
Under review as submission to TMLR

BRL-Attention: Toward Linearly Regularizing the Geometric
Bottleneck of Linear Generalized Attention

Anonymous authors
Paper under double-blind review

Abstract

Transformers excel across domains, yet their full self-attention carries a prohibitive O(n2)
cost for long sequences with length n. Existing efficient attention methods either restrict
the attention pattern (local/sparse attention) or approximate the softmax kernel with cer-
tain drawbacks. The former suffers from attention bottlenecks (over-squashing of long-range
dependencies) and invalidates the use of global tokens in autoregressive tasks, while the lat-
ter often requires sequential processing that can degrade in accuracy when approximations
fall short. In this work, we introduce a novel attention mechanism, Bottleneck Regularized
Linear Attention (BRL-Attention), uniting the strengths of pattern-based and kernel-based
techniques to enable efficient, global information flow with linear complexity. BRL-Attention
extends a local attention pattern with a small set of compressed tokens that serve as a global
information reservoir, ensuring long-range interactions without quadratic cost. This bottle-
neck regularization strategy effectively alleviates the geometric attention bottleneck and
retains full expressiveness; that is, it matches the sequence modeling capacity of full soft-
max attention while mitigating over-squashing across layers. Moreover, it integrates global
tokens without breaking causal masking, making it applicable to both encoder-only and
autoregressive decoder architectures. Extensive experiments on long-sequence and graph
benchmarks show that BRL-Attention matches or exceeds the predictive performance of
standard Transformers with full attention, while substantially reducing memory usage and
computation time. These results underscore its potential as a scalable, drop-in replacement
for existing attention mechanisms.

Token #1

Token #2

Token #3

Token #4

Token #5

Token #6

Attention Score
()

Attention
by Pattern

Removed Attention
by Pattern

Information Flow
(score value)

Bottleneck

Figure 1: Visualization of Attention Bottleneck in-
duced by pattern-based generalized attention. Infor-
mation of token #1 and token #5 struggle to propagate
to token #6 within one self-attention block.

Transformers (Vaswani et al., 2017) have substan-
tially advanced the state-of-the-art in areas such as
natural language processing, computer vision, and
graph learning (Dosovitskiy et al., 2020; Touvron
et al., 2021; Devlin et al., 2018; Touvron et al., 2023).
Their core strength lies in the attention mecha-
nism, which models global token-to-token interac-
tions. However, full self-attention involves comput-
ing pairwise relationships among all tokens, leading
to a formidable O(n2) time and memory complex-
ity, given the sequence length of n. This limitation
becomes a major obstacle for tasks involving long
sequences or large-scale datasets, where computa-
tional overhead can escalate dramatically.

In response, various efficient transformers (ET) have been proposed to replace full attention with mech-
anisms that cost at most linear time in the sequence length (Tay et al., 2022). These can be broadly
categorized into pattern-based and kernel-based methods (Sec. 1.1). Pattern-based transformers (Sec. 1.1),
such as Sparse Transformers (Child et al., 2019), Longformer (Beltagy et al., 2020), ETC (Ainslie et al.,
2020), and BigBird (Zaheer et al., 2020), restrict each query token to attend to a local or blockwise subset
of the entire sequence, reducing complexity to near O(n) by exploiting structured sparsity. Despite their

1

Under review as submission to TMLR

efficiency, these localized patterns can cause an attention bottleneck (a.k.a. over-squashing (Alon & Yahav,
2020; Topping et al., 2021)), as illustrated in Fig. 1, where distant tokens fail to interact effectively within
the limited receptive fields of each layer. While introducing global tokens or memories can alleviate this for
encoder-only tasks, it often breaks causal masking and thus remains impractical for autoregressive decoding.
In contrast, kernel-based transformers (Sec. 1.1) approximate the softmax via low-rank projections or random
feature maps (Katharopoulos et al., 2020; Choromanski et al., 2020), also aiming for linear or near-linear
time. However, these methods can degrade performance if the chosen approximation rank is insufficient
and often struggle in autoregressive settings: the need for causal masking typically forces sequential atten-
tion computation, forfeiting any parallelizable speedups. They also tend to be sensitive to random-feature
variance, especially in scenarios involving domain shifts or noise.

Receptive Field ()Receptive Field ()

Main Token
(This Layer)

Main Token
(Next Layer)

Compressed Token
(This Layer)

Compressed Token
(Next Layer)

Main Token
Propagation

Compression Map

Propagation Map

Compressed Token
Propagation

Full Attention BRL-Attention

Figure 2: (left) Quadratic Full-Attention; (right)
Proposed BRL-Attention (Linear) with a win-
dow/chunk size (w) of 3 (w is typically set to ≥ 64
in our experiments).

In this work, we propose a new paradigm, Bottle-
neck Regularized Linear Attention (BRL-Attention),
that combines the advantages of pattern- and kernel-
based approaches while sidestepping their key lim-
itations (discussed in Rmk. B.1). BRL-Attention
extends any sparse/pattern-based attention mecha-
nism with a small set of compressed tokens, which
serve as a global information reservoir. These tokens
can be integrated without invalidating causal struc-
ture in autoregressive tasks. We formalize this de-
sign as a bottleneck regularizer (Sec. 2.3) that chan-
nels distant dependencies through these compressed
tokens. Particularly, we introduce two key functions
to facilitate an expressive attention, Compression
and Propagation, which are two communication functions defined between main tokens and compressed
tokens. By design, these two functions help alleviate the attention bottleneck induced by over-squashed
patterns, while offering benefits e.g., preserving the expressibility and robustness on noisy attention. While
linearizing attentions inevitably sacrifices expressibility (Hua et al., 2022), we theoretically prove the compa-
rable expressibility of BRL-Attention towards full-attention, while mitigating over-squashing between con-
tiguous layers. The resulting approach scales linearly with the sequence length on inference time, memory,
and autoregressive training time.

Our main contributions are highlighted as follows: (1) Starting with a sensitivity analysis (Sec. 2.2), we
demonstrate that conventional sparse patterns can fail to propagate long-range information within a small
number of layers. In contrast, adding our bottleneck regularizer effectively recovers global context with
minimal overhead. (2) We propose the Bottleneck-Regularized Linear Attention (BRL-Attention) mecha-
nism, which augments any sparse/pattern-based attention with compressed tokens. This mechanism ensures
efficient O(n) complexity and alleviates information bottlenecks in strictly local attention. Theoretically, we
justify that with all introduced techniques in BRL-Attention, the resulting BRL-Former facilitates a wider
sensitivity bound between distant tokens in intersective layers (Sec. 2.4), which helps alleviate attention
bottleneck. Meanwhile, we justify in Sec. 2.3-2.4 that BRL-Former is as expressive as the full-attention-
transformer. (3) Through extensive experiments (Sec. 3), including long-sequence modeling and large-graph
node classification, we show that BRL-Attention not only matches or surpasses full-attention transformers
but also substantially reduces memory usage and computational cost.

1 Preliminary

Definition 1.1 (Generalized Attention Mechanism (Zaheer et al., 2020)). Given the input token to the
layers x ∈ Rn×d with sequence length n and embedding dimension d, the generalized attention mechanism is
described by a directed graph D (a.k.a Attention Pattern (Tay et al., 2022)) whose vertex set is V = {1, ..., n}.
The set of arcs (i.e., directed edges) represent the set of inner products that the attention mechanism will
consider. Let ND(i) denote the out-neighbors set of node i in D, then the i-th output vector at layer l ∈ [1, L]
of the generalized attention mechanism is defined as Eq. (1)

2

Under review as submission to TMLR

SW, =10, =5

Window Size

N
um

be
r o

f T
ok

en
s

SW, =10, =7 = Sliding Window (SW) Pattern Dilated Sliding Window Diag ChunkSliding Window Random ChunkGlobal

Figure 3: (left) Sliding Window (SW) pattern Dsw; (mid) Visualization of graph under different configura-
tions of window sizes w; (right) Various attention pattern D employed in literature, where grey areas are
either scores for individual token-pairs or sub-block of full attention.

F (l)
gen(x(l); D)i =

H∑
h=1

∑
j∈ND(i)

κ(q(l)
i , k(l)

j)∑
k∈ND(i) κ(q(l)

i , k(l)
k)

v(l)
j (1) F (l)

full(x
(l))i =

n∑
j=1

κ(q(l)
i , k(l)

j)∑n
k=1 κ(q(l)

i , k(l)
k)

v(l)
j (2)

where q = xWq, k = xWk and v = xWv are query, key, values and W ∈ Rd×d
∗ are learnable projection

weights. We use κ : Rd × Rd → R to denote the softmax kernel κ(a, b) := exp(ab⊤) (where a, b ∈ R1×d).

For brevity, we state the results with the batch size B = 1 and the number of heads H = 1 without loss of
generality. If D is the complete graph with adjacency matrix S, we recover the full attention mechanism of
O(n2) complexity (Vaswani et al., 2017), expressed as in Eq. (2).

1.1 Efficient Transformers

Existing works seek to improve memory efficiency in transformers through weight pruning (Michel et al.,
2019), weight factorization (Lan et al., 2019), weight quantization (Zafrir et al., 2019), efficient pretraining
(Clark, 2020), attention optimization (Lample et al., 2019), or knowledge distillation. Reducing the memory
or computational requirements with these methods leads to training or inference time speedups, but fun-
damentally, the time complexity is still quadratic w.r.t. the sequence length which hinders scaling to long
sequences. In this paper, we mainly focus on the two lines of works that achieves near linear complexity
transformers, namely, the pattern-based approach and kernel-based approach. We defer a more detailed
discussion on related works to Appendix D.4.

Pattern-Based Partial Attention. Pattern-based efficient transformers mitigate the quadratic complexity
of evaluating Ffull by imposing structured sparsity patterns. Early methods, such as Sparse Transformers
(Child et al., 2019), employ blockwise or strided attention mechanisms to reduce computations, achieving
complexity of O(n

√
n). Longformer (Beltagy et al., 2020) and ETC (Ainslie et al., 2020) further optimize

this by combining local attention windows with global memory tokens at custom locations, resulting in
complexity of O(wn), where w is the window size. More of this category includes axial (Ho et al., 2019),
learnable patterns through hashing (Kitaev et al., 2020) or clustering (Roy et al., 2021). These approaches
strike a balance between efficiency and coverage, making them ideal for long-sequence tasks. However, one
key problem with this class of methods is that they involve blocking operations, which are not parallel-friendly
and could induce potential attention bottlenecks, as discussed in Sec. 2.2.

Kernel-Based Linear Attention. Kernel-based attentions approximate self-attention to achieve linear
complexity. Specifically, according to Mercer’s theorem (Mercer, 1909; Aizerman, 1964), the eigenfunctions
corresponding to the non-zero eigenvalues are continuous on Rd and κ can be represented as κ(x, y) =∑∞

i=1 λiϕ(xi)ϕ(yi). With such a property, the kernelized-full attention is typically given as

F (l)
kernel(x

(l))i =
ϕ(q(l)

i)
∑n

j=1 ϕ(k(l)
j)⊤v(l)

j

ϕ(q(l)
i)

∑n
k=1 ϕ(k(l)

k)⊤
, where κ(x, y) = ⟨Φ(x), Φ(y)⟩V ≈ ϕ(x)ϕ(y)⊤. (3)

With certain error gap, Eq. (3) essentially tells F (l)
kernel(x(l)) ≈ F (l)

full(x(l)). With such an idea, approaches
e.g. (Choromanski et al., 2020; Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021) reduce
the quadratic cost of Ffull to roughly O(max (n, d2)). Such kernel-based approximations eliminate the need
to compute or store full attention matrices, making them well-suited for resource-constrained scenarios and
real-time processing. However, kernel-based methods may exhibit limitations in parallelizing across the time
dimension during training in an autoregressive teacher forced setting. As a result, there exists a considerable

3

Under review as submission to TMLR

gap between the theoretical complexity and actual running time. Similar to the findings in (Hua et al.,
2022), we find that directly computing the full quadratic attention matrix is even faster than the kernal-
based approaches on GPUs (see Sec. 3.1).

2 Method

In this paper, we present a new attention paradigm replacing conventional full attention, namely, the Bottle-
neck Regularized Linear Attention (BRL-Attention). We employ the notation of F as matrix-valued function
and f as vector-valued function. The transformer block with BRL-Attention is formulated as

F (l)
BRL(x(l)) = F (l)

gen(x(l); D)︸ ︷︷ ︸
Generalized Attn

+F (l)
prop(x(l); x[ct], λ)︸ ︷︷ ︸

O(n) Regularizer

, (4)

x(l)
out = LN(F (l)

BRL(x(l))) + x(l), x(l+1) = LN(f (l)
w2(σ(f (l)

w1(x(l)
out))⊙ f

(l)
w3(x(l)

out))) + x(l)
out. (5)

The key difference of FBRL to Fgen(·; D) is the introduction of regularization term F (l)
prop(·), which is a

propagation of compressed information x[ct], regarded as a patch to F (l)
gen(·; D) that alleviate over-squashing.

The equations in Eq. (5) are standard transformer layers with skip-connection and SwiGLU (Shazeer, 2020).

As below, we outline the core components and theoretical foundations of our approach. (1) We first establish
the necessity of imposing a structured attention pattern D to achieve linear complexity, and demonstrate
how certain sparse patterns in Fgen(·; D) can induce attention information bottlenecks, wherein token-level
interactions fail to propagate effectively across limited transformer depths. (2) We then introduce the bot-
tleneck regularizer Fprop, constructed via a set of compressed tokens x[ct]. Despite its linear complexity,
we show that Fprop(·; x[ct], λ) maintains an expressiveness comparable to that of kernelized attention mech-
anisms. (3) Next, we theoretically justify that, when the compression mapping Fcomp is appropriately
instantiated, switching the Full-Attention Ffull to the BRL-Attention FBRL results in a broader sensitivity
bound. With our customization, FBRL alleviates over-squashing and improves robustness to noisy attention
weights. (4) Finally, under any arbitrary sparse attention pattern D∗, we prove that with a trivial per-
head regularization coefficient λ = {1}H , the BRL-Attention operator FBRL remains provably as expressive
as Ffull (see Thm. 2.10). Collectively, these results establish BRL-Attention as a linear-complexity atten-
tion mechanism that retains the full expressive capacity of standard transformers while offering improved
scalability for long-sequence tasks. (⋆All proofs are deferred to Appendix E).

2.1 Necessity of Pattern D to Linear Generalized Attention

As detailed in Sec. 1.1 and (Tay et al., 2022), the pattern D that facilitates O(n) attention essentially
encompasses blockwise and strided pattern attention. The blockwise approaches (Qiu et al., 2019) chunk
input sequences into blocks that reduces the complexity from n2 to n2

block where nblock ≪ n, then the n× n
score is computed intermediately by computing and combining divided nblock × nblock blocks, selectively
picking blocks leads to linear complexity. For the strided attention patterns (Beltagy et al., 2020; Ainslie
et al., 2020) approach, we illustrate in Fig. 3 a typical pattern D, i.e. the sliding window pattern, which is
a fixed-size window mask surrounding each token. Given a fixed window size w, each token attends to w/2
tokens on each side. As show in Fig. 3(left), as only gray areas are need for computation, we can essentially
group the gray tokens/blocks as n × w size matrix, resulting in a O(wn) complexity score computation.
(Zaheer et al., 2020) further combined the blockwise and strided approach, facilitating the block-diagonal,
block-window local, and block-random patterns for efficient and expressive linear attention.

2.2 Sensitivity Analysis of Generalized Attention

As the layer-wise attention x(l+1)
i ← F (l)

gen(x(l); D)i is continuous and differentiable, the bottleneck of atten-
tion information can then be understood in terms of one token embedding x(l+1)

i failing to be affected by
another (previous layer-) feature x(∗)

p of token p at distance M from node i. Hence, we employ the Jacobian
∂F (l)/∂x(∗)

p as an explicit and formal way of assessing the bottleneck-ed attention.

4

Under review as submission to TMLR

Definition 2.1 (Attention Bottleneck). Under the definition of generalized attention, Fgen(·; D) with a
particular D within l layers is said to be bottlenecked when there exists a token pair i ∼ p such that
∂[F (l)

gen(x(l); D)]i/∂x(0)
p ≈ 0. This means no information is flow from i to p with l layers of attention blocks.

If l is nearly L, then the whole transformer suffers information bottleneck similar to MPNNs.

Failing Cases Under Certain Patterns D. We reveal theoretically that the generalized attentions suffer
from attention bottleneck with some patterns defined by certain D. Recall strided sliding window empowered
linear transformers according to Sec. 2.1. Using multiple stacked layers of such windowed attention results
in a receptive field, so that top layers have access to a board range of input locations and have the capacity
to build representations that incorporate information across the input, similar to MPNNs. The computation
complexity of this pattern is O(wn), which scales linearly with input sequence length n. Now, letting the
adjacency matrix derived from pattern Dsw be Ssw, we state the following proposition.
Proposition 2.2. Let D = Dsw where the sliding window size is w and Ssw has eigenvalues bounded by rsw.
Considering the source token i and target token p that are M distance away, we have the sensitivity bound∥∥∥∥∥∂F (l)

gen(·; Dsw)i

∂x(0)
p

∥∥∥∥∥ ≤
{

0 if l < ⌈ 2M
w−1⌉ − 1 ,

(rswrW)l+1 otherwise.
(6)

Prop. 2.2 indicates the particular D = Dsw leads to a squashed information propagation, i.e. for the top
layer token i’s embedding to perceive token p, we need at least ⌈ 2M

w−1⌉ − 1 general attention layers.
Remark 2.3. We regard Dsw as a simple example to illustrate how certain restricted D induces substantial
bottlenecks in attention propagation. In fact, many other D with limited connectivity and sparse interaction
patterns (e.g. diag chunk, dilated sliding window) exhibit similar issues, where the Jacobian with respect
to distant tokens becomes effectively negligible at intermediate layers. This makes the attention mechanism
behave analogously to a communication-limited message passing network, which hinders the model’s capacity
to integrate information across long sequences.

2.3 The Bottleneck Regularized Linear Attention

Compressed Token as Information Reservoir. We first introduce a key concept that facilitates the
bottleneck regularizer, namely, the compressed token. Given m as the sequence length of the compressed
token and dct as the embedding dimension, we represent the compressed tokens as x[ct] ∈ Rm×dct . The
layer-wise update process of x[ct] is then defined as

x(0)
[ct] = nn.Embedding(m, dct).weight, x(l+1)

[ct] = σ((1− β)LN(F (l)
comp(x(l)

[ct]; x(l))) + βx(l)
[ct]M(l)), (7)

where M(l) ∈ Rdct×dct is a feature transformation matrix for residual connection and β is a control factor on
compressed token evolution. Notably, setting β > 0 to evolve the compressed token is crucial for achieving
good result, which will be shown in Cor. 2.5 and in experiment 3.2. σ(·) is the ReLU activation and LN
denotes layer normalization. The function Fcomp : {Rd}n(×{Rdct}m) → {Rdct}m is a matrix mapping that
defines the compression of information from main tokens to compressed tokens, giving the dynamic of x[ct].
This parameterized compression mapping must be at least as expressive as MLPs and is critical in our latter
analysis. We provide instantiation and intuitions regarding how it relates to attention bottleneck in Sec. 2.2.

Formulating Regularizer with Compressed Information Propagation. With the evolution of com-
pressed token defined layer-wise according to Eq. (7), we are ready to instantiate the Bottleneck Regularizer,
formulated as a compression operation Fcomp in Eq. (4), defined by

zQ = ϕ(x(l)) ∈ Rn×c, zK , zV = x[ct]W{K,V }
z ∈ Rm×c,Rm×d, (8)

F (l)
prop(x(l); x[ct], λ) = λσattn

(
zQ(zK)⊤
√

d

)
zV ∈ Rn×d. (9)

For both encoder-only and causal models, x(l) is the current input. ϕ : Rd →: Rc is a parameterized
feature transformation for aligning feature spaces. Optionally, we could introduce ϕ as a spikiness enforcer

5

Under review as submission to TMLR

Algorithm 1 BRL-Former (Batch, Multi-Head)
B: batchsize, H: num heads
n: seq length, m: compressed token length,
d/d_ct: compressed/main token dim
lamda/gamma: learnable hyperparams of shape (1,H,1,1)
x: (B,n,d), x_ct: (m,d_ct); d_H = d//H; d_ct_H = d_ct//H
def F_comp(x_ct, x, gamma):

h_Q = LinearQ(x_ct).split(H) # (B,H,m,d_ct_H)
h_K1, h_K2 = LinearK(x).split(H) # (B,H,n,d_ct_H)
h_V = LinearV(x).split(H) # (B,H,n,d_ct)
S_K1 = s_attn(h_Q @ h_K1.T(2,3)) # (B,H,m,n)
S_K2 = s_attn(h_Q @ h_K2.T(2,3)) # (B,H,m,n)
out = (S_K1 - gamma * S_K2) @ h_V # (B,H,m,d)
return GroupNormH(out).T(1,2).flatten(2,3) # (B,m,d_ct)

def F_prop(q, x_ct_out, lamda):
z_Q = phi(q).split(H) # (B,H,n,d_H)
z_K = LinearK(x_ct_out).split(H) # (B,H,m,d_H)
z_V = LinearV(x_ct_out).split(H) # (B,H,m,d_H)
S = s_attn(z_Q @ z_K.T(2,3)) # (B,H,n,m)
out = lamda * S @ h_V # (B,H,n,d_H)
return out.T(1,2).flatten(2,3) # (B,n,d)

def Attn(x, x_ct, x_hist):
q, k, v = Linear(x).split(H) # (B,H,n,d_H)
x_out = LocalChunkAttn(q, k, v, H) # (B,n,d)
x_ct_bar = x_ct
if x_hist.length != 0:

x_ct_bar = F_comp(x_ct, x_hist, gamma) # (B,m,d_ct)
x_ct_out = ReLU((LN(x_ct_bar) + beta*x_ct) @ M)
x_reg_bar = F_prop(q, x_ct_out, lamda) # (B,n,d)
x_reg = ReLU(LN(x_reg_bar))
x_out = x_out + x_reg
return x_out, x_ct_out

def GatedFFN(x): # Equivalently the SwiGLU
return Linear2(SiLU(Linear1(x)) * Linear3(x))

def Block(x, x_ct, x_hist):
x_, x_ct_ = Attn(x, x_ct, x_hist)
h = x + x_; h_ct = h_ct + h_ct_
x_out = h + GatedFFN(LN(h))
x_ct_out = h_ct + GatedFFN(LN(h_ct))
return x_out, x_ct_out

def BRL_Former(x, x_ct = nn.Embedding(m,d_ct).weight,
x_hist = FifoSequenceQueue([])):

x_ct_batch = x_ct.repeat(B) # (B,m,d_ct)
if not self.causal: x_hist.push_head(x)
for _ in range(L):

x, x_ct_batch = Block(x, x_ct_batch, x_hist)
if self.causal: x_hist.push_head(x)
return x

Compression

Propagation

Seq Length:

Em
be

dd
in

g
D

im
:

C
T

D
im

:

CT Length:

Add & Norm

Current Layer:

Output Network

Gated FFN

Next Layer:

Local-Attn
()

Add & Norm

Add & Norm

Spiky Feature
Map

Gated FFN
Add & Norm

Q
ue

ue
d

Em
be

dd
in

g

Figure 4: The BRL-Attention Block (Enc/Dec-Only,
Single Head). The algorithm receives main token x
and compressed token x[ct] for layer l as input. Within
each layer, we first obtain q, k, v out of x by Eq. (1),
under theoretical guarantee Thm. 2.10, the instantia-
tion of D can be quite flexible. In our case, we em-
ploy sparse local-attention e.g. (Beltagy et al., 2020)
as a linear complexity instantiation. Then x (queued
history block for autoregressive training) in another
branch is manipulated with x[ct] by Fcomp to get the
evolved x[ct]. We then construct the regularizer Fprop
by x and updated x[ct]. Optionally, the x for cross-
attention is preprocessed by spiky feature map ϕspiky
to facilitate a lossless regularizer (Cor. 2.5).

(Zhang et al., 2024), ϕspiky(v) = [exp(vw1....c + b)] (which has close representation as Eq. (10) such that
theoretically benefits Prop. 2.7). The Fprop, defined by Fprop : {Rd}n×{Rdct}m → {Rd}n, can be viewed as
a cross sequence message passing that pulls the information from x[ct] back to main tokens. WK

z ∈ Rdct×c

and WV
z ∈ Rdct×d are KV weights. The attention function σattn(u) = fLaplace/Softmax(u + brel) can be

implemented as Softmax for regular attention, or Squared ReLU/Laplace function (Ma et al., 2022) for
better convergence speed and training stability. The brel ∈ Rn×m is the relative positional bias, which can
be drawn from approaches e.g. (Raffel et al., 2020; Su et al., 2024; Ke et al., 2020; Press et al., 2021). For
the cross-attention with permutation invariant x[ct], we let [brel]i,j = [brel]i,1. We employ x[ct] = x(l+1)

[ct] for
each layer of Eq. (9). We defer the explanation of employing the evolved x[ct] layer-wise in Cor. 2.5. The
overall complexity of Eq. (9) is roughly O(mn), which scales linearly with sequence length n.

Propagation Mapping as Regularizer Preserves Comparable Expressibility to Kernelized At-
tention. In the following, we theoretically justify that adding regularizer Fprop to the generalized attention
function Fgen causes no degradation on attention expressibility despite a positive λ. Define the random
feature map (Choromanski et al., 2020) ϕrfm : Rd → Rc for v ∈ Rd as

ϕrfm(v) = exp(−∥v∥2
2/2) · [exp(vw1), exp(vw2), · · · , exp(vwc)]/

√
c, (10)

6

Under review as submission to TMLR

where w1...c are random transformations drawn from N (0, Id). According to (Choromanski et al., 2020),
ϕrfm is one of the instantiation of ϕ in Eq. (3) that facilitate a softmax kernel-approximation. In the analysis
below, we make the following assumptions on Eq. (9): (C1) ϕ(·) ≈ ϕrfm(·) and (C2) dct ≈ c(1 + d). With
these assumptions, we arrive at the following proposition:
Proposition 2.4. At each layer l, let x̃(l+1)

[ct] = [
∑n

j=1 ϕrfm(k(l)
j)⊤

∥∥flatten(
∑n

j=1 ϕrfm(k(l)
j)⊤v(l)

j)], where ∥ is
the concatenation operator. The flatten(·) operation reshapes input Rc×d → Rcd to raster order. Then, if we
force x(l+1)

[ct] = x̃(l+1)
[ct] , Eq. (9) can sufficiently approximate the kernalized self-attention (i.e., Eq. (3)).

Recall that x̃(l+1)
[ct] given in Prop. 2.4 is also a vector matching the shape Rdct of compressed tokens in Eq. (7)

(since c(1 + d) = dct under (C2)). Therefore, the proposition essentially tells the following Corollary:
Corollary 2.5. With some particular instantiation of function Fprop(·) powered by particular choice of
ϕ(·), there exists some fixed compressed token x[ct] as input to Fprop, such that Fprop(x; x[ct]) is essentially
an attention-approximation.

Cor. 2.5 reflects the benefit of evolving x[ct] dynamically instead of sharing across layers: (1) x(l+1)
[ct] with

evolution Eq. (7) is capable on approximating x̃(l+1)
[ct] of Prop. 2.4 for all l; and (2) with x[ct] more expressive

than x̃(l+1)
ct , Fprop is at least as expressive as attention approximation. Therefore, adding such particular

Fprop under Prop. 2.4 results in no degradation in expressibility. Recall the instantiation of Fprop in Eq. (9).
We are then interested in how such a border definition of Fprop could impact the expressibility. We start
with the following assumptions:
Assumption 2.6 (Input & Parameter Bounds). Denote ∥ · ∥ for vectors as l2 norm and for matrices as
spectral norm. (A1) Given feature space X ⊂ Rd, for all i ∈ [1, n], the token feature xi satisfies xi ∈ X and
∥xi∥ ≤ rx. Similarly, we assume the compressed token [x[ct]]j for j ∈ [1, m] is bounded by rct. (A2) All
weight matrices e.g. that feature transformations like attention parameters satisfy ∥W∗∥ ≤ rW .

Asm. 2.6(A1) implies that the feature space X is compact, Asm. 2.6(A2) ensures that the unnormalized
attention score: α(xi, xj) = xiWqW⊤

k x⊤
j is bounded for all token i ∼ j. Consequently, the softmax

normalization remains well-defined, and its summation
∑

j κ(qi, kj) is bounded. Under these assumptions,
we state the following proposition.
Proposition 2.7. A parameterized network f(·) that is as expressive as MLP with O(1) width and depth
can approximate ϕrfm(qi),

∑
j ϕrfm(kj) and

∑
j ϕrfm(kj)⊤vj arbitrarily well on the compact domain.

Prop. 2.7 essentially tells that (1) ϕ(·), if simply defined as MLPϕ : Rd → Rc for instance, can approximate
ϕrfm(qi) arbitrarily well (a spiky ϕ = ϕspiky facilitate better approximation); and (2) in Eq. (7), if disregarding
the skip connection i.e., β = 0, then Fcomp with some simple MLP instantiation (e.g.,

∑
j MLPF (xj) where

MLPF : Rdct → Rdct), can approximate x̃(l+1)
[ct] arbitrarily well. Therefore, if we can essentially approximate

both ϕrfm(qi) and x̃(l+1)
[ct] , then by Prop. 2.4, the propagation mapping Fprop, also defined as a function of

ϕrfm(qi) and x̃(l+1)
[ct] , can approximate the kernelized attention arbitrarily well1 of self-attention (Eq. (3)).

Finally, the broad definition of Fprop as in Eq. (9) could also inherit the benefits instructed after Cor. 2.5.
In the following, we discuss how appropriate instantiation of the compression mapping Fcomp impacts the
attention bottleneck bound.

2.4 The Information Compression and Sensitivity Analysis of BRL-Attention

Instantiation of Information Compression. We now introduce an instantiation of Fcomp(x[ct]; x) in
Eq. (7). Let x̄ be the history of x on time t of sequence modeling. Define

hQ = x[ct]WQ
h ∈ Rm×dct , hK1, hK2, hV = x̄W{K1,K2,V }

h ∈ Rn×dct , (11)

Fcomp(x[ct]; x) = (SK1 − γSK2)hV ∈ Rm×dct , where SK1, SK2 = σattn(hQ(h{K1,K2})⊤

m
√

dct
) ∈ Rm×n. (12)

1Remarkably, the error gap between kernelized and full attention ∥ϕ(qi/
√

τ)ϕ(kj/
√

τ)⊤ − κ(qi/
√

τ , kj/
√

τ)∥ is bounded by
O(

√
exp(6rxrW /τ)/mϵ) according to (Thm. 1, (Wu et al., 2022b))

7

Under review as submission to TMLR

Notably, for self-attention, x̄ is identical to x, while for autoregressive training, x̄ is the last history x of
the same block size (more details will be illustrated in Appendix B.2). Compared to the formulation of
Fprop(a, b) in Eq. (9), we regard x[ct] as the query and construct keys and values with main tokens x.
The relative bias brel ∈ Rm×n in σattn now have [brel]i,j = [brel]1,j . In addition, we make the following
modifications: (M1) The attention scaler is changed from

√
d to m

√
dct. (M2) Inspired by differential

transformer (Ye et al., 2024), we construct two attention scores SK1 and SK2 with same x[ct] as query and
different transformations of x as keys. We regard their re-scaled subtraction as the final attention score.

The formulation as Eq. (12) offers the following properties:
Proposition 2.8. Assume for simplicity in Eq. (7) that β = 0, and Fcomp is defined according to Eq. (12).
Then in terms of the sensitivity bound of Fprop, the modification M1 resolves the bound scaling with x[ct]

sequence length m, and M2 provides a controlled bound with factor γ compared to vanilla cross-attention.
The sensitivity bound will be ∥∥∥∥∥∂F (l)

prop(x(l); x(l+1)
[ct])i

∂x(l)
p

∥∥∥∥∥ ≤ O
(

rxrctr
6
W√

ddct
(1 + |γ|)

)
, (13)

compared to the bound of O(rxrctr6
W√

ddct
) without M2. This bound is applicable to l ∈ [0, L], which is repellent to

bottlenecked compared to with Fgen only (as shown in Prop. 2.2).
Remark 2.9. Augmenting the compression Fcomp as Eq. (12) to differential form (according to M2) could
also potentially improve the robustness of learning useful information to those irrelevant, which benefits the
retrieval of information in a long noisy sequence. While augmenting the propagation mapping Fprop does
not offer such a benefit for a row-wise σattn, we keep it in regular cross-attention form (however, one may still
augment Fprop to differential form if column-wise normalization is favored). We justify in detail regarding
the above phenomenon via the concept of Signal-to-Noise Ratio (SNR) in Remark D.3.

Bottleneck Regularizer Alleviate Information Squashing. Consider the BRL-Attention layer in
the form F (l)

BRL(x(l))i = F (l)
gen(x(l); Dsw)i + F (l)

prop(x(l), x(l+1)
[ct])i, which is equivalent to initializing Eq. (4) by

D = Dsw and λ = {1}H . Recalling Prop. 2.2, with the result of Ineq. (6), we have ∀l < ⌈ 2M
w−1⌉ − 1 :

∥∂F(l)
gen(·;Dsw)i

∂x(l)
p

∥ = ∥∂F(l)
gen(·;Dsw)i

∂x(0)
p

∥ = 0. This implies that the information of token p cannot be captured by

token i within ⌈ 2M
w−1⌉−1 layers of attention propagation. When adding the regularizer Fprop ◦Fcomp to Fgen,

we essentially extend the sensitivity bound to non-zero, which implies FBRL of token i is more capable of
receiving (potentially bottlenecked-)information from p-th token from previous layers, which alleviates the
squashness of attention propagation.

Carefully Designed Compression-Propagation Offers Comparable Expressibility to Full-
Attention. To show that Fprop ◦ Fcomp does not degrade the performance, finally, we state Thm. 2.10
to show that the regularized generalized attention Fgen + Fprop ◦ Fcomp, with compression-propagation for-
mulated as Eqs. (9, 12), is as expressive as full-attention on general long sequence tasks.
Theorem 2.10 (Expressibility of FBRL). Given 1 ≤ p < ∞ and ϵ > 0, for any continuous functions
Fcon : [0, 1]n×d → Rn×d, let the attention function σattn of Fprop be column-wise softmax. Then there exists
a BRL-Former with arbitrary sparse-attention D such that

dp(Fcon,FBRL) = dp(Fcon,Fgen(·; D) + Fprop(·;Fcomp(·))) ≤ ϵ,

where dp is the lp distance.

2.5 Implementation

We illustrate the framework (self-attention version) of our proposed attention block in Fig. 4. Meanwhile,
we detail the batched algorithm of Eq. (4) in Alg. 1. The local-attention part (the LocalChunkAttn function
in Alg. 1) is implemented based on Phil Wang’s implementation.2

2Local-Attention github repo: https://github.com/lucidrains/local-attention

8

https://github.com/lucidrains/local-attention

Under review as submission to TMLR

Initialization of Parameters. We allow for a flexible number of compressed tokens (m where m ≥ 1). We
set c = dct = d in Eq. (9 for simplicity. We set β = 0.5 and trail the value of the learnable λ in Eq. (4, 7) to
0.1 ∼ 0.5*torch.ones(H) and optimize during training. For the initialization of γ in Eq. (12), we follow a
similar procedure as in (Ye et al., 2024), where γ = exp(γQγK1) − exp(γQγK2). The default values for the
learnable γQ/K1/K2 are torch.normal(H,mean=0,std=0.1).

Computational Complexity Analysis. Deferred to Appendix B.

3 Experiments

3.1 Time and Memory Complexity Evaluation via Autoregressive Encoder-Decoder Copy Task.

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Encoding Sequence Length (n)

1000

2000

3000

4000

5000

6000

7000

G
PU

 M
em

or
y

(P
ea

k,
 M

B
)

Transformer
Performer
Linformer, k=64
Linformer, k=128
Linformer, k=256
Local (SW) Attention, w=50
Local (SW) Attention, w=100
BRL-Attention, w=50, m=10
BRL-Attention, w=50, m=50
BRL-Attention, w=50, m=100
BRL-Attention, w=100, m=10
BRL-Attention, w=100, m=50
BRL-Attention, w=100, m=100

(a) Forward GPU Mem (Training) ↓

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Encoding Sequence Length (n)

2500

5000

7500

10000

12500

15000

17500

20000

G
PU

 M
em

or
y

(P
ea

k,
 M

B
)

Transformer
Performer
Linformer, k=64
Linformer, k=128
Linformer, k=256
Local (SW) Attention, w=50
Local (SW) Attention, w=100
BRL-Attention, w=50, m=10
BRL-Attention, w=50, m=50
BRL-Attention, w=50, m=100
BRL-Attention, w=100, m=10
BRL-Attention, w=100, m=50
BRL-Attention, w=100, m=100

(b) Backward GPU Mem ↓

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Encoding Sequence Length (n)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
fe

re
nc

e
Sp

ee
d

(E
po

ch
/S

)

Transformer
Performer
Linformer, k=64
Linformer, k=128
Linformer, k=256
Local (SW) Attention, w=50
Local (SW) Attention, w=100
BRL-Attention, w=50, m=10
BRL-Attention, w=50, m=50
BRL-Attention, w=50, m=100
BRL-Attention, w=100, m=10
BRL-Attention, w=100, m=50
BRL-Attention, w=100, m=100

(c) Forward Speed (Training) ↑

Figure 5: Comparison of the computational requirements for a Forward/Backward pass for Encoder-
Decoder based models (batch size 16, 1-layer of encoder and 8-layers of decoder with 8 heads and 512
hidden dims) on simple copy task. Dotted lines denote out of memory of corresponding models. Our BRL-
Attention scales linearly with the sequence length, unlike Full-Attention (Softmax), which scales with the
square of the sequence length both in memory and time.

0 50000 100000 150000 200000 250000

Encoding Sequence Length (n)

0

25

50

75

100

125

150

175

200

In
fe

re
nc

e
Sp

ee
d

(E
po

ch
/S

)

Transformer
Performer
Linformer, k=64
Linformer, k=128
Linformer, k=256
Local (SW) Attention, w=256
Local (SW) Attention, w=512
BRL-Attention, w=256, m=64
BRL-Attention, w=256, m=128
BRL-Attention, w=512, m=64
BRL-Attention, w=512, m=128

0

10

20

30

40

50

(a) Inference Speed (Batch Size = 1) ↑

0 50000 100000 150000 200000 250000

Encoding Sequence Length (n)

2500

5000

7500

10000

12500

15000

17500

G
PU

 M
em

or
y

(P
ea

k,
 M

B
)

Transformer
Performer
Linformer, k=64
Linformer, k=128
Linformer, k=256
Local (SW) Attention, w=256
Local (SW) Attention, w=512
BRL-Attention, w=256, m=64
BRL-Attention, w=256, m=128
BRL-Attention, w=512, m=64
BRL-Attention, w=512, m=128

(b) Inference GPU Mem (Batch Size = 1) ↓

Figure 6: Comparison of inference efficiency of various Encoder-Only transformers (single batch, 4-layers
of transformers, 4 heads and 256 hidden dims). Our model achieves ∼ 13× (further evaluation leads to the
OOM of Full-Attention) of inference speed on a long sequence while scaling linearly with sequence length.

We evaluate transformers with various attentions on Autoregressive Encoder-Decoder Copy Task – a se-
quence modeling experiment in which an encoder first processes a given input sequence, and then an au-
toregressive decoder is trained to replicate that same sequence as its output. Notably, all baselines are
capable in convergence, and we only employ it as a debugging baseline for evaluating the memory and
time consumption for encoder-decoder based models training. Specifically, we evaluate Full-Attention,
Performer, Linformer (k ∈ {64, 128, 256}), Local-Attention (w ∈ {50, 100}) and our BRL-Attention
(w ∈ {50, 100}, m ∈ {10, 50, 100}). The experiment ran under batch size 16, with a 1-layer of encoder,
8-layer of decoder, 8 heads, and 512 hidden dims. We benchmark with sequence length n ∈ [200, 2000] with
step size 100. As demonstrated in Fig. 5, the Full-Attention Transformer, Performer, and Linformer with

9

Under review as submission to TMLR

all settings all suffer from out-of-memory when sequence length exceeds 1100 ∼ 1300. Our BRL-Attention,
for the same window size w as Local-Attention, the BRL regularization only adds negligible computation,
which also results in a theoretically O(n) memory complexity according to Sec. 2.5. Verified in Fig. 5, sim-
ilar to Local-Attention, the BRL-Attention scales linearly with the sequence length, unlike Full-Attention
(Softmax), which scales with the square of the sequence length both in memory and time.

Additionally, we benchmark the inference-only speed and memory performance with a single batch. In
this experiment, we evaluate Full-Attention, Performer, Linformer (k ∈ {64, 128, 256}), Local-Attention
(w ∈ {256, 512}) and our BRL-Attention (w ∈ {256, 512}, m ∈ {64, 128}). All the architectures are en-
coder/decoder only, with only self-attention. We test 4-layers of enc/dec, 4 heads, and 256 hidden dims. As
no backward is required, we can scale n up to 218 length with a single 24GB RTX-4090 GPU. In essence, we
range n in {210, 211, ..., 218}. We demonstrate the inference speed and memory in Fig. 6. The Full-Attention,
similar to Linformer, gives out-of-memory on n > 214, which is incapable of very long sequence inference.
The Performer, on inference, performs well differently from the training time performance. Our models
achieve > 13× of inference speed on sequence length n ≥ 214 compared to the Full-Attention counterpart.
This verifies the efficiency of our method.

Table 1: Results on Long Range Arena Benchmark. We compare our method to three major classes
of efficient transformers, namely, the full attention, low-rank kernel, and pattern-based, as mentioned in the
preliminaries. The best results are in boldface, and the second bests are underlined. X-marks in Path-X
denote chance accuracy.

ListOps ↑ Text ↑ Retrieval ↑ Image ↑ Pathfinder ↑ Path-X ↑ Average ↑Class Methods Linear (2k) (4k) (8k) (1k) (1k) (16k) –
Transformer 36.37 64.27 57.46 42.44 71.40 54.39Full-Attention Transformer (our-imp) 47.90 79.08 82.31 75.04 76.64 84.72 72.19

Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 51.36
Linear Trans (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 50.55

Performer (Choromanski et al., 2020) 18.01 65.40 53.82 42.77 77.05 51.41
Luna (Ma et al., 2021) 35.33 65.11 59.61 38.67 77.80 55.30

cosFormer (Qin et al., 2022b) 37.90 63.41 61.36 43.17 70.33 55.23

Low-Rank
Kernels

Flowformer (Wu et al., 2022a) 38.70 64.29 62.24 43.20 73.95 56.48
Local-Attn 15.82 52.98 53.39 41.46 66.63 46.06

Sparse Trans (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 51.24
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 53.46

BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 55.01
Sliceformer (Yuan & Xu, 2023) 37.65 64.60 62.23 48.02 82.04 58.91
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 50.67

Sinkhorn Trans (Tay et al., 2020a) 33.67 61.20 53.83 41.23 67.45 51.39

Learnable / Fixed
Patterns

Synthesizer (Tay et al., 2021) 36.99 61.68 54.67 41.61 69.45 52.88
BRL-Former (m = 64) 47.37 80.29 82.69 75.75 76.94 85.26 74.72
BRL-Former (m = 128) 49.14 80.33 82.98 76.47 76.06 86.16 75.19

Fixed Patterns +
Low-Rank
Regularizer BRL-Former (m = 256) 49.98 80.90 83.22 76.20 77.48 86.89 75.78

3.2 Experiments on Sequence Modeling

Encoder-Only Sequence Modeling. We evaluate BRL-Former on the Long Range Arena (LRA) (Tay
et al., 2020b), and compare against established baselines in both full-attention and efficient-attention cat-
egories. (1) Full-Attention. We regard the standard Transformer as the baseline, which has quadratic
complexity in sequence length. The ‘our-imp’ denotes our implementation with RoPE (Su et al., 2024)
based on (Amos et al., 2023) (2) Low-Rank & Kernel Approximation, which reduces complexity by project-
ing queries/keys or by approximating the attention matrix with random features. Learnable/Fixed Attention
Patterns, which leverages windowed or dilated sparse patterns to reduce attention complexity from O(n2) to
approximately O(n) ∼ O(n log n). In our experiments, we employ the LRA training procedure as instructed
in (Amos et al., 2023) (re-imp with RoPE) for comparison. Notably, similar to Longformer, we adopt a
dilated sliding window over two attention heads while keeping the other 6 heads in vanilla local-attention.

Main hyperparameters: (1) The window size w of the local pattern D, which scales the local receptive field.
(2) The compressed token length m that aids in mitigating the attention over-squashing. We explore three
settings of (m = w ∈ {64, 128, 256}) alongside w = 512 for all local-attention-based models (e.g. Local-Attn,
Longformer). Other hyperparameter settings for each subtask are delegated to Tab. 9.

10

Under review as submission to TMLR

Table 2: Ablation study on LRA w.r.t the effect of
Attention Differentiation.

Model ListOps ↑ Text ↑ Retrieval ↑ Image ↑ Pathfinder ↑
Transformer 36.37 64.27 57.46 42.44 71.40
Transformer (our-imp) 47.90 79.08 82.31 75.04 76.64
Local-Attn (m=0) 15.82 52.98 53.39 41.46 66.63
BRL-Former (w/o Attn-Diff) 48.10 78.79 81.95 74.53 76.70
BRL-Former 49.98 80.90 83.22 76.20 77.48

Tab. 1 reports the final LRA scores. As shown, the
BRL-attention with m ≥ 26 achieves either the best
or runner-up performance across all LRA subtasks,
which validates our capability to encode long se-
quences. In Tab. 2, we additionally compare the
performance of BRL-attention to the variant with
γ = 0 (disabling the Attn-Diff). We observe that
the Attn-Diff contributes positively to the final per-
formance, which is also validated in the following autoregressive sequence modeling experiments.

25 50 75 100 125 150 175 200
Eval Step (×500)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

2.700

2.725

2.750

2.775

2.800

2.825

2.850

2.875

2.900BRL-64-64 (init = 0.1, = 0.5)
BRL-64-64 (init = 0.5, = 0.5)
BRL-64-64 (init = 1.0, = 0.5)
BRL-64-64 (init = 0.1, = 0)
BRL-64-64 (init = 0.5, = 0)
BRL-64-64 (init = 1.0, = 0)
Local-Attention-64
Full-Attention

(a) WikiText-103 Validation Loss
Over Steps. The window size and
compression length are both 64.

25 50 75 100 125 150 175 200
Eval Step (×500)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79Local-Attention-128
Full-Attention
BRL-128-128 (init = 0.1, = 0)
BRL-128-128 (init = 0.5, = 0)
BRL-128-128 (init = 1.0, = 0)
BRL-128-128 (init = 0.1, trainable)
BRL-128-128 (init = 0.5, trainable)
BRL-128-128 (init = 1.0, trainable)
BRL-128-128-Avg (= 0)
BRL-128-128-Avg (trainable)

(b) WikiText-103 Validation Loss
Over Steps. The window size and
compression length are both 128.

Figure 7: Losses under various setups of BRL-Attention.

Table 3: Results on WikiText-103.
The best/second are bold/underlined.
(our-imp) denotes our implementation
with customized model configurations
based on nanoGPT, fewer parameters than
(Qin et al., 2022a).

Method PPL (val) ↓ PPL (test) ↓
Transformer 29.63 31.01

Transformer-LS (Zhu et al., 2021) 32.37 32.59
FLASH (Hua et al., 2022) 33.18 34.63

Linear Trans (Katharopoulos et al., 2020) 32.63 34.25
Performer (Choromanski et al., 2020) 75.29 77.65

TransNormer (Qin et al., 2022a) 29.57 31.01
Transformer (our-imp) 21.31 22.03

Local-Attention (our-imp) 22.08 23.74
BRL-Former 20.56 22.11

Decoder-Only Autoregressive Sequence Modeling. We study the autoregressive language modeling
on WikiText-103 (Merity et al., 2016). We detail the model parameter configuration in Tab. 10.

In Fig. 7, we compare the performance of BRL-attention to local/full-attention under various settings. With
various initial λ values, which is a coefficient of propagation mapping Fprop, in (a), we additionally study
the impact of β in Eq. (7), where β = 0 indicates no residual connection on the evolution of x[ct]. We
observe that with only m = w = 64, the BRL-attention significantly surpasses the local attention, which
indicates the attention bottleneck is relieved. Different setups of λinit do not heavily impact the final
result as they are trainable. However, a good λinit is around 0.1 ∼ 0.5. In (b), we additionally study the
impact of γ in compression mapping Fcomp. With m = w = 128 (≪ block size 512), the BRL-attention
can achieve comparable and better results against full-attention. Nonetheless, as setting γ as trainable
indicates enabling Attn-Diff, we observe that Attn-Diff benefits the optimization, which leads to lower losses
compared to those with γ = 0. Using perplexity (PPL) as the evaluation metric, the final results are
reported in Tab. 3, where baseline results are partially derived from (Qin et al., 2022a). The BRL-Attention
obtains comparable or better perplexity to the vanilla attention and outperforms all existing linear models
with a clear margin. Compared to linear methods, BRL-Former achieves substantially lower perplexity,
demonstrating the effectiveness of our method in causal models.

3.3 Experiments on Large Graph Modeling

We evaluate BRL-Former on node classification tasks using DBLP, ACM, IMDB, and Freebase datasets from
the HGB benchmark. DBLP, ACM, and IMDB follow HGB (Lv et al., 2021) guidelines, while Freebase uses
the split from (Mao et al., 2023). Dataset details are in Tab. 8. Evaluation metrics include micro/macro-F1.

Baseline models span four categories: (1) Simple MPNNs (GCN, GAT); (2) Message-passing heterogeneous
GNNs (RGCN, HAN, HetGNN, Simple-HGN); (3) Transformer-based models (GTN, HGT, NodeFormer,
HINormer); and (4) Pure transformers with Poly-Token, evaluated with Full-Attention (PHGT), Local-
Attention, and our BRL-Attention. Baseline results from HGB (Lv et al., 2021) are quoted directly; others
are re-evaluated via OpenHGNN.

11

Under review as submission to TMLR

Table 4: Results on heterogeneous node classification datasets. Vacant positions (X) indicate the
models run OOM on the corresponding datasets. We report the average results in 3 runs.

DBLP IMDB ACM Freebase
Methods Micro-F1 ↑ Macro-F1 ↑ Micro-F1 ↑ Macro-F1 ↑ Micro-F1 ↑ Macro-F1 ↑ Micro-F1 ↑ Macro-F1 ↑

GCN (Kipf & Welling, 2016) 91.47±0.34 90.84±0.32 64.82±0.64 57.88±1.18 92.12±0.23 92.17±0.24 60.23±0.92 27.84±3.13
GAT (Veličković et al., 2017) 93.39±0.30 93.83±0.27 64.84±0.43 58.94±1.35 92.19±0.39 92.26±0.94 65.26±0.80 40.74±2.58

RGCN (Schlichtkrull et al., 2018) 92.07±0.50 91.52±0.50 62.05±0.15 58.85±0.26 91.41±0.75 91.55±0.74 60.82±1.42 59.08±1.44
HAN (Wang et al., 2019) 92.05±0.62 91.67±0.49 64.63±0.58 57.74±0.96 90.79±0.43 90.89±0.43 61.42±3.56 57.05±2.06

HetGNN (Zhang et al., 2019) 92.33±0.41 91.76±0.43 51.16±0.65 48.25±0.67 86.05±0.25 85.91±0.25
Simple-HGN (Lv et al., 2021) 94.46±0.22 94.01±0.24 67.36±0.57 63.53±1.36 93.35±0.45 93.42±0.44 67.49±0.97 62.49±1.69

GTN (Yun et al., 2019) 93.97±0.54 93.52±0.55 65.14±0.45 60.47±0.98 91.20±0.71 91.31±0.70
HGT (Hu et al., 2020) 93.49±0.25 93.01±0.23 67.20±0.57 63.00±1.19 91.00±0.76 91.12±0.76 66.43±1.88 60.03±2.21

NodeFormer (Wu et al., 2022b) 93.68±0.42 93.05±0.38 65.86±0.42 62.15±0.77 91.89±0.31 92.72±0.84 67.01±0.52 60.83±1.41
HINormer (Mao et al., 2023) 94.94±0.21 94.57±0.23 67.83±0.34 64.65±0.53 93.15±0.36 93.28±0.43 67.78±0.39 62.67±1.10

Full-Transformer (Lu et al., 2024) 95.33±0.18 94.96±0.17 68.81±0.08 65.91±0.30 93.72±0.40 93.79±0.39 68.74±1.42 61.73±1.86
Local-Attn 94.96±0.24 94.87±0.35 67.93±0.14 65.45±0.32 93.33±0.30 93.58±0.24 67.78±0.53 60.98±0.94

BRL-Former 95.67±0.20 95.35±0.18 68.99±0.12 66.29±0.46 93.78±0.21 93.81±0.25 69.54±1.06 61.80±2.40

ACM

89

90

91

92

93

94

M
ic

ro
 F

1
Sc

or
es

Full

16

32

64 16
32

64

Full-Attn
Local-Attn
BRL-Attn

DBLP

91

92

93

94

95

96

Full

16

32
64

16
32

64

Full-Attn
Local-Attn
BRL-Attn

Freebase

64

65

66

67

68

69

70

Full

16

32

64 16

32

64

Full-Attn
Local-Attn
BRL-Attn

(a) Performance Cmp.
ACM DBLP Freebase

0

1000

2000

3000

4000

5000

6000

Tr
ai

ni
ng

 G
PU

 M
em

or
y

(M
B

)

Full

16
32

64

16
32

64

Full

16
32

64

16
32

64

Full

16
32

64

16
32

64

Full-Attn
Local-Attn
BRL-Attn

(b) Memory Cmp.

Figure 8: Performance and mem-cost comparison of
Transformers with different attention backbones on
various setups. We observe that BRL-Attn is superior
in performance and memory efficiency (neglectfully
more costly than Local-Attn) across all datasets.

12.5

15.0

17.5

20.0

22.5

Tr
ai

n
Lo

ss

Loss on DBLP (ws=m=16)

0 25 50 75
Epoch

0.8

1.0

1.2

1.4

Va
lid

at
io

n
Lo

ss

Full-Attn
Local-Attn
BRL-Attn

12.5

15.0

17.5

20.0

22.5

Tr
ai

n
Lo

ss

Loss on DBLP (ws=m=32)

0 25 50 75
Epoch

0.8

1.0

1.2

1.4

Va
lid

at
io

n
Lo

ss

Full-Attn
Local-Attn
BRL-Attn

8

10

12

14

16

18

Tr
ai

n
Lo

ss

Loss on Freebase (ws=m=32)

0 20 40
Epoch

0.9

1.0

1.1

1.2

Va
lid

at
io

n
Lo

ss

Full-Attn
Local-Attn
BRL-Attn

8

10

12

14

16

18

Tr
ai

n
Lo

ss

Loss on Freebase (ws=m=64)

0 20 40
Epoch

0.8

0.9

1.0

1.1

1.2

Va
lid

at
io

n
Lo

ss

Full-Attn
Local-Attn
BRL-Attn

Figure 9: Convergence of training/validation losses
on heterogeneous graph datasets. We compare Trans-
former with Full/Local/BRL-Attention. We observe
that BRL-Attn typically converges faster than the
others on their respective minimum.

Tab. 4 presents the node classification results. Our proposed BRL-Former with Poly-Token consistently
demonstrates superior performance, outperforming other baselines, including the Full-Attention Transformer,
across most scenarios. For the Freebase dataset, (Lu et al., 2024) notes that local structures are particularly
significant, as Freebase is a knowledge graph composed of individual facts or triples. BRL-Attention naturally
restricts the receptive field to local subgraphs, providing notable advantages on this dataset, surpassing the
current state-of-the-art results. Moreover, BRL-Attention outperforms message-passing (H)GNN baselines
in nearly all cases, indicating that compressed token propagation effectively resolves the receptive field lim-
itations inherent in Local-Attention and enhances model performance on heterogeneous graphs. Additional
analyses in Fig. 8-9 reveal BRL-Attention is superior in performance, being memory efficient (neglectfully
more costly than Local-Attn) while consistently converges faster across all datasets to lower loss values,
confirming its efficiency and effectiveness on large graphs modeling.

4 Conclusion

We presented Bottleneck-Regularized Linear Attention, a mechanism that augments sparse/pattern-based
attention with a small set of compressed tokens to capture long-range dependencies at linear cost. Our
theoretical analysis and extensive experiments on sequence and graph benchmarks show that BRL-Attention
consistently matches or outperforms full-attention baselines, while being more efficient. Unlike kernel-based
methods, BRL-Attention avoids challenging kernel approximations and supports parallel training for both
encoders and autoregressive decoders. In essence, the compressed tokens serve as a global reservoir that
mitigates over-squashing without requiring costly quadratic attention or specialized global tokens that break
causality. These findings position BRL-Attention as an efficient and scalable alternative for regular attention.

12

Under review as submission to TMLR

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh

Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured inputs in trans-
formers. arXiv preprint arXiv:2004.08483, 2020.

A Aizerman. Theoretical foundations of the potential function method in pattern recognition learning.
Automation and remote control, 25:821–837, 1964.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. arXiv
preprint arXiv:2006.05205, 2020.

Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of long-sequence
models requires data-driven priors. arXiv preprint arXiv:2310.02980, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks: Better
and robust node embeddings. Advances in neural information processing systems, 33:19314–19326, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

K Clark. Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint
arXiv:2003.10555, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for graph
neural networks. In International conference on machine learning, pp. 1972–1982. PMLR, 2019.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimensional
transformers. arXiv preprint arXiv:1912.12180, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings
of the web conference 2020, pp. 2704–2710, 2020.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 9099–9117. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/hua22a.
html.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020.

13

https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html

Under review as submission to TMLR

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. arXiv preprint
arXiv:2006.15595, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Large
memory layers with product keys. Advances in Neural Information Processing Systems, 32, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-
bert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

Zhiyuan Lu, Yuan Fang, Cheng Yang, and Chuan Shi. Heterogeneous graph transformer with poly-
tokenization. International Joint Conferences on Artificial Intelligence, 2024.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting, benchmarking and
refining heterogeneous graph neural networks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 1150–1160, 2021.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettlemoyer.
Luna: Linear unified nested attention. Advances in Neural Information Processing Systems, 34:2441–2453,
2021.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and
Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint arXiv:2209.10655,
2022.

Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Representation learning on heteroge-
neous information networks with graph transformer. In Proceedings of the ACM Web Conference 2023,
pp. 599–610, 2023.

James Mercer. Xvi. functions of positive and negative type, and their connection the theory of integral
equations. Philosophical transactions of the royal society of London. Series A, containing papers of a
mathematical or physical character, 209(441-458):415–446, 1909.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843, 2016.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in neural
information processing systems, 32, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong. Random
feature attention. arXiv preprint arXiv:2103.02143, 2021.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input
length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran Zhong. The
devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022a.

14

Under review as submission to TMLR

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, and
Yiran Zhong. cosformer: Rethinking softmax in attention. arXiv preprint arXiv:2202.08791, 2022b.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-attention
for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention
with routing transformers. Transactions of the Association for Computational Linguistics, 9:53–68, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In The semantic web: 15th international
conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15, pp. 593–607. Springer,
2018.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In Interna-
tional Conference on Machine Learning, pp. 9438–9447. PMLR, 2020a.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers. arXiv
preprint arXiv:2011.04006, 2020b.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Rethinking
self-attention for transformer models. In International conference on machine learning, pp. 10183–10192.
PMLR, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM Comput.
Surv., 55(6), December 2022. ISSN 0360-0300. doi: 10.1145/3530811. URL https://doi.org/10.1145/
3530811.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference
on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL
https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

15

https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://arxiv.org/abs/2302.13971

Under review as submission to TMLR

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. Advances in neural information processing systems, 29, 2016.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The world wide web conference, pp. 2022–2032, 2019.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing trans-
formers with conservation flows. arXiv preprint arXiv:2202.06258, 2022a.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. Advances in Neural Information Processing Systems, 35:27387–
27401, 2022b.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential transformer.
arXiv preprint arXiv:2410.05258, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, YX Wei,
Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively trainable sparse
attention. arXiv preprint arXiv:2502.11089, 2025.

Shen Yuan and Hongteng Xu. Sliceformer: Make multi-head attention as simple as sorting in discriminative
tasks. arXiv preprint arXiv:2310.17683, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-
NIPS), pp. 36–39. IEEE, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences.
Advances in neural information processing systems, 33:17283–17297, 2020.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 793–803, 2019.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the porcupine:
Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347, 2024.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar, and Bryan
Catanzaro. Long-short transformer: Efficient transformers for language and vision. Advances in neural
information processing systems, 34:17723–17736, 2021.

16

Under review as submission to TMLR

A Additional Evaluations

A.1 Experiments on Text and Vision Datasets

Table 5: Quantitative results on semi-supervised
classification with Mini-ImageNet and 20News-
Groups. We use k-NN (with different ks) for arti-
ficially constructing an input graph. The best and
second-best results are highlighted in bold and un-
derlined, respectively, where models with and without
graph are compared separately.

Class Methods 20News-Group Mini-ImageNet

Graph-based
(kNN k ∈ [5, 20])

GCN 65.98±0.68 85.96±0.66
GAT 64.06±0.44 85.41±0.43

DropEdge 64.46±0.43 85.81±0.65
IDGL 65.09±1.23 85.66±0.42

LDS-GNN 66.15±0.36 OOM

NodeFormer
Framework
(w/o graph)

Gumbel-Softmax
+ Le

64.71±1.33 87.45±0.55

Full-Attn 64.94±0.16 87.46±0.54
Local-Attn-m = 23 64.54±0.23 86.62±0.91
Local-Attn-m = 24 64.38±0.43 87.03±0.52
Local-Attn-m = 25 64.61±0.57 87.17±0.49

BRL-Attn-m = w = 23 64.81±0.35 87.37±0.60
BRL-Attn-m = w = 24 65.02±0.46 87.46±0.63
BRL-Attn-m = w = 25 65.19±0.69 87.55±0.54

We evaluate our model on two datasets without
graph structure: 20News-Groups (Pedregosa et al.,
2011) and Mini-ImageNet (Vinyals et al., 2016).
The 20News dataset is a collection of approximately
20,000 newsgroup documents (nodes), partitioned
(nearly) evenly across 20 different newsgroups. We
take 10 classes from 20 newsgroups and use words
(TF-IDF) with a frequency of more than 5% as fea-
tures. The Mini-ImageNet dataset consists of 84×84
RGB images from 100 different classes with 600 sam-
ples per class. For our experiment use, we choose
30 classes from the dataset, each with 600 images
(nodes) that have 128 features extracted by CNN.
Since there is no input graph, we use k-NN (over
input node features) for artificially constructing a
graph for enabling GNN’s message passing and the
graph-based component. We report the results un-
der the best k ∈ [5, 20] setup for each GNN base-
line. A summary of the statistics of each dataset is
provided in Tab. 7.

As depicted in Tab. 5, the NodeFormer with BRL-Attention (without input graph and edge loss Le) achieves
competitive performance against its opponents, including GNN-based baselines (Kipf & Welling, 2016;
Veličković et al., 2017; Rong et al., 2019; Chen et al., 2020; Franceschi et al., 2019) and NodeFormer (Wu
et al., 2022b) with Gumbel-Softmax/Full/Local attention. For the smaller 20News, our method achieves
the second best and outperforms the full-attention method, while the local-attention fails to achieve de-
cent performance. Notably, the BRL-Attention offers 4× of GPU memory reduction compared to LDS on
20News. On the long-sequence dataset Mini-ImageNet, the BRL-Attention achieves the best performance
among all groups; in this case, 24GB of memory is insufficient to run LDS and full-attention due to their
heavy computation on learning/approximating global structures. Overall, the experiment suggests that the
k-NN graphs are not necessarily informative, and besides, the BRL-Attention can learn useful latent graph
structures from data while maintaining a memory-efficient nature.

B Computational Complexity Analysis

B.1 Inference Memory Complexity Analysis

Table 6: Time/Memory efficiency comparison of various efficient transformers. N/A entries are for encoder-
only models. ⋆Efficient memory complexity might not equate a faster or more efficient model in practice.

Methods Memory Complexity Time Complexity Decode Autoregressive Time Complexity Score Matrix Bottlenecked
Transformer O(n2) O(n2) Yes O(n2) Explicit No

Sparse Transformer O(n
√

n) O(n
√

n) Yes O(n
√

n) Explicit Potentially
Longformer (Local-Attention) O(n) O(n) Yes (w/o Global Attn) O(nd) Explicit Potentially

ETC O(n) O(n) No N/A Explicit No
BigBird O(n) O(n) No N/A Explicit (Random) No

Reformer O(n log n) O(n log n) Yes O(n log n) Explicit Potentially
Synthesizer O(n2) O(n) Yes O(n2) Explicit Potentially
Performer O(nc2) O(nc2) Yes O(n2c2) (cumsum) Implicit N/A
Linformer O(n) O(n) No N/A Implicit N/A

BRL-Former (Ours) O(n) O(n) Yes O(n) Partially Explicit No

17

Under review as submission to TMLR

We write n for sequence length, B for batch size, H for the number of heads, and L for the number
of layers. We let d = dmodel = dffn for simplicity. Then the time complexity of vanilla Transformers
O((3Bnd + BHn2)L) according to (Kitaev et al., 2020), which is briefly O(n2) considering the constant
nature of B, H, L, d. Write m for CT sequence length, assume ϕ(x(l)Wq)Wx = x(l)Wx (by assuming the
linearity of ϕ) for simplicity, our proposed regularizer Fprop then consists of three major parts: (1) Eq. (9)
requires respectively Bnd + 2Bmd and Bnm computation of feature transformations and of the n × m
dimensional attention logits. (2) Eq. (7) requires Bmdct for skip connection M and (3) Fcomp requires
3Bndct for token encoding, Bmdct for CT encoding and 2Bmn for attention logits. In total, the complexity
is O((Bnd + 2Bmd + Bnm + Bmdct + 3Bndct + Bmdct + 2Bmn)L) ≈ O(n) which shows regularizer Fprop
scales linearly with n. Under Thm. 2.10, FBRL = Fgen(·; D) + Fprop approximates the expressibility of
any continuous functions. Hence choose any sparse D, e.g. the attention with blockwise/strided patterns3

(Beltagy et al., 2020), that gives a O(n) complexity Fgen(·; D), then FBRL is theoretically of approximately
O(n) complexity.

B.2 Training Memory Complexity Analysis

Teacher Forcing

Receptive Field ()History Segment/Block

 Complexity Complexity with
Causal Mask:

Current Segment/Block

(a) Autoregressive Training

BRL Receptive Field () Local Receptive Field ()

To Decode

(b) Token Generation

Figure 10: To facilitate linear complexity autoregressive training, the compressed token for the current
segment/block is derived from history tokens in former blocks such that it does not violate the causal
structure of the current block. On generation, all in-context tokens are employed for computing compressed
tokens.

The regularizer essentially approximates the kernalized self-attention under Prop. 2.4, 2.7. One may wonder
what hindered us from explicitly formulating Fprop as kernalized self-attention since they are of the same
inference complexity. To justify, we have already shown in Prop. 2.8 and Rmk. 2.9 that M2 applied to Fprop
gives wider sensitivity bound while offering better robustness on noisy long input. Below, we give another
viewpoint that focuses on the memory cost of autoregressive training compared to the prominent kernalized
approach – Performer (Choromanski et al., 2020).

The complexity of Performer encoder-only training (bidirectional FAVOR) is of O(cd + nd + cn) ≈ O(n).
While as noted in (Tay et al., 2022; Hua et al., 2022), the unidirectional variations cannot be causally masked
in an efficient linear-time fashion. Training Performer for autoregressive tasks, which rely on parallelization
and teacher forcing, requires a sequential left-to-right scan similar to RNNs. This makes it significantly
slower under the hard requirement for manifesting the c × c KV matrix at every time step, recovering a
O(n2) complexity model.

For our BRL-Attention (with pattern D explicitly set as (Dialated-)Sliding Window), the largest matrix
constructed via Fgen(·; D) is the n × w QK matrix where w is the size of the window. Being compatible
with causal masking, the memory complexity is reduced from O(n2) to O(wn) ≈ O(n). For the BRL-
Attention components, for Fprop, we allow compressed tokens to attend to every token, for Fcomp, on
teacher forcing x, the input x̄ for x[ct] ← Fcomp(x̄) is the history block of x (where x is the current block),
which does not violate the causal structure (see Fig. 10(a)). In this way, only a causal mask on the main
token–to–main token interactions is necessary. Consequently, the largest matrix constructed in Eq. (9, 12)
is max(max(m, n) × max(d, dct), n × m), which is also of ≈ O(n) memory complexity considering m and

3For sliding window attention (Beltagy et al., 2020), each token attends to w tokens within the window size, hence per-layer
computation is O((Bnd + BHnw)L). Supposedly, sliding window attention scales linearly with sequence length, which can be
viewed as O(n) complexity.

18

Under review as submission to TMLR

(a) Full-Attn (b) Local-16 (c) BRL-16-16

(d) Full-Attn (e) Local-16 (f) BRL-16-16

Figure 11: Visualizations of reconstructed
attention maps. We sample a subset of
sequences where the attentions from all
heads are averaged.

(a) Mini-ImgNet
(Local)

(b) Mini-ImgNet
(BRL)

(c) 20News-Grp
(Local)

(d) 20News-Grp
(BRL)

Figure 12: Feature embeddings (after t-SNE and normalization)
and edge connections produced by Local-Attention and BRL-
Attention on graph-enhanced application datasets. We mark the
nodes with a particular class with one color. The compressed to-
kens are in black color, red and green lines are, respectively, the
attentive edges constructed by Fpf and Fpb.

d/dct are constant. Putting together, the BRL-Attention is of ≈ O(n) complexity compared to the O(n2)
complexity of kernelized methods in training.
Remark B.1. As displayed earlier, the pattern-based attentions suffer from attention information bottlenecks
when distant tokens cannot effectively communicate (Prop. 2.2). While adding in-context global tokens
(Ainslie et al., 2020; Zaheer et al., 2020) potentially alleviates the bottleneck, it violates the causal structure,
making them infeasible for autoregressive decoding (discussed in Sec. D.1). Kernel-based methods typically
suffer from the quadratic complexity on autoregressive training (discussed in Sec. D.2) and can degrade
performance if the kernel approximation is insufficient. In contrast, our method is not only capable of linear
complexity autoregressive training (will be displayed in Sec. 3.1), but can approximate a model that is
theoretically as expressive as full transformer (Thm. 2.10).

C Visualizations

Fig. 11 displays averaged attention (reconstructed from q, k) matrices on ACM and DBLP, showing how
each model variant connects different tokens. In contrast to local attention, which primarily focuses on
neighborhood blocks and may overlook global structure, BRL-Attention consistently places varying weights
on distant tokens. In Fig. 12, we visualize node embeddings (via t-SNE) and their attentively induced
edges on 20News-Groups and Mini-ImageNet. The local-only variant assigns fewer inter-cluster edges, often
concentrating on nodes within the same neighborhood. BRL-Attention instead increases cross-cluster edges,
forming additional links that act as pivots for global propagation. By gathering and distributing context, the
BRL-Attention with compressed tokens reduces over-squashing, allowing the model to learn better-separated
node embeddings.

D Final Remarks

D.1 On the Infeasibility of Global Token for Autoregressive Decoding

In autoregressive decoding, at time step t, a token xt should only attend to the tokens from the past (i.e.,
x1, x2, . . . , xt−1), but not future tokens (i.e., xt+1, xt+2, . . . , xn). This is enforced through causal masking
during the attention computation. Recall the attention operation in an autoregressive model defined as:
Sij = fSoftmax

(
qik⊤

j /
√

d
)

. In autoregressive mode, the attention matrix S must be causal, meaning that
∀i < j : Sij = 0. This ensures that the model only attends to previous tokens and not future ones. The
masked positions Sij are set to zero for future tokens to avoid peeking.

19

Under review as submission to TMLR

Longformer, ETC and BigBird introduced global tokens to help scale attention for long sequences. These
global tokens are selected tokens (in context) that can attend to every token in the sequence, regardless of the
token position. For example, suppose we introduce a global token xg. In the attention matrix for a sequence
{x1, x2, . . . , xN , xg}, the global token xg will attend to all tokens in the sequence: ∀j ∈ [1, n] : Sg,j = 1.

However, in the autoregressive mode, we want each token xt to attend only to previous tokens {x1, . . . , xt−1}.
However, with the global token in play, the model has to compute an attention matrix that includes cross-
token interactions, the resulting attention matrix for the sequence {x1, x2, . . . , xt, xg} would look like: S =[

0t×t 1t×1
11×t 1

]
, where the global token xg interacts with all tokens, violating the causal structure.

D.2 On the Quadratic Nature of (Linearized) Kernel Attention for Autoregressive Training

Recall the c × c KV matrix in Linearized Attention (Performer, Linear Transformer, Linformer etc.) is
constructed by Ŝ = k⊤v. Re-arranging the computation reduces the complexity w.r.t n from quadratic to
linear. In autoregressive decoding (generation), at time step t, define Ŝt = k⊤

:t v:t, notice that the computation
of Ŝt can be fully incremental, i.e., Ŝt = Ŝt−1 + k⊤

t vt. This means we only need to maintain a cache with
constant O(c2) memory and whenever a new input arrives at time stamp t, only constant O(c2) computation
is required to accumulate k⊤

t vt into Ŝt1 and get Ŝt.

However, on autoregressive training (with teacher forcing), re-arranging the computation in linearized atten-
tion leads to a severe inefficiency. Due to the causal constraint for auto-regressive training, the query vector
at each time step qt corresponds to a different cache value Ŝt = k⊤

:t v:t. This requires the model to compute
and cache n different values {Ŝt}n

t=1 instead of only one k⊤v in the non-autoregressive mode. In theory,
the sequence {Ŝt}n

t=1 can be obtained in O(nc2) by first computing {k⊤
t vt}n

t=1 and then performing a large
cumulative sum (cumsum) over n tokens. But in practice, the cumsum introduces an RNN-style sequential
dependency of n steps, where an O(c2) state needs to be processed each step. The sequential dependency
not only limits the degree of parallelism, but more importantly requires n memory access in the hard loop,
which increase the complexity to quadratic.

D.3 Differential Form in Compression Mapping Improves Attention SNR

To justify the impact of M2 on Signal-to-Noise Ratio (SNR) in attention mechanisms, we first categorize the
keys into two sets relative to a given query: relevant keys and irrelevant keys. Let k = {k1, k2, . . . , kn} be
the set of all keys. Let krel ⊆ k be the set of relevant keys, and kirr = k \ krel be the set of irrelevant keys.
Let S = {s1, s2, . . . , sn} be the attention weights corresponding to keys in k, where si is the attention weight
for key ki.
Definition D.1 (Attention SNR). We define the Attention SNR as the ratio of the average attention weight
assigned to relevant keys to the average attention weight assigned to irrelevant keys:

rattn = 1
|krel|

∑
kj∈krel

sj/
1
|kirr|

∑
kl∈kirr

sl, (14)

where |krel| and |kirr| are the number of relevant and irrelevant keys respectively. If |kirr| → 0, we can
consider SNR to be infinitely high, indicating perfect attention. If |krel| → 0 while |kirr| > 0, SNR is zero,
indicating no signal. A higher SNR indicates a better ability of the attention mechanism to focus on relevant
information while suppressing irrelevant information.

Attention SNR on full and differential Fcomp(x[ct]; x). Ignoring the feature mappings in Eq. (12), the
SK is constructed by q[ct] ∈ Rc×d and k ∈ Rn×d where the former is from compressed tokens and the latter is
from main tokens. Denote the similarity scores in attention SK as sim(q[ct], k), where aK

i = sim(q[ct], ki).
Attention weight SK is then formulated as sK

i = exp(aK
i)∑n

j=1
exp(aK

j
)
. Now, assume there is only one relevant

key and one irrelevant key, let aK
rel = a + δ and aK

irr = a (where a is the base similarity and δ is a small

20

Under review as submission to TMLR

perturbation). Then the SNR is expressed as

rfull
attn = sK

rel
sK

irr
=

exp(a+δ)
exp(a+δ)+exp(a)

exp(a)
exp(a+δ)+exp(a)

= exp(δ). (15)

For the differential case, we have attention scores SK1 and SK2 respectively constructed by similarity scores
aK1 = sim(q[ct], kK1) and aK2 = sim(q[ct], kK2). Similar to full-attention, let aK1

rel = a + δ, aK1
irr = a which

exactly mimic the situation in full-attention, then let aK2
rel = a + δ1, aK2

irr = a + δ2 where δ{1,2} are learned
shift parameters by M2. Then with sK

i = exp(aK
i)∑n

j=1
exp(aK

j
)
, we have

rdiff
attn = sK1

rel − γsK2
rel

sK1
irr − γsK2

irr
=

exp(δ)
exp(δ)+1 − γ exp(δ1)

exp(δ1)+exp(δ2)
1

exp(δ)+1 − γ exp(δ2)
exp(δ1)+exp(δ2)

. (16)

Proposition D.2. Under δ1− δ2 ≤ δ, rdiff
attn ≥ exp(δ) = rfull

attn always holds, as long as the scaling factor γ is
positive.

Proof. Proved in Appendix E.6.

Therefore, improving the attention SNR suffices by learning learning a differential form where δ1 − δ2 < δ.
Compared to the fixed SNR in full-attention, the differential form as Eq. (12) offers more flexibility in
counteracting the attention noise. For the propagation mapping Fprop, since the keys are constructed by
compressed tokens x[ct] which is permutation invariant, it would be meaningless to index the noise, hence
no requirement for noise suppression.

D.4 Additional Discussions on Recent Works

D.4.1 Relation to Native Sparse Attention

Native Sparse Attention (NSA) is a recent efficient attention mechanism proposed in (Yuan et al., 2025).
Specifically, NSA can be classified as learnable pattern-based attention that modifies the Fgen(·; D). As Fgen
is independent to FBRL, NSA is fully compatible to our method. We omit the comparison here since NSA
requires compiling a fused-attention kernel and is only optimized for hopper GPUs (e.g., H100).

D.5 Discussion on Limitation

Although BRL-Attention provides clear benefits for long sequences, its advantages diminish when input
lengths are relatively small. For example, ViT often operate on short patch-based sequences (e.g., 14 × 14
tokens), where the overhead of standard self-attention remains modest. In such cases, introducing compressed
tokens may bring limited gains and extra overhead, making conventional (quadratic) or simpler efficient-
attention methods more practical for sequences below a few hundred tokens.

E Proofs and Derivations

E.1 Proof of Prop. 2.2

Proof. Recall the update of token according to the sliding window attention

x(l)
i =

n∑
j=1

Ssw
ij v(l−1)

j =
n∑

j1=1
Ssw

ij1
x(l−1)

j1
W(l−1)

v , (17)

21

Under review as submission to TMLR

which can be expanded as

x(l)
i =

n∑
j1=1

Ssw
ij1

((
n∑

j2=1
Sj1j2(x(l−2)

j2
W(l−2)

v))W(l−1)
v) (18)

=
n∑

j1=1

n∑
j2=1

(Ssw
ij1

Sj1j2)(x(l−2)
j2

W(l−2)
v W(l−1)

v) (19)

Expanding until x(0)
p , we have x(l)

i equal to
n∑

j1=1
· · ·

n∑
jl=1

(Ssw
ij1

Ssw
j1j2
· · ·Ssw

jl−1jl
)(x(0)

jl
W(0)

v · · ·W(l−1)
v). (20)

Therefore, the derivative can be expressed as

∂x(L)
i

∂x(0)
p

=
∑

j1...jL−1

Ssw
ij1

Ssw
j1j2
· · ·Ssw

jL−1p(W(0)
v · · ·W(L−1)

v) (21)

=
∑

all paths from p to i

(
L−1∏
l=0

Ssw
jljl+1

W(l)
v) (22)

= [(Ssw)L]ip(
L−1∏
l=0

W(l)
v) (23)

where the bound is

∥∂x(L)
i

∂x(0)
p

∥ = ∥[(Ssw)L]ip(
L−1∏
l=0

W(l)
v)∥ (24)

= ∥[(Ssw)L]ip∥∥(
L−1∏
l=0

W(l)
v)∥ (25)

≤ rL
swrL

W (26)

which suffice to derive how many layers are needed for token p to reach i. For Ssw, the maximum direct
neighbor distance dmdnd = w+1

2 − 1 = w−1
2 where recall w ≥ 3 is a odd number window size. Essentially,

the dmdnd tells how far away we can "jump" up to from the current position in a single application of the
adjacency. For token i to commute with j in the L-th layer, it must satisfy

Ldmdnd ≥M =⇒ L ≥ 2M

w − 1 , (27)

otherwise, [(Ssw)L]ip will be 0. Since L is an integer, we take Lmin = ⌈ 2M
w−1⌉ for obtaining the non-zero

bound. Hence

∥∂x(L)
i

∂x(0)
p

∥ ≤

{
0 if L < ⌈ 2M

w−1⌉
rL

swrL
W if L ≥ ⌈ 2M

w−1⌉
(28)

Replacing L by l + 1 concludes the proof.

E.2 Proof of Prop. 2.4

Proof. For softmax kernel, a choice of approximator ϕ is the ϕrfm defined as Eq. (10). With Eq. (3), under
C1 and C2, the first input to Fprop is ϕ(q) ≈ ϕrfm(q) and the second input is

x̃(l+1)
[ct] = [

n∑
j=1

ϕrfm(k(l)
j)⊤∥flatten(

n∑
j=1

ϕrfm(k(l)
j)⊤v(l)

j)] (29)

22

Under review as submission to TMLR

in Rm×dct ≡ Rm×c(1+d). Then, instantiating the Fprop as

Fprop(x(l); x[ct]) = ϕ(q(l))expand(x[ct][:, c :])
ϕ(q(l))x[ct][:, : c]

(30)

=
ϕrfm(q(l))expand(flatten(

∑n
j=1 ϕrfm(k(l)

j)⊤v(l)
j))

ϕrfm(q(l))
∑n

j=1 ϕrfm(k(l)
j)⊤

(31)

=
ϕrfm(q(l))

∑n
j=1 ϕrfm(k(l)

j)⊤v(l)
j

ϕrfm(q(l))
∑n

j=1 ϕrfm(k(l)
j)⊤

, (32)

gives the kernalized attention equivalent to Fkernel.

E.3 Proof of Prop. 2.7

Proof. By assumption Asm. 2.6 on input feature X and Asm. 2.6 on transformation ∥W∥, we know that
for all token of index i, qi, ki, vi lies in a compact domain. As each component of ϕ is continuous, ϕ can
be approximated arbitrarily well by MLP with O(1) width and depth (Cybenko, 1989). The continuity of ϕ
also implies that ϕ(qi),

∑n
j=1 ϕ(kj)⊤vj lies in a compact domain, therefore the numerator lies in a compact

domain. Lastly, since all operations do not involve n, the depth and width are constant in n.

E.4 Proof of Prop. 2.8

Proof. We perform sensitivity analysis on the output of BR F (l)
prop(x(l), x(l+1)

[ct])i of token i after (l)-th layer
propagation with respect to token k by

∥ ∂

∂x(l)
p

F (l)
prop(x(l), x(l+1)

[ct])i∥ = ∥∂[F (l)
prop]i

∂x(l)
i

∂x(l)
i

∂x(l)
p

+ ∂[F (l)
prop]i

∂x(l+1)
[ct]

∂x(l+1)
[ct]

∂x(l)
p

∥ (33)

= 0 + ∥∂[F (l)
prop]i

∂x(l+1)
[ct]

∥︸ ︷︷ ︸
Term T1

∥∂F (l)
comp(x(l), x(l)

ct)
∂x(l)

p

∥︸ ︷︷ ︸
Term T2

(34)

For term T1, let ϕ(q) ≡ xWϕ, we simplify the formulation of Fprop in Eq. (9) as

[F (l)
prop]i = sm(1√

d
x(l)

i Wϕ(x(l+1)
[ct] Wz)⊤)x(l+1)

[ct] Wz, (35)

where sm(·) denote the row-wise Softmax function. Therefore, term T1 can be simplified as

∥∂[F (l)
prop]i

∂x(l+1)
[ct]

∥ = ∥
∂sm(1√

d
x(l)

i Wϕ(x(l+1)
[ct] Wz)⊤)x(l+1)

[ct] Wz

∂x(l+1)
[ct]

∥ (36)

= ∥
∂sm(1√

d
x(l)

i Wϕ(x(l+1)
[ct] Wz)⊤)

∂x(l+1)
[ct]

Wz∥ (37)

Let Hq = 1√
d
x(l)

i Wϕ ∈ R1×dct we have

∥∂[F (l)
prop]i

∂x(l+1)
[ct]

∥ = ∥
∂sm(Hq(x(l+1)

[ct] Wz)⊤)
∂Hq(x(l+1)

[ct] Wz)⊤

∂Hq(x(l+1)
[ct] Wz)⊤

x(l+1)
[ct]

Wz∥ (38)

= ∥O(1) · 1√
d

x(l)
i WϕW⊤

z Wz∥ (39)

≤ O(rxr3
W√
d

). (40)

23

Under review as submission to TMLR

For term T2, let us first consider Fcomp to be in simple cross-attention form (with scaling factor changed
from

√
d to m

√
dct)

F (l)
comp = sm(1

m
√

dct
x(l+1)

[ct] WQ
h (x(l)WK

h)⊤)x(l)WV
h , (41)

then similar to the derivations above, let S
(l)
ct = 1

m
√

dct
x(l+1)

[ct] WQ
h (x(l)WK

h)⊤ ∈ Rm×n, we have

∥∂F (l)
comp(x(l), x(l)

ct)
∂x(l)

p

∥ = ∥∂sm(S(l)
ct)

∂S
(l)
ct

∂S
(l)
ct

∂x(l)
p

WV
h ∥ (42)

= ∥O(m) · 1
m
√

dct
x(l+1)

[ct] WQ
h (WK

h)⊤WV
h ∥ (43)

≤ O(m

m

rctr
3
W√

dct
) = O(rctr

3
W√

dct
). (44)

Hence with Eq. (44), the bound Eq. (34) is eventually

∥ ∂

∂x(l)
p

F (l)
prop(x(l), x(l+1)

[ct])i∥ ≤ O(rxrctr
6
W√

ddct
), (45)

Now, if we consider Fcomp to be in differential cross-attention form, briefly defined as

F (l)
comp = (sm(S(l)

K1)− γsm(S(l)
K2))x(l)WV

h , (46)

where S(l)
K1 = x(l+1)

[ct] Wh(x(l)WK1
h)⊤

m
√

dct
and similarly for SK2. Then the bound can be derived as

∥∂F (l)
comp(x(l), x(l)

ct)
∂x(l)

p

∥ = ∥(∂sm(S(l)
K1)

∂S
(l)
K1

∂S
(l)
K1

∂x(l)
p

− γ
∂sm(S(l)

K2)
∂S

(l)
K2

∂S
(l)
K2

∂x(l)
p

)WV
h ∥ (47)

≤ ∥
∂sm(S(l)

K1)
∂S

(l)
K1

∂S
(l)
K1

∂x(l)
p

WV
h ∥+ |γ|∥∂sm(S(l)

K2)
∂S

(l)
K2

∂S
(l)
K2

∂x(l)
p

WV
h ∥ (48)

≤ O(rctr
3
W√

dct
(1 + |γ|)), (49)

plugging in Eq. (34) gives

∥ ∂

∂x(l)
p

F (l)
prop(x(l), x(l+1)

[ct])i∥ ≤ O(rxrctr
6
W√

ddct
(1 + |γ|)). (50)

This concludes the proof.

E.5 Proof of Thm. 2.10

Proof. We firstly define the star-graph:

Definition E.1. The star-graph S centered at 0 is the graph defined on {0, . . . , n}. The neighborhood of
all vertices i is N (i) = {0, i} for i ∈ {1, . . . , n} and N (0) = {1, . . . , n}.

Define input x = {x0, x1, . . . , xn} ∈ R(n+1)×d where {x}n
i=1 are the main tokens and x0 is the center token

introduced by star-graph S. Now, we define a simplified version of BRL-Attention using softmax attention
and without differential form, where the compression mapping

x̃ = Fcomp(x) =
∑n

j=1 exp(q[ct]k⊤
j)vj∑n

k=1 exp(q[ct]k⊤
k)

, (51)

24

Under review as submission to TMLR

where q = fQ(x), k = fK(x), v = fV (x). Under column-wise softmax, a trivial propagation mapping can be
expressed as

Fprop(x, x̃)i = exp(qik̃⊤)∑
k∈ND(i) exp(qkk̃⊤)

ṽ, (52)

where i ∈ {1, . . . , n}. Notably, both Fcomp and Fprop does not require the usage of x0. Then for

FBRL = Fgen(x1...n; D) + Fprop(x, x̃) ∈ Rn×d, (53)

we have the following proposition.

Proposition E.2. For any pattern D such that D ∩ S = ∅, the Fgen(x0...n; D ∪ S)1...n can be simulated by
FBRL arbitrarily well, where D ∪ S can be regarded as any graph containing star-graph S.

Proof. Recall the generalized attention which computes

F (l)
gen(x; D ∪ S)i =

∑
j∈ND∪S(i)

exp(qik⊤
j)∑

k∈ND∪S(i) exp(qik⊤
k)

vj , (54)

for pattern D ∪ S. Recall the definition of star-graph, for any token i ∈ {1, . . . , n} the neighborhood under
D ∪ S is N (i) = ND(i) ∪ {0}. We now write the generalized attention output for index i ∈ {1, . . . , n} under
the pattern D ∪ S as

Fgen(x; D ∪ S)i = exp(q̄ik̄⊤
0)

Zi
v̄0︸ ︷︷ ︸

Term T1

+
∑

j∈ND(i)

exp(q̄ik̄⊤
j)

Zi
v̄j︸ ︷︷ ︸

Term T2

, (55)

where Zi = exp(q̄ik̄⊤
0) +

∑
k∈ND(i)

exp(q̄ik̄⊤
k). (56)

We use q̄, k̄, v̄ instead of q, k, v to highlight that they are generated by different neural networks. Notice
that T2 is exactly the contribution from pattern D, which is equivalantly Fgen(x; D) = Fgen(x1...n; D) as
D ∩ S = ∅. Therefore, it suffice to show that T1 can be simulated by Fprop(x, x̃)i for all i ∈ {1, . . . , n}.

Observe the difference between T1 and Eq. (52) that the numerator exp(q̄ik̄⊤
0) in T1 can be easily simulated

by exp(qik̃⊤) as k̃ aggregates the information from x[ct] (which can be regarded as x0) by compression
Eq. (51), and one may simply let qi = q̄i. On the denominator, as exp(q̄ik̄⊤

0) can be simulated, it suffice
to show that

∑
k∈ND(i) exp(q̄ik̄⊤

k) can be simulated by
∑

k∈ND(i) exp(qkk̃⊤). According to the property of
inner product, qk⊤ produces a scalar, thus qk⊤ = kq⊤. As ∀k ∈ ND(i) : k̄k can be exactly simulated by
let ∀k ∈ ND(i) : qk = k̄k, the problem reduced to proving k̃ can simulate any q̄i. Notice that by the design
of compression Eq. (51), x̃ aggregates information from all tokens {xi}n

i=1, thus we may design k̃ = f̃K(x, i)
as a simple decoder, which receives the i-th token as input and decode the corresponding token xi out of
x̃. Concluding above, under x[ct] = x0 in Eq. (51) (which eliminate the use of x0 for star-graph), we have
shown that F (l)

gen(x; D ∪ S) can be simulated by FBRL = Fgen(·; D) + Fprop(·;Fcomp(·))).

Note that, when only main tokens {xi}n
i=1 are employed (just as in the BRL-Attention or any regular

attentions), we naturally have D ∩ S = ∅. Therefore, Prop. E.2 works for BRL-Attention with any pattern
D. Next, we leverage the result in (Zaheer et al., 2020) to complete our proof.

Theorem E.3 (Thm. 1 (Zaheer et al., 2020)). Given 1 ≤ p < ∞ and ϵ > 0, for any continuous func-
tions Fcon : [0, 1]n×d → Rn×d, there exists a transformer with sparse-attention, Fgen(·; D ∪ S) such that
dp(Fcon,Fgen(·; D ∪ S)) ≤ ϵ where D ∪ S is any graph containing star graph S.

Combining the result from Prop. E.2 and Thm. E.3, we arrives at our conclusion that dp(Fcon,Fgen(·; D) +
Fprop) ≤ ϵ with arbitrary sparse-attention D.

25

Under review as submission to TMLR

E.6 Proof of Prop. D.2

Proof. Given

rfull
attn = sK

rel
sK

irr
=

exp(a+δ)
exp(a+δ)+exp(a)

exp(a)
exp(a+δ)+exp(a)

= exp(δ), (57)

and

rdiff
attn = sK1

rel − γsK2
rel

sK1
irr − γsK2

irr
=

exp(δ)
exp(δ)+1 − γ exp(δ1)

exp(δ1)+exp(δ2)
1

exp(δ)+1 − γ exp(δ2)
exp(δ1)+exp(δ2)

, (58)

let A = exp(δ) + 1 and B = exp(δ1) + exp(δ2), then the SNR for differential form can be simplified as

rdiff
attn =

exp(δ)
A − γ exp(δ1)

B

1
A − γ exp(δ2)

B

= B exp(δ)− γA exp(δ1)
B − γA exp(δ2) . (59)

When rdiff
attn ≥ rfull

attn, assume γ > 0, we essentially have

B exp(δ)− γA exp(δ1)
B − γA exp(δ2) ≥ exp(δ) (60)

⇐⇒ −γA exp(δ1) ≥ −γA exp(δ) exp(δ2) (61)
⇐⇒ exp(δ1) ≤ exp(δ + δ2) (62)
⇐⇒ δ1 ≤ δ + δ2, (63)

which concludes the proof.

F Datasets and Parameters

Table 7: Statistics of the image/text classification datasets.

Dataset Context Property Datapoints Features Classes
Mini-ImageNet Image classification no graph/k-NN graph 18,000 128 30
20News-Groups Text classification no graph/k-NN graph 9,607 236 10

Table 8: Statistics of the heterogeneous graph datasets.

Dataset Nodes Node types Edges Edge types Target Classes
DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3

Freebase 43,854 4 151,034 6 movie 3

Table 9: Training hyperparameters of BRL-Former in the LRA experiment. Most settings are similar to
that of Vanilla Transformers in (Amos et al., 2023).

Task Depth Features Num Heads FF size BSZ Pooling LR
ListOps 6 512 8 1024 64 Mean 1e-4

Text 6 512 8 1024 64 Mean 1e-4
Retrieval 4 128 8 512 16 Mean 5e-4

Image 3 64 8 128 16 Max 5e-4
Pathfinder 4 128 8 128 16 Mean 5e-4

Path-X 4 128 8 128 32 Max 5e-4

26

Under review as submission to TMLR

Table 10: Training hyperparameters of BRL-Former in the WikiText-103 modeling. Most settings are similar
to that of Vanilla Transformers in nanoGPT.

Model Depth Num Heads Hidden FF size w m block size max memory
(queue length) BSZ LR

Full 6 8 512 512 - - 512 - 16 5e-4
Local 6 8 512 512 64/128 - 512 - 16 5e-4
BRL 6 8 512 512 64/128 64/128 512 512 16 5e-4

27

	Preliminary
	Efficient Transformers

	Method
	Necessity of Pattern D to Linear Generalized Attention
	Sensitivity Analysis of Generalized Attention
	The Bottleneck Regularized Linear Attention
	The Information Compression and Sensitivity Analysis of BRL-Attention
	Implementation

	Experiments
	Time and Memory Complexity Evaluation via Autoregressive Encoder-Decoder Copy Task.
	Experiments on Sequence Modeling
	Experiments on Large Graph Modeling

	Conclusion
	Additional Evaluations
	Experiments on Text and Vision Datasets

	Computational Complexity Analysis
	Inference Memory Complexity Analysis
	Training Memory Complexity Analysis

	Visualizations
	Final Remarks
	On the Infeasibility of Global Token for Autoregressive Decoding
	On the Quadratic Nature of (Linearized) Kernel Attention for Autoregressive Training
	Differential Form in Compression Mapping Improves Attention SNR
	Additional Discussions on Recent Works
	Relation to Native Sparse Attention

	Discussion on Limitation

	Proofs and Derivations
	Proof of Prop. 2.2
	Proof of Prop. 2.4
	Proof of Prop. 2.7
	Proof of Prop. 2.8
	Proof of Thm. 2.10
	Proof of Prop. D.2

	Datasets and Parameters

