−Ω(m)),

F̂TbT (η) ≥
σ2

10L8
,

for all η > η̃.

By Lemma 2 and Lemma 3, we know the optimal step size must lie in [1/L, η̃]. We can also show 1/L < η̃ < 3L,
so η∗train is a constant. To relate the empirical loss at η∗train to the population loss. We prove a generalization result for

step sizes within [1/L, η̃]. This serves as step 3 in Section B.1. The proof is deferred into Section B.2.3.

Lemma 4. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at

least 1−m exp(−Ω(d))−O(t +m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤
σ2

L3
,

for all η ∈ [1/L, η̃],

Combining the above lemmas, we know the population meta objective FTbT is small at η∗train, which means wt,η∗

train

is close to the ERM solution. Since the ERM solution overfits to the noise in training tasks, we know
∥

∥wt,η∗

train
− w∗∥

∥

has to be large. We present the proof of Theorem 7 as follows.

Proof of Theorem 7. We assume σ is a large constant in this proof. According to Lemma 2, we know with probability

at least 1−m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and F̂TbT (1/L) ≤ 2L2σ2(1 − 1/L2)t.
This implies that the optimal step size η∗train ≥ 1/L and F̂TbT (η

∗
train) ≤ 2L2σ2(1 − 1/L2)t. By Lemma 3, we know

with probability at least 1− exp(−Ω(m)), F̂TbT (η) ≥ σ2

10L8 for all η > η̃, where η̃ is defined in Definition 1. As long

as t ≥ c2 for certain constant c2, we know σ2

10L8 > 2L2σ2(1 − 1/L2)t, which then implies that the optimal step size

η∗train lies in [1/L, η̃]. According to Lemma 6, we know η̃ ∈ (1/L, 3L). Therefore η∗train is a constant.

According to Lemma 4, we know with probability at least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)), |FTbT (η)−
F̂TbT (η)| ≤ σ2

L3 , for all η ∈ [1/L, η̃]. As long as t is larger than some constant, we have F̂TbT (η
∗
train) ≤ σ2

L3 . Comb-

ing with the generalization result, we have FTbT (η
∗
train) ≤ 2σ2

L3 . Next, we show that under a small population loss,

E
∥

∥wt,η∗

train
− w∗∥

∥

2
has to be large.

Let E1 be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤

‖ξtrain‖ ≤
√
dσ. We have

E
∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
≥ 1

L
E
∥

∥wt,η∗

train
− wtrain

∥

∥

2
1 {E1}

≥ 1

L

(

E
∥

∥wt,η∗

train
− w∗

train − (Xtrain)
†ξtrain

∥

∥

1 {E1}
)2

≥ 1

L

(

E
∥

∥(Xtrain)
†ξtrain

∥

∥

1 {E1} − E
∥

∥wt,η∗

train
− w∗

train

∥

∥

1 {E1}
)2

.

Since E
∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
≤ 4σ2

L3 , this then implies

E
∥

∥(Xtrain)
†ξtrain

∥

∥

1 {E1} − E
∥

∥wt,η∗

train
− w∗

train

∥

∥

1 {E1} ≤
√

L
4σ2

L3
=

2σ

L
.

Conditioning on E1, we can lower bound
∥

∥(Xtrain)
†ξtrain

∥

∥ by σ
4
√
L
. According to Lemma 1 and Lemma 45, we know

Pr[E1] ≥ 1 − exp(−Ω(d)). As long as d is at least certain constant, we have Pr[E1] ≥ 0.9. This then implies

E
∥

∥(Xtrain)
†ξtrain

∥

∥

1 {E1} ≥ 9σ
40

√
L
. Therefore, we have

E
∥

∥wt,η∗

train
− w∗

train

∥

∥

1 {E1} ≥ 9σ

40
√
L

− 2σ

L
=

9σ

4L
− 2σ

L
=

σ

4L
,

18

where the first equality uses L = 100. Then, we have

E
∥

∥wt,η∗

train
− w∗∥

∥

2 ≥ E
∥

∥wt,η∗

train
− w∗

train

∥

∥

2
1 {E1} ≥

(

E
∥

∥wt,η∗

train
− w∗

train

∥

∥

1 {E1}
)2 ≥ σ2

16L2
,

where the first inequality holds because for any Strain, w
∗
train is the projection of w∗ on the subspace of Strain and wt,η∗

train

is also in this subspace. Taking a union bound for all the bad events, we know this result holds with probability at least

0.99 as long as σ is a large constant c1 and t ≥ c2,m ≥ c3 log(mt) and d ≥ c4 log(m) for certain constants c2, c3, c4.
�

B.2.1 Behavior of F̂TbT for η ∈ [0, 1/L]

In this section, we prove the empirical meta objective F̂TbT is monotonically decreasing in [0, 1/L]. Furthermore, we

show F̂TbT (1/L) is exponentially small in t.

Lemma 2. With probability at least 1−m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and

F̂TbT (1/L) ≤ 2L2σ2

(

1− 1

L2

)t

.

Proof of Lemma 2. For each k ∈ [m], let Ek be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L

for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Here, L is constant 100 from Lemma 1. According to Lemma 1 and

Lemma 45, we know for each k ∈ [m], Ek happens with probability at least 1 − exp(−Ω(d)). Taking a union bound

over all k ∈ [m], we know ∩k∈[m]Ek holds with probability at least 1 − m exp(−Ω(d)). From now on, we assume

∩k∈[m]Ek holds.

Let’s first consider each individual loss function ∆TbT (η, Pk). Let {ŵ(k)
τ,η} be the GD sequence without truncation.

We have

ŵ(k)
τ,η − w

(k)
train =ŵ

(k)
τ−1,η − w

(k)
train − ηH

(k)
train(ŵ

(k)
τ−1,η − w

(k)
train)

=(I − ηH
(k)
train)(ŵ

(k)
τ−1,η − w

(k)
train) = −(I − ηH

(k)
train)

tw
(k)
train.

For any η ∈ [0, 1/L], we have

∥

∥

∥
ŵ

(k)
τ,η

∥

∥

∥
≤
∥

∥

∥
w

(k)
train

∥

∥

∥
=
∥

∥

∥
(w

(k)
train)

∗ + (X
(k)
train)

†ξ
(k)
train

∥

∥

∥
≤ 2

√
Lσ for any τ. Therefore,

∥

∥

∥
w

(k)
t,η

∥

∥

∥
never exceeds the norm threshold and never gets truncated.

Noticing that ∆TbT (η, Pk) =
1
2 (w

(k)
t,η − w

(k)
train)

⊤H(k)
train(w

(k)
t,η − w

(k)
train), we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)

⊤H(k)
train(I − ηH

(k)
train)

2tw
(k)
train.

Taking the derivative of ∆TbT (η, Pk) in η, we have

∂

∂η
∆TbT (η, Pk) = −t(w

(k)
train)

⊤(H(k)
train)

2(I − ηH
(k)
train)

2t−1w
(k)
train.

Conditioning on Ek, we know 1/L ≤ λi(H
(k)
train) ≤ L for all i ∈ [n] and H

(k)
train is full rank in the row span of X

(k)
train.

Therefore, we know ∂
∂η∆TbT (η, Pk) < 0 for all η ∈ [0, 1/L). Here, we assume

∥

∥

∥
w

(k)
train

∥

∥

∥
> 0, which happens with

probability 1.

Overall, we know that conditioning on ∩k∈[m]Ek, every ∆TbT (η, Pk) is strictly decreasing for η ∈ [0, 1/L]. Since

F̂TbT (η) :=
1
m

∑m
k=1 ∆TbT (η, Pk), we know F̂TbT (η) is strictly decreasing when η ∈ [0, 1/L].

At step size η = 1/L, we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)

⊤H(k)
train(I − ηH

(k)
train)

2tw
(k)
train

≤1

2
L

(

1− 1

L2

)t
∥

∥

∥
w

(k)
train

∥

∥

∥

2

≤ 2L2σ2

(

1− 1

L2

)t

,

where we upper bound

∥

∥

∥
w

(k)
train

∥

∥

∥

2

by 4Lσ2 at the last step. Therefore, we have F̂TbT (1/L) ≤ 2L2σ2(1− 1
L2)

t. �

19

B.2.2 Lower bounding F̂TbT for η ∈ (η̃,∞)

In this section, we prove that the empirical meta objective is lower bounded by Ω(σ2) with high probability for

η ∈ (η̃,∞). Step size η̃ is defined such that there is a descent probability of diverging for any step size larger than η̃.
Then, we show the contribution from these truncated sequence will be enough to provide an Ω(σ2) lower bound for

F̂TbT . The proof of Lemma 3 is given at the end of this section.

Lemma 3. With probability at least 1− exp(−Ω(m)),

F̂TbT (η) ≥
σ2

10L8
,

for all η > η̃.

We define η̃ as the smallest step size such that the contribution from the truncated sequence in the population meta

objective exceeds certain threshold. The precise definition is as follows.

Definition 1. Given a training task P, let E1 be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L

for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let Ē2(η) be the event that the GD sequence is truncated with step size

η. Define η̃ as follows,

η̃ = inf

{

η ≥ 0

∣

∣

∣

∣

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

≥ σ2

L6

}

.

In the next lemma, we prove that for any fixed training set, 1
{

E1 ∩ Ē2(η′)
}

≥ 1

{

E1 ∩ Ē2(η)
}

for any η′ ≥ η.

This immediately implies that Pr[E1 ∩ Ē2(η)] and E
1
2 ‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

is non-decreasing in η.
Basically we need to show, conditioning on E1, if a GD sequence gets truncated at step size η, it must be also

truncated for larger step sizes. Let {w′
τ,η} be the GD sequence without truncation. We only need to show that for any

τ, if
∥

∥w′
τ,η

∥

∥ exceeds the norm threshold,
∥

∥w′
τ,η′

∥

∥ must also exceed the norm threshold for any η′ ≥ η. This is easy to

prove if τ is odd because in this case
∥

∥w′
τ,η

∥

∥ is always non-decreasing in η. The case when τ is even is trickier because

there indeed exists certain range of η such that
∥

∥w′
τ,η

∥

∥ is decreasing in η. We manage to prove that this problematic

case cannot happen when
∥

∥w′
τ,η

∥

∥ is at least 4
√
Lσ. The full proof of Lemma 5 is deferred into Section B.2.4.

Lemma 5. Fixing a task P, let E1 and Ē2(η) be as defined in Definition 1. We have

1

{

E1 ∩ Ē2(η′)
}

≥ 1

{

E1 ∩ Ē2(η)
}

,

for any η′ ≥ η.

In the next Lemma, we prove that η̃ must lie within (1/L, 3L). We prove this by showing that the GD sequence

never gets truncated for η ∈ [0, 2/L] and almost always gets truncated for η ∈ [2.5L,∞). The proof is deferred into

Section B.2.4.

Lemma 6. Let η̃ be as defined in Definition 1. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for some

constants c2, c4. We have

1/L < η̃ < 3L.

Now, we are ready to give the proof of Lemma 3.

Proof of Lemma 3. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof, we assume

E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≥ σ2

L6 . We will discuss the proof for the other case at the end, which is very

similar.

Conditioning on E1, we know 1
2 ‖wt,η̃ − wtrain‖2Htrain

≤ 18L2σ2. Therefore, we know Pr[E1 ∩ Ē2(η̃)] ≥ 1
18L8 . For

each task Pk, define E(k)
1 and Ē(k)

2 (η) as the corresponding events on training set S
(k)
train. By Hoeffding’s inequality, we

know with probability at least 1− exp(−Ω(m)),

1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η̃)
}

≥ 1

20L8
.

20

By Lemma 5, we know 1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥ 1

{

E(k)
1 ∩ Ē(k)

2 (η̃)
}

for any η ≥ η̃. Then, we can lower bound F̂TbT

for any η > η̃ as follows,

F̂TbT (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥2σ2 1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥2σ2 1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η̃)
}

≥ σ2

10L8
,

where the second inequality lower bounds the loss for one task by 2σ2 when the sequence gets truncated.

We have assumed E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≥ σ2

L6 in the proof. Now, we show the proof also works

when E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

< σ2

L6 with slight changes. According to the definition and Lemma 5,

we know E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

> σ2

L6 for all η > η̃. At each training set Strain, we can define

1

{

E1 ∩ Ē2(η̃′)
}

as limη→η̃+
1

{

E1 ∩ Ē2(η)
}

. We also have Pr[E1 ∩ Ē2(η̃′)] ≥ 1
18L8 . The remaining proof is the

same as before as we substitute 1
{

E1 ∩ Ē2(η̃)
}

by 1
{

E1 ∩ Ē2(η̃′)
}

. �

B.2.3 Generalization for η ∈ [1/L, η̃]

In this section, we show empirical meta objective F̂TbT is point-wise close to population meta objective FTbT for all

η ∈ [1/L, η̃].

Lemma 4. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at

least 1−m exp(−Ω(d))−O(t +m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤
σ2

L3
,

for all η ∈ [1/L, η̃],

In this section, we first show F̂TbT concentrates on FTbT for any fixed η and then construct ǫ-net for F̂TbT and

FTbT for η ∈ [1/L, η̃]. We give the proof of Lemma 4 at the end.

We first show that for a fixed η, F̂TbT (η) is close to FTbT (η) with high probability. We prove the meta-loss on

each task ∆TbT (η, Pk) is O(1)-subexponential. Then we apply Bernstein’s inequality to get the result. The proof is

deferred into Section B.2.4. We will assume σ is a large constant and t ≥ c2, d ≥ c4 for some constants c2, c4 so that

Lemma 6 holds and η̃ is a constant.

Lemma 7. Suppose σ is a constant. For any fixed η and any 1 > ǫ > 0, with probability at least 1− exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbT (η)− FTbT (η)

∣

∣

∣
≤ ǫ.

Next, we construct an ǫ-net for FTbT . By the definition of η̃, we know for any η ≤ η̃, the contribution from

truncated sequences in FTbT (η) is small. We can show the contribution from the un-truncated sequences is O(t)-
lipschitz.

Lemma 8. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for some constant c2, c4. There exists an 11σ2

L4 -net

N ⊂ [1/L, η̃] for FTbT with |N | = O(t). That means, for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η
′)| ≤ 11σ2

L4
,

for η′ = argminη′′∈N,η′′≤η(η − η′′).

21

Proof of Lemma 8. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof, we assume

E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≤ σ2

L6 . We will discuss the proof for the other case at the end, which is very

similar.

We can divide E1
2 ‖wt,η − wtrain‖2Htrain

as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

+ E
1

2
‖wt,η − wtrain‖2Htrain

1

{

Ē1
}

.

We will construct an ǫ-net for the first term and show the other two terms are small. Let’s first consider the third

term. Since 1
2 ‖wt,η − wtrain‖2Htrain

is O(1)-subexponential andPr[Ē1] ≤ exp(−Ω(d)), we haveE1
2 ‖wt,η − wtrain‖2Htrain

1

{

Ē1
}

=

O(1) exp(−Ω(d)). Choosing d to be at least certain constant, we know 1
2 ‖wt,η − wtrain‖2Htrain

1

{

Ē1
}

≤ σ2/L4.

Then we upper bound the second term. Since E1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≤ σ2

L6 and
1
2 ‖wt,η̃ − wtrain‖2Htrain

≥ 2σ2 when wt,η̃ diverges, we know Pr[E1 ∩ Ē2(η̃)] ≤ 1
2L6 . Then, we can upper bound the

second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≤ 18L2σ2 1

2L6
=

9σ2

L4

Next, we show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} has desirable Lipschitz condition. According

to Lemma 5, we know 1 {E1 ∩ E2(η)} ≥ 1 {E1 ∩ E2(η̃)} for any η ≤ η̃. Therefore, conditioning on E1 ∩ E2(η̃), we

know wt,η never gets truncated for any η ≤ η̃. This means wt,η = Bt,ηwtrain with Bt,η = (I − (I − ηHtrain)
t). We can

compute the derivative of 1
2 ‖wt,η − wtrain‖2Htrain

as follows,

∂

∂η

1

2
‖wt,η − wtrain‖2Htrain

=
〈

tHtrain(I − ηHtrain)
t−1wtrain, Htrain(wt,η − wtrain)

〉

.

Since ‖wt,η‖ = ‖(I − (I − ηHtrain)
t)wtrain‖ ≤ 4

√
Lσ and ‖wtrain‖ ≤ 2

√
Lσ, we have ‖(I − ηHtrain)

twtrain‖ ≤
6
√
Lσ. We can bound

∥

∥(I − ηHtrain)
t−1wtrain

∥

∥ with ‖(I − ηHtrain)
twtrain‖ + ‖wtrain‖ by bounding the expanding di-

rections using ‖(I − ηHtrain)
twtrain‖ and bounding the shrinking directions using ‖wtrain‖ . Therefore, we can bound

the derivative as follows,

∣

∣

∣

∣

∂

∂η

1

2
‖wt,η − wtrain‖2Htrain

∣

∣

∣

∣

≤ tL× 8
√
Lσ × 6L

√
Lσ = 48L3σ2t.

Suppose σ is a constant, we know E
1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} is O(t)-lipschitz. Therefore, there exists an

σ2

L4 -net N for E1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} with size O(t). That means, for any η ∈ [1/L, η̃],

∣

∣

∣

∣

E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}
∣

∣

∣

∣

≤ σ2

L4

for η′ = argminη′′∈N,η′′≤η(η − η′′). Note we construct the ǫ-net in a particular way such that η′ is chosen as the

largest step size in N that is at most η.
Combing with the upper bounds on the second term and the third term, we have for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η
′)| ≤ 11σ2

L4

for η′ = argminη′′∈N,η′′≤η(η − η′′).

22

In the above analysis, we have assumed E
1
2 ‖wt,η̃ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̃)
}

≤ σ2

L6 . The proof can be easily

generalized to the other case. We can define 1
{

E1 ∩ Ē2(η̃′)
}

as limη→η̃−
1

{

E1 ∩ Ē2(η)
}

. Then the proof works as

long as we substitute 1
{

E1 ∩ Ē2(η̃)
}

by 1
{

E1 ∩ Ē2(η̃′)
}

. We will also add η̃ into the ǫ-net. �

In order to prove FTbT is close to F̂TbT point-wise in [1/L, η̃], we still need to construct an ǫ-net for the empirical

meta objective F̂TbT .

Lemma 9. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at

least 1−m exp(−Ω(d)), there exists an σ2

L4 -net N ′ ⊂ [1/L, η̃] for F̂TbT with |N | = O(t +m). That means, for any

η ∈ [1/L, η̃],

|F̂TbT (η)− F̂TbT (η
′)| ≤ σ2

L4
,

for η′ = argminη′′∈N ′,η′′≤η(η − η′′).

Proof of Lemma 9. For each k ∈ [m], let E1,k be the event that
√
d/

√
L ≤ σi(X

(k)
train) ≤

√
Ld and 1/L ≤ λi(H

(k)
train) ≤

L for all i ∈ [n] and
√
dσ/4 ≤

∥

∥

∥
ξ
(k)
train

∥

∥

∥
≤

√
dσ. According to Lemma 1 and Lemma 45, we know with probability at

least 1−m exp(−Ω(d)), E1,k’s hold for all k ∈ [m]. From now on, we assume all these events hold.

Recall that the empirical meta objective as follows,

F̂TbT (η) :=
1

m

m
∑

k=1

∆TbT (η, Pk).

For any k ∈ [m], let ηc,k be the smallest step size such that w
(k)
t,η gets truncated. If ηc,k > η̂, by similar argument

as in Lemma 8, we know ∆TbT (η, Pk) is O(t)-Lipschitz in [1/L, η̂] as long as σ is a constant. If ηc,k ≤ η̂, by

Lemma 5 we know w
(k)
t,η gets truncated for any η ≥ ηc,k. This then implies that ∆TbT (η, Pk) is a constant function

for η ∈ [ηc,k, η̂]. We can also show that ∆TbT (η, Pk) is O(t)-Lipschitz in [1/L, ηc,k). There might be a discontinuity

in function value at ηc,k, so we need to add ηc,k into the ǫ-net.

Overall, we know there exists an σ2

L4 -net N ′ with |N ′| = O(t+m) for F̂TbT . That means, for any η ∈ [1/L, η̃],

∣

∣

∣
F̂TbT (η)− F̂TbT (η

′)
∣

∣

∣
≤ σ2

L4

for η′ = argminη′′∈N ′,η′′≤η(η − η′′). �

Finally, we combine Lemma 7, Lemma 8 and Lemma 9 to prove that F̂TbT is point-wise close to FTbT for

η ∈ [1/L, η̃].

Proof of Lemma 4. We assume σ as a constant in this proof. By Lemma 7, we know with probability at least

1− exp(−Ω(ǫ2m)),
∣

∣

∣
F̂TbT (η) − FTbT (η)

∣

∣

∣
≤ ǫ for any fixed η. By Lemma 8, we know there exists an 11σ2

L4 -net N for

FTbT with size O(t). By Lemma 9, we know with probability at least 1 −m exp(−Ω(d)), there exists an σ2

L4 -net N ′

for F̂TbT with size O(t+m). According to the proofs of Lemma 8 and Lemma 9, it’s not hard to verify that N ∪N ′

is still an 11σ2

L4 -net for F̂TbT and FTbT . That means, for any η ∈ [1/L, η̃], we have

|FTbT (η)− FTbT (η
′)|, |F̂TbT (η) − F̂TbT (η

′)| ≤ 11σ2

L4
,

for η′ = argminη′′∈N∪N ′,η′′≤η(η − η′′).
Taking a union bound over N ∪N ′, we have with probability at least 1−O(t+m) exp(−Ω(m)),

∣

∣

∣
F̂TbT (η) − FTbT (η)

∣

∣

∣
≤ σ2

L4

for all η ∈ N ∪N ′.

23

Overall, we know with probability at least 1−m exp(−Ω(d)) −O(t+m) exp(−Ω(m)), for all η ∈ [1/L, η̃],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η

′)|+ |F̂TbT (η) − F̂TbT (η
′)|+ |F̂TbT (η

′)− FTbT (η
′)|

≤23σ2

L4
≤ σ2

L3
,

where η′ = argminη′′∈N∪N ′,η′′≤η(η − η′′). We use the fact that L = 100 in the last inequality. �

B.2.4 Proofs of Technical Lemmas

Proof of Lemma 1. Recall that Xtrain is an n× d matix with n = cd where c ∈ [1/4, 3/4]. According to Lemma 48,

with probability at least 1− 2 exp(−t2/2), we have

√
d−

√
cd− t ≤ σi(Xtrain) ≤

√
d+

√
cd+ t,

for all i ∈ [n].
Since Htrain = 1/nX⊤

trainXtrain, we know λi(Htrain) = 1/nσ2
i (Xtrain). Since c ∈ [14 ,

3
4], we have 1

cd(
√
d+

√
cd)2 ≤

100 − c′ and 1
cd(

√
d −

√
cd)2 ≥ 1

100 + c′, for some constant c′. Therefore, we know with probability at least 1 −
exp(−Ω(d)),

1

100
≤ λi(Htrain) ≤ 100,

for all i ∈ [n].
Similarly, since there exists constant c′′ such that

√
d +

√
cd ≤ (10− c′′)

√
d and

√
d −

√
cd ≥ (1/10 + c′′)

√
d,

we know with probability at least 1− exp(−Ω(d)),

1

10

√
d ≤ σi(Xtrain) ≤ 10

√
d,

for all i ∈ [n]. Choosing L = 100 finishes the proof. �

Proof of Lemma 5. We prove that for any training set Strain, 1
{

E1 ∩ Ē2(η′)
}

≥ 1

{

E1 ∩ Ē2(η′)
}

for any η′ > η.
This is trivially true if E1 is false on Strain. Therefore, we focus on the case when E1 holds for Strain. Suppose ηc is

the smallest step size such that the GD sequence gets truncated. Let {w′
τ,ηc

} be the GD sequence without truncation.

There must exists τ ≤ t such that
∥

∥w′
τ,ηc

∥

∥ ≥ 4
√
Lσ. We only need to prove that

∥

∥w′
τ,η

∥

∥ ≥ 4
√
Lσ for any η ≥ ηc. We

prove this by showing the derivative of
∥

∥w′
τ,η

∥

∥

2
in η is non-negative assuming

∥

∥w′
τ,η

∥

∥

2 ≥ 4
√
Lσ.

Recall the recursion of w′
τ,η as w′

τ,η = wtrain−(I−ηHtrain)
τwtrain. If τ is an odd number, it’s clear that ∂

∂η

∥

∥w′
τ,η

∥

∥

2

is non-negative at any η ≥ 0. From now on, we assume τ is an even number. Actually in this case, ∂
∂η

∥

∥w′
τ,η

∥

∥

2
can be

negative for some η. However, we can prove the derivative must be non-negative assuming
∥

∥w′
τ,η

∥

∥

2 ≥ 4
√
Lσ.

Suppose the eigenvalue decomposition of Htrain is
∑n

i=1 λiuiu
⊤
i with λ1 ≥ · · ·λn. Denote ci as 〈wtrain, ui〉 . Let

λj be the smallest eigenvalue such that (1− ηλj) ≤ −1. This implies λi ≤ 2/η for any i ≥ j+1. We can write down
∥

∥w′
τ,η

∥

∥

2
as follows

∥

∥w′
τ,η

∥

∥

2
=

j
∑

i=1

(

1− (1 − ηλi)
t
)2

c2i +
n
∑

i=j+1

(

1− (1 − ηλi)
t
)2

c2i

≤
j
∑

i=1

(

1− (1 − ηλi)
t
)2

c2i + ‖wtrain‖2 .

24

Since E1 holds, we know ‖wtrain‖2 ≤ 4Lσ2. Combining with
∥

∥w′
τ,η

∥

∥

2 ≥ 16Lσ2, we have
∑j

i=1 (1− (1− ηλi)
t)

2
c2i ≥

12Lσ2. We can lower bound the derivative as follows,

∂

∂η
‖wτ,η‖2 =

j
∑

i=1

2tλi(1 − ηλi)
t−1
(

1− (1 − ηλi)
t
)

c2i +

n
∑

i=j+1

2tλi(1− ηλi)
t−1
(

1− (1− ηλi)
t
)

c2i

≥2t

j
∑

i=1

λi(1 − ηλi)
t−1
(

1− (1 − ηλi)
t
)

c2i − 2t
2

η

n
∑

i=j+1

c2i

≥2t

j
∑

i=1

λi(1 − ηλi)
t−1
(

1− (1 − ηλi)
t
)

c2i − 2t× 8Lσ2/η.

Then, we only need to show that
∑j

i=1 λi(1 − ηλi)
t−1 (1− (1− ηλi)

t) c2i is larger than 8Lσ2/η. We have

j
∑

i=1

λi(1− ηλi)
t−1
(

1− (1− ηλi)
t
)

c2i =

j
∑

i=1

λi
(1− ηλi)

t−1

1− (1− ηλi)t
(

1− (1 − ηλi)
t
)2

c2i

=

j
∑

i=1

λi
(ηλi − 1)t−1

(ηλi − 1)t − 1

(

1− (1 − ηλi)
t
)2

c2i

=

j
∑

i=1

λi
(ηλi − 1)t

(ηλi − 1)t − 1

1

ηλi − 1

(

1− (1− ηλi)
t
)2

c2i

≥
j
∑

i=1

1

η

(

1− (1 − ηλi)
t
)2

c2i ≥ 12Lσ2/η > 8Lσ2/η.

�

Proof of Lemma 6. Similar as the analysis in Lemma 2, conditioning on E1, we know the GD sequence never exceeds

the norm threshold for any η ∈ [0, 2/L]. This then implies

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

= 0,

for all η ∈ [0, 2/L].
Let {w′

τ,η} be the GD sequence without truncation. For any step size η ∈ [2.5L,∞], conditioning on E1, we have

∥

∥w′
t,η

∥

∥ ≥
(

(η/L− 1)t − 1
)

‖wtrain‖ ≥
(

1.5t − 1
)

(

σ

4
√
L

− 1

)

≥ 4
√
Lσ,

where the last inequality holds as long as σ ≥ 5
√
L, t ≥ c2 for some constant c2. Therefore, we know when

η ∈ [2.5L,∞), 1
{

E1 ∩ Ē2(η)
}

= 1 {E1}. Then, we have for any η ≥ 2.5L,

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

≥ 1

2L

(

4
√
Lσ − 2

√
Lσ
)2

Pr[E1] ≥ 2σ2 Pr[E1] ≥
σ2

L3
,

where the last inequality uses Pr[E1] ≥ 1− exp(−Ω(d)) and assume d ≥ c4 for some constant c4.

Overall, we know E
1
2 ‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

equals zero for all η ∈ [0, 2/L] and is at least σ2

L3 for all

η ∈ [2.5L,∞). By definition, we know η̃ ∈ (1/L, 3L). �

Proof of Lemma 7. Recall that F̂TbT (η) := 1
m

∑m
k=1 ∆TbT (η, Pk). We prove that each ∆TbT (η, Pk) is O(1)-

subexponential. We can further write ∆TbT (η, Pk) as follows,

∆TbT (η, Pk) =
1

2

∥

∥

∥
w

(k)
t,η − w∗

k − (X
(k)
train)

†ξ(k)train

∥

∥

∥

2

H
(k)
train

≤1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2 ∥
∥

∥
H

(k)
train

∥

∥

∥
+

1

2n

∥

∥

∥
ξ
(k)
train

∥

∥

∥

2

+
∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

(

1√
n

∥

∥

∥
ξ
(k)
train

∥

∥

∥

)(

1√
n

∥

∥

∥
X

(k)
train

∥

∥

∥

)

.

25

We can write

∥

∥

∥
H

(k)
train

∥

∥

∥
as σ2

max(
1√
n
X

(k)
train). According to Lemma 47, we know σmax(X

(k)
train)− Eσmax(X

(k)
train) is O(1)-

subgaussian, which implies that σmax(
1√
n
X

(k)
train)−Eσmax(

1√
n
X

(k)
train) is O(1/

√
d)-subgaussian. SinceEσmax(

1√
n
X

(k)
train)

is a constant, we know σmax(
1√
n
X

(k)
train) is O(1)-subgaussian and σ2

max(
1√
n
X

(k)
train) is O(1)-subexponential. Similarly,

we know both 1
2n

∥

∥

∥
ξ
(k)
train

∥

∥

∥

2

and
(

1√
n

∥

∥

∥
X

(k)
train

∥

∥

∥

)(

1√
n

∥

∥

∥
ξ
(k)
train

∥

∥

∥

)

are O(1)-subexponential.

Suppose σ is a constant, we know

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥
is upper bounded by a constant. Then, we know ∆TbT (η, Pk)

is O(1)-subexponential. Therefore, F̂TbT (η) is the average of m i.i.d. O(1)-subexponential random variables. By

standard concentration inequality, we know for any 1 > ǫ > 0, with probability at least 1− exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbT (η)− FTbT (η)

∣

∣

∣
≤ ǫ.

�

B.3 Train-by-validation (GD)

In this section, we show that the optimal step size under F̂TbV is Θ(1/t). Furthermore, we show under this optimal

step size, GD sequence makes constant progress towards the ground truth. Precisely, we prove the following theorem.

Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 2 with n1, n2 ∈ [d/4, 3d/4]. Assume

noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 and dimension

d ≥ c4 log(t) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argminη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

In this section, we still use L to denote constant 100. We start from analyzing the behavior of the population

meta-objective FTbV for step sizes within [0, 1/L]. We show the optimal step size within this range is Θ(1/t) and GD

sequence moves towards w∗ under the optimal step size. This serves as step 1 in Section B.1 We defer the proof of

Lemma 10 into Section B.3.1.

Lemma 10. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤
1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥
1

2
‖w∗‖2 − 6

10
C +

σ2

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

To relate the behavior of FTbV to the behavior of F̂TbV , we prove the following generalization result for step sizes

in [0, 1/L]. This serves as step 3 in Section B.1. The proof is deferred into Section B.3.2.

Lemma 11. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for some constant c4. With probability at least 1 −
O(1/ǫ) exp(−Ω(ǫ2m)),

|F̂TbV (η)− FTbV (η)| ≤ ǫ,

for all η ∈ [0, 1/L].

In Lemma 12, we show the empirical meta objective F̂TbV is high for all step size larger than 1/L, which then

implies η∗valid ∈ [0, 1/L]. This serves as step 2 in Section B.1. We prove this lemma in Section B.3.3.

26

Lemma 12. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability

at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C′ is a positive constant independent with σ.

Combining Lemma 10, Lemma 11 and Lemma 12, we give the proof of Theorem 8.

Proof of Theorem 8. According to Lemma 10, we know as long as d and t are larger than certain constants, there

exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤
1

2
‖w∗‖2 − 9

10
C + σ2/2

FTbV (η) ≥
1

2
‖w∗‖2 − 6

10
C + σ2/2, ∀η ∈ [0, η1] ∪ [η3, 1/L],

for some positive constant C.
Choosing ǫ = min(1, C/10) in Lemma 11, we know as long as d is larger than certain constant, with probability

at least 1− exp(−Ω(m)),
|F̂TbV (η)− FTbV (η)| ≤ C/10,

for all η ∈ [0, 1/L].
Therefore,

F̂TbV (η2) ≤
1

2
‖w∗‖2 − 8

10
C + σ2/2

F̂TbV (η) ≥
1

2
‖w∗‖2 − 7

10
C + σ2/2, ∀η ∈ [0, η1] ∪ [η3, 1/L].

By Lemma 12, we know as long as t ≥ c2, d ≥ c4 log(t) for some constants c2, c4, with probability at least

1− exp(−Ω(m)),

F̂TbV (η) ≥ C′σ2 +
1

2
σ2,

for all η ≥ 1/L. As long as σ ≥ 1/
√
C′, we have F̂TbV (η) ≥ 1+ 1

2σ
2 for all η ≥ 1/L. Combining with F̂TbV (η2) ≤

1
2 ‖w∗‖2 − 8

10C + σ2/2, we know η∗valid ∈ [0, 1/L]. Furthermore, since F̂TbV (η) ≥ 1
2 ‖w∗‖2 − 7

10C + σ2/2, ∀η ∈
[0, η1] ∪ [η3, 1/L], we have η1 ≤ η∗valid ≤ η3.

Recall that η1, η3 = Θ(1/t), we know η∗valid = Θ(1/t). At the optimal step size, we have

FTbV (η
∗
valid) ≤ F̂TbV (η

∗
valid) + C/10 ≤ F̂TbV (η2) + C/10 ≤ 1

2
‖w∗‖2 − 7

10
C + σ2/2.

Since FTbV (η
∗
valid) = E

1
2

∥

∥wt,η∗

valid
− w∗∥

∥

2
+ σ2/2, we have

E
∥

∥wt,η∗

valid
− w∗∥

∥

2 ≤ ‖w∗‖2 − 7

5
C.

Choosing m to be at least certain constant, this holds with probability at least 0.99. �

B.3.1 Behavior of FTbV for η ∈ [0, 1/L]

In this section, we study the behavior of FTbV when η ∈ [0, 1/L]. We prove the following Lemma.

27

Lemma 10. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤
1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥
1

2
‖w∗‖2 − 6

10
C +

σ2

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

It’s not hard to verify thatFTbV (η) = E1/2 ‖wt,η − w∗‖2+σ2/2. For convenience, denoteQ(η) := 1/2 ‖wt,η − w∗‖2 .
In order to prove Lemma 10, we only need to show that EQ(η2) ≤ 1

2 ‖w∗‖2 − 9
10C and EQ(η) ≥ 1

2 ‖w∗‖2 − 6
10C

for all η ∈ [0, η1] ∪ [η3, 1/L]. In Lemma 13, we first show that this happens with high probability over the sampling

of tasks.

Lemma 13. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 for certain constant

c2. Then, with probability at least 1 − exp(−Ω(d)) over the sampling of tasks, there exists η1, η2, η3 = Θ(1/t) with

η1 < η2 < η3 such that

Q(η2) :=
1

2
‖wt,η2 − w∗‖2 ≤ 1

2
‖w∗‖2 − C

Q(η) :=
1

2
‖wt,η − w∗‖2 ≥ 1

2
‖w∗‖2 − C

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

Since we are in the small step size regime, we know the GD sequence converges with high probability and will not

be truncated. For now, let’s assume wt,η = Bt,ηw
∗
train +Bt,η(Xtrain)

†ξtrain, where Bt,η = I − (I − ηHtrain)
t. We have

Q(η) =
1

2

∥

∥Bt,ηw
∗
train +Bt,η(Xtrain)

†ξtrain − w∗∥
∥

2

=
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2

+
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

=
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 − 〈Bt,ηw
∗
train, w

∗〉

+
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

.

In Lemma 14, we show that with high probability the crossing term
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

is negli-

gible for all η ∈ [0, 1/L]. By Hoeffding’s inequality, we know the crossing term is small for any fixed η. Constructing

an ǫ-net for the crossing term in η, we can take a union bound and show it’s small for all η ∈ [0, 1/L]. We defer the

proof of Lemma 14 to Section B.3.4.

Lemma 14. Assume σ is a constant. For any 1 > ǫ > 0, we know with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2d)),
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉
∣

∣ ≤ ǫ,

for all η ∈ [0, 1/L].

Denote

G(η) :=
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 − 〈Bt,ηw
∗
train, w

∗〉 .

Choosing ǫ = C/4 in Lemma 14, we only need to show G(η2) ≤ ‖w∗‖2 − 5C/4 and G(η) ≥ ‖w∗‖2 − C/4 for all

η ∈ [0, η1] ∪ [η3, 1/L].

We first show that there exists η2 = Θ(1/t) such that G(η2) ≤ 1
2 ‖w∗‖2−5C/4 for some constant C. It’s not hard

to show that 1
2 ‖Bt,ηw

∗
train‖

2
+ 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
= O(η2t2σ2). In Lemma 15, we show that the improvement

〈Bt,ηw
∗
train, w

∗〉 = Ω(ηt) is linear in η. Therefore there exists η2 = Θ(1/t) such that G(η2) ≤ 1
2 ‖w∗‖2 − 5C/4 for

some constant C. We defer the proof of Lemma 15 to Section B.3.4.

28

Lemma 15. For any fixed η ∈ [0, L/t] with probability at least 1− exp(−Ω(d)),

〈Bt,ηw
∗
train, w

∗〉 ≥ ηt

16L
.

To lower bound G(η) for small η, we notice

G(η) ≥ 1

2
‖w∗‖2 − 〈Bt,ηw

∗
train, w

∗〉 .

We can show that 〈Bt,ηw
∗
train, w

∗〉 = O(ηt). Therefore, there exists η1 = Θ(1/t) such that 〈Bt,ηw
∗
train, w

∗〉 ≤ C/4 for

all η ∈ [0, η1].
To lower bound G(η) for large η, we lower bound G(η) using the noise square term,

G(η) ≥ 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
.

We show that with high probability
∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
= Ω(σ2) for all η ∈ [log(2)L/t, 1/L]. Therefore, as long as

σ is larger than some constant, there exists η3 = Θ(1/t) such that G(η) ≥ 1
2 ‖w∗‖2 for all η ∈ [η3, 1/L].

Combing Lemma 14 and Lemma 15, we give a complete proof for Lemma 13.

Proof of Lemma 13. Recall that

Q(η) =
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2

+
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

=G(η) +
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

We first show that with probability at least 1− exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such

that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L].
According to Lemma 1, we know with probability at least 1 − exp(−Ω(d)),

√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2

=
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 − 〈Bt,ηw
∗
train, w

∗〉 .

Recall that Bt,η = I − (I − ηHtrain)
t, for any vector w in the span of Htrain,

‖Bt,ηw‖ =
∥

∥

(

I − (I − ηHtrain)
t
)

w
∥

∥ ≤ Lηt ‖w‖ .

According to Lemma 45, we know with probability at least 1− exp(−Ω(d)), ‖ξtrain‖ ≤
√
dσ. Therefore, we have

1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≤ L2η2t2/2 + L3η2t2σ2/2 ≤ L3η2t2σ2,

where the second inequality uses σ, L ≥ 1. According to Lemma 15, for any fixed η ∈ [0, L/t], with probability at

least 1− exp(−Ω(d)), 〈Bt,ηw
∗
train, w

∗〉 ≥ ηt
16L . Therefore,

G(η) ≤ 1

2
‖w∗‖2 + L3η2t2σ2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

where the second inequality holds as long as η ≤ 1
32L4σ2t . Choosing η2 := 1

32L4σ2t , we have

G(η2) ≤
1

2
‖w∗‖2 − 1

1024L5σ2
=

1

2
‖w∗‖2 − 5C

4
,

where C = 1
819.2L5σ2 . Note C is a constant as σ, L are constants.

29

Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with η1 < η2 such that for

any η ∈ [0, η1], G(η) ≥ 1
2 ‖w∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 − 〈Bt,ηw
∗
train, w

∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw

∗
train, w

∗〉 .

Since |〈Bt,ηw
∗
train, w

∗〉| ≤ Lηt, we know for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − Lη1t.

Choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with η3 > η2 such that for

all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≥ 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
.

According to Lemma 45, we know with probability at least 1− exp(−Ω(d)),
√
dσ

2
√
2
≤ ‖ξtrain‖ . Therefore,

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≥
(

1− e−ηt/L
)2 σ2

8L
≥ σ2

32L
,

where the last inequality assumes η ≥ log(2)L/t. As long as t ≥ log(2)L2, we have log(2)L/t ≤ 1/L. Choosing

η3 = log(2)L/t, we know for all η ∈ [η3, 1/L],

G(η) ≥ 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≥ σ2

64L
.

Note that 1
2 ‖w∗‖2 = 1/2. Therefore, as long as σ ≥ 8

√
L, we have

G(η) ≥ 1

2
‖w∗‖2

for all η ∈ [η3, 1/L].

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 −
5C/4 andG(η) ≥ 1/2 ‖w∗‖2−C/4 for all η ∈ [0, η1]∪[η3, 1/L]. Recall thatQ(η) = G(η)+

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

.

Choosing ǫ = C/4 in Lemma 14, we know with probability at least 1−exp(−Ω(d)),
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤
C/4 for all η ∈ [0, 1/L]. Therefore, we know Q(η2) ≤ 1/2 ‖w∗‖2 − C and Q(η) ≥ 1/2 ‖w∗‖2 − C/2 for all

η ∈ [0, η1] ∪ [η3, 1/L]. �

Next, we give the proof of Lemma 10.

Proof of Lemma 10. Recall thatFTbV (η) = E1/2 ‖wt,η − w∗‖2+σ2

2 . For convenience, denoteQ(η) := 1/2 ‖wt,η − w∗‖2 .
In order to prove Lemma 10, we only need to show that EQ(η2) ≤ 1

2 ‖w∗‖2 − 9
10C and EQ(η) ≥ 1

2 ‖w∗‖2 − 6
10C for

all η ∈ [0, η1] ∪ [η3, 1/L].

30

According to Lemma 13, as long as σ is a large enough constant c1 and t is at least certain constant c2, with

probability at least 1 − exp(−Ω(d)) over the sampling of Strain, there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3
such that

Q(η2) := 1/2 ‖wt,η2 − w∗‖2 ≤ 1

2
‖w∗‖2 − C

Q(η) := 1/2 ‖wt,η − w∗‖2 ≥ 1

2
‖w∗‖2 − C

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1− δ. We can write EQ(η)
as follows,

EQ(η) = E[Q(η)|E] Pr[E] + E[Q(η)|Ē] Pr[Ē].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore,Q(η) := 1/2 ‖wt,η − w∗‖2 ≤

13Lσ2. When η = η2, we have

EQ(η2) ≤
(

1

2
‖w∗‖2 − C

)

(1− δ) + 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− C + (C + 13Lσ2)δ

≤1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
10C+130Lσ2 .

When η ∈ [0, η1] ∪ [η3, 1/L], we have

EQ(η2) ≥
(

1

2
‖w∗‖2 − C

2

)

(1− δ)− 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− (1− δ)

C

2
− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− (1/2 + 13Lσ2)δ

≥1

2
‖w∗‖2 − 6C

10
,

where the last inequality holds as long as δ ≤ C
5C+130Lσ2 .

According to Lemma 13, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied as long as d
is larger than certain constant. �

B.3.2 Generalization for η ∈ [0, 1/L]

In this section, we show F̂TbV is point-wise close to FTbV for all η ∈ [0, 1/L]. Recall Lemma 11 as follows.

Lemma 11. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for some constant c4. With probability at least 1 −
O(1/ǫ) exp(−Ω(ǫ2m)),

|F̂TbV (η)− FTbV (η)| ≤ ǫ,

for all η ∈ [0, 1/L].

In order to prove Lemma 11, let’s first show that for a fixed η with high probability F̂TbV (η) is close to FTbV (η).
Similar as in Lemma 7, we show each ∆TbV (η, Pk) is O(1)-subexponential. We defer its proof to Section B.3.4.

Lemma 16. Suppose σ is a constant. For any fixed η ∈ [0, 1/L] and any 1 > ǫ > 0, with probability at least

1− exp(−Ω(ǫ2m)),
∣

∣

∣
F̂TbV (η)− FTbV (η)

∣

∣

∣
≤ ǫ.

31

Next, we show that there exists an ǫ-net for FTbV with size O(1/ǫ). By ǫ-net, we mean there exists a finite set Nǫ

of step size such that |FTbV (η) − FTbV (η
′)| ≤ ǫ for any η ∈ [0, 1/L] and η′ ∈ argminη∈Nǫ

|η − η′|. We defer the

proof of Lemma 17 to Section B.3.4.

Lemma 17. Suppose σ is a constant. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for constant c4. There exists an

ǫ-net Nǫ for FTbV with |Nǫ| = O(1/ǫ). That means, for any η ∈ [0, 1/L],

|FTbV (η)− FTbV (η
′)| ≤ ǫ,

for η′ ∈ argminη∈Nǫ
|η − η′|.

Next, we show that with high probability, there also exists an ǫ-net for F̂TbV with size O(1/ǫ).

Lemma 18. Suppose σ is a constant. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for constant c4. With probability at

least 1− exp(−Ω(ǫ2m)), there exists an ǫ-net N ′
ǫ for F̂TbV with |Nǫ| = O(1/ǫ). That means, for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η
′)| ≤ ǫ,

for η′ ∈ argminη∈Nǫ
|η − η′|.

Combing Lemma 16, Lemma 17 and Lemma 18, now we give the proof of Lemma 11.

Proof of Lemma 11. The proof is very similar as in Lemma 4. By Lemma 16, we know with probability at least

1 − exp(−Ω(ǫ2m)),
∣

∣

∣
F̂TbV (η)− FTbV (η)

∣

∣

∣
≤ ǫ for any fixed η. By Lemma 17 and Lemma 18, we know as long

as d = Ω(log(1/ǫ)), with probability at least 1 − exp(−Ω(ǫ2m)), there exists ǫ-net Nǫ and N ′
ǫ for FTbV and F̂TbV

respectively. Here, both of Nǫ and N ′
ǫ have size O(1/ǫ). According to the proofs of Lemma 17 and Lemma 18, it’s

not hard to verify that Nǫ ∪N ′
ǫ is still an ǫ-net for F̂TbV and FTbV . That means, for any η ∈ [0, 1/L], we have

|FTbV (η)− FTbV (η
′)|, |F̂TbV (η)− F̂TbV (η

′)| ≤ ǫ,

for η′ ∈ argminη∈Nǫ∪N ′
ǫ
|η − η′|.

Taking a union bound over Nǫ ∪N ′
ǫ, we have with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbV (η) − FTbV (η)

∣

∣

∣
≤ ǫ

for any η ∈ Nǫ ∪N ′
ǫ.

Overall, we know with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2m)), for all η ∈ [0, 1/L],

|FTbV (η)− F̂TbV (η)|
≤|FTbV (η)− FTbV (η

′)|+ |F̂TbV (η) − F̂TbV (η
′)|+ |F̂TbV (η

′)− FTbV (η
′)|

≤3ǫ,

where η′ ∈ argminη∈Nǫ∪N ′
ǫ
|η − η′|. Changing ǫ to ǫ′/3 finishes the proof. �

B.3.3 Lower bounding F̂TbV for η ∈ [1/L,∞)

In this section, we prove F̂TbV is large for any step size η ≥ 1/L. Therefore, the optimal step size η∗valid must be

smaller than F̂TbV .

Lemma 12. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability

at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C′ is a positive constant independent with σ.

32

When the step size is very large (larger than 3L), we know the GD sequence gets truncated with high probability,

which immediately implies the loss is high. The proof of Lemma 19 is deferred into Section B.3.4.

Lemma 19. Assume t ≥ c2, d ≥ c4 for some constants c2, c4. With probability at least 1− exp(−Ω(m)),

F̂TbV (η) ≥ σ2,

for all η ∈ [3L,∞)

The case for step size within [1/L, 3L] requires more efforts. We give the proof of Lemma 20 in this section later.

Lemma 20. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability

at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C4σ
2 +

1

2
σ2,

for all η ∈ [1/L, 3L], where C4 is a positive constant independent with σ.

With the above two lemmas, Lemma 12 is just a combination of them.

Proof of Lemma 12. The result follows by taking a union bound and choosing C′ = min(C4, 1/2). �

In the remaining of this section, we give the proof of Lemma 20. When the step size is between 1/L and 3L, if the

GD sequence has a reasonable probability of diverging, we can still show the loss is high similar as before. If not, we

need to show the GD sequence overfits the noise in the training set, which incurs a high loss.

Recall that the noise term is roughly 1
2

∥

∥(I − (I − ηHtrain)
t)(Xtrain)

†ξtrain

∥

∥

2
. When η ∈ [1/L, 3L], the eigenvalues

of I − ηHtrain in Strain subspace can be negative. If all the non-zero n eigenvalues of Htrain have the same value, there

exists a step size such that the eigenvalues of I − ηHtrain in subspace Strain is −1. If t is even, the eigenvalues of

I − (I − ηHtrain)
t in Strain subspace are zero, which means GD sequence does not catch any noise in Strain.

Notice that the above problematic case cannot happen when the eigenvalues of Htrain are spread out. Basically,

when there are two different eigenvalues, there won’t exist any large η that can cancel both directions at the same time.

In Lemma 21, we show with constant probability, the eigenvalues of Htrain are indeed spread out. The proof is deferred

into Section B.3.4.

Lemma 21. Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. Assume dimension d ≥ c4 for certain constant c4.
There exist positive constants µ, µ′, µ′′ such that with probability at least µ,

λµ′n − λn−µ′n+1 ≥ µ′′.

Next, we utilize this variance in eigenvalues to prove that the GD sequence has to learn a constant fraction of the

noise in training set.

Lemma 22. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. Then, with probability at least C1

‖Bt,ηwtrain − w∗‖2Htrain
≥ C2σ

2,

for all η ∈ [1/L, 3L], where C1, C2 are positive constants.

Proof of Lemma 22. Let E1 be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/

√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 1 and Lemma 45, we know both E1 and E3 hold with

probability at least 1− exp(−Ω(d)).
Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. According to Lemma 21, assuming d is larger than certain

constant, we know there exist positive constants µ1, µ2, µ3 such that with probability at least µ1, λµ2n −λn−µ2n+1 ≥
µ3. Call this event E2.

33

Let S1 and S2 be the span of the bottom and top µ2n eigenvectors of Htrain respectively. According to Lemma 45,

we know ‖ξtrain‖ ≥
√
d
4 σ with probability at least 1 − exp(−Ω(d)). Let P1 ∈ R

n×n be a rank-µ2n projection matrix

such that the column span of (Xtrain)
†P1 is S1. By Johnson-Lindenstrauss Lemma, we know with probability at least

1 − exp(−Ω(d)),
∥

∥ProjP1
ξtrain

∥

∥ ≥
√
µ2

2 ‖ξtrain‖ . Taking a union bound, with probability at least 1 − exp(−Ω(d)),
∥

∥ProjP1
ξtrain

∥

∥ ≥
√
µ2dσ
8 . Similarly, we can define P2 for the S2 subspace and show with probability at least 1 −

exp(−Ω(d)),
∥

∥ProjP2
ξtrain

∥

∥ ≥
√
µ2dσ
8 . Call the intersection of both events as E4, which happens with with probability

at least 1− exp(−Ω(d)).
Taking a union bound, we know E1 ∩ E2 ∩ E3 ∩ E4 holds with probability at least µ1/2 as long as d is larger than

certain constant. Through the proof, we assume E1 ∩ E2 ∩ E3 ∩ E4 holds.

Let’s first lower bound ‖Bt,ηwtrain − w∗
train‖ as follows,

‖Bt,ηwtrain − w∗
train‖ =

∥

∥Bt,η

(

w∗
train + (Xtrain)

†ξtrain

)

− w∗
train

∥

∥

≥
(∥

∥Bt,η

(

w∗
train + (Xtrain)

†ξtrain

)∥

∥− 1
)

Recall that we define S1 and S2 as the span of the bottom and top µ2n eigenvectors of Htrain respectively. We rely

on S1 to lower bound ‖wt,η − w∗‖ when η is small and rely on S2 when η is large.

Case 1: Let σS1

min(Bt,η) be the smallest singular value of Bt,η within S1 subspace. If ηλn−µ2n+1 ≤ 2 − µ3/(2L),
we have

σS1

min(Bt,η) ≥ min

(

1−
(

1− 1

L2

)t

, 1−
(

1− µ3

2L

)t
)

≥ 1

2
,

where the second inequality assumes t ≥ max(L2, 2L/µ3) log 2. Then, we have

‖wt,η − w∗‖ ≥
(

σS1

min(Bt,η)
(∥

∥ProjS1
(Xtrain)

†ξtrain

∥

∥− 1
)

− 1
)

≥
(

1

2

(√
µ2σ

8
√
L

− 1

)

− 1

)

≥
√
µ2σ

32
√
L
,

where the second inequality uses
∥

∥ProjP1
ξtrain

∥

∥ ≥
√
µ2dσ
8 and the last inequality assumes σ ≥ 48

√
L√

µ2
.

Case 2: If ηλn−µ2n+1 > 2−µ3/(2L), we have ηλµ2n ≥ 2+µ3/(2L) since λµ2n −λn−µ2n+1 ≥ µ3 and η ≥ 1/L.

Let σS2

min(Bt,η) be the smallest singular value of Bt,η within S2 subspace. We have

σS2

min(Bt,η) ≥
(

(

1 +
µ3

2L

)t

− 1

)

≥ 1

2
,

where the last inequality assumes t ≥ 4L/µ3. Then, similar as in Case 1, we can also prove ‖wt,η − w∗‖ ≥
√
µ2σ

32
√
L
.

Therefore, we have

‖Bt,ηwtrain − w∗‖2Htrain
= ‖Bt,ηwtrain − w∗

train‖2Htrain
≥ 1

L
‖Bt,ηwtrain − w∗

train‖2 ≥ µ2σ
2

1024L2
,

for all η ∈ [1/L, 3L]. We denote C1 := µ1/2 and C2 = µ2

1024L2 . �

Before we present the proof of Lemma 20, we still need a technical lemma that shows the noise in Svalid concen-

trates at its mean. The proof of Lemma 23 is deferred into Section B.3.4.

Lemma 23. Suppose σ is constant. For any 1 > ǫ > 0, with probability at least 1 − O(t/ǫ) exp(−Ω(ǫ2d)),
λn(Hvalid) ≥ 1/L and

‖wt,η − wvalid‖2Hvalid
≥ ‖wt,η − w∗‖2Hvalid

+ (1− ǫ)σ2,

for all η ∈ [1/L, 3L].

34

Combing the above lemmas, we give the proof of Lemma 20.

Proof of Lemma 20. According to Lemma 23, we know given 1 > ǫ > 0, with probability at least

1 − O(t/ǫ) exp(−Ω(ǫ2d)), λn(Hvalid) ≥ 1/L and ‖wt,η − wvalid‖2Hvalid
≥ ‖wt,η − w∗‖2Hvalid

+ (1 − ǫ)σ2 for all η ∈
[1/L, 3L]. Call this event E1. Suppose Pr[E1] ≥ 1 − δ/2, where δ will be specifies later. For each training set S

(k)
train,

we also define E(k)
1 . By concentration, we know with probability at least 1− exp(−Ω(δ2m)), 1/m

∑m
k=1 1

{

E(k)
1

}

≥
1− δ.

According to Lemma 22, we know there exist constants C1, C2 such that with probability at least C1,

‖Bt,ηwtrain − w∗‖2Htrain
≥ C2σ

2 for all η ∈ [1/L, 3L]. Call this event E2. For each training set S
(k)
train, we also define

E(k)
2 . By concentration, we know with probability at least 1− exp(−Ω(m)), 1/m

∑m
k=1 1

{

E(k)
2

}

≥ C1/2.

For any step size η ∈ [1/L, 3L], we can lower bound F̂TbV (η) as follows,

F̂TbV (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

1

{

E(k)
1

}

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1

}

+
1

2
(1− ǫ)(1− δ)σ2

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2

}

+
1

2
(1− ǫ)(1 − δ)σ2.

As long as δ ≤ C1/4, we know 1
m

∑m
k=1 1

{

E(k)
1 ∩ E(k)

2

}

≥ C1/4. Let Ē3(η) be the event that w
(k)
t,η gets truncated

with step size η. We have

1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2

}

=
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2 ∩ E(k)
3

}

+
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2 ∩ Ē(k)
3

}

.

If 1
m

∑m
k=1 1

{

E(k)
1 ∩ E(k)

2 ∩ Ē(k)
3

}

≥ C1/8, we have

1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2

}

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2 ∩ Ē(k)
3

}

≥C1

8
× 9σ2

2
=

9C1σ
2

16
.

Here, we lower bound

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

by 9σ2 when the sequence gets truncated.

If 1
m

∑m
k=1 1

{

E(k)
1 ∩ E(k)

2 ∩ Ē(k)
3

}

< C1/8, we know 1
m

∑m
k=1 1

{

E(k)
1 ∩ E(k)

2 ∩ E(k)
3

}

≥ C1/8. Then, we have

1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2

}

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
B

(k)
t,ηwtrain − w∗

k

∥

∥

∥

2

Hvalid

1

{

E(k)
1 ∩ E(k)

2 ∩ E(k)
3

}

≥C1

8
× C2σ

2

2
=

C1C2σ
2

16

35

Letting C3 = min(9C1

16 , C1C2

16), we then have

F̂TbV (η) ≥ C3σ
2 +

1

2
(1− ǫ)(1 − δ)σ2 ≥ C3σ

2

2
+

1

2
σ2,

where the last inequality chooses δ = ǫ = C3/2. In order for Pr[E1] ≥ 1− δ/2, we only need d ≥ c4 log(t) for some

constant c4. Replacing C3/2 by C4 finishes the proof. �

B.3.4 Proofs of Technical Lemmas

Proof of Lemma 14. We first show that for a fixed η ∈ [0, 1/L], the crossing term
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣

is small with high probability. We can write down the crossing term as follows:

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

=
〈

[(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train − w∗), ξtrain

〉

.

Noticing that ξtrain is independent with [(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train −w∗), we will use Hoeffding’s inequality to bound

∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉
∣

∣. According to Lemma 1, we know with probability at least 1 − exp(−Ω(d)),√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100. Since η ≤ 1/L, we know

‖Bt,η‖ = ‖I − (I − ηHtrain)
t‖ ≤ 1. Therefore, we have

∥

∥[(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train − w∗)

∥

∥ ≤ 2
√
L√
d
,

for any η ∈ [0, 1/L]. Then, for any ǫ > 0, by Hoeffding’s inequality, with probability at least 1− exp(−Ω(ǫ2d)),
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤ ǫ.

Next, we construct an ǫ-net on η and show the crossing term is small for all η ∈ [0, 1/L]. Let

g(η) :=
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

.

We compute the derivative of g(η) as follows:

g′(η) =
〈

tHtrain(I − ηHtrain)
t−1w∗

train, Bt,η(Xtrain)
†ξtrain

〉

+
〈

Bt,ηw
∗
train − w∗, tHtrain(I − ηHtrain)

t−1(Xtrain)
†ξtrain

〉

By Lemma 45, we know with probability at least 1− exp(−Ω(d)), ‖ξtrain‖ ≤
√
dσ. Therefore,

|g′(η)| ≤ L1.5t
(

1− η

L

)t−1

σ + 2L1.5t
(

1− η

L

)t−1

σ = 3L1.5t
(

1− η

L

)t−1

σ.

We can control |g′(η)| in different regimes:

• For η ∈ [0, L
t−1], we have |g′(η)| ≤ 3L1.5tσ.

• Given any 1 ≤ i ≤ log t− 1, for any η ∈ (iL
t−1 ,

(i+1)L
t−1], we have |g′(η)| ≤ 3L1.5tσ

ei .

• For any η ∈ (L log t
t−1 , 1/L], we have |g′(η)| ≤ 3L1.5σ.

Fix any ǫ > 0, we know there exists an ǫ-net Nǫ with size

|Nǫ| =
1

ǫ

(

L

t− 1

log t−1
∑

i=0

3L1.5tσ

ei
+

(

1

L
− L log t

t− 1

)

3L1.5σ

)

≤1

ǫ

(

3eL2.5tσ

t− 1
+ 3

√
Lσ

)

= O(
1

ǫ
)

36

such that for any η ∈ [0, 1/L], there exists η′ ∈ Nǫ with |g(η) − g(η′)| ≤ ǫ. Note that L = 100 and σ is a constant.

Taking a union bound over Nǫ and all the other bad events, we have with probability at least 1 − exp(−Ω(d)) −
O(1/ǫ) exp(−Ω(ǫ2d)), for all η ∈ [0, 1/L],

∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉
∣

∣ ≤ ǫ + ǫ = 2ǫ.

As long as 1 > ǫ > 0, this happens with probability at least 1 − O(1/ǫ) exp(−Ω(ǫ2d)). Replacing ǫ by ǫ′/2 finishes

the proof. �

Proof of Lemma 15. According to Lemma 1, we know with probability at least 1− exp(−Ω(d)), 1/L ≤ λi(Htrain) ≤
L for all i ∈ [n] with L = 100. We can lower bound 〈Bt,ηw

∗
train, w

∗〉 as follows,

〈Bt,ηw
∗
train, w

∗〉 =
〈(

I − (I − ηHtrain)
t
)

w∗
train, w

∗
train

〉

≥λmin

(

I − (I − ηHtrain)
t
)

‖w∗
train‖2

≥
(

1− exp

(

−ηt

L

))

‖w∗
train‖2 .

By Johnson-Lindenstrauss lemma (Lemma 49), we know with probability at least 1− 2 exp(−cǫ2d/4),

‖w∗
train‖ ≥ 1

2
(1 − ǫ) ‖w∗‖ =

1

2
(1− ǫ).

Then, we know with probability at least 1− 2 exp(−cǫ2d/4)− exp(−Ω(d)),

〈Bt,ηw
∗
train, w

∗〉 ≥
(

1− exp

(

−ηt

L

))

‖w∗
train‖2

≥
(

1− exp

(

−ηt

L

))

1

4
(1 − ǫ)2

≥1− 2ǫ

4

(

1− exp

(

−ηt

L

))

Since ex ≤ 1−x+x2/2 for any x ≤ 0, we know exp(−ηt/L) ≤ 1− ηt/L+ η2t2/(2L2). For any η ≤ L/t, we have

exp(−ηt/L) ≤ 1− ηt/(2L). Then with probability at least 1− 2 exp(−cǫ2d/4)− exp(−Ω(d)),

〈Bt,ηw
∗
train, w

∗〉 ≥1− 2ǫ

4

ηt

2L

≥ ηt

16L
,

where the second inequality holds by choosing ǫ = 1/4. �

Proof of Lemma 16. Recall that

F̂TbV (η) :=
1

m

m
∑

k=1

∆TbV (η, Pk)

For each individual loss function ∆TbV (η, Pk), we have

∆TbV (η, Pk) =
1

2

∥

∥

∥
w

(k)
t,η − w∗ − (X

(k)
valid)

†ξ(k)valid

∥

∥

∥

2

H
(k)
valid

=
1

2

∥

∥

∥
w

(k)
t,η − w∗

∥

∥

∥

2

H
(k)
valid

+
1

2n

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+

〈

w
(k)
t,η − w∗,

1

n
(X

(k)
valid)

⊤ξ
(k)
valid

〉

≤25Lσ2

2

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

1

2n

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+ 5
√
Lσ

(

1√
n

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
n

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

37

We can write

∥

∥

∥
H

(k)
valid

∥

∥

∥
as σ2

max(
1√
n
X

(k)
valid). According to Lemma 47, we know σmax(X

(k)
valid) − Eσmax(X

(k)
valid) is

O(1)-subgaussian, which implies that σmax(
1√
n
X

(k)
valid)−Eσmax(

1√
n
X

(k)
valid) is O(1/

√
d)-subgaussian. SinceEσmax(

1√
n
X

(k)
valid)

is a constant, we know σmax(
1√
n
X

(k)
valid) is O(1)-subgaussian and σ2

max(
1√
n
X

(k)
valid) is O(1)-subexponential. Simi-

larly, we know both 1
2n

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

and
(

1√
n

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
n

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

are O(1)-subexponential. This further implies that

∆TbV (η, Pk) is O(1)-subexponential. Therefore, F̂TbV is the average of m i.i.d. O(1)-subexponential random vari-

ables. By standard concentration inequality, we know for any 1 > ǫ > 0, with probability at least 1− exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbV (η)− FTbV (η)

∣

∣

∣
≤ ǫ.

�

Proof of Lemma 17. Recall that

FTbV (η) =E
1

2
‖wt,η − w∗‖2 + σ2/2.

We only need to construct an ǫ-net for E1
2 ‖wt,η − w∗‖2. Let E be the event that

√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and ‖ξtrain‖ ≤
√
dσ. We have

E
1

2
‖wt,η − w∗‖2 = E

[

1

2
‖wt,η − w∗‖2 |E

]

Pr[E] + E

[

1

2
‖wt,η − w∗‖2 |Ē

]

Pr[Ē]

We first construct an ǫ-net for E
[

1
2 ‖wt,η − w∗‖2 |E

]

Pr[E]. Let Q(η) := 1
2 ‖wt,η − w∗‖2 . Fix a training set Strain

under which event E holds. We show that Q(η) has desirable lipschitz property.

The derivative of Q(η) can be computed as follows,

Q′(η) =
〈

tHtrain(I − ηHtrain)
t−1wtrain, wt,η − w∗〉 .

Conditioning on E , we have

|Q′(η)| = O(1)t(1 − η

L
)t−1.

Therefore, we have

∣

∣

∣

∣

∂

∂η
E

[

1

2
‖wt,η − w∗‖2 |E

]

Pr[E]
∣

∣

∣

∣

= O(1)t(1 − η

L
)t−1.

Similar as in Lemma 14, for any ǫ > 0, we know there exists an ǫ-net Nǫ with size O(1/ǫ) such that for any η ∈
[0, 1/L],

∣

∣

∣

∣

E

[

1

2
‖wt,η − w∗‖2 |E

]

Pr[E]− E

[

1

2
‖wt,η′ − w∗‖2 |E

]

Pr[E]
∣

∣

∣

∣

≤ ǫ

for η′ ∈ argminη∈Nǫ
|η − η′|.

Suppose the probability of Ē is δ. We have

E

[

1

2
‖wt,η − w∗‖2 |Ē

]

Pr[Ē] ≤ 25Lσ2

2
δ ≤ ǫ,

where the last inequality assumes δ ≤ 2ǫ
25Lσ2 . According to Lemma 1 and Lemma 45, we know δ := Pr[Ē] ≤

exp(−Ω(d)). Therefore, given any ǫ > 0, there exists constant c4 such that δ ≤ 2ǫ
25Lσ2 as long as d ≥ c4 log(1/ǫ).

Overall, for any ǫ > 0, as long as d = Ω(log(1/ǫ)), there exists Nǫ with size O(1/ǫ) such that for any η ∈ [0, 1/L],
|FTbV (η) − FTbV (η

′)| ≤ 3ǫ for η′ ∈ argminη∈Nǫ
|η − η′|. Changing ǫ to ǫ′/3 finishes the proof. �

38

Proof of Lemma 18. For each k ∈ [m], let Ek be the event that
√
d/

√
L ≤ σi(X

(k)
train) ≤

√
Ld for any i ∈ [n] and

∥

∥

∥
ξ
(k)
train

∥

∥

∥
≤

√
dσ. Then, we can write the empirical meta objective as follows,

F̂TbV (η) :=
1

m

m
∑

k=1

∆TbT (η, Pk)1Ek
+

1

m

m
∑

k=1

∆TbT (η, Pk)1Ēk
.

Similar as Lemma 17, we will show that the first term has desirable Lipschitz property and the second term is

small. Now, let’s focus on the first term 1
m

∑m
k=1 ∆TbT (η, Pk)1Ek

. Recall that

∆TbT (η, Pk) =
1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

=
1

2

∥

∥

∥
B

(k)
t,ηw

(k)
train − w∗ − (X

(k)
valid)

†ξ(k)valid

∥

∥

∥

2

H
(k)
valid

.

Computing the derivative of ∆TbT (η, Pk) in terms of η, we have

∂

∂η
∆TbT (η, Pk) =

〈

tH
(k)
train(I − ηH

(k)
train)

t−1w
(k)
train, H

(k)
valid

(

w
(k)
t,η − w∗ − (X

(k)
valid)

†ξ(k)valid

)〉

Conditioning on Ek, we can bound the derivative,

∣

∣

∣

∣

∂

∂η
∆TbT (η, Pk)

∣

∣

∣

∣

= O(1)t
(

1− η

L

)t−1
(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

.

Therefore, we have

∣

∣

∣

∣

∣

1

m

m
∑

k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣

∣

∣

∣

∣

= O(1)t
(

1− η

L

)t−1 1

m

m
∑

k=1

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

.

Similar as in Lemma 16, we know both

∥

∥

∥
H

(k)
valid

∥

∥

∥
and

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

are O(1)-subexponential. There-

fore, we know with probability at least 1 − exp(−Ω(m)), 1
m

∑m
k=1

(∥

∥

∥
H

(k)
valid

∥

∥

∥
+
(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

=

O(1). This further shows that with probability at least 1− exp(−Ω(m)),

∣

∣

∣

∣

∣

1

m

m
∑

k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣

∣

∣

∣

∣

= O(1)t
(

1− η

L

)t−1

.

Similar as in Lemma 14, we can show that for any ǫ > 0, there exists an ǫ-net with sizeO(1/ǫ) for 1
m

∑m
k=1 ∆TbT (η, Pk)1Ek

.

Next, we show that the second term 1
m

∑m
k=1 ∆TbT (η, Pk)1Ēk

is small with high probability. According to the

proof in Lemma 16, we know

∆TbT (η, Pk) = O(1)

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

Therefore, there exists constant C such that

1

m

m
∑

k=1

∆TbT (η, Pk)1Ēk
≤ C

1

m

m
∑

k=1

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

1Ēk
.

It’s not hard to verify that

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+ 1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+
(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

)

1Ēk
is O(1)-subexponential. Sup-

pose the expectation of

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+ 1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+
(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

)

is µ, which is a constant. Suppose

39

the probability of Ēk be δ. We know the expectation of

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+ 1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+
(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

)

)

1Ēk

is µδ due to independence. By standard concentration inequality, for any 1 > ǫ > 0, with probability at least

1− exp(−Ω(ǫ2m)),

C
1

m

m
∑

k=1

(

∥

∥

∥
H

(k)
valid

∥

∥

∥
+

1

d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

2

+

(

1√
d

∥

∥

∥
X

(k)
valid

∥

∥

∥

)(

1√
d

∥

∥

∥
ξ
(k)
valid

∥

∥

∥

))

1Ēk
≤ Cµδ + Cǫ ≤ (C + 1)ǫ,

where the second inequality assumes δ ≤ ǫ/(Cµ). By Lemma 1 and Lemma 45, we know δ ≤ exp(−Ω(d)). There-

fore, as long as d ≥ c4 log(1/ǫ) for some constant c4, we have δ ≤ ǫ/(Cµ).
Overall, we know that as long as d ≥ c4 log(1/ǫ), with probability at least 1 − exp(−Ω(ǫ2m)), there exists N ′

ǫ

with |N ′
ǫ| = O(1/ǫ) such that for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η
′)| ≤ (2C + 3)ǫ,

for η′ ∈ argminη∈Nǫ
|η − η′|. Changing ǫ to ǫ′/(2C + 3) finishes the proof. �

Proof of Lemma 19. Let E1 be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E2 be the event that

√
d/

√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 1 and Lemma 45, we know both E1 and E2 hold with

probability at least 1 − exp(−Ω(d)). Assuming d ≥ c4 for certain constant c4, we know Pr[E1 ∩ E2] ≥ 2/3. Also

define E(k)
1 and E(k)

2 on each training set S
(k)
train. By concentration, we know with probability at least 1− exp(−Ω(m)),

1

m

m
∑

k=1

1

{

E(k)
1 ∩ E(k)

2

}

≥ 1

2
.

It’s easy to verify that conditioning on E1, the GD sequence always exceeds the norm threshold and gets truncated

for η ≥ 3L as long as t is larger than certain constant. We can lower bound F̂TbV for any η ≥ 3L as follows,

F̂TbV (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

1 {E1 ∩ E2} ≥ 2σ2 1

2
= σ2,

where the last inequality lower bounds

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

by 2σ2 when w
(k)
t,η gets truncated. �

Proof of Lemma 21. We first show that with constant probability in Xtrain, the variance of the eigenvalues of Htrain is

lower bounded by a constant. Let λ̄ be 1/n
∑n

i=1 λi. Specifically, we show 1/n
∑n

i=1 λ
2
i − λ̄2 is lower bounded by a

constant.

Let’s first compute the variance of the eigenvalues in expectation. Let the i-th row of Xtrain be x⊤
i . We have,

E
[

λ̄2
]

=
1

n2
E

[

(

tr

(

1

n
X⊤

trainXtrain

))2
]

=
1

n4
E





(

n
∑

i=1

‖xi‖2
)2




=
1

n4

n
∑

i=1

E ‖xi‖4 +
1

n4

∑

1≤i6=j≤n

E ‖xi‖2 ‖xj‖2

=
1

n4

(

nd(d+ 2) + n(n− 1)d2
)

=
d2

n2
+

2d

n3
.

40

Similarly, we compute E
[

1/n
∑n

i=1 λ
2
i

]

as follows,

E

[

1

n

n
∑

i=1

λ2
i

]

=
1

n3
E
[

tr
(

X⊤
trainXtrainX

⊤
trainXtrain

)]

=
1

n3

n
∑

i=1

E ‖xi‖4 +
1

n3

∑

1≤i6=j≤n

E 〈xi, xj〉2

=
1

n3
(nd(d+ 2) + n(n− 1)d) =

d2

n2
+

d

n
+

d

n2

Therefore, we have

E

[

1

n

n
∑

i=1

λ2
i − λ̄2

]

=
d

n
+

d

n2
− 2d

n3
≥ d

n
≥ 4

3
,

where the first inequality assumes n ≥ 2 and the last inequality uses n ≤ 3d
4 . Since n ≥ 1

4d, we know n ≥ 2 as long

as d ≥ 8.
Let E be the event that

√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for i ∈ [n] with L = 100.

According to Lemma 1, we know E happens with probability at least 1 − exp(−Ω(d)). Let 1 {E} be the indicator

function for event E . Next we show that E[1/n
∑n

i=1(λi − λ̄)21 {E}] is also lower bounded.

It’s clear that E
[

λ̄2
1 {E}

]

is upper bounded by E
[

λ̄2
]

. In order to lower bound E
[

1
n

∑n
i=1 λ

2
i1 {E}

]

, we first

show that E
[

1
n

∑n
i=1 λ

2
i1
{

Ē
}]

is small. We can decompose E
[

1
n

∑n
i=1 λ

2
i1
{

Ē
}]

into two parts,

E

[

1

n

n
∑

i=1

λ2
i1
{

Ē
}

]

=E

[

1

n

n
∑

i=1

λ2
i1
{

Ē and λ1 ≤ L
}

]

+ E

[

1

n

n
∑

i=1

λ2
i1 {λ1 > L}

]

.

The first term can be bounded byL2Pr[Ē]. SincePr[Ē] ≤ exp(−Ω(d)), we know the first term is at most 1/6 as long as

d is larger than certain constant. The second term can be bounded by E
[

λ2
11 {λ1 > L}

]

. According to Lemma 48, we

know Pr[λ1 ≥ L+ t] ≤ exp(−Ω(dt)). Then, it’s not hard to verify that E
[

λ2
11 {λ1 > L}

]

= O(1/d) that is bounded

by 1/6 as long as d is larger than certain constant. Overall, we know E
[

1
n

∑n
i=1 λ

2
i1 {E}

]

≥ E
[

1
n

∑n
i=1 λ

2
i

]

− 1/3.

Combing with the upper bounds on E
[

λ̄2
1 {E}

]

, we have E
[

1
n

∑n
i=1(λi − λ̄)21 {E}

]

≥ 1.

Since conditioning on E , λi is bounded by L for all i ∈ [n]. In order to make E
[

1
n

∑n
i=1(λi − λ̄)21 {E}

]

lower bounded by one, there must exist positive constants µ1, µ2 such that with probability at least µ1, E holds and
1
n

∑n
i=1(λi − λ̄)2 ≥ µ2.

Since 1
n

∑n
i=1(λi − λ̄)2 ≥ µ2 and λi ≤ L for all i ∈ [n], we know there exists a subset of eigenvalues S ⊂ {λi}n1

with size µ3n such that |λi − λ̄| ≥ µ4 for all λi ∈ S, where µ3, µ4 are both positive constants.

If at least half of eigenvalues in S are larger than λ̄, we know at least µ3µ4n
2L number of eigenvalues are smaller than

λ̄. Otherwise, the expectation of the eigenvalues will be larger than λ̄, which contradicts the definition of λ̄. Similarly,

if at least half of eigenvalues in S are smaller than λ̄, we know at least µ3µ4n
2L number of eigenvalues are larger than λ̄.

Denote µ5 := µ3µ4

2L . We know λµ5n − λn−µ5n+1 ≥ µ4. �

Proof of Lemma 23. Let E1 be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/

√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 1 and Lemma 45, we know both E1 and E3 hold with

probability at least 1− exp(−Ω(d)). In this proof, we assume both properties hold and take a union bound at the end.

We can lower bound ‖wt,η − wvalid‖2Hvalid
as follows,

‖wt,η − wvalid‖2Hvalid
=
∥

∥wt,η − w∗ − (Xvalid)
†ξvalid

∥

∥

2

Hvalid

≥‖wt,η − w∗‖2Hvalid
+

1

n
‖ξvalid‖2 − 2

∣

∣

〈

wt,η − w∗, Hvalid(Xvalid)
†ξvalid

〉∣

∣ .

For the second term, by Lemma 45, we know for any 1 > ǫ > 0, with probability at least 1− exp(−Ω(ǫ2d)),

1

n
‖ξvalid‖2 ≥ (1− ǫ)σ2.

41

We can write down the third term as
〈

[(Xvalid)
†]⊤Hvalid(wt,η − w∗), ξvalid

〉

. Suppose σ is a constant, we know
∥

∥[(Xvalid)
†]⊤Hvalid(wt,η − w∗)

∥

∥ = O(1/
√
d). Therefore, for a fixed η ∈ [1/L, 3L], we have with probability at least

1− exp(−Ω(ǫ2d)),
∣

∣

〈

wt,η − w∗, Hvalid(Xvalid)
†ξvalid

〉
∣

∣ ≤ ǫ.

To prove this crossing term is small for all η ∈ [1/L, 3L], we need to construct an ǫ-net for the crossing term. Similar

as in Lemma 9, we can show there exists an ǫ-net for the crossing term with size O(t/ǫ). Taking a union bound over

this ǫ-net, we are able to show with probability at least 1−O(t/ǫ) exp(−Ω(ǫ2d)),
∣

∣

〈

wt,η − w∗, Hvalid(Xvalid)
†ξvalid

〉∣

∣ ≤ ǫ,

for all η ∈ [1/L, 3L].
Overall, we have with probability at least 1−O(t/ǫ) exp(−Ω(ǫ2d)),

‖wt,η − wvalid‖2Hvalid
≥‖wt,η − w∗‖2Hvalid

+
1

n
‖ξvalid‖2 − 2

∣

∣

〈

wt,η − w∗, Hvalid(Xvalid)
†ξvalid

〉∣

∣

≥‖wt,η − w∗‖2Hvalid
+ (1− ǫ)σ2 − 2ǫ ≥ (1 − 3ǫ)σ2,

for all η ∈ [1/L, 3L], where the last inequality uses σ ≥ 1. The proof finishes as we change 3ǫ to ǫ′. �

C Proofs of train-by-train with large number of samples (GD)

In this section, we give the proof of Theorem 6. We show when the size of each training set n and the the number of

training tasks m are large enough, train-by-train also performs well. Recall Theorem 6 as follows.

Theorem 6. Let F̂TbT (n)(η) be as defined in Equation 1. Assume noise level is a constant c1. Given any 1 > ǫ > 0,

assume training set size n ≥ cd
ǫ2 log(nmǫd), unroll length t ≥ c2 log(

n
ǫd), number of training tasks m ≥ c3n

2

ǫ4d2 log(tnmǫd)
and dimension d ≥ c4 for certain constants c, c2, c3, c4. With probability at least 0.99 in the sampling of training

tasks, we have

E
∥

∥wt,η∗

train
− w∗∥

∥

2 ≤ (1 + ǫ)
dσ2

n
,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In the proof, we use the same notations defined in Section B. On each training task P , in Lemma 24 we show the

meta-loss can be decomposed into two terms:

∆TbT (η, P) =
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥

∥(In − ProjXtrain
)ξtrain

∥

∥

2
,

where wtrain = w∗ + (Xtrain)
†ξtrain. Recall that Xtrain is a n × d matrix with its i-th row as x⊤

i . The pseudo-inverse

(Xtrain)
† has dimension d × n satisfying X†

trainXtrain = Id. Here, ProjXtrain
∈ R

n×n is a projection matrix onto the

column span of Xtrain.
In Lemma 24, we show with a constant step size, the first term in ∆TbT (η, P) is exponentially small. The second

term is basically the projection of the noise on the orthogonal subspace of the data span. We show this term con-

centrates well on its mean. This lemma servers as step 1 in Section B.1. The proof of Lemma 24 is deferred into

Section C.1.

Lemma 24. Assume n ≥ 40d.Given any 1 > ǫ > 0, with probability at least 1−m exp(−Ω(n))−exp(−Ω(ǫ4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d

2n
σ2 +

ǫ2dσ2

20n
.

In the next lemma, we show the empirical meta objective is large when η exceeds certain threshold. We define this

threshold η̂ such that for any step size larger than η̂ the GD sequence has reasonable probability being truncated. In

the proof, we rely on the truncated sequences to argue the meta-objective must be high. The precise definition of η̂ is

in Definition 2. This lemma serves as step 2 in Section B.1. We leave the proof of Lemma 25 into Section C.2.

42

Lemma 25. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some constants

c, c2, c4. With probability at least 1− exp(−Ω(ǫ4md2/n2)),

F̂TbT (η) ≥
ǫ2dσ2

8n
+

n− d

2n
σ2 − ǫ2dσ2

20n
,

for all η > η̂.

By Lemma 24 and Lemma 25, we know when t is reasonably large, F̂TbT (η) is larger than F̂TbT (2/3) for all step

sizes η > η̂. This means the optimal step size η̂ must lie in [0, η̂]. In Lemma 26, we show a generalization result for

η ∈ [0, η̂]. This serves as step 3 in Section B.1. We prove this lemma in Section C.3.

Lemma 26. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Suppose σ is a constant. Assume n ≥ c log(n
ǫd)d, t ≥

c2, d ≥ c4 for some constants c, c2, c4. With probability at least 1−m exp(−Ω(n))−O(tn
ǫ2d+m) exp(−Ω(mǫ4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤
17ǫ2dσ2

n
,

for all η ∈ [0, η̂],

Combining Lemma 24, Lemma 25 and Lemma 26, we present the proof of Theorem 6 as follows.

Proof of Theorem 6. According to Lemma 24, assuming n ≥ 40d, given any 1/2 > ǫ > 0, with probability at least

1−m exp(−Ω(n))− exp(−Ω(ǫ4md/n)), F̂TbT (2/3) ≤ 20(1− 1
3)

2tσ2 + n−d
2n σ2+ ǫ2dσ2

20n . As long as t ≥ c2 log(
n
ǫd)

for certain constant c2, we have

F̂TbT (2/3) ≤
n− d

2n
σ2 +

7ǫ2dσ2

100n
.

Let η̂ be as defined in Definition 2 with the same ǫ. According to Lemma 25, as long as n ≥ cd, t ≥ c2, d ≥ c4
with probability at least 1− exp(−Ω(ǫ4md2/n2)),

F̂TbT (η) ≥
ǫ2dσ2

8n
+

n− d

2n
σ2 − ǫ2dσ2

20n
=

n− d

2n
σ2 +

7.5ǫ2dσ2

100n

for all η > η̂. We have F̂TbT (η) > F̂TbT (2/3) for all η ≥ η̂. This implies that η∗train is within [0, η̂] and F̂TbT (η
∗
train) ≤

F̂TbT (2/3) ≤ n−d
2n σ2 + 7ǫ2dσ2

100n .
By Lemma 26, assuming σ is a constant and assuming n ≥ c log(n

ǫd)d for some constant c, we have with proba-

bility at least 1−m exp(−Ω(n))−O(tn
ǫ2d +m) exp(−Ω(mǫ4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤
17ǫ2dσ2

n
,

for all η ∈ [0, η̂]. This then implies

FTbT (η
∗
train) ≤ F̂TbT (η

∗
train) +

17ǫ2dσ2

n
≤ n− d

2n
σ2 +

24ǫ2dσ2

n
.

By the analysis in Lemma 24, we have

FTbT (η
∗
train) =E

1

2

∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
+ E

1

2n

∥

∥(In − ProjXtrain
)ξtrain

∥

∥

2

=E
1

2

∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
+

n− d

2n
σ2.

Therefore, we know E
1
2

∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
≤ 24ǫ2dσ2

n . Next, we show this implies E
∥

∥wt,η∗

train
− w∗∥

∥

2
is small.

Let E be the event that 1 − ǫ ≤ λi(Htrain) ≤ 1 + ǫ for all i ∈ [d]. According to Lemma 27, we know Pr[E] ≥
1− exp(−Ω(ǫ2n)) as long as n ≥ 10d/ǫ2. Then, we can decompose E

∥

∥wt,η∗

train
− w∗∥

∥

2
as follows,

E
∥

∥wt,η∗

train
− w∗∥

∥

2
= E

∥

∥wt,η∗

train
− w∗∥

∥

2
1 {E}+ E

∥

∥wt,η∗

train
− w∗∥

∥

2
1

{

Ē
}

.

43

Let’s first show the second term is small. Due to the truncation in our algorithm, we know
∥

∥wt,η∗

train
− w∗∥

∥

2 ≤
412σ2, which then implies E

∥

∥wt,η∗

train
− w∗∥

∥

2
1

{

Ē
}

≤ 412σ2 exp(−Ω(ǫ2n)). As long as n ≥ c
ǫ2 log(

n
ǫd) for some

constant c, we have E
∥

∥wt,η∗

train
− w∗∥

∥

2
1

{

Ē
}

≤ ǫdσ2

n .
We can upper bound the first term by Young’s inequality,

E
∥

∥wt,η∗

train
− w∗∥

∥

2
1 {E} ≤ (1 +

1

ǫ
)E
∥

∥wt,η∗

train
− wtrain

∥

∥

2
1 {E}+ (1 + ǫ)E ‖wtrain − w∗‖2 1 {E} .

Conditioning on E , we have
∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
≥ (1 − ǫ)

∥

∥wt,η∗

train
− wtrain

∥

∥

2
which implies

∥

∥wt,η∗

train
− wtrain

∥

∥

2 ≤
(1+2ǫ)

∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
as long as ǫ ≤ 1/2. Similarly, we also have ‖wtrain − w∗‖2 ≤ (1+2ǫ) ‖wtrain − w∗‖2Htrain

.

Then, we have

E
∥

∥wt,η∗

train
− w∗∥

∥

2
1 {E}

≤(1 +
1

ǫ
)(1 + 2ǫ)E

∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
1 {E}+ (1 + ǫ)(1 + 2ǫ)E ‖wtrain − w∗‖2Htrain

1 {E}

≤(5 +
1

ǫ
)E
∥

∥wt,η∗

train
− wtrain

∥

∥

2

Htrain
+ (1 + 5ǫ)E ‖wtrain − w∗‖2Htrain

≤(5 +
1

ǫ
)
48ǫ2dσ2

n
+ (1 + 5ǫ)

dσ2

n
≤ (1 + 293ǫ)

dσ2

n
.

Overall, we have E
∥

∥wt,η∗

train
− w∗∥

∥

2 ≤ (1 + 293ǫ)dσ
2

n + ǫdσ2

n = (1 + 294ǫ)dσ
2

n . Combining all the conditions,

we know this holds with probability at least 0.99 as long as σ is a constant c1, n ≥ cd
ǫ2 log(nmǫd), t ≥ c2 log(

n
ǫd),m ≥

c3n
2

ǫ4d2 log(tnmǫd), d ≥ c4 for some constants c, c2, c3, c4. We finish the proof by choosing ǫ = ǫ′/294. �

C.1 Upper bounding F̂TbT (2/3)

In this section, we show there exists a step size that achieves small empirical meta objective. On each training task P ,

we show the meta-loss can be decomposed into two terms:

∆TbT (η, P) =
1

2n

n
∑

i=1

(

〈wt,η − wtrain, xi〉 −
(

ξi − x⊤
i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥

∥(In − ProjXtrain
)ξtrain

∥

∥

2
,

where wtrain = w∗ + (Xtrain)
†ξtrain. In Lemma 24, we show with a constant step size, the first term is exponentially

small and the second term concentrates on its mean.

Lemma 24. Assume n ≥ 40d.Given any 1 > ǫ > 0, with probability at least 1−m exp(−Ω(n))−exp(−Ω(ǫ4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d

2n
σ2 +

ǫ2dσ2

20n
.

Before we go to the proof of Lemma 24, let’s first show the covariance matrix Htrain is very close to identity when

n is much larger than d. The proof follows from the concentration of singular values of random Gaussian matrix

(Lemma 48). We leave the proof into Section C.4.

Lemma 27. Given 1 > ǫ > 0, assume n ≥ 10d/ǫ2. With probability at least 1− exp(−Ω(ǫ2n)),

(1− ǫ)
√
n ≤ σi(Xtrain) ≤ (1 + ǫ)

√
n and 1− ǫ ≤ λi(Htrain) ≤ 1 + ǫ,

for all i ∈ [d].

44

Now, we are ready to present the proof of Lemma 24.

Proof of Lemma 24. Let’s first look at one training set Strain, in which yi = 〈w∗, xi〉+ ξi for each sample. Recall the

meta-loss as

∆TbT (η, P) =
1

2n

n
∑

i=1

(〈wt,η, xi〉 − 〈w∗, xi〉 − ξi)
2
.

Recall that Xtrain is an n × d matrix with its i-th row as x⊤
i . With probability 1, we know Xtrain is full column rank.

Denote the pseudo-inverse of Xtrain as X†
train ∈ R

d×n that satisfies X†
trainXtrain = Id and XtrainX

†
train = ProjXtrain

, where

ProjXtrain
∈ R

n×n is a projection matrix onto the column span of Xtrain.

Let wtrain be w∗ +X†
trainξtrain, where ξtrain is an n-dimensional vector with its i-th entry as ξi. We have,

∆TbT (η, P)

=
1

2n

n
∑

i=1

(

〈wt,η − wtrain, xi〉 −
(

ξi − x⊤
i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥

∥(In − ProjXtrain
)ξtrain

∥

∥

2 − 1

n

n
∑

i=1

〈

wt,η − wtrain, xiξi − xix
⊤
i X

†
trainξtrain

〉

.

We first show the crossing term is actually zero. We have,

1

n

n
∑

i=1

〈

wt,η − wtrain, xiξi − xix
⊤
i X

†
trainξtrain

〉

=
1

n

〈

wt,η − wtrain,

n
∑

i=1

xiξi −
n
∑

i=1

xix
⊤
i X

†
trainξtrain

〉

=
1

n

〈

wt,η − wtrain, X
⊤
trainξtrain −X⊤

trainXtrainX
†
trainξtrain

〉

=
1

n

〈

wt,η − wtrain, X
⊤
trainξtrain −X⊤

trainξtrain

〉

= 0,

where the second last equality holds because XtrainX
†
train = ProjXtrain

.

We can define w
(k)
train as w∗

k + (X
(k)
train)

†ξ(k)train for every training set S
(k)
train. Then, we have

F̂TbT (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

+
1

m

m
∑

k=1

1

2n

∥

∥

∥
(In − Proj

X
(k)
train

)ξ
(k)
train

∥

∥

∥

2

We first prove that the second term concentrates on its mean. We can concatenate m noise vectors ξ
(k)
train into a

single noise vector ξ̄train with dimension nm. We can also construct a data matrix X̄train ∈ R
nm×dm that consists of

X
(k)
train as diagonal blocks. Then the second term can be written as

1

2

∥

∥

∥

∥

1√
nm

(Inm − ProjX̄train
)ξ̄train

∥

∥

∥

∥

2

.

According to Lemma 45, with probability at least 1− exp(−Ω(ǫ4md2/n)),

(

1− ǫ2d

n

)

σ ≤ 1√
nm

∥

∥ξ̄train

∥

∥ ≤
(

1 +
ǫ2d

n

)

σ.

By Johnson-Lindenstrauss Lemma (Lemma 49), we know with probability at least 1− exp(−Ω(ǫ4md)),

1√
nm

∥

∥ProjX̄train
ξ̄train

∥

∥ ≥ (1− ǫ2)

√
md√
mn

1√
nm

∥

∥ξ̄train

∥

∥ ≥ (1− ǫ2)

√

d

n
(1− ǫ2d

n
)σ.

45

Therefore, we have

∥

∥

∥

1√
nm

ξ̄train

∥

∥

∥

2

≤ (1+ 3ǫ2d
n)σ2 and

∥

∥

∥

1√
nm

ProjX̄train
ξ̄train

∥

∥

∥

2

≥ (1− 2ǫ2) dnσ
2. Overall, we know with

probability at least 1− exp(−Ω(ǫ4md/n)),

1

2

∥

∥

∥

∥

1√
nm

(Inm − ProjX̄train
)ξ̄train

∥

∥

∥

∥

2

≤ n− d

2n
σ2 +

5ǫ2dσ2

2n
.

Now, we show the first term in meta objective is small when we choose a right step size. According to Lemma 27,

we know as long as n ≥ 40d, with probability at least 1 − exp(−Ω(n)),
√
n/2 ≤ σi(X

(k)
train) ≤ 3

√
n/2 and 1/2 ≤

λi(H
(k)
train) ≤ 3/2, for all i ∈ [d]. According to Lemma 45, we know with probability at least 1 − exp(−Ω(n)),

∥

∥

∥
ξ
(k)
train

∥

∥

∥
≤ 2

√
nσ. Taking a union bound on m tasks, we know all these events hold with probability at least 1 −

m exp(−Ω(n)).

For each k ∈ [m], we have

∥

∥

∥
w

(k)
train

∥

∥

∥
≤ 1 + 2√

n
2
√
nσ ≤ 5σ. It’s easy to verify that for any step size at most 2/3,

the GD sequence will not be truncated since we choose the threshold norm as 40σ. Then, for any step size η ≤ 2/3,
we have

1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

=
1

m

m
∑

k=1

1

2

∥

∥

∥
(I − ηH

(k)
train)

tw
(k)
train

∥

∥

∥

2

H
(k)
train

≤3

4
(1− η

2
)2t25σ2 ≤ 20(1− 1

3
)2tσ2,

where the last inequality chooses η as 2/3.
Overall, we know with probability at least 1−m exp(−Ω(n))− exp(−Ω(ǫ4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d

2n
σ2 +

5ǫ2dσ2

2n
.

We finish the proof by changing 5ǫ2

2 by (ǫ′)2/20. �

C.2 Lower bounding F̂TbT for η ∈ (η̂,∞)

In this section, we show the empirical meta objective is large when the step size exceeds certain threshold. Recall

Lemma 25 as follows.

Lemma 25. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some constants

c, c2, c4. With probability at least 1− exp(−Ω(ǫ4md2/n2)),

F̂TbT (η) ≥
ǫ2dσ2

8n
+

n− d

2n
σ2 − ǫ2dσ2

20n
,

for all η > η̂.

Roughly speaking, we define η̂ such that for any step size larger than η̂ the GD sequence has a reasonable proba-

bility being truncated. The definition is very similar as η̃ in Definition 1.

Definition 2. Given a training task P, let E1 be the event that
√
n/2 ≤ σi(Xtrain) ≤ 3

√
n/2 and 1/2 ≤ λi(Htrain) ≤

3/2 for all i ∈ [d] and
√
nσ/2 ≤ ‖ξtrain‖ ≤ 2

√
nσ. Let Ē2(η) be the event that the GD sequence is truncated with step

size η. Given 1 > ǫ > 0, define η̂ as follows,

η̂ = inf

{

η ≥ 0

∣

∣

∣

∣

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

≥ ǫ2dσ2

n

}

.

Similar as in Lemma 5, we show 1

{

E1 ∩ Ē2(η′)
}

≥ 1

{

E1 ∩ Ē2(η)
}

for any η′ ≥ η. This means conditioning on

E1, if a GD sequence gets truncated with step size η, it has to be truncated with any step size η′ ≥ η. The proof is

deferred into Section C.4.

46

Lemma 28. Fixing a training set Strain, let E1 and Ē2(η) be as defined in Definition 2. We have

1

{

E1 ∩ Ē2(η′)
}

≥ 1

{

E1 ∩ Ē2(η)
}

,

for any η′ ≥ η.

Next, we show η̂ does exist and is a constant. Similar as in Lemma 6, we show that the GD sequence almost never

diverges when η is small and diverges with high probability when η is large. The proof is left in Section C.4.

Lemma 29. Let η̂ be as defined in Definition 2. Suppose σ is a constant. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some

constants c, c2, c4. We have
4

3
< η̃ < 6.

Next, we show the empirical loss is large for any η larger than η̃. The proof is very similar as the proof of Lemma 3.

Proof of Lemma 25. By Lemma 29, we know η̂ is a constant as long as n ≥ cd, t ≥ c2, d ≥ c4 for some

constants c, c2, c4. Let E1 and Ē2(η) be as defined in Definition 2. For the simplicity of the proof, we assume

E
1
2 ‖wt,η̂ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̂)
}

≥ ǫ2dσ2

n . The other case can be resolved using same techniques in Lemma 3

Conditioning on E1, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

≤ 3
445

2σ2. Therefore, we know Pr[E1 ∩ Ē2(η̂)] ≥ 4ǫ2d
3×452n .

For each task k, define E(k)
1 and Ē(k)

2 (η) as the corresponding events on training set S
(k)
train. By Hoeffding’s inequality,

we know with probability at least 1− exp(−Ω(ǫ4md2/n2)),

1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η̂)
}

≥ ǫ2d

452n
.

By Lemma 28, we know 1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥ 1

{

E(k)
1 ∩ Ē(k)

2 (η̂)
}

for any η ≥ η̂.

Recall that

F̂TbT (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

+
1

m

m
∑

k=1

1

2n

∥

∥

∥
(In − Proj

X
(k)
train

)ξ
(k)
train

∥

∥

∥

2

.

We can lower bound the first term for any η > η̂ as follows,

F̂TbT (η) =
1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

≥ 1

m

m
∑

k=1

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥352σ2

4

1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η)
}

≥352σ2

4

1

m

m
∑

k=1

1

{

E(k)
1 ∩ Ē(k)

2 (η̂)
}

≥ ǫ2dσ2

8n
,

where the second inequality lower bounds the loss for one task by 352σ2 when the sequence gets truncated.

For the second term, according to the analysis in Lemma 24, with probability at least 1− exp(−Ω(ǫ4md/n)),

1

m

m
∑

k=1

1

2n

∥

∥

∥
(In − Proj

X
(k)
train

)ξ
(k)
train

∥

∥

∥

2

≥ n− d

2n
σ2 − ǫ2dσ2

20n
.

Overall, with probability at least 1− exp(−Ω(ǫ4md2/n2)),

F̂TbT (η) ≥
ǫ2dσ2

8n
+

n− d

2n
σ2 − ǫ2dσ2

20n
,

for all η > η̂. �

47

C.3 Generalization for η ∈ [0, η̂]

Combing Lemma 24 and Lemma 25, it’s not hard to see that the optimal step size η∗train lies in [0, η̂]. In this section, we

show a generalization result for step sizes in [0, η̂]. The proof of Lemma 26 is given at the end of this section.

Lemma 26. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Suppose σ is a constant. Assume n ≥ c log(n
ǫd)d, t ≥

c2, d ≥ c4 for some constants c, c2, c4. With probability at least 1−m exp(−Ω(n))−O(tn
ǫ2d+m) exp(−Ω(mǫ4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤
17ǫ2dσ2

n
,

for all η ∈ [0, η̂],

In Lemma 30, we show F̂TbT concentrates on FTbT at any fixed step size. The proof is almost the same as

Lemma 7. We omit its proof.

Lemma 30. Suppose σ is a constant. For any fixed η and any 1 > ǫ > 0, with probability at least 1−exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbT (η)− FTbT (η)

∣

∣

∣
≤ ǫ.

Next, we construct an ǫ-net for FTbT in [0, η̂]. The proof is very similar as in Lemma 8. We defer its proof into

Section C.4.

Lemma 31. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Assume the conditions in Lemma 29 hold. Assume

n ≥ c log(n
ǫd)d for some constant c. There exists an 8ǫ2dσ2

n -net N ⊂ [0, η̂] for FTbT with |N | = O(tn
ǫ2d). That means,

for any η ∈ [0, η̂],

|FTbT (η) − FTbT (η
′)| ≤ 8ǫ2dσ2

n
,

for η′ = argminη′′∈N,η′′≤η(η − η′′).

We also construct an ǫ-net for the empirical meta objective. The proof is very similar as in Lemma 9. We leave its

proof into Section C.4.

Lemma 32. Let η̂ be as defined in Definition 2 with 1 > ǫ > 0. Assume the conditions in Lemma 29 hold. Assume

n ≥ 40d. With probability at least 1 − m exp(−Ω(n)), there exists an ǫ2dσ2

n -net N ′ ⊂ [0, η̂] for F̂TbT with |N ′| =
O(tn

ǫ2d +m). That means, for any η ∈ [0, η̂],

|F̂TbT (η)− F̂TbT (η
′)| ≤ ǫ2dσ2

n
,

for η′ = argminη′′∈N ′,η′′≤η(η − η′′).

Combing the above three lemmas, we give the proof of Lemma 26.

Proof of Lemma 26. We assume σ as a constant in this proof. By Lemma 30, we know with probability at least

1 − exp(−Ω(mǫ4d2/n2)),
∣

∣

∣
F̂TbT (η)− FTbT (η)

∣

∣

∣
≤ ǫ2dσ2

n for any fixed η. By Lemma 31, we know as long as

n ≥ c log(n
ǫd)d for some constant c, there exists an 8ǫ2dσ2

n -net N for FTbT with size O(tn
ǫ2d). By Lemma 32, we know

with probability at least 1−m exp(−Ω(n)), there exists an ǫ2dσ2

n -net N ′ for F̂TbT with size O(tn
ǫ2d +m). It’s not hard

to verify that N ∪N ′ is still an 8ǫ2dσ2

n -net for F̂TbV and FTbV . That means, for any η ∈ [0, η̂], we have

|FTbT (η)− FTbT (η
′)|, |F̂TbT (η)− F̂TbT (η

′)| ≤ 8ǫ2dσ2

n
,

for η′ = argminη′′∈N∪N ′,η′′≤η(η − η′′).

48

Taking a union bound over N ∪N ′, we have with probability at least 1−O(tn
ǫ2d +m) exp(−Ω(mǫ4d2/n2)),

∣

∣

∣
F̂TbT (η)− FTbT (η)

∣

∣

∣
≤ ǫ2dσ2

n

for all η ∈ N ∪N ′.
Overall, we know with probability at least 1 −m exp(−Ω(n)) − O(tn

ǫ2d +m) exp(−Ω(mǫ4d2/n2)), for all η ∈
[0, η̂],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η

′)|+ |F̂TbT (η) − F̂TbT (η
′)|+ |F̂TbT (η

′)− FTbT (η
′)|

≤17ǫ2dσ2

n
,

where η′ = argminη′′∈N∪N ′,η′′≤η(η − η′′). �

C.4 Proofs of Technical Lemmas

Proof of Lemma 27. According to Lemma 48, we know with probability at least 1− 2 exp(−t2/2),

√
n−

√
d− t ≤ σi(Xtrain) ≤

√
n+

√
d+ t

for all i ∈ [d]. Since d ≤ ǫ2n
10 , we have

√
n− ǫ

√
n√
10

− t ≤ σi(Xtrain) ≤
√
n+ ǫ

√
n√
10

+ t. Choosing t = (13 − 1√
10
)ǫ
√
n,

we have with probability at least 1− exp(−Ω(ǫ2n)),

(1− ǫ

3
)
√
n ≤ σi(Xtrain) ≤ (1 +

ǫ

3
)
√
n.

Since λi(Htrain) = 1/nσ2
i (Xtrain), we have 1− ǫ ≤ λi(Htrain) ≤ 1 + ǫ. �

Proof of Lemma 28. The proof is almost the same as in Lemma 5. We omit the details here. Basically, in Lemma 5,

the only property we rely on is that the norm threshold is larger than 2 ‖wtrain‖ conditioning on E1. Conditioning on

E1, we know ‖wtrain‖ ≤ 5σ. Recall that the norm threshold is still set as 40σ. So this property is preserved and the

previous proof works. �

Proof of Lemma 29. The proof is very similar as in Lemma 6. Conditioning on E1, we know ‖Htrain‖ ≤ 3/2 and

‖wtrain‖ ≤ 5σ. So the GD sequence never exceeds the norm threshold 40σ for any η ≤ 4/3. That means,

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

= 0

for all η ≤ 4/3.
To lower bound the loss for large step size, we need to first lower bound ‖wtrain‖ . Recall that wtrain = w∗ +

(Xtrain)
†ξtrain. Conditioning on E1, we know ‖ξtrain‖ ≤ 2

√
nσ and σd(Xtrain) ≥

√
n/2, which implies

∥

∥(Xtrain)
†∥
∥ ≤

2/
√
n. By Johnson-Lindenstrauss Lemma (Lemma 49), we have

∥

∥ProjXtrain
ξtrain

∥

∥ ≤ 3
2

√

d/n ‖ξtrain‖ with probability

at least 1− exp(−Ω(d)). Call this event E3. Conditioning on E1 ∩ E3, we have

∥

∥(Xtrain)
†ξtrain

∥

∥ ≤ 2
√
nσ

2√
n

3

2

√

d

n
≤ 6

√

d

n
σ,

which is smaller than 1/2 as long as n ≥ 122dσ2. Note that we assume σ is a constant. This then implies ‖wtrain‖ ≥
1/2.

Let {w′
τ,η} be the GD sequence without truncation. For any step size η ∈ [6,∞], conditioning on E1∩E3, we have

∥

∥w′
t,η

∥

∥ ≥
(

(6× 1

2
− 1)t − 1

)

‖wtrain‖ ≥
(

2t − 1
) 1

2
≥ 40σ,

49

where the last inequality holds as long as t ≥ c2 for some constant c2. Therefore, we know when η ∈ [6,∞),
1

{

E1 ∩ Ē2(η)
}

= 1 {E1 ∩ E3}. Assuming n ≥ 40d, we know E1 holds with probability at least 1 − exp(−Ω(n)).
Then, we have for any η ≥ 6,

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

≥1

4
(40σ − 5σ)

2
Pr[E1 ∩ E3] ≥

ǫ2dσ2

n
,

where the last inequality assumes n ≥ c, d ≥ c4 for some constant c, c4.

Overall, we know E
1
2 ‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η)
}

equals zero for all η ∈ [0, 4/3] and is at least ǫ2dσ2

n for

all η ∈ [6,∞). By definition, we know η̂ ∈ (4/3, 6). �

Proof of Lemma 31. By Lemma 29, we know η̂ is a constant. The proof is very similar as in Lemma 8. Let E1 and

Ē2(η) be as defined in Definition 2. For the simplicity of the proof, we assumeE1
2 ‖wt,η̂ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̂)
}

≤
ǫ2dσ2

n . The other case can be resolved using techniques in the proof of Lemma 8.

Recall the population meta objective

FTbT (η) = E
1

2
‖wt,η − wtrain‖2Htrain

+
n− d

2n
σ2.

Therefore, we only need to construct an ǫ-net for the first term.

We can divide E1
2 ‖wt,η − wtrain‖2Htrain

as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̂)
}

+ E
1

2
‖wt,η − wtrain‖2Htrain

1

{

Ē1
}

.

We will construct an ǫ-net for the first term and show the other two terms are small. Let’s first consider the third

term. Assuming n ≥ 40d, we know Pr[E1] ≤ exp(−Ω(n)). Since 1
2 ‖wt,η − wtrain‖2Htrain

is O(1)-subexponential, by

Cauchy-Schwarz inequality, we haveE1
2 ‖wt,η − wtrain‖2Htrain

1

{

Ē1
}

= O(1) exp(−Ω(n)). Choosingn ≥ c log(n/(ǫd))

for some constant c, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

1

{

Ē1
}

≤ ǫ2dσ2

n .

Then we upper bound the second term. Since E1
2 ‖wt,η̂ − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̂)
}

≤ ǫ2dσ2

n and

1
2 ‖wt,η̂ − wtrain‖2Htrain

≥ 352σ2

4 when wt,η̂ diverges, we know Pr[E1 ∩ Ē2(η̂)] ≤ 4ǫ2d
352n . Then, we can upper bound the

second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1

{

E1 ∩ Ē2(η̂)
}

≤ 3× 452σ2

4

4ǫ2d

352n
≤ 6ǫ2dσ2

n

Next, similar as in Lemma 8, we can show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} is O(t)-lipschitz.

Therefore, there exists an ǫ2dσ2

n -net N for E1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} with size O(tn
ǫ2d). That means, for

any η ∈ [0, η̂],

∣

∣

∣

∣

E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}
∣

∣

∣

∣

≤ ǫ2dσ2

n

for η′ = argminη′′∈N,η′′≤η(η − η′′).
Combing with the upper bounds on the second term and the third term, we have for any η ∈ [0, η̂],

|FTbT (η)− FTbT (η
′)| ≤ 8ǫ2dσ2

n

for η′ = argminη′′∈N,η′′≤η(η − η′′). �

50

Proof of Lemma 32. By Lemma 29, we know η̂ is a constant. For each k ∈ [m], let E1,k be the event that
√
n/2 ≤

σi(X
(k)
train) ≤ 3

√
n/2 and 1/2 ≤ λi(H

(k)
train) ≤ 3/2 for all i ∈ [d] and

√
nσ/2 ≤

∥

∥

∥
ξ
(k)
train

∥

∥

∥
≤ 2

√
nσ. Assuming n ≥ 40d,

by Lemma 27, we know with probability at least 1−m exp(−Ω(n)), E1,k’s hold for all k ∈ [m].

Then, similar as in Lemma 9, there exists an ǫ2dσ2

n -net N ′ with |N ′| = O(nt
ǫ2d + m) for F̂TbT . That means, for

any η ∈ [0, η̂],
∣

∣

∣
F̂TbT (η)− F̂TbT (η

′)
∣

∣

∣
≤ ǫ2dσ2

n

for η′ = argminη′′∈N ′,η′′≤η(η − η′′). �

D Proofs of train-by-train v.s. train-by-validation (SGD)

Previously, we have shown that train-by-validation generalizes better than train-by-train when the tasks are trained by

GD and when the number of samples is small. In this section, we show a similar phenomenon also appears in the SGD

setting.

In the train-by-train setting, each task P contains a training set Strain = {(xi, yi)}ni=1. The inner objective is de-

fined as f̂(w) = 1
2n

∑

(x,y)∈Strain
(〈w, x〉 − y)

2
. Let {wτ,η} be the SGD sequence running on f̂(w) from initialization 0

(without truncation). That means, wτ,η = wτ−1,η−η∇̂f̂(wτ−1,η), where ∇̂f̂(wτ−1,η) =
(〈

wτ−1,η, xi(τ−1)

〉

− yi(τ−1)

)

xi(τ−1).
Here index i(τ − 1) is independently and uniformly sampled from [n]. We denote the SGD noise as nτ−1,η :=

∇̂f̂(wτ−1,η)−∇f̂(wτ−1,η). The meta-loss on task P is defined as follows,

∆TbT (n)(η, P) = ESGDf̂(wt,η) = ESGD

1

2n

∑

(x,y)∈Strain

(〈wt,η, x〉 − y)
2
,

where the expectation is taken over the SGD noise. Note wt,η depends on the SGD noise along the trajectory. Then,

the empirical meta objective F̂TbT (n)(η) is the average of the meta-loss across m different specific tasks

F̂TbT (n)(η) =
1

m

m
∑

k=1

∆TbT (n)(η, Pk). (4)

In order to control the SGD noise in expectation, we restrict the feasible set of step sizes into O(1/d). We show

within this range, the optimal step size under F̂TbT (n) is Ω(1/d) and the learned weight is far from ground truth w∗

on new tasks. We prove Theorem 9 in Section D.1.

Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 4 with n ∈ [d/4, 3d/4]. Suppose σ is a constant.

Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain constants c2, c4. Then, with probability at

least 0.99 in the sampling of training tasks P1, · · · , Pm and test task P ,

η∗train = Ω(1/d) and ESGD

∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(σ2),

for all η∗train ∈ argmin0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗

train
is trained by running SGD on test task P.

In the train-by-validation setting, each task P contains a training set Strain with n1 samples and a validation set

with n2 samples. The inner objective is defined as f̂(w) = 1
2n1

∑

(x,y)∈Strain
(〈w, x〉 − y)

2
. Let {wτ,η} be the SGD

sequence running on f̂(w) from initialization 0 (with the same truncation defined in Section 4). For each task P , the

meta-loss ∆TbV (n1,n2)(η, P) is defined as

∆TbV (n1,n2)(η, P) = ESGD

1

2n2

∑

(x,y)∈Svalid

(〈wt,η, x〉 − y)
2
.

51

The empirical meta objective F̂TbV (n1,n2)(η) is the average of the meta-loss across m different tasks P1, P2, ..., Pm,

F̂TbV (n1,n2)(η) =
1

m

m
∑

k=1

∆TbV (n1,n2)(η, Pk). (5)

In order to bound the SGD noise with high probability, we restrict the feasible set of the step sizes into O(1
d2 log2 d

).

Within this range, we prove the optimal step size under F̂TbV (n1,n2) is Θ(1/t) and the learned weight is better than

initialization 0 by a constant on new tasks. Theorem 10 is proved in Section D.2.

Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 5 with n1, n2 ∈ [d/4, 3d/4]. Assume noise

level σ is a large constant c1. Assume unroll length t ≥ c2d
2 log2(d), number of training tasks m ≥ c3 and dimension

d ≥ c4 for certain constants c2, c3, c4. There exists constant c5 such that with probability at least 0.99 in the sampling

of training tasks, we have

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argmin0≤η≤ 1
c5d2 log2(d)

F̂TbV (n1,n2)(η), where the expectation is taken over the new tasks and SGD

noise.

Notations: In the following proofs, we use the same set of notations defined in Appendix B. We use EP∼T to denote

the expectation over the sampling of tasks and use ESGD to denote the expectation over the SGD noise. We use E to

denote EP∼T ESGD. Same as in Appendix B, we use letter L to denote constant 100, which upper bounds ‖Htrain‖ with

high probability.

D.1 Train-by-train (SGD)

Recall Theorem 9 as follows.

Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 4 with n ∈ [d/4, 3d/4]. Suppose σ is a constant.

Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain constants c2, c4. Then, with probability at

least 0.99 in the sampling of training tasks P1, · · · , Pm and test task P ,

η∗train = Ω(1/d) and ESGD

∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(σ2),

for all η∗train ∈ argmin0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗

train
is trained by running SGD on test task P.

In order to prove Theorem 9, we first show that η∗train is Ω(1/d) in Lemma 33. The proof is similar as in the GD

setting. As long as η = O(1/d), the SGD noise is dominated by the full gradient. Then, we can show that ∆TbT (η, P)
is roughly (1−Θ(1)η)t, which implies that η∗train = Ω(1/d). We leave the proof of Lemma 33 into Section D.1.1.

Lemma 33. Assume t ≥ c2d with certain constant c2. With probability at least 1−m exp(−Ω(d)) in the sampling of

m training tasks,

η∗train ≥ 1

6L5d
,

for all η∗train ∈ argmin0≤η≤ 1
2L3d

F̂TbT (η).

Let P = (D(w∗), Strain, ℓ) be an independently sampled test task with |Strain| = n ∈ [d/4, 3d/4]. For any

step size η ∈ [1
6L5d ,

1
2L3d], let wt,η be the weight obtained by running SGD on f̂(w) for t steps. Next, we show

ESGD ‖wt,η − w∗‖2 = Ω(σ2) with high probability in the sampling of P.

52

Lemma 34. Suppose σ is a constant. Assume unroll length t ≥ c2d for some constant c2. With probability at least

1− exp(−Ω(d)) in the sampling of test task P ,

ESGD ‖wt,η − w∗‖2 ≥ σ2

128L
,

for all η ∈ [1
6L5d ,

1
2L3d], where wt,η is obtained by running SGD on task P for t iterations.

With Lemma Lemma 33 and Lemma 34, the proof of Theorem 9 is straightforward.

Proof of Theorem 9. Combing Lemma 33 and Lemma 34, we know as long as σ is a constant, t ≥ c2d, d ≥ c4 log(m),

with probability at least 0.99, η∗train = Ω(1/d) and ESGD

∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(σ2), for all η∗train ∈ argmin0≤η≤ 1

2L3d

F̂TbT (η).

�

D.1.1 Detailed Proofs

Proof of Lemma 33. The proof is very similar to the proof of Lemma 2 except that we need to bound the SGD noise

term. For each k ∈ [m], let Ek be the event that
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all

i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. According to Lemma 1 and Lemma 45, we know for each k ∈ [m], Ek happens

with probability at least 1 − exp(−Ω(d)). Taking a union bound over all k ∈ [m], we know ∩k∈[m]Ek holds with

probability at least 1−m exp(−Ω(d)). From now on, we assume ∩k∈[m]Ek holds.

For each k ∈ [m], we have

∆TbT (η, Pk) :=
1

2
ESGD

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

.

Since 1/L ≤ λi(H
(k)
train) ≤ L and (w

(k)
t,η − w

(k)
train) is in the span of H

(k)
train, we have

1

2L
ESGD

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

≤ ∆TbT (η, Pk) ≤
L

2
ESGD

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

.

Recall the updates of stochastic gradient descent,

w
(k)
t,η − w

(k)
train = (I − ηH

(k)
train)(w

(k)
t−1,η − w

(k)
train)− ηn

(k)
t−1,η.

Therefore,

ESGD

[

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

|w(k)
t−1,η

]

=
∥

∥

∥
(I − ηH

(k)
train)(w

(k)
t−1,η − w

(k)
train)

∥

∥

∥

2

+ η2ESGD

[

∥

∥

∥
n
(k)
t−1,η

∥

∥

∥

2

|w(k)
t−1,η

]

.

We know for any η ≤ 1/L,

(1 − 2ηL)
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

≤
∥

∥

∥
(I − ηH

(k)
train)(w

(k)
t−1,η − w

(k)
train)

∥

∥

∥

2

≤ (1 − η

L
)
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

.

The noise can be bounded as follows,

η2ESGD

[

∥

∥

∥
n
(k)
t−1,η

∥

∥

∥

2

|w(k)
t−1,η

]

=η2ESGD

[

∥

∥

∥
xi(t−1)x

⊤
i(t−1)(w

(k)
t−1,η − w

(k)
train)−H

(k)
train(w

(k)
t−1,η − w

(k)
train)

∥

∥

∥

2

|w(k)
t−1,η

]

≤η2ESGD

[

∥

∥

∥
xi(t−1)x

⊤
i(t−1)(w

(k)
t−1,η − w

(k)
train)

∥

∥

∥

2

|w(k)
t−1,η

]

≤η2 max
i(t−1)

∥

∥xi(t−1)

∥

∥

2
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

.

53

Since ‖Xtrain‖ ≤
√
L
√
d, we immediately know maxi(t−1)

∥

∥xi(t−1)

∥

∥ ≤
√
L
√
d. Therefore, we can bound the noise

as follows,

η2ESGD

[

∥

∥

∥
n
(k)
t−1,η

∥

∥

∥

2

|w(k)
t−1,η

]

≤η2 max
i(t−1)

∥

∥xi(t−1)

∥

∥

2
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

H
(k)
train

≤L2η2d
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

.

As long as η ≤ 1
2L3d , we have

(1− ηL)
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

≤ ESGD

[

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

|w(k)
t−1,η

]

≤ (1− η

2L
)
∥

∥

∥
w

(k)
t−1,η − w

(k)
train

∥

∥

∥

2

.

This further implies

(1− ηL)t ‖wtrain‖2 ≤ ESGD

∥

∥

∥
w

(k)
t,η − w

(k)
train

∥

∥

∥

2

≤ (1− η

2L
)t ‖wtrain‖2 .

Let η2 := 1
2L3d , we have

∆TbT (η, Pk) ≤
L

2
(1− 1

4L4d
)t ‖wtrain‖2

Let η1 := 1
6L5d , for all η ∈ [0, η1] we have

∆TbT (η, Pk) ≥
1

2L
(1 − 1

6L4d
)t ‖wtrain‖2 .

As long as t ≥ c2d for certain constant c2, we know

1

2L
(1− 1

6L4d
)t ‖wtrain‖2 >

L

2
(1− 1

4L4d
)t ‖wtrain‖2 .

As this holds for all k ∈ [m] and F̂TbT = 1/m
∑m

i=1 ∆TbT (η, Pk), we know the optimal step size η∗train is within

[1
6L5d ,

1
2L3d]. �

We rely the following technical lemma to prove Lemma 34.

Lemma 35. Suppose σ is a constant. Given any ǫ > 0, with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2d)),
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤ ǫ,

for all η ∈ [0, 1
2L3d].

Proof of Lemma 35. By Lemma 1, with probability at least 1 − exp(−Ω(d)),
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld

and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]. Therefore
∥

∥[(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train − w∗)

∥

∥ ≤ 2
√
L/

√
d. Notice

that ξtrain is independent with [(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train − w∗). By Hoeffding’s inequality, with probability at least

1− exp(−Ω(ǫ2d)),
∣

∣

〈

[(Xtrain)
†]⊤Bt,η(Bt,ηw

∗
train − w∗), ξtrain

〉
∣

∣ ≤ ǫ.

Next, we construct an ǫ-net for η and show the crossing term is small for all η ∈ [0, 1
2L3d]. For simplicity, denote

g(η) :=
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

. Taking the derivative of g(η), we have

g′(η) =t
〈

Htrain(I − ηHtrain)
t−1w∗

train, Bt,η(Xtrain)
†ξtrain

〉

+ t
〈

Bt,ηw
∗
train − w∗, Htrain(I − ηHtrain)

t−1(Xtrain)
†ξtrain

〉

According to Lemma 45, we know with probability at least 1 − exp(−Ω(d)), ‖ξtrain‖ ≤
√
dσ. Therefore, the

derivative g′(η) can be bounded as follows,

|g′(η)| = O(1)t(1 − η

L
)t−1

54

Similar as in Lemma 14, there exists an ǫ-net Nǫ with size O(1/ǫ) such that for any η ∈ [0, 1
3L3d], there exists η′ ∈

Nǫ with |g(η)−g(η′)| ≤ ǫ. Taking a union bound overNǫ, we have with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2d)),
for every η ∈ Nǫ,

∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉
∣

∣ ≤ ǫ.

which implies for every η ∈ [0, 1
3L3d].

∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤ 2ǫ.

Changing ǫ to ǫ′/2 finishes the proof. �

Proof of Lemma 34. According to Lemma 1 and Lemma 45, we know with probability at least 1 − exp(−Ω(d)),√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. We assume

these properties hold in the proof and take a union bound at the end.

Recall that ESGD ‖wt,η − w∗‖2 can be lower bounded as follows,

ESGD ‖wt,η − w∗‖2 =ESGD

∥

∥

∥

∥

∥

Bt,η(w
∗
train + (Xtrain)

†ξtrain)− η

t−1
∑

τ=0

(I − ηHtrain)
t−1−τnτ,η − w∗

∥

∥

∥

∥

∥

2

≥
∥

∥Bt,η(w
∗
train + (Xtrain)

†ξtrain)− w∗∥
∥

2

≥
∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+ 2

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

For any η ∈ [1
6L5d ,

1
2L3d], we can lower bound the first term as follows,

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≥
(

1− exp

(

−ηt

L

))2
σ2

16L

≥
(

1− exp

(

− t

6L6d

))2
σ2

16L

≥ σ2

64L
,

where the last inequality holds as long as t ≥ c2d for certain constant c2.

Choosing ǫ = σ2

256L in Lemma 35, we know with probability at least 1− exp(−Ω(d)),

∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤ σ2

256L
,

for all η ∈ [0, 1
2L3d].

Overall, we have ESGD ‖wt,η − w∗‖2 ≥ σ2

128L . Taking a union bound over all the bad events, we know this happens

with probability at least 1− exp(−Ω(d)). �

D.2 Train-by-validation (SGD)

Recall Theorem 10 as follows.

Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 5 with n1, n2 ∈ [d/4, 3d/4]. Assume noise

level σ is a large constant c1. Assume unroll length t ≥ c2d
2 log2(d), number of training tasks m ≥ c3 and dimension

d ≥ c4 for certain constants c2, c3, c4. There exists constant c5 such that with probability at least 0.99 in the sampling

of training tasks, we have

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argmin0≤η≤ 1
c5d2 log2(d)

F̂TbV (n1,n2)(η), where the expectation is taken over the new tasks and SGD

noise.

55

To prove Theorem 10, we first study the behavior of the population meta objective FTbV . That is,

FTbV (η) := EP∼T ∆TbV (η, P) =EP∼T ESGD

1

2

∥

∥wt,η − w∗ − (Xvalid)
†ξvalid

∥

∥

2

Hvalid

=EP∼T ESGD

1

2
‖wt,η − w∗‖2 + σ2

2
.

We show that the optimal step size for the population meta objective FTbV is Θ(1/t) and EP∼T ESGD ‖wt,η − w∗‖2 =

‖w∗‖2 − Ω(1) under the optimal step size.

Lemma 36. Suppose σ is a large constant c1. Assume t ≥ c2d
2 log2(d), d ≥ c4 for some constants c2, c4. There exist

η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤
1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥
1

2
‖w∗‖2 − 6

10
C +

σ2

2
, ∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log
2(d)

]

where C is a positive constant.

In order to relate the behavior of FTbV to F̂TbV , we show a generalization result from F̂TbV to FTbV for η ∈
[0, 1

c5d2 log2(d/ǫ)
].

Lemma 37. For any 1 > ǫ > 0, assume σ is a constant and d ≥ c4 log(1/ǫ) for some constant c4. There exists

constant c5 such that with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2m)),

|F̂TbV (η)− FTbV (η)| ≤ ǫ,

for all η ∈ [0, 1
c5d2 log2(d/ǫ)

].

Combining Lemma 36 and Lemma 37, we give the proof of Theorem 10.

Proof of Theorem 10. The proof is almost the same as in the GD setting (Theorem 8). We omit the details here. �

D.2.1 Behavior of FTbV for η ∈ [0, 1
c5d2 log2 d

]

In this section, we give the proof of Lemma 36. Recall the lemma as follows,

Lemma 36. Suppose σ is a large constant c1. Assume t ≥ c2d
2 log2(d), d ≥ c4 for some constants c2, c4. There exist

η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤
1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥
1

2
‖w∗‖2 − 6

10
C +

σ2

2
, ∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log
2(d)

]

where C is a positive constant.

Recall that FTbV (η) = EP∼T ESGD1/2 ‖wt,η − w∗‖2 + σ2/2. Denote Q(η) := ESGD1/2 ‖wt,η − w∗‖2. Recall

that we truncate the SGD sequence once the weight norm exceeds 4
√
Lσ. Due to the truncation, the expectation of

1/2 ‖wt,η − w∗‖2 over SGD noise is very tricky to analyze.

Instead, we define an auxiliary sequence {w′
τ,η} that is obtained by running SGD on task P without truncation and

we first study Q′(η) := 1/2ESGD

∥

∥w′
t,η − w∗∥

∥

2
. In Lemma 38, we show that with high probability in the sampling of

task P , the minimizer of Q′(η) is Θ(1/t). The proof is very similar as the proof of Lemma 13 except that we need to

bound the SGD noise at step size η2. We defer the proof into Section D.2.3.

56

Lemma 38. Given a task P , let {w′
τ,η} be the weight obtained by running SGD on task P without truncation. Choose

σ as a large constant c1. Assume unroll length t ≥ c2d for some constant c2. With probability at least 1−exp(−Ω(d))
over the sampling of task P,

√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤

‖ξtrain‖ ≤
√
dσ and there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) := 1/2ESGD

∥

∥w′
t,η2

− w∗∥
∥

2 ≤ 1

2
‖w∗‖2 − C

Q′(η) := 1/2ESGD

∥

∥w′
t,η − w∗∥

∥

2 ≥ 1

2
‖w∗‖2 − C

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

To relate the behavior of Q′(η) defined on {w′
τ,η} to the behavior of Q(η) defined on {wτ,η}. We show when

the step size is small enough, the SGD sequence gets truncated with very small probability so that sequence {wτ,η}
almost always coincides with sequence {w′

τ,η}. The proof of Lemma 39 is deferred into Section D.2.3.

Lemma 39. Given a task P , assume
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and√

dσ/4 ≤ ‖ξtrain‖ ≤
√
dσ. Given any ǫ > 0, suppose η ≤ 1

c5d2 log2(d/ǫ)
for some constant c5, we have

|Q(η)−Q′(η)| ≤ ǫ.

Combining Lemma 38 and Lemma 39, we give the proof of lemma 36.

Proof of Lemma 36. Recall that we define Q(η) := 1/2ESGD ‖wt,η − w∗‖2 and Q′(η) = 1/2ESGD

∥

∥w′
t,η − w∗∥

∥

2
.

Here, {w′
τ,η} is a SGD sequence running on task P without truncation.

According to Lemma 38, with probability at least 1 − exp(−Ω(d)) over the sampling of task P,
√
d/

√
L ≤

σi(Xtrain) ≤
√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ and there exists

η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) ≤
1

2
‖w∗‖2 − C

Q′(η) ≥ 1

2
‖w∗‖2 − C

2
, ∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1 − δ. We can write

EP∼T Q(η) as follows,

EP∼T Q(η) = EP∼T [Q(η)|E] Pr[E] + EP∼T [Q(η)|Ē] Pr[Ē].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore, Q(η) := 1/2 ‖wt,η − w∗‖2 ≤

13Lσ2. By Lemma 39, we know conditioning on E , |Q(η) − Q′(η)| ≤ ǫ for any η ≤ 1
c5d2 log2(d/ǫ)

. As long as

t ≥ c2d
2 log2(d/ǫ) for certain constant c2, we know η3 ≤ 1

c5d2 log2(d/ǫ)
.

When η = η2, we have

EP∼T Q(η2) ≤ (Q′(η2) + ǫ) (1− δ) + 13Lσ2δ

≤
(

1

2
‖w∗‖2 − C + ǫ

)

(1 − δ) + 13Lσ2δ

≤1

2
‖w∗‖2 − C + 13Lσ2δ + ǫ ≤ 1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
260Lσ2 and ǫ ≤ C

20 .
When η ∈ [0, η1] ∪ [η3,

1
c5d2 log2(d/ǫ)

], we have

EP∼T Q(η2) ≥ (Q′(η)− ǫ) (1− δ)− 13Lσ2δ

≥
(

1

2
‖w∗‖2 − C

2
− ǫ

)

(1− δ)− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− δ

2
− 13Lσ2δ − ǫ ≥ 1

2
‖w∗‖2 − 6C

10
,

57

where the last inequality holds as long as δ ≤ C
280Lσ2 and ǫ ≤ C

20 .
According to Lemma 38, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied as long as d

is larger than certain constant. The condition on ǫ can be satisfied as long as η ≤ 1
c5d2 log2(d)

for some constant c5. �

D.2.2 Generalization for η ∈ [0, 1
c5d2 log2 d

]

In this section, we prove Lemma 37 by showing that F̂TbV (η) is point-wise close to FTbV (η) for all η ∈ [0, 1
c5d2 log2(d/ǫ)

].

Recall Lemma 37 as follows.

Lemma 37. For any 1 > ǫ > 0, assume σ is a constant and d ≥ c4 log(1/ǫ) for some constant c4. There exists

constant c5 such that with probability at least 1−O(1/ǫ) exp(−Ω(ǫ2m)),

|F̂TbV (η)− FTbV (η)| ≤ ǫ,

for all η ∈ [0, 1
c5d2 log2(d/ǫ)

].

In order to prove Lemma 37, we first show that for a fixed η with high probability F̂TbV (η) is close to FTbV (η).
Similar as in Lemma 16, we can still show that each ∆TbV (η, P) is O(1)-subexponential. The proof is deferred into

Section D.2.3.

Lemma 40. Supposeσ is a constant. Given any 1 > ǫ > 0, for any fixed η with probability at least 1−exp(−Ω(ǫ2m)),

∣

∣

∣
F̂TbV (η)− FTbV (η)

∣

∣

∣
≤ ǫ.

Next, we show that there exists an ǫ-net for FTbV with size O(1/ǫ). By ǫ-net, we mean there exists a finite set Nǫ

of step sizes such that |FTbV (η) − FTbV (η
′)| ≤ ǫ for any η and η′ ∈ argminη∈Nǫ

|η − η′|. The proof is very similar

as in Lemma 17. We defer the proof of Lemma 41 into Section D.2.3.

Lemma 41. Suppose σ is a constant. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for some c4. There exists constant

c5 and an ǫ-net Nǫ ⊂ [0, 1
c5d2 log2(d/ǫ)

] for FTbV with |Nǫ| = O(1/ǫ). That means, for any η ∈ [0, 1
c5d2 log2(d/ǫ)

],

|FTbV (η)− FTbV (η
′)| ≤ ǫ,

for η′ ∈ argminη∈Nǫ
|η − η′|.

Next, we show that with high probability, there also exists an ǫ-net for F̂TbV with size O(1/ǫ). The proof is very

similar as the proof of Lemma 18. We defer the proof into Section D.2.3.

Lemma 42. Suppose σ is a constant. For any 1 > ǫ > 0, assume d ≥ c4 log(1/ǫ) for some c4. With probability at

least 1− exp(−Ω(ǫ2m)), there exists constant c5 and an ǫ-net N ′
ǫ ⊂ [0, 1

c5d2 log2(d/ǫ)
] for F̂TbV with |Nǫ| = O(1/ǫ).

That means, for any η ∈ [0, 1
c5d2 log2(d/ǫ)

],

|F̂TbV (η)− F̂TbV (η
′)| ≤ ǫ,

for η′ ∈ argminη∈Nǫ
|η − η′|.

Combing Lemma 40, Lemma 41 and Lemma 42, now we give the proof of Lemma 37.

Proof of Lemma 37. The proof is almost the same as the proof of Lemma 11. We omit the details here. �

58

D.2.3 Proofs of Technical Lemmas

In Lemma 43, we show when the step size is small, the expected SGD noise square is well bounded. The proof follows

from the analysis in Lemma 33.

Lemma 43. Let {w′
τ,η} be an SGD sequence running on task P without truncation. Let n′

τ,η be the SGD noise at

w′
τ,η. Assume

√
d/

√
L ≤ σi(Xtrain) ≤

√
L
√
σ for all i ∈ [n] and ‖ξtrain‖ ≤

√
dσ. Suppose η ∈ [0, 1

2L3d], we have

ESGD

∥

∥n′
τ,η

∥

∥

2 ≤ 4L3σ2d

for all τ ≤ t.

Proof of Lemma 43. Similar as the analysis in Lemma 33, for η ≤ 1
2L3d , we have

ESGD

[

∥

∥n′
τ,η

∥

∥

2 |w′
τ−1,η

]

≤ L2d
∥

∥w′
τ−1,η − wtrain

∥

∥

2
.

and

ESGD

∥

∥w′
τ−1,η − wtrain

∥

∥

2 ≤ (1− η

2L
)τ−1 ‖wtrain‖2 ≤

∥

∥w∗
train + (Xtrain)

†ξtrain

∥

∥

2 ≤ 4Lσ2.

Therefore, we have

ESGD

∥

∥n′
τ,η

∥

∥

2 ≤ L2dESGD

∥

∥w′
τ,η − wtrain

∥

∥

2 ≤ 4L3σ2d.

�

Proof of Lemma 38. We can expand Q′(η) as follows,

Q′(η) :=
1

2
ESGD

∥

∥w′
t,η − w∗∥

∥

2

=
1

2
ESGD

∥

∥

∥

∥

∥

Bt,ηw
∗
train +Bt,η(Xtrain)

†ξtrain − η

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η − w∗

∥

∥

∥

∥

∥

2

=
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

+
〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

Denote

G(η) :=
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

.

We first show that with probability at least 1− exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such

that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L].
According to Lemma 1, we know with probability at least 1 − exp(−Ω(d)),

√
d/

√
L ≤ σi(Xtrain) ≤

√
L
√
d and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]. According to Lemma 45, we know with probability at least 1 − exp(−Ω(d)),√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

=
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

− 〈Bt,ηw
∗
train, w

∗〉 .

59

Same as in Lemma 13, we know 1
2 ‖Bt,ηw

∗
train‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2 ≤ L3η2t2σ2. For the SGD noise, by

Lemma 43 we know ESGD

∥

∥n′
τ,η

∥

∥

2 ≤ 4L3σ2d for all τ ≤ t as long as η ≤ 1
2L3d . Therefore,

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

≤ η2

2

t−1
∑

τ=0

ESGD

∥

∥n′
τ,η

∥

∥

2 ≤ 2L3η2σ2dt ≤ 2L3η2σ2t2,

where the last inequality assumes t ≥ d. According to Lemma 15, for any fixed η ∈ [0, L/t], with probability at least

1− exp(−Ω(d)) over Xtrain,

〈Bt,ηw
∗
train, w

∗〉 ≥ ηt

16L
.

Therefore, for any step size η ≤ 1
2L3d ,

G(η) ≤ 1

2
‖w∗‖2 + 3L3η2σ2t2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

where the second inequality holds as long as η ≤ 1
96L4σ2t . Choosing η2 := 1

96L4σ2t that is smaller than 1
2L3d assuming

t ≥ d. Then, we have

G(η2) ≤
1

2
‖w∗‖2 − 5C

4
,

where constant C = 1
3072L5σ2 .

Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with η1 < η2 such that for

any η ∈ [0, η1], G(η) ≥ 1
2 ‖w∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 + 1

2
‖Bt,ηw

∗
train‖2 +

1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

− 〈Bt,ηw
∗
train, w

∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw

∗
train, w

∗〉 .

Same as in Lemma 13, by choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with η3 > η2 such that for

all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw

∗
train − w∗‖2 + 1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
+

η2

2
ESGD

∥

∥

∥

∥

∥

t−1
∑

τ=0

(I − ηHtrain)
t−1−τn′

τ,η

∥

∥

∥

∥

∥

2

≥1

2

∥

∥Bt,η(Xtrain)
†ξtrain

∥

∥

2
.

Same as in Lemma 13, by choosing η3 = log(2)L/t, as long as σ ≥ 8
√
L, we have

G(η) ≥ 1

2
‖w∗‖2

60

for all η ∈ [η3, 1/L]. Note η3 ≤ 1/L as long as t ≥ log(2)L2.

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 −
5C/4 andG(η) ≥ 1/2 ‖w∗‖2−C/4 for all η ∈ [0, η1]∪[η3, 1/L]. Recall thatQ′(η) = G(η)+

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉

.

Choosing ǫ = C/4 in Lemma 14, we know with probability at least 1−exp(−Ω(d)),
∣

∣

〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)

†ξtrain

〉∣

∣ ≤
C/4 for all η ∈ [0, 1/L]. Therefore, we know Q′(η2) ≤ 1/2 ‖w∗‖2 − C and Q′(η) ≥ 1/2 ‖w∗‖2 − C/2 for all

η ∈ [0, η1] ∪ [η3, 1/L]. �

In order to prove Lemma 39, we first construct a super-martingale to show that as long as task P is well behaved,

with high probability in SGD noise, the weight norm along the trajectory never exceeds 4
√
Lσ.

Lemma 44. Assume
√
d/

√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤√

dσ. Given any 1 > δ > 0, suppose η ≤ 1
c5d2 log2(d/δ)

for some constant c5, with probability at least 1 − δ in the

SGD noise,
∥

∥w′
τ,η

∥

∥ < 4
√
Lσ

for all τ ≤ t.

Proof of Lemma 44. According to the proofs of Lemma 43, as long as η ≤ 1
2L3d , we have

ESGD

[

∥

∥w′
t,η − wtrain

∥

∥

2 |w′
t−1,η

]

≤ (1− η

2L
)
∥

∥w′
t−1,η − wtrain

∥

∥

2
.

Since log is a concave function, by Jenson’s inequality, we know

ESGD

[

log
∥

∥w′
t,η − wtrain

∥

∥

2 |w′
t−1,η

]

≤ logESGD

[

∥

∥w′
t,η − wtrain

∥

∥

2 |w′
t−1,η

]

≤ log
∥

∥w′
t−1,η − wtrain

∥

∥

2
+ log(1− η

2L
).

Defining Gt = log
∥

∥w′
t,η − wtrain

∥

∥

2−t log(1− η
2L), we know Gt is a super-martingale. Next, we bound the martingale

differences.

We can bound |Gt − ESGD[Gt|w′
t−1,η]| as follows,

|Gt − ESGD[Gt|w′
t−1,η]| ≤ max

n′

t−1,η ,n
′′

t−1,η

log

(
∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)− ηn′

t−1,η

∥

∥

2

∥

∥(I − ηHtrain)(w′
t−1,η − wtrain)− ηn′′

t−1,η

∥

∥

2

)

We can expand
∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)− ηn′

t−1,η

∥

∥

2
as follows,

∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)− ηn′

t−1,η

∥

∥

2

=
∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)

∥

∥

2 − 2η
〈

n′
t−1,η, (I − ηHtrain)(w

′
t−1,η − wtrain)

〉

+ η2
∥

∥n′
t−1,η

∥

∥

2

We can bound the norm of the noise as follows,

∥

∥n′
t−1,η

∥

∥ =
∥

∥

∥
xi(t−1)x

⊤
i(t−1)(w

′
t−1,η − wtrain)−Htrain(w

′
t−1,η − wtrain)

∥

∥

∥

≤
∥

∥

∥
xi(t−1)x

⊤
i(t−1)(w

′
t−1,η − wtrain)

∥

∥

∥
+
∥

∥Htrain(w
′
t−1,η − wtrain)

∥

∥

≤ (Ld+ L)
∥

∥w′
t−1,η − wtrain

∥

∥ ≤ 2Ld
∥

∥w′
t−1,η − wtrain

∥

∥ ,

where the second inequality uses
∥

∥xi(t−1)

∥

∥ ≤
√
Ld. Therefore, we have

∣

∣2η
〈

n′
t−1,η, (I − ηHtrain)(w

′
t−1,η − wtrain)

〉
∣

∣ ≤ 4Lηd
∥

∥w′
t−1,η − wtrain

∥

∥

2
,

η2
∥

∥n′
t−1,η

∥

∥

2 ≤ 4L2η2d2
∥

∥w′
t−1,η − wtrain

∥

∥

2
.

61

This further implies,

|Gt − ESGD[Gt|w′
t−1,η]|

≤ log

(
∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)

∥

∥

2
+
(

4Lηd+ 4L2η2d2
) ∥

∥w′
t−1,η − wtrain

∥

∥

2

∥

∥(I − ηHtrain)(w′
t−1,η − wtrain)

∥

∥

2 − 4Lηd
∥

∥w′
t−1,η − wtrain

∥

∥

2

)

≤ log

(

1 +
8Lηd+ 4L2η2d2

(1− 2Lη − 4Lηd)

)

≤ 16Lηd+ 8L2η2d2,

where the second inequality uses
∥

∥(I − ηHtrain)(w
′
t−1,η − wtrain)

∥

∥

2 ≥ (1 − 2Lη)
∥

∥w′
t−1,η − wtrain

∥

∥

2
. The last in-

equality assumes η ≤ 1
12Ld and uses numerical inequality log(1 + x) ≤ x. Assuming η ≤ 1/(Ld), we further have

|Gt − ESGD[Gt|w′
t−1,η]| ≤ L2ηd.

By Azuma’s inequality, we know with probability at least 1− δ/t,

Gt ≤ G0 + L2
√
2tηd log(t/δ).

Plugging in Gt = log
∥

∥w′
t,η − wtrain

∥

∥

2 − t log(1− η
2L) and G0 = log ‖w0 − wtrain‖2 = log ‖wtrain‖2 , we have

log
∥

∥w′
t,η − wtrain

∥

∥

2 ≤ log ‖wtrain‖2 + t log(1− η

2L
) + L2

√
2tηd log(t/δ)

≤ log ‖wtrain‖2 −
η

2L
t+ L2

√
2tηd log(t/δ).

This implies,

∥

∥w′
t,η − wtrain

∥

∥

2 ≤‖wtrain‖2 exp
(

η

(

− 1

2L
t+ L2

√
2 log(t/δ)d

√
t

))

= ‖wtrain‖2 exp
(

O(d2 log2(d/δ))η
)

≤‖wtrain‖2 exp (2/3) ,

where the second inequality assumes η ≤ 1
c5d2log2(d/δ) for some constant c5. Furthermore, since ‖wtrain‖ ≤ (1+

√
L)σ,

we have
∥

∥w′
t,η

∥

∥ ≤ (1 + e1/3) ‖wtrain‖ < 4
√
Lσ.

Overall, we know as long as η ≤ 1
c5d2log2(d/δ) , with probability at least 1 − δ/t,

∥

∥w′
t,η

∥

∥ ≤ 4
√
Lσ. Since this

analysis also applies to any τ ≤ t, we know for any τ, with probability at least 1 − δ/t,
∥

∥w′
τ,η

∥

∥ < 4
√
Lσ. Taking a

union bound over τ ≤ t, we have with probability at least 1− δ,
∥

∥w′
τ,η

∥

∥ < 4
√
Lσ for all τ ≤ t. �

Proof of Lemma 39. Let E be the event that
∥

∥w′
τ,η

∥

∥ < 4
√
Lσ for all τ ≤ t. We first show that ESGD ‖wt,η − w∗‖2 is

close to ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}. It’s not hard to verify that

ESGD ‖wt,η − w∗‖2 = ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}+ ‖u− w∗‖2 Pr[Ē],

where u is a fixed vector with norm 4
√
Lσ. By Lemma 44, we know Pr[Ē] ≤ ǫ/(25Lσ2) as long as η ≤ 1

c5d2 log2(d/ǫ)

for some constant c5. Therefore, we have
∣

∣

∣
ESGD ‖wt,η − w∗‖2 − ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}

∣

∣

∣
≤ ǫ.

Next, we show that ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E} is close to ESGD

∥

∥w′
t,η − w∗∥

∥

2
. For any 1 ≤ τ ≤ t, let Eτ be the

event that
∥

∥w′
τ,η

∥

∥ ≥ 4
√
Lσ and

∥

∥w′
τ ′,η

∥

∥ < 4
√
Lσ for all τ ′ < τ. Basically Eτ means the weight norm exceeds the

threshold at step τ for the first time. It’s easy to see that ∪t
τ=1Eτ = Ē . Therefore, we have

ESGD

∥

∥w′
t,η − w∗∥

∥

2
= ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}+

t
∑

τ=1

ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {Eτ} .

62

Conditioning on Eτ , we know
∥

∥w′
τ−1,η

∥

∥ < 4
√
Lσ. Since we assume

√
d√
L
≤ σi(Xtrain) ≤

√
L
√
d for all i ∈ [n] and

ξtrain ≤
√
dσ, we know ‖wtrain‖ ≤ 2

√
Lσ. Therefore, we have

∥

∥w′
τ−1,η − wtrain

∥

∥ ≤ 6
√
Lσ. Recall the SGD updates,

w′
τ,η − wtrain = (I − ηHtrain)(w

′
τ−1,η − wtrain)− ηn′

τ−1,η.

For the noise term, we have η
∥

∥n′
τ−1,η

∥

∥ ≤ 2ηLd
∥

∥w′
τ−1,η − wtrain

∥

∥ that is at most
∥

∥w′
τ−1,η − wtrain

∥

∥ assuming η ≤
1

2Ld . Therefore, we have
∥

∥w′
τ,η − wtrain

∥

∥ ≤ 2
∥

∥w′
τ−1,η − wtrain

∥

∥ ≤ 12
√
Lσ. Note that event Eτ is independent with

the SGD noises after step τ . Therefore, according to the previous analysis, we know as long as η ≤ 1
2L3d ,

ESGD

[

∥

∥w′
t,η − wtrain

∥

∥

2 |Eτ
]

≤
∥

∥w′
τ,η − wtrain

∥

∥

2 ≤ 2L2σ2.

Then, we can bound ESGD

[

∥

∥w′
t,η − w∗∥

∥

2 |Eτ
]

as follows,

ESGD

[

∥

∥w′
t,η − w∗∥

∥

2 |Eτ
]

=ESGD

[

∥

∥w′
t,η − wtrain + wtrain − w∗∥

∥

2 |Eτ
]

≤ESGD

[

∥

∥w′
t,η − wtrain

∥

∥

2 |Eτ
]

+ 2ESGD

[∥

∥w′
t,η − wtrain

∥

∥ |Eτ
]

‖wtrain − w∗‖+ ‖wtrain − w∗‖2

≤2L2σ2 + 2 · 2Lσ · 3
√
Lσ + 9Lσ2 ≤ 3L2σ2.

Therefore, we have

t
∑

τ=1

ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {Eτ} =

t
∑

τ=1

ESGD

[

∥

∥w′
t,η − w∗∥

∥

2 |Eτ
]

Pr[Eτ]

≤3L2σ2
t
∑

τ=1

Pr[Eτ] = 3L2σ2 Pr[Ē] ≤ 3L2σ2ǫ.

This then implies that

∣

∣

∣
ESGD

∥

∥w′
t,η − w∗∥

∥

2 − ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}

∣

∣

∣
≤ 3L2σ2ǫ.

Finally, we have

∣

∣

∣
ESGD ‖wt,η − w∗‖2 − ESGD

∥

∥w′
t,η − w∗∥

∥

2
∣

∣

∣

≤
∣

∣

∣
ESGD ‖wt,η − w∗‖2 − ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}

∣

∣

∣
+
∣

∣

∣
ESGD

∥

∥w′
t,η − w∗∥

∥

2 − ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}

∣

∣

∣

≤
(

3L2σ2 + 1
)

ǫ

as long as η ≤ 1
c5d2 log2(d/ǫ)

. Therefore, |Q(η)−Q′(η)| ≤
(

3L2σ2 + 1
)

ǫ/2. Choosing ǫ′ = 2ǫ
(3L2σ2+1) finishes the

proof. �

Proof of Lemma 40. Recall that

F̂TbV (η) :=
1

m

m
∑

k=1

∆TbV (η, P) =
1

m

m
∑

k=1

ESGD

1

2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

.

Similar as in Lemma 11, we can show 1
2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

is O(1)-subexponential, which implies

ESGD
1
2

∥

∥

∥
w

(k)
t,η − w

(k)
valid

∥

∥

∥

2

H
(k)
valid

is O(1)-subexponential. Therefore, F̂TbV (η) is the average ofm i.i.d. O(1)-subexponential

random variables. By standard concentration inequality, we know for any 1 > ǫ > 0, with probability at least

1− exp(−Ω(ǫ2m)),
∣

∣

∣
F̂TbV (η)− FTbV (η)

∣

∣

∣
≤ ǫ.

63

�

Proof of Lemma 41. Recall that

FTbV (η) =EP∼T ESGD

1

2
‖wt,η − w∗‖2 + σ2/2

We only need to construct an ǫ-net for EP∼T ESGD
1
2 ‖wt,η − w∗‖2. Let E be the event that

√
d/

√
L ≤ σi(Xtrain) ≤√

Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ We have

EP∼T ESGD

1

2
‖wt,η − w∗‖2

=EP∼T

[

1

2
ESGD ‖wt,η − w∗‖2 |E

]

Pr[E] + EP∼T

[

1

2
ESGD ‖wt,η − w∗‖2 |Ē

]

Pr[Ē]

According to Lemma 39, we know conditioning on E ,
∣

∣

∣

∣

1

2
ESGD ‖wt,η − w∗‖2 − 1

2
ESGD

∥

∥w′
t,η − w∗∥

∥

2
∣

∣

∣

∣

≤ ǫ,

as long as η ≤ 1
c5d2 log2(d/ǫ)

. Note {w′
τ,η} is the SGD sequence without truncation.

For the second term, we have

EP∼T

[

1

2
ESGD ‖wt,η − w∗‖2 |Ē

]

Pr[Ē] ≤ 13Lσ2Pr[Ē] ≤ ǫ,

where the last inequality assumes Pr[Ē] ≤ ǫ
13Lσ2 . According to Lemma 1 and Lemma 45, we know Pr[Ē] ≤

exp(−Ω(d)). Therefore, given any ǫ > 0, we have Pr[Ē] ≤ ǫ
13Lσ2 as long as d ≥ c4 log(1/ǫ) for some constant

c4.

Then, we only need to construct an ǫ-net for EP∼T
[

1
2ESGD

∥

∥w′
t,η − w∗∥

∥

2 |E
]

Pr[E]. By the analysis in Lemma 33,

it’s not hard to prove

∣

∣

∣

∣

∂

∂η
EP∼T

[

1

2
ESGD

∥

∥w′
t,η − w∗∥

∥

2 |E
]

Pr[E]
∣

∣

∣

∣

= O(1)t(1 − η

2L
)t−1,

for all η ∈ [0, 1
c5d2 log2(d/ǫ)

]. Similar as in Lemma 14, for any ǫ > 0, we know there exists an ǫ-net Nǫ with size

O(1/ǫ) such that for any η ∈ [0, 1
c5d2 log2(d/ǫ)

],

∣

∣

∣

∣

EP∼T

[

1

2
ESGD

∥

∥w′
t,η − w∗∥

∥

2 |E
]

Pr[E]− EP∼T

[

1

2
ESGD

∥

∥w′
t,η′ − w∗∥

∥

2 |E
]

Pr[E]
∣

∣

∣

∣

≤ ǫ

for η′ ∈ argminη∈Nǫ
|η − η′|.

Combing with the bounds on

∣

∣

∣

1
2ESGD ‖wt,η − w∗‖2 1 {E} − 1

2ESGD

∥

∥w′
t,η − w∗∥

∥

2
1 {E}

∣

∣

∣
and

EP∼T
[

1
2ESGD ‖wt,η − w∗‖2 |Ē

]

Pr[Ē], we have for any η ∈ [0, 1
c5d2 log2(d/ǫ)

],

FTbV (η)− FTbV (η
′) ≤ 4ǫ

for η′ ∈ argminη∈Nǫ
|η − η′|. We finish the proof by replacing 4ǫ by ǫ′. �

Proof of Lemma 42. The proof is very similar as the proof of Lemma 18. The only difference is that we need to first

relate the SGD sequence with truncation to the SGD sequence without truncation and then bound the Lipschitzness on

the SGD sequence without truncation (as we did in Lemma 41). We omit the details here. �

64

E Tools

E.1 Norm of random vectors

We use the following lemma to bound the noise in least squares model.

Lemma 45 (Theorem 3.1.1 in Vershynin (2018)). Let X = (X1, X2, · · · , Xn) ∈ R
n be a random vector with each

entry independently sampled from N (0, 1). Then

Pr[
∣

∣‖x‖ − √
n
∣

∣ ≥ t] ≤ 2 exp(−t2/C2),

where C is an absolute constant.

E.2 Singular values of Gaussian matrices

Given a random Gaussian matrix, in expectation its smallest and largest singular value can be bounded as follows.

Lemma 46 (Theorem 5.32 in Vershynin (2010)). Let A be an N × n matrix whose entries are independent standard

normal random variables. Then

√
N −√

n ≤ Esmin(A) ≤ Esmax(A) ≤
√
N +

√
n

Lemma 47 shows a lipchitz function over i.i.d. Gaussian variables concentrate well on its mean. We use this

lemma to argue for any fixed step size, the empirical meta objective concentrates on the population meta objective.

Lemma 47 (Proposition 5.34 in Vershynin (2010)). Let f be a real valued Lipschitz function on R
n with Lipschitz

constant K . Let X be the standard normal random vector in R
n. Then for every t ≥ 0 one has

Pr[f(X)− Ef(X) ≥ t] ≤ exp(− t2

2K2
).

The following lemma shows a tall random Gaussian matrix is well-conditioned with high probability. The proof

follows from Lemma 46 and Lemma 47. We use Lemma 48 to show the covariance matrix is well conditioned in the

least squares model.

Lemma 48 (Corollary 5.35 in Vershynin (2010)). Let A be an N × n matrix whose entries are independent standard

normal random variables. Then for every t ≥ 0 with probability at least 1− 2 exp(−t2/2) one has

√
N −√

n− t ≤ smin(A) ≤ smax(A) ≤
√
N +

√
n+ t

E.3 Johnson-Lindenstrauss lemma

We also use Johnson-Lindenstrauss Lemma in some of the lemmas. Johnson-Lindenstrauss Lemma tells us the pro-

jection of a fixed vector on a random subspace concentrates well as long as the subspace is reasonably large.

Lemma 49 (Johnson and Lindenstrauss (1984)). Let P be a projection in R
d onto a random n-dimensional subspace

uniformly distributed in Gd,n. Let z ∈ R
d be a fixed point and ǫ > 0, then with probability at least 1− 2 exp(−cǫ2n),

(1− ǫ)

√

n

d
‖z‖ ≤ ‖Pz‖ ≤ (1 + ǫ)

√

n

d
‖z‖ .

F Experiment details

We describe the detailed settings of our experiments in Section F.1 and give more experimental results in Section F.2.

65

F.1 Experiment settings

Optimizing step size for quadratic objective In this experiment, we meta-train a learning rate for gradient descent

on a fixed quadratic objective. Our goal is to show that the autograd module in popular deep learning softwares,

such as Tensorflow, can have numerical issues when using the log-transformed meta objective. Therefore, we first

implement the meta-training process with Tensorflow to see the results. We then re-implement the meta-training using

the hand-derived meta-gradient (see Eqn 3) to compare the result.

A general setting for both implementations is as follows. The inner problem is fixed as a 20-dimensional quadratic

objective as described in Section 3, and we use the log-transformed meta objective for training. The positive semi-

definite matrix H is generated by first sampling a 20× 20 matrix X with all entries drawn from the standard normal

distribution and then setting H = XTX . The initial point w0 is drawn from standard normal as well. Note that we

use the same quadratic problem (i.e., the same H and w0) throughout the meta-training. We do 1000 meta-training

iterations, and collect results for different settings of the initial learning rate η0 and the unroll length t.
We first implement the meta-training code with Tensorflow. Our code is adapted from Wichrowska et al. (2017) 2.

We use their global learning rate optimizer and specify the problem set to have only one quadratic objective instance.

We implemented the quadratic objective class ourselves (the ”MyQuadratic” class). We also turned off multiple

advanced features in the original code, such as attention and second derivatives, by assigning their flags as false. This

ensures that the experiments have exactly the same settings as we described. The meta-training learning rate is set

to be 0.001, which is of similar scale as our next experiment. We also try RMSProp as the meta optimizer, which

alleviates some of the numerical issues as it renormalizes the gradient, but our experiments show that even RMSProp

is still much worse than our implementation.

We then implement the meta-training by hand to show the accurate training results that avoid numerical issues.

Specifically, we compute the meta-gradient using Eq (3), where we also scaled the numerator and denominator as

described in Claim 2 to avoid numerical issues. We use the algorithm suggested in Theorem 4, except we choose the

meta-step size to be 1/(100
√
k) as the constants in Theorem 4 were not optimized.

Train-by-train vs. train-by-validation, synthetic data In this experiment, we find the optimal learning rate η∗

for least-squares problems trained in train-by-train and train-by-validation settings and then see how the learning rate

works on new tasks.

Specifically, we generate 300 different 1000-dimensional least-squares tasks with noise as defined in Section 4

for inner-training and then use the meta-objectives defined in Eq (1) and (2) to find the optimal learning rate. The

inner-training number of steps t is set as 40. We try different sample sizes and different noise levels for comparison.

Subsequently, in order to test how the two η∗ (for train-by-train and train-by-validation respectively) work, we use

them on 10 test tasks (the same setting as the inner-training problem) and compute training and testing root mean

squared error (RMSE).

Note that since we only need the final optimal η∗ found under the two meta-objective settings (regardless of how

we find it), we do not need to actually do the meta-training. Instead, we do a grid search on the interval [10−6, 1],
which is divided log-linearly to 25 candidate points. For both the train-by-train and train-by-validation settings, we

average the meta-objectives over the 300 inner problems and see which η minimizes this averaged meta-objective.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST To observe the trade-off between train-by-

train and train-by-validation in a broader and more realistic case, we also do experiments to meta-train an MLP

optimizer as in Metz et al. (2019) to solve the MNIST classification problem. We use part of their code 3 to integrate

with our code in the first experiment, and we use exactly the same default setting as theirs, which is summarized below.

The MLP optimizer is a trainable optimizer that works on each parameter separately. When doing inner-training,

for each parameter, we first compute some statistics of that parameter (explained below), which are combined into

a feature vector, and then feed that feature vector to a Muti-Layer Perceptron (MLP) with ReLU activations, which

outputs two scalars, the update direction and magnitude. The update is computed as the direction times the expo-

nential of the magnitude. The feature vector is 31-dimensional, which includes gradient, parameter value, first-order

2Their open source code is available at https://github.com/tensorflow/models/tree/master/research/learned_optimizer
3Their code is available at https://github.com/google-research/google-research/tree/master/task_specific_learned_opt

66

https://github.com/tensorflow/models/tree/master/research/learned_optimizer
https://github.com/google-research/google-research/tree/master/task_specific_learned_opt

Table 1: Whether the implementation converges for different t (fixed η0 = 0.1)

t 10 20 40 80

Ours X X X X

Tensorflow GD × × × ×
Tensorflow RMSProp X X × ×

moving averages (5-dim), second-order moving averages (5-dim), normalized gradient (5-dim), reciprocal of square

root second-order moving averages (5-dim) and a step embedding (9-dim). All moving averages are computed us-

ing 5 different decay rates (0.5, 0.9, 0.99, 0.999, 0.9999), and the step embedding is tanh distortion of the current

number of steps divided by 9 different scales (3, 10, 30, 100, 300, 1000, 3000, 10000, 300000). After expanding the

31-dimensional feature vector for each parameter, we also normalize the set of vectors dimension-wise across all the

parameters to have mean 0 and standard deviation 1 (except for the step embedding part). More details can be found

in their original paper and original implementation.

The inner-training problem is defined as using a two-layer fully connected network (i.e., another “MLP”) with

ReLU activations to solve the classic MNIST 10-class classification problem. We use a very small network for com-

putational efficiency, and the two layers have 100 and 20 neurons. We fix the cross-entropy loss as the inner-objective

and use mini-batches of 32 samples when inner-training.

When we meta-train the MLP optimizer, we use exactly the same process as fixed in experiments by Wichrowska et al.

(2017). We use 100 different inner problems by shuffling the 10 classes and also sampling a new subset of data if we do

not use the complete MNIST data set. We run each of the problems with three inner-training trajectories starting with

different initialization. Each inner-training trajectory is divided into a certain number of unrolled segments, where we

compute the meta-objective and update the meta-optimizer after each segment. The number of unrolled segments in

each trajectory is sampled from 10+Exp(30), and the length of each segment is sampled from 50+Exp(100), where

Exp(·) denotes the exponential distribution. Note that the meta-objective computed after each segment is defined as

the average of all the inner-objectives (evaluated on the train/validation set for train-by-train/train-by-val) within that

segment for a better convergence. We also do not need to log-transform the inner-objective this time because the cross

entropy loss has a log operator itself. The meta-training, i.e. training the parameters of the MLP in the MLP optimzier,

is completed using a classic RMSProp optimizer with meta learning rate 0.01.

For each settings of sample sizes and noise levels, we train two MLP optimizer: one for train-by-train, and one for

train-by-validation. When we test the learned MLP optimizer, we use similar settings as the inner-training problem,

and we run the trajectories longer for full convergence (4000 steps for small data sets; 40000 steps for the complete

data set). We run 5 independent tests and collect training accuracy and test accuracy for evaluation. The plots show

the mean of the 5 tests. We have also tuned a SGD optimizer (with the same mini-batch size) by doing a grid-search

of the learning rate as baseline.

F.2 Additional results

Optimizing step size for quadratic objective We try experiments for the same settings of the initial η0 and inner

training length t for all of three implementations (our hand-derived GD version, Tensorflow GD version and the

Tensorflow RMSProp version). We do 1000 meta-training steps for all the experiments.

For both Tensorflow versions, we always see infinite meta-objectives if η0 is large or t is large, whose meta-gradient

is usually treated as zero, so the training get stuck and never converge. Even for the case that both η0 and t is small, it

still has very large meta-objectives (the scale of a few hundreds), and that is why we also try RMSProp, which should

be more robust against the gradient scales. Our hand-derived version, however, does not have the numerical issues and

can always converge to the optimal η∗. The detailed convergence is summarized in Tab 1 and Tab 2. Note that the

optimal η∗ is usually around 0.03 under our settings.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST We also do additional experiments on training

an MLP optimizer on the MNIST classification problem. We first try using all samples under the 20% noised setting.

67

Table 2: Whether the implementation converges for different η0 (fixed t = 40)

η0 0.001 0.01 0.1 1

Ours X X X X

Tensorflow GD × × × ×
Tensorflow RMSProp X X × ×

The results are shown in Fig 8. The train-by-train setting can perform well if we have a large data set, but since there

is also noise in the data, the train-by-train model still overfits and is slightly worse than the train-by-validation model.

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT60000
TbV50000+10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y
(t

es
t)

SGD
TbT60000
TbV50000+10000

Figure 8: Training and testing accuracy for different models (all samples, 20% noise)

We then try an intermediate sample size 12000. The results are shown in Fig 9 (no noise) and Fig 10 (20% noise).

We can see that as the theory predicts, as the amount of data increases (from 1000 samples to 12000 samples and then

to 60000 samples) the gap between train-by-train and train-by-validation decreases. Also, when we condition on the

same number of samples, having additional label noise always makes train-by-train model much worse compared to

train-by-validation.

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT12000
TbV8000+4000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
(t

es
t)

SGD
TbT12000
TbV8000+4000

Figure 9: Training and testing accuracy for different models (12000 samples, no noise)

68

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
(t

ra
in

)

SGD
TbT12000
TbV8000+4000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 104

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y
(t

es
t)

SGD
TbT12000
TbV8000+4000

Figure 10: Training and testing accuracy for different models (12000 samples, 20% noise)

69

	1 Introduction
	1.1 Challenges of learning-to-learn approach and our results
	1.2 Related work

	2 Preliminaries
	2.1 Notations
	2.2 Learning-to-learn framework

	3 Alleviating gradient explosion/vanishing problem for quadratic objective
	4 Train-by-train vs. train-by-validation
	5 Experiments
	A Proofs for Section 3 – alleviating gradient explosion/vanishing problem for quadratic objective
	A.1 Meta-gradient vanishing/explosion
	A.2 Alleviating meta-gradient vanishing/explosion

	B Proofs of train-by-train v.s. train-by-validation (GD)
	B.1 Overall Proof Strategy
	B.2 Train-by-train (GD)
	B.2.1 Behavior of TbT for [0,1/L]
	B.2.2 Lower bounding TbT for (,)
	B.2.3 Generalization for [1/L,]
	B.2.4 Proofs of Technical Lemmas

	B.3 Train-by-validation (GD)
	B.3.1 Behavior of FTbV for [0,1/L]
	B.3.2 Generalization for [0,1/L]
	B.3.3 Lower bounding TbV for [1/L,)
	B.3.4 Proofs of Technical Lemmas

	C Proofs of train-by-train with large number of samples (GD)
	C.1 Upper bounding TbT(2/3)
	C.2 Lower bounding TbT for (,)
	C.3 Generalization for [0,]
	C.4 Proofs of Technical Lemmas

	D Proofs of train-by-train v.s. train-by-validation (SGD)
	D.1 Train-by-train (SGD)
	D.1.1 Detailed Proofs

	D.2 Train-by-validation (SGD)
	D.2.1 Behavior of FTbV for [0,1c5d2log2 d]
	D.2.2 Generalization for [0,1c5d2log2 d]
	D.2.3 Proofs of Technical Lemmas

	E Tools
	E.1 Norm of random vectors
	E.2 Singular values of Gaussian matrices
	E.3 Johnson-Lindenstrauss lemma

	F Experiment details
	F.1 Experiment settings
	F.2 Additional results

