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ABSTRACT

This paper presents Divergence-Regularized Discounted Aggregation (DRDA),
a multi-round learning system for solving partially observable stochastic games
(POSGs), which unify normal-form games (NFGs), extensive-form games (EFGs)
with perfect recall, and Markov games (MGs). In each single round, DRDA can
be viewed as a discounted variant of Follow the Regularized Leader (FTRL) un-
der a general value function for POSGs concerning imperfect information and
an infinite horizon. While previous studies on this FTRL variant have demon-
strated its last-iterate convergence towards quantal response equilibrium (QRE) in
NFGs, this paper extends the theoretical results to POSGs by defining a generalized
Nash distribution (GND), which extends the QRE concept of Nash distribution
in NFGs through divergence regularization. The linear last-iterate convergence
of single-round DRDA to its rest point is proved under a general assumption of
hypomonotonicity. When the rest point is unique, it induces the unique GND,
which has a bounded deviation with respect to Nash equilibrium (NE). Under
multiple learning rounds, DRDA keeps replacing the base policy for divergence
regularization with the policy at the rest point in the previous round. It is further
proved that the limit point of multi-round DRDA must be an exact NE rather than
a QRE under the unique rest point assumption. In experiments, the last iterates of
multi-round DRDA converge to NE at a near-exponential rate in NFGs, outperform-
ing existing baselines including moving-magnet magnetic mirror descent (MMD)
in multiplayer EFGs. In an infinite-horizon MG, DRDA significantly outperforms
the applicable algorithms based on best-response computations.

1 INTRODUCTION

While a wide range of game-theoretic learning dynamics, including no-regret dynamics and best-
response dynamics, are primarily analyzed in static normal-form games (NFGs), many real-world
games are dynamic and usually considered under a different game representation. For example,
perfect-information games like pursuit-evasion games and fighting video games can be formulated as
Markov games (MGs). Imperfect-information games like Texas Hold’em are commonly formulated
as extensive-form games (EFGs) with perfect recall. In view of this requirement, many of the recent
studies have tried to extend the theoretical results established in NFGs to dynamic games (Kroer|
et al.| 20205 [Farina et al.| 2021). Counterfactual regret minimization (CFR) (Zinkevich et al.,[2007),
as a well-known example, decomposes global regrets into local ones under counterfactual value
and enables regret minimization within a time complexity polynomial in the size of the game tree.
However, when it comes to infinite-horizon games like MGs, such generalizations are not feasible.
Instead, another line of algorithms based on best-response computations, including Fictitious Play
(FP) (Brown, |1951)), Policy Space Response Oracle (PSRO) (Lanctot et al.l 2017), and Exploitability
Descent (ED) (Lockhart et al.,[2019)), are known to be applicable. As an extension of MG, partially
observable stochastic game (POSG) introduces imperfect information and is capable of unifying NFG,
(perfect-recall) EFG, and MG. However, it is not clear if a basic learning dynamic under general
action value can be directly applied to the level of decision point in POSGs without sacrificing its
convergence properties in NFGs.
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In recent years, last-iterate convergence has become an increasingly interesting research target (Wei
et al.,|2021;|Lee et al.,|2021). Compared to the well-examined concept of average-iterate convergence,
which CFR and FP are based upon, last-iterate convergence means that there is no need to preserve
policies in time average. This is an ideal property for further extension to deep reinforcement learning
(DRL), as it is intractable to time-average function approximators like neural networks. Much of
the existing research on last-iterate convergence is related to Follow the Regularized Leader (FTRL)
(Shalev-Shwartz & Singer, |2006)), which is a basic learning framework that has a close relationship
with various learning dynamics in game theory. The widely studied replicator dynamics (Taylor &
Jonker, [1978)) as well as Hedge, multiplicative weights, and gradient methods can be captured as
special cases of FTRL (Cesa-Bianchi & Lugosi,|2006; |Arora et al.,2012;|Hazan et al.l | 2016). While it
is proved that the last-iterate of vanilla FTRL can cycle in NFGs and EFGs (Mertikopoulos et al.,|2018;;
Perolat et al., [2021)), some of its variants exhibit last-iterate convergence. For example, the optimistic
variant of FTRL has demonstrated last-iterate convergence to Nash equilibrium (NE) in two-player
zero-sum games (Daskalakis & Panageas| 2019) under the unique equilibrium point assumption. For
general-sum games, the last iterate of a “discounted” variant of FTRL, first examined in|Leslie &
Collins| (2003)), is proved to converge to the solution concept of Nash distribution (Coucheney et al.|
2015 |Gao & Pavel, [2021)), a specific form of quantal response equilibrium (QRE) (McKelvey &
Palfreyl |1995)) defined in NFGs.

While the convergence property of discounted FTRL holds even for multiplayer games, it is at the
price of applying a “perturbation” to the equilibrium point. Therefore, it is not clear if discounted
FTRL can be used to find the Nash equilibrium of the original game. Recently, a series of works on
two-player zero-sum or monotone games (Perolat et al.| 2021} |Abe et al.| 2022} 2023)) have shown that
the perturbation arising from divergence-regularized rewards can be mitigated using the technique of
multi-round learning, which repeatedly replaces the base policy in the regularization term with the
policy at the rest point in each single round. Inspired by these results, we construct a multi-round
equilibrium-learning system named Divergence-Regularized Discounted Aggregation (DRDA), based
on the continuous-time dynamic of discounted FTRL. We further examine the last-iterate convergence
of DRDA as well as its relationship to Nash equilibrium in POSGs.

Specifically, the contribution of this paper includes:

* Employing the advantage value (a type of action value) at each decision point in POSGs, we
propose single-round DRDA as an extension of discounted FTRL. By defining generalized
Nash distribution (GND) that extends Nash distribution to POSGs, we first prove the
relationship between the rest point of a learning dynamic and a QRE concept in POSGs:
every GND induces a DRDA rest point in POSGs (Theorem 1).

* By assuming local hypomonotonicity, which is a relaxation of the widely-used concept of
global monotonicity (Gorbunov et al., 2022b; |Cai et al.| 2022), we prove that single-round
DRDA converges to its rest point in a local A-hypomonotone region at a linear rate under
the regularization parameter ¢ > A (Theorem 2).

* By assuming the uniqueness of DRDA rest point, we establish an explicit NashConv bound
enlog K'Y, ~" for the rest point of single-round DRDA (Theorem 3). By showing that this
gap can vanish as the rest-point sequence of DRDA converges in multiple rounds, we further
prove that the limit point of multi-round DRDA is an exact Nash equilibrium (Theorem 4).

» Through experiments, we show that the discrete-time implementation of multi-round DRDA
converges to Nash equilibria in various multiplayer games under the POSG formulation.
In NFGs, DRDA converges at a near-exponential rate. In multiplayer EFGs, DRDA out-
performs the baselines including extragradient CFR* (Farina et al.,[2024), moving-magnet
magnetic mirror decent (Sokota et al.,|2023)), and regularized Nash dynamics (Perolat et al.,
2022). In an infinite-forizon Markov game, DRDA significantly outperforms the applicable
algorithms including FP, PSRO, and ED.

2 PRELIMINARIES

2.1 PARTIALLY OBSERVABLE STOCHASTIC GAME

We use the formulation of partially observable stochastic game (POSG) as a general framework to
describe a class of finite-action games possibly with imperfect information and an infinite horizon.
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Definition 1. A partially observable stochastic game is a tuple (N, S,0, A, P, Z,{R'} ,p,~,T):

N ={1,2,--- ,n} is the set of all players. S is the set of all global states s € S. O is the set of
all joint observations 0 = (Oi)ieN € O. A is the set of all players’ actions, with the joint action
expressed as @ = (a") ien € A" P is the state transition distributions, with a subsequent state
generated by sy ~ P(sy,dr). Z is the observation distributions, with a joint observation generated
by Oy 41 ~ Z(84,dy, 5¢11). R is the reward function for player i, with an instant reward generated
by 7“§+1 = R(s4,qy,8¢+1). p is the initial state distribution, assigning each s € S a probability
p(s) to be the initial state so. v € (0, 1] is the discount factor, and T is the termination time. For
finite-horizon games, v = 1, and T is finite. For infinite-horizon games, v < 1, and T — oc.

Inherently, POSG is able to describe simultaneous games like NFGs and MGs. Furthermore, since
sequential moves can be regarded as simultaneous moves with empty actions for the waiting players,
sequential games like EFGs can also be converted to equivalent POSGs.

2.2 BASIC CONCEPTS & NOTATIONS

The following concepts and notations will be frequently used in this paper.

History. As POSG contains imperfect information, the true state of the game at time step ¢ < T’
should be expressed as a history hy = (so, 0o, do, S1,01, 01, ,St,0;) € H rather than a single
current state s,. As a comparable concept, the trajectory used in the field of reinforcement learning
(RL) can be viewed as a history with rewards: 7: = (S, 0o, G0, S1, 71,01, A1, * " , St, ¢, 0t ).

Decision point. In a POSG, player ¢ makes his/her decisions based on his/her past observations
and actions z} = (of),af,o},al, -+, ol). In the case of imperfect-information games, each x
can be viewed as an information set and corresponds to multiple true histories h;. In the case of
infinite-horizon games, some z (even with different ¢) are equivalent under the optimal strategy and
can be regarded as the same decision point, which we use any one of the z¢ (or z%) to denote. For
example, in a Markov game, player ¢ is at the same decision point when the current observation (the
last term in z?) is the same. We use X’? to denote the set of all decision points and require the number
of distinct decision points |X?| to be finite throughout this paper.

We borrow the notation from the literature of EFGs (see [Lanctot (2013))) and write h; € xi (viewing
x% as an information set) if h; is not contradictory to the existing terms in :vg For k > t, we write
hx 3 hy to express hy, as a successor of h; in the game tree. Similarly, we write 2 1z} to express
), as a successor of z.

In the special case of perfect-information games, the z% of any player i can uniquely determine
hy. Furthermore, we can simply use s; to represent both h; and 2 in this case, as the POSG has
essentially become an MG. Specifically, the expression of NFG, EFG, and MG under the POSG
formulation is shown in Table[T}

Table 1: Conversion of NFG, EFG, and MG under the framework of POSG

NFG EFG MG
Termination Time T=1 T = depth of game tree T —
Discount Factor — vy=1 v<1
Dynamics Reduction || |S| =[O =1 | P(sy, @) = P(se,a,"") | i = hy = s

e For EFGs, we use ¢(s:) to denote the current player under global state s¢.

Policy. At each decision point z*, player i’s policy *(z*) is a probability distribution over A.
Player i’s complete policy is a combination of the policies at all z° € X'*. We use the joint policy
7 = (n');en € I to denote the combination of all players’ complete policies and use 7~* to denote
the combination of all players’ policies except player ¢’s.

Value functions & Advantage. In POSGs, the value function of history h, under a joint policy 7 is
defined as Vi(h,) = E |12} YRt LB, 7?} . The corresponding state-action value function is
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defined as Q% (h¢, af) = E [}, 1 +vVi(his1) |he, af, ® ] Borrowing the notation from RL literature
(Sutton & Barto, 2018), define history-based advantage as A% (hy,a}) = QL(hy, al) — Vi(hy).

Utility & Nash equilibrium. The individual utility in POSGs is defined as the expected value over
the initial states: u’(7) = Ep, [VZ(ho)], where hg = (so, 6y), with so ~ p and & ~ Z(s0).

As a commonly-used solution concept in game theory, Nash equilibrium (NE) is a joint policy 7pash
where no player can increase his/her own utility by unilaterally deviating from his/her own policy.
Specifically, for any player ¢ € N and any individual policy 7* € II*, it holds that u"(7,asn) >
ul(ml, T, ;Sh). Based on Nikaido-Isoda function (Nikaid6 & Isoda, |1955), define NashConv(7) =
S MaX i ey {u*(m}, 7") — u*(7)}. NashConv measures the deviation of 7 with respect to Nash

equilibrium. Clearly, NashConv(7;,qs7) = 0.

2.3 FOLLOW THE REGULARIZED LEADER & DISCOUNTED FTRL

Follow the Regularized Leader. Follow the Regularized Leader (FTRL) is a widely examined

equilibrium-learning dynamic. In NFGs, the continuous-time FTRL (Mertikopoulos et al.l 2018)) can

be expressed as an ODE of the score 3 with a non-negative continuous time variable ¢ (different from

the discrete time step ¢ used in the formulation of POSG):
= w'(7

{ Yt (7¢) (1

M =0'(y)

where w'(7;)(a) = u'(n},®, ") is player i’s expected utility under a pure strategy . (-) with
mi(a) =1, and o' (yi) = arg maxica(a){(7%,yi) — ¢'(7")} is the policy selection that maps the
current score function y(-) into the policy space A(A).

The penalty function ¢’ (%) guarantees that the o (-) in (1) is well-defined in the sense that the argmax
results in a singleton. Under entropic regularization (i.e., ¢*(7*) = € > i 4 7' (a*) log 7' (a’)), FTRL
is equivalent to multiplicative weights (Hedge) (Cesa-Bianchi & Lugosi}, 2006} |Arora et al.,[2012)) as
well as replicator dynamics in evolutionary game theory (Taylor & Jonker, [1978).

Discounted FTRL. While FTRL exhibits average-iterate convergence, the last iterate of FTRL may
not converge. Actually, it features a cycling behavior that is robust to the choice of regularization, util-
ity transformations, and game restrictions (see Mertikopoulos et al.|(2018))). To avoid the recurrence
behavior, a “discounted” variant of FTRL can be used instead (Leslie & Collinsl 2005):
{ g =w'(7) -y
i g 2
m =o' (y)

Discounted FTRL uses w'(7;) — v instead of w®(7;) as the derivative of the score ;. Consequently,
the past aggregation of utility will be discounted as ¢ increases. This guarantees last-iterate conver-
gence towards the solution concept of Nash distribution in NFGs (Gao & Pavell, 2021; (Coucheney
et al., 2015)). Nash distribution is defined as the NE policy under a utility function perturbed by
entropic regularization @*(7) = u'(7) — ¢* ("), where ¢'(7") = €Y ;. , 7' (a")log7*(a’). Itis a
specific form of quantal response equilibrium (QRE) (McKelvey & Palfreyl |1995) and can be viewed
as a relaxation of the original NE concept.

Rest point. To formally examine the last-iterate convergence of a continuous-time dynamic, we need
to use the concept of rest point. For discounted FTRL (2), (%, 7) is a rest point if both y& = w*(7,.)
and 7’ € o'(y!) are satisfied for all i € N. Intuitively, it means that §; = ., 7, = 7, (t > 0) isa
solution to the ODE. Under entropic regularization, it can be proved that the policy at the rest point of
discounted FTRL is equivalent to the concept of Nash distribution in NFGs (see |Gao & Pavel| (2021)).

3 DIVERGENCE-REGULARIZED DISCOUNTED AGGREGATION

As we have mentioned, while the last-iterate convergence property of discounted FTRL is desirable,
it is restricted to NFGs and comes at the price of perturbing the equilibrium point. Considering these
limitations, we combine the idea of multi-round learning to construct a new learning system, namely,
Divergence-Regularized Discounted Aggregation (DRDA), for solving POSGs.
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3.1 SINGLE-ROUND DRDA

As POSG concerns imperfect information, define a decision-point-based advantage value v*(7),
which averages all possible histories’ advantages based on the visitation probability Pr (h|7):
> Pr(h|7) AL(h,a?)
i) _ hext
2. Pr(n|7)

hex?

o (@), a

3

With the definition of v?(7), we analyze the following decision-point-level ODE in a POSG.

Definition 2. A single-round DRDA under regularization parameter € > 0 and base policy Tyqse is
a continuous-time dynamic expressed as the following ODE with a non-negative time variable t:

{ yé = Ui(ﬁt) - yi @)

™ =0 (y;)

where yi(z, ) is the score JSunction at decision point zt € X v (7y) (2", ) is the advantage value
defined by (3| (‘) and o* x*) is the policy choice map under dlvergence regularization:
o' (yp) (@' ) = argmax {(7'(2"), y;(2")) — D (7' (¢")||Tqee (2")) } ©)
mi(zf)EA(A)

Note that the advantage value v*(7;) in the single-round DRDA (4) is comparable to w’(7;) in the
discounted FTRL (2). When T = |S| = |O| = 1, the POSG is reduced to an NFG, and we have
V(7)) (xh, a) = wi(7)(a) — u (7). From the integral form of the score function, we can see that a
single-round DRDA is a discounted aggregation of the past v*(7;) under a factor of e~ (t=7);

t
yi(xi,ai) = e*tyé(mi,ai) +/ ef(t*T)vi(ﬁ'T)(a:i,ai)dT 6)
0

Different from vanilla FTRL, the introduction of the exponentially decaying factor suggests the
boundedness of the score function:

Lemma 1. In single-round DRDA, the score i is bounded.

Besides, we use KL-divergence Dk, (7" (27)||m}, .. (27)) = Y pica 7 (2%, a') log _m@ha) s the

Those (T?,07)
regularizer (penalty) function in (5) and requires 7y, to be of full support. Correspondmgly, we
have an equivalent expression for o (y}), which is in form similar to the well-known soffmax:

Lemma 2. In single-round DRDA, o (y!) has a closed-form expression:

o' (y)(z',a

1) _ ﬂ—li)ase(xiﬂ a’i) €Xp (%y;(%l, ai))

_ a4 ik %
2 Thase(@ b) exp (cyi(at, b))
be A

It is direct to verify that the advantage value ¥(-) is continuous. With the continuity of & ( . we
know that ¢(&(+)) is also continuous. By Brouwer’s fixed-point theorem (Florenzano, 2003) a fixed
point of 7(&'(+)) exists. The existence of the rest point of single-round DRDA is thus proved.

3.2 MULTI-ROUND DRDA & DISCOUNTED AGGREGATION

Based on Definition [2] we further propose multi-round DRDA to extend the learning process to
multiple rounds, using an idea of repeatedly replacing the base policy 7y, se (See|[Perolat et al.| (2021);
Abe et al.| (2022; [2023))). This technique can help the overall learning process to approach Nash
equilibrium rather than QRE. Specifically, a round corresponds to a time-evolving process of (4) until
reaching its rest point (equilibrium point). The ODE:s in different rounds differ in the base policy
Tpase for divergence regularization.

Definition 3. A multi-round DRDA under regularization parameter € > 0 and initial point pg is an
iterative process of calling an oracle M. In the l-th iteration (I > 1), M takes (§o, To) = pi—1 as an
input and outputs p; = (§y, 7 ), where (yr, ) is the rest point of the single-round DRDA starting
Sfrom (o, 7o) under the specified € and Tp,se = To.
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To examine if multi-round DRDA can find exact Nash equilibrium rather than QRE, we also need to
define the counterpart of single-round DRDA under € = 0. We call it Discounted Aggregation (DA),
which corresponds to the problem of ¢ = v*(7;) — y} under the restriction:

7rt( ) € argmax {< ) yf(xi)>},in e X! ®)
mi(xzt)EA(A)

Note that the hardmax policy selection above implies that ! is a satisfactory policy when only the
actions with the highest score ¥} are assigned non-zero probability. In the following section, we will
see that every NE in the POSG actually corresponds to a solution of DA. Furthermore, when the
solution (rest point) of DA is unique, the POSG has a unique Nash equilibrium that corresponds to
the unique rest point.

4 THEORETICAL ANALYSIS

In this section, we examine the convergence properties of DRDA. We will characterize the rest point
of single-round DRDA with a QRE concept in POSGs and prove a hypomonotinicity-based condition
for single-round DRDA to converge to the rest point at a linear rate. Furthermore, we will show that
under the uniqueness assumption on DA rest point, the limit point of multi-round DRDA is actually
an exact Nash equilibrium rather than a QRE. All omitted proofs are provided in Appendix

4.1 GENERALIZED NASH DISTRIBUTION

As a type of quantal response equilibrium (QRE) (McKelvey & Palfreyl |1995), Nash distribution
(Leslie & Collins| 2005) in NFGs corresponds to a solution concept close to Nash equilibrium but
under certain utility perturbation. Here, we first generalize this concept in the context of POSGs.

Definition 4. A generalized Nash distribution (GND) under regularization parameter ¢ > 0 and
base policy Tyase is a joint policy T.. For any player i € N and any individual policy m* € TI*:

T-1
U’Z(ﬁz*) —¢€ Z ,yt Z DKL ( (xt |7Tbase xt Z PI‘ h’t|7r* 2
t=0

) hy GZL’t

T-1
u(mh 7)) — € Z ﬂytz Dy, (7" (z})| | gse (1) Z Pr (h:|7)
t=0

x} h Ewt

Note that GND introduces a utility perturbation based on the KL-divergence under base policy Tpqse
and the visitation probability Pr (h:|7.) under current policy 7.. When € = 0, a GND becomes a
Nash equilibrium. Also note that when 7" = | S| = |O| = 1, the POSG is reduced to an NFG, and the
GND is equivalent to the concept of Nash distribution defined in NFGs if 7 is set to be a uniform
policy. However, please note that the GND defined in POSGs is not the same as the Nash distribution
defined in the (exponentially large) NFG representation of the POSG.

Now we use the following lemma to show an important inequality for GND. This inequality connects
the solution concept of GND with the rest point of single-round DRDA and DA:

Lemma 3. Given a GND 7, under € and Tyqse, it holds for any player i € N, any individual policy
7t € 1%, and any individual decision point x € X'

> Pr(hl#) ZW (3, at) A%, (he, ay) — €Dk (74 (23) [ Thase (21)) | =
hte.lf;_

Y Prihd) | Yo w(al,ai) A% (he,ap) — eDie (7 (2)||m e (21))

hi€x}
The inequality above is further used to prove the following theorem, which claims that every GND

must correspond to a rest point of our learning dynamic. This theorem will be subsequently used to
relate the rest point back to the solution concept of Nash equilibrium.
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Theorem 1. In a POSG, every GND 7. under € > 0 induces a rest point (U(7y), T« ) in single-round
DRDA, and every GND 7. under € = 0 (i.e., Nash equilibrium) induces a DA rest point (U(7), Tx).

4.2 CONVERGENCE OF SINGLE-ROUND DRDA

Now we analyze the conditions for single-round DRDA to converge to its rest point in POSGs. Our
analysis primarily relies on two properties: the strong convexity of the penalty function and the local
hypomonotonicity of the game. First, we need to show that, similar to other forms of regularization
used in FTRL, the divergence regularization used in single-round DRDA (5] is 1-strongly convex.
Definition 5. A function f(-) on a compact convex set C'is K-strongly convex if for any z,z' € C
and any 8 € 0,1], f(az+ (1 — a)2') < af(2) + (1 — a) f(') — 1Ka(1 - a)[|z — /|*

Lemma 4. Dy, (7||p) =Y, (a) log ZEZ; is 1-strongly with respect to ™ under {1 norm.

Second, we need to examine the hypomonotonicity of the game. This property is a bit different from
cocoercivity, which is also used in analyzing the convergence of the extragradient method (Gorbunov:
et al.| [2022a). The concept of hypomonotonicity relaxes monotonicity, a more strict but widely used
concept in the existing convergence analyses (Gorbunov et al.l 2022b; |Cai et al.| 2022)).

Definition 6. An operator F : R? — R? is called monotone if for any x,z' € R?:
(x — a2/, F(z) — F(2")) >0 )

Definition 7. An operator F : R — R% is called A\-hypomonotone (\ > 0) if for any x, ' € R%:
(v —a', F(z) — F(a')) > —Alv — /|3 (10)

Note that being 0-hypomonotone means being monotone. With the hypomonotonicity of a proper
value operator, we can define the hypomonotonicity of a POSG on a local policy set.

Definition 8. A POSG is locally \-hypomonotone (A > 0) on a policy set j,cq; C I if the negative
advantage value —9(-) is \-hypomonotone (X > 0) on Ujyeqr. Le., for any 71, T € jpear:

. S . _ 9
Z<7‘ri—7r§,vl(7r1)fvl(772)> S)\ZHﬂ 771'%”2 (11)
ieN ieN

where the inner product sums over all (k, h, al) triples.

Note that local hypomonotonicity only requires the inequality (TI)) to hold in a local region of policies
Ipcqr € II. When I1;,.,; = I, we say the game is globally hypomonotone. Actually, by proving
the following proposition, we can show that global hypomonotonicity is a common property for all
NFGs (as a special case of POSG under T = |S| = |O] = 1).

Proposition 1. Every NFG is globally \-hypomonotone under a sufficiently large .

To further demonstrate that hypomonotonicity can still be a realistic assumption when the game
is dynamic, we numerically provide underestimates of the global hypomonotonicity value A for
multiplayer Kuhn poker (Kuhn, |{1950) in Appendix@ The computed values are at the level of 1071
under the standard utility setting.

Using the strong convexity of the penalty function, we can now derive a general condition for the
linear convergence of single-round DRDA towards its rest point under local hypomonotonicity.

Theorem 2. Assume that a rest point (e, 7c) of single-round DRDA under € > 0 is contained in a
positively invariant compact set Q) that induces a local policy set joecqr = {3(Y) | ¥ € Q}, where
A-hypomonotonicity is satisfied. If € > ), then the policy of the DRDA starting from an arbitrary
Yo € Q will converge to T, at a linear rate. Specifically, there exists a non-negative energy function

V(4:) satisfying V(gj't) < —2(1— %)V(gj't), with @ = &(§) = 7T when V() = 0.

The energy function V(%) is constructed based on a concept called Fenchel coupling (Mertikopoulos
& Zhou, [2019), which has a lower bound under a strongly convex penalty function (see Lemmad]
for KL-divergence). We decompose the derivative of the energy function into one term that can be
upper-bounded using the assumption of hypomonotonicity and two negative Fenchel coupling terms.
Under € > A, the derivative is non-positive and the energy function approaches zero exponentially
fast. We complete the proof by showing that the policy at the points with zero energy is exactly 7.
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4.3 RELATIONSHIP TO NASH EQUILIBRIUM

Recall that, under € = 0, Theorem I]implies that every Nash equilibrium induces a rest point of DA
(8). Thus, the existence of the DA rest point can be guaranteed by the existence of NE. Furthermore,
if the rest point is unique, then the policy at the rest point must be the unique Nash equilibrium of
the game. Under this uniqueness assumption, the problem of finding Nash equilibrium is reduced to
finding the rest point of DA. Formally, we have the following theorem:

Theorem 3. If the rest point (., 7,) in DA is unique, then 7, corresponds to an exact Nash

equilibrium. Under ¢ > 0 and Tpyse, if the rest point (4., T,) in single-round DRDA is unique,

and there exists a generalized Nash distribution in the POSG, then the NashConv of T, is at most
1

t
enlog K Y, +F, where K = max _—
t iEN,zi€Xi,a€A Thase (T1:0)

Theorem 3] relates the DRDA rest point to Nash equilibrium under the assumption of its uniqueness.
To find approximate Nash equilibrium, we theoretically require the regularization parameter € to be
close to zero. If the POSG is (strictly) monotone, then by Theorem 2] we can use an infinitesimal € in
DRDA while still guaranteeing its convergence since we have A = 0. In this case, a single round of
DRDA is sufficient to find an arbitrarily precise approximate Nash equilibrium.

On the other hand, we can establish a more general guarantee for multi-round DRDA (Definition [3)).
Note that when the rest-point sequence (p;),~, converges, the regularization terms approach zero at
the rest points. Using Theorem [3] we further prove that the limit point of multi-round DRDA is an
NE rather than a QRE under the uniqueness assumption.

Theorem 4. If the policies in the rest-point sequence (p;),~ generated by multi-round DRDA

converge (under a properly selected ¢ > 0 and py), and the rest point of DA is unique, then the
corresponding policy sequence must converge to a Nash equilibrium.

While Theorem [4] does not provide an exact condition for multi-round DRDA to converge, it suggests
that an arbitrarily precise approximate NE can always be found as long as the overall learning process
converges. In the next section, we will further show that multi-round DRDA actually converges to
Nash equilibrium at a fast rate in a variety of games.

5 EXPERIMENTS

As we have mentioned, POSG can unify normal-form games, extensive-form games with perfect
recall, and Markov games. Considering the representation capability of the POSG framework, DRDA
can be applied to a broad class of finite-action games. We implement DRDA in NFGs, EFGs, and
an infinite-horizon MG to demonstrate the single-round/multi-round convergence of DRDA as well
as its equilibrium-finding capability. The implementation details, parameter settings, and game
descriptions are placed in Appendices [E.I] [E.3] and [F] respectively. Since the per-iteration time
complexity of discrete-time DRDA (SDRDA, see Algorithm[1)) is a standard O(|H|) when using
dynamic programming to compute the advantage value, it is fair to compare its multi-round version
(DRDA for short in the experiment) with other algorithms under the same number of total iterations.

Among the comparative algorithms, magnetic mirror descent (MMD), which exhibits last-iterate
convergence to QREs in two-player zero-sum or (strictly) monotone games (Sokota et al., 2023, has
an intrinsic relationship with single-round DRDA if we consider another way of discretization (see
Appendix [E.2). Besides, an extended version of MMD uses the idea of moving magnets to find exact
Nash equilibrium, while DRDA employs the idea of multi-round learning to achieve the same goal.
Since MMD shares certain similarities with DRDA, we use its moving-magnet version (MMD for
short in the experiment) as a common baseline to compare with DRDA in NFGs and EFGs.

5.1 NORMAL-FORM GAME (NFG)

NFGs are games where each of the players makes one decision simultaneously. As single-round
DRDA can be viewed as a discounted variant of FTRL in NFGs, we compare it with vanilla FTRL and
the FTRL variant under the optimistic gradient method (OFTRL for short, see Boone & Mertikopoulos
(2024))). We also compare the variant of regret matching under the extragradient method (ERM™ for
short, see |Farina et al.|(2024)). We use NashConv as the performance metric for all algorithms. The
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Figure 1: NashConv learning curves in NFG

payoff settings for three NFG scenarios (i.e., 2-action matrix game, 3-action bimatrix game, and
3-action 3-player game) are provided in Appendix [F.I] and the learning curves are shown in Figure I]

In the 2-action matrix game and 3-action bimatrix game, while the average iterates of FTRL can
converge to Nash equilibrium, its last iterates cannot. OFTRL as well as ERM* and MMD, however,
exhibits last-iterate convergence to NE at an exponential rate. For DRDA, the last iterates converge to
arest point in each single round separated by the vertical lines. This aligns with the linear convergence
result in Theorem [2] Moreover, the rest-point policy sequence converges and approaches NE under
multiple learning rounds. This is consistent with the statement in Theorem @] Besides, the overall
convergence rate is near-exponential since the curve drawn by the stationary policies is roughly linear
(like that of OFTRL, ERM*, and MMD).

In the 3-action 3-player game, MMD still converges, and ERM* converges after an oscillation.
However, the average iterate of FTRL and the last iterate of OFTRL no longer converge to NE.
Actually, there is no theoretical guarantee for them to work in multiplayer games. In comparison, the
single-round/multi-round convergence of DRDA is still guaranteed in this scenario.

5.2 EXTENSIVE-FORM GAME (EFG) & MARKOV GAME (MG)

EFGs are games where each of the players makes multiple sequential decisions based on imperfect
information about the global history. Since each player in an EFG may have multiple decision points,
the size of the action space in the equivalent NFG representation can be exponential in the size
of the game tree. Therefore, it is computationally impractical to directly apply some of the NFG-
based methods to EFGs without considering the game-tree structure. Extending the idea of regret
matching, counterfactual regret minimization (CFR) (Zinkevich et al.,|2007) is the most commonly
used equilibrium-learning algorithm in EFGs. Empirically, CFR* (see (Bowling et al.,|2015)) has an
improved average-iterate/last-iterate performance. Regularized Nash Dynamics (R-NaD for short,
see [Perolat et al.| (2021} 2022)) is a multi-round learning algorithm that also exhibits last-iterate
convergence in EFGs. Here, we compare CFR™, (stable) predictive CFR* (PCFR™ for short, also see
Farina et al.[(2024))), extragradient CFR* (ECFR* for short), and R-NaD in multiplayer Kuhn poker
scenarios. The game details are provided in Appendix [F2]

As is shown in Figure [2| (left & mid), while the average iterates of CFR* can converge, its last iterates
oscillate. R-NaD has a multi-round learning pattern close to DRDA, but the process is much slower
and suffers from an oscillation in the 4-player scenario. While ECFR* and MMD have impressive
performance in NFGs, they do not work when it comes to multiplayer EFGs. PCFR* exhibits certain
last-iterate convergence in the 3-player case but oscillates when it comes to 4 players. The 20-round
DRDA clearly outperforms the other algorithms in 3-player/4-player Kuhn poker.

Markov game can be regarded as a special case of POSG, where each player has full observation
of the global state. The Markovian property guarantees that it is sufficient to use current states to
represent histories and decision points. This makes it practical for algorithms like DRDA to deal
with infinite-horizon games like soccer game (see Appendix [F.3), where we compare DRDA with
three other general methods of equilibrium learning: FP (Brown, [1951), PSRO (Lanctot et al., [2017),
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Figure 3: NashConv learning curves in Adversarial Tiger

and ED (Lockhart et al.| 2019). While both FP and PSRO require preserving history policies, ED
only uses last-iterate policies like DRDA. Since the evaluation of value functions requires repeated
dynamic programming in each iteration, we only run a total of 100 iterations (5 rounds for DRDA) to
save time. As is shown in Figure 2] (right), while the 5-round DRDA has not converged in each single
round of 20 iterations, the overall convergence is significantly faster than the comparative algorithms.

Besides EFG and MG, we also run multi-round DRDA in typical POSGs like tiger game (see Wiggers
(2015)) and find that it outperforms existing methods like HSVI (Delage et al.,2024). The comparison
details are provided in Appendix [F4] Figure 3] shows the NashConv learning curves of 10-round
DRDA under parameter € € {0.05,0.1,0.15} in Adversarial Tiger with time horizon H € {2, 3,4}.

6 CONCLUSION

In this paper, a multi-round equilibrium-learning system, based on discounted FTRL and named
DRDA, is introduced under the framework of POSG. Considering that POSG is capable of unifying
NFG, (perfect-recall) EFG, and MG, we define a generalized Nash distribution (GND) in POSGs as a
solution concept comparable to QRE in NFGs. We further show that the rest point of single-round
DRDA can be characterized by GND (Theorem|[T)). We prove the linear last-iterate convergence of
DRDA to its rest point in a single round under the assumption of game hypomonotonicity (Theorem
[2). We further prove that the limit point of multi-round DRDA must be a Nash equilibrium under
the uniqueness assumption (Theorem [3] and Theorem [). In our experiments, the discrete-time
implementation of multi-round DRDA manages to find approximate NE in various games represented
by POSG. The last-iterate convergence of single-round/multi-round DRDA is also consistent with
theory. Like magnetic mirror decent and extragradient regret matching, multi-round DRDA achieves
a near-exponential convergence rate in NFGs. For EFG, MG, and typical POSG, DRDA outperforms
the existing baseline algorithms.

Limitation & Future work. One limitation of this work is that we have not theoretically examined
the condition for the policy sequence of multi-round DRDA to converge despite the simulation results.

10
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It is also left for future work to examine whether the requirement of a unique equilibrium point can
be removed in establishing the relationship to Nash equilibrium.
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A LAST-ITERATE CONVERGENCE OF MORE FTRL VARIANTS

Besides the method of discounted aggregation, the idea of optimistic gradient methods and extragradi-
ent methods can also be employed to mitigate the recurrence behavior of vanilla FTRL and facilitate
last-iterate convergence.

Note that the rest point of (1) is a (%, ) pair, where ;. is a solution to the variational inequality
problem (VIP) of F'(¢) = 0 under F(§) = —w(&'(¥)), and the discrete-time counterpart of (1)) can
be written as ;1 = gr — nF ().

Optimistic gradient method. Instead of using the current gradient F'(%;) to update, the optimistic
gradient method uses (2F (%) — F'(§:—1)). The update formula then becomes %;+1 = ¥ — 2nF (¢:) +
NF(§:—1). This method turns the original FTRL into the optimistic FTRL (OFTRL).

Extragradient method. Instead of using F'(i;), the extragradient method uses the gradient at
the point after one update attempt: F (g, — nF(¢;)). The update formula then becomes 4,1 =
9yt —nF (¢ — nF (y)). This turns the original FTRL into what we call extragradient FTRL (EFTRL).

In the field of optimization, both the optimistic gradient method and the extragradient method
guarantee O(1/7) last-iterate convergence to the solution to the VIP under monotonicity assumptions
(Gorbunov et al., [2022bja), where Z denotes iterations. For OFTRL, a near-optimal O(1) regret
bound that corresponds to a (7)(1 /T) convergence rate is also proved (Daskalakis et al.l[2021), and
last-iterate convergence to Nash equilibrium is guaranteed in two-player zero-sum games under the
unique equilibrium assumption (Daskalakis & Panageas| |2019). For EFTRL, we find it has a learning
behavior similar to OFTRL in various game scenarios.

Reward regularization. Besides the gradient methods, Perolat et al.| (20215 2022) demonstrates that

(3 i
™ (21,95 _ on rewards can lead to last-iterate convergence

Thase (T1:0})
for FTRL. With this idea, a multi-round le;rning algorithm, regularized Nash dynamics (R-NaD),
is also proposed to solve two-player zero-sum or monotone EFGs. As DRDA is also a multi-round
learning system that is capable of dealing with EFGs, R-NaD is directly compared with multi-round
DRDA in the experiment section.

. o n
divergence regularization Pr(hen ) log
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B AUXILIARY RESULTS

B.1 RELATED TO ACTION VALUE

The existing research on reinforcement learning has established a series of theoretical results when
analyzing Markov decision processes (MDPs). As POSGs generalize MDPs by introducing multiple
players and partial observations, some existing results related to action value in MDPs/POMDPs can
also be generalized to POSGs. The following two lemmas will be used in our subsequent proofs.

First, the advantage function has a well-known property:

Lemma 5 (Property of Advantage).

Zﬂ' (z%, a)AL(hy,al) =0

Proof. By definition of the history-based advantage:
A% (he, ap) = Q% (e, ap) — Vi(he)

Therefore, we have:

Z”T wtaat hhat)
_Zw xy,a) (Q%(hy, ap) — Va(hy))
_Z’]T xt’a’t ht>at ht ZW wtvat

= Vﬁ(ht) — Vi(h) =0

Second, the well-known lemma of policy difference also holds in POSGs:

Lemma 6 (Policy Difference).

T-1

Vi ami(he) = Vi(he) = E | 3 A" Al(hi, af) by, w771
k=t

Proof. First, we have:
ZT(T ij,ak hk,ak)

—ZT(T ij,ak (hk7a’7]:<:) _V%(hk)

) [ Ri(sy,ay, s X
= > Pr(hmhk,w%,ﬁﬂ)( (or. Gk ’””)—v;(hk)

Bt1 Thi +7Vﬁ'z‘(hk+1)
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Now we can expand the RHS expectation:

T—1
e[St 7
k=t
T-1
:Z’ykf’tE [A (hk, ag, ‘htﬂft, B ]
k=t
T-1
=" Y Pr(hulhe w7 Y (ks ah) Az (s af)
k=t hi Jhy a‘;‘c
T-1
=) AHFt Pr (hpes1|he, mh, ") R (s, @, $641)
k=t hi13ht
T—1
5 4 el v
k=t+1 hy by
+ T—1
_ ,Yk—t Pr (hk|ht77TT,7T ) Vr‘rl’(hk)
k=t hi Jh

= V;’M,i(ht) — Vi(hy)
which derives the LHS value difference in the equality. O

B.2 RELATED TO INDIVIDUAL CONCAVITY

Definition 9. A finite-action game is individually concave if for any i € N, any 7 —t ¢ I, any
7, wh € 1Y, and any o € [0,1]:

ul((l — Oé)?'(i + om%,fr'_i) >(1- a)ui(ﬂ,ﬁ_i) + aui(ﬁé,ﬁ_i)

Note that the individual concavity defined here is the same as the commonly used one in games
(Bravo et al.,[2018; |Cai et al., 2022) with continuous action space. In the finite-action setting that
this paper cons1ders the pohcy space corresponds to the continuous action space In the context of
POSGs, " = (1 — a)m} 4 o means that 7 (2%, -) = (1 — )} (2, ) + a7r2( ,+) at each decision
point z° € X*. The individual concavity is well-defined in the sense that i, 7ré el = n* e IT".
Also note that when T = |S| = |O| = 1, the POSG is reduced to an NFG, and the individual
concavity always holds since u’(7?, 7~?) is linear in the individual policy 7* in NFGs.

Under the assumption of individual concavity, it is direct to prove the same NashConv bound as the
one in Theorem [3for the rest point of DA or single-round DRDA (Theorem 3 without relying on
the uniqueness of the rest point. As a result, the uniqueness assumption in Theorem ] can also be
replaced with individual concavity.

Theorem 5. If the POSG is individually concave, then every rest point (., @) in DA induces a Nash
equilibrium 7., and every rest point (., 7) in smgle round DA (under € > 0 and Wbase) induces a

Jjoint policy 7, with NashConv at most en log IC Zt ~t, where K = max 1
1EN,zt€Xt a€A Trba e(xt’a)

Proof. Foranyi € N,x* € I, and « € (0, 1], define:
7 = (7}, 7") = (1 — ). + an’, 7,7)

Using Lemma[6] we have:

T—1
V;;’ﬁ;i(ht) - Vﬁér(ht) =K Z 'YkitAi?T (hk7 a;) |ht7 7#’ ﬁ;i
k=t
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Therefore:

W)~ () = By [V, (h0)] — B [V (ho)]

us

T—1
=E Z VkA:?T(hkva;s) |7T'§a7?ri‘|
k=0
T-1
= > A Pr (bl 7)Y wh(ak, ai) Ak (b, aj)
k=0 hi a;‘c

By assumption on the individual concavity:
(@) > (1 )l (7,) + o (x', 7, F)

Combining the two formulas above, we have:

k=0 hi

T—1
Z Ak Z Pr (hk|7r]l;, ") ZT(%(I;}, ai)A%T(hk, ap) > o (v (n', 77 — u' (7))
aj,

Using Lemma[3] we have:

> i@k, ap) AL (hy,ap) = a ) (7' =) (), af) Az, (hi, af)
al i

7

a
Therefore:
T-1
S P (il 7)Y (7w (ks o) A, Oy a) 2 (7 )~ (Ry)
k=0 hg al

k

Letting o — 0T, we have:

T-1
DoAY Pr(ld) Y (nf =) (ah, a) Ak, (hia) 2 W (n' 77) —ul(7) (12)

k=0 hu at
Since (¥, 7) is a rest point of DA (e = 0) or single-round DRDA (e > 0), we have:
G = U(7,) = mi(2') € argmax {(7'(2"),v"(7,)(2")) — eDxr, (7' (2")||Thase (z*)) } (Vi € N, 2" € X7)

mi(zi)EA(A)

By definition of #/(-) (3), it holds for any i € N,z € X%

S Prnls,) (z (0t ) Al (o) Dy <w:'<xi>|w;;ase<xf>>>

hex?
> 3" Pr(hl,) <Z 7 (2, ) AL (hya') — Dy (wi<xi>|wzase<xi>)>
hex? a’

With inequality (12), it is clear:

T—1
W 7 — (7)< € 3040 S Pr(hil7,) (Dit (7 (09)] [T e (27) — Dict (7 (@) [hae (2))
k=0 hu

T-1 T-1
<e Z A* ZPr (hi|7) log K < elog K Z A*
k=0  hg k=0

When e = 0, the joint policy 7, is clearly a Nash equilibrium. O
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C OMITTED PROOFS

C.1 PROOF OF LEMMA 1

Proof. Recall that the score ¥/ in single-round DRDA (@) has the following integral form:

t
yi(a' a) = e yh(a’,a’) + / e~ (7, ) (2, a)dr
0

When the POSG has a finite horizon, the value V;f is bounded since the reward functions {Ri}
are bounded. When the POSG has an infinite horizon, the value V7 is still bounded since we have
0<vy<land) 2, vk = ﬁ Therefore, in either case, the advantage Aj? and advantage value
v¥(7) are also bounded.

On the other hand, fg e~ (t=Tdr = eT_t|g =1-e7t€[0,1). Since v*(7,) is always bounded,
with the basic property of integrals, we directly prove the boundedness of the score /. O

C.2 PROOF OF LEMMA 2

Proof. First, we prove:

ju = arg max {Z p(a) (r(a) —log u(a))} = p(a) oc "

pneEA(A) acA

Write the corresponding optimization problem:
maximize Z w(a) (r(a) —log p(a))

s.t. Z u(a) =1

acA
wla) >0, Vae A

Using the Lagrange multiplier, we have:

L= 3" @) (r(a) — log (@) — A (Z (o) - 1)

acA a€A
ai(La) =0=r(a) - (logu(a) 1 ZEZ;) —-A=0
= pa) = @1 = ya) o< €7@

By definition of o(-) (5), we have:
Z Wi(:ci,ai)yZ(xi,ai)

mi(x?) = ot (y))(zh) = arg max aicA
TSR~ D (1 (@) e ()

= argmax { Z (2, a’) (yé(m’,a’) —log 7r($c,a))}
€

Tr"(:E’)GA(-A) aicA 71-base (xl7 al)

= argmax

iy [ Tyt a’) +log mg (2, at)
arg D w(ata) | e o
mi(zt)EA(A) aicA _ 10g 71'1({171,0,1)

Therefore:

e, ) o oxp (L) 4108 T (001 ) = o', e (ot a))

18
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C.3 PROOF OF LEMMA 3

Proof. For any i € N and any own information set x}, define 7 = (ﬂ'T, “). Let 7y be a joint
policy that equals 7, initially and switches to 7} after player 4 reaches x;. By definition of GND:

En [Vi,(ho)] =€ > 7" > | Dxr (mh(@i)Imhase (21)) D Pr(hul)

w}c thQJ',ic

=
-

~
Il
=}

S
L

> Ep, [Vﬁii (ho)} —€ 'ykz D1, (wi(:ck NI :vk Z Pr (hy|7)

k=0 Ii thZk

For both sides, eliminate the terms related to the histories outside of the subtrees whose roots belong
to xy, we have:

S° Pr(h|7.) V. (k) —627’“ C3 | D (@) T (@) DD Pr (7

htExt wkjwft thxfc

T-1
> Pr(hl) VE (h) —e > A" > | Dxu (7 @) [ Thase (27)) D Pr (el
k=t

hf,Ezi z}csz thIk

For any 7 € II* and « € [0, 1], we let 7r]? = (1 — a)7t + ar’ and define:

gla) = Z Pr (he|#.) Vz, (ht) —eka ¢ Z Dxr, (mr(xk [ Thase () Z Pr (hg|7s)

hi€x? T ’jzz‘ thIk

T-1
— | D Pl Vi (h) —ed A" Y | Dxo (mi(@i)Imase (7)) D Pr (el
k=t

hi€xi a:ijxé thI};

Clearly, g(0) = 0 and Vo € (0, 1], g(«) < 0, which yields:

Vg(a)|asot <0 (13)
Using Lemma[6] we have:
Vi (he) = VE (h) =D A" D Pr(hy — hil@) Y wi(a, ap) A% _(hy, a})
k=t hiJhy (Lk
Therefore:
T-1
= ) Pr(h@) Y A Y | Prhe = hal@) Y wl(h af) Ak, (hisa) | -
he€x? k=t hi Jhy al
T—1
27 30 | (P (R @b (1)) = D (7 @)l e (21))) D7 Pr (el .)
k=t xijx; hk,Gr};

Using Lemma[5] we have:

ZT{'T zj,ap) A% (hy, aj,) —az ' — )z}, af,) Ak (hy, a})

7

ay
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Then, we compute the derivative:
VPr(hy — hil7) Y (), a) AL, (hi, af)+

T-1 -
=3 Pr(hi) Yo Y o
hi€x} k=t hwahe | Pr(he = hil7) Z (m" — Wi)($k7ak)14 (hkaak)

ay

T—1

e Y [ (0 - m)(ahad) (log () 0)) — og Thse (2 al) S Pr(hgl7)
k=t wijwi a}e hi. E‘Ek

Let o — 07 and simplify the equality:

V(@) = Y ka P Pr(hl)Y (' - wl) (k. af) AL (b, a})

hi€xl k=t hiJht al

T—1 iood i
, o [ logwl(zy,ap)—
k—t % 7 i *\ ko Yk =
—€ ' —7mo)(xy,a ) O Pr (hi|7
> Y | Ee e <logvrz,ase<xz,az> > Pr(uf#)
= ), aj, hy €,

Note that the following inequality always holds:

3 (e ai) log i i a) < 3 (. af) og (o o)
i

7

a k

a

Therefore, with the inequality (T3], we have:

Zv’“ Py Pr(huld) ) (nf = m) (e, aj) Al (hi, af)
hicon &

T_1 o ) )
D T () ||} e (X7)) —
SZ’Y’C% Z Pr(hk|7_f*)'6< K ( z( ]:)” l;‘”e( ’:)) )
k=t ikat Dy, (ﬂ-*(xk)Hﬂ-base(xk))
EETK

Let (z%) = 7¢(z%) for all z§, under k > ¢ + 1 and simplify the inequality:

Y Pr(hd) | Y milal, ap) Az (he,ap) — Dy (mh(2)| e (7))

hy EJJ%

> Y Pr(hl@.) | Yot (a, ap) Ak (he,a) — €Dy (7 (1) [T (27))

hi€x?

20
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C.4 PROOF OF THEOREM 1
Proof. Let ¢y = ¥(7,) and ¢ = 7. Compute (5 using the definition of ¥(-) (3):
(m' (@), yi(2")) — eDkr (7' (2)||mgse () }
S Pr(hlf,) Al (h,a)
= argmax Z ‘(2% a )hexl S Pr (W)

mi(zt)EA(A)

arg max {
wi(xzt)EA(A)

— GDKL (ﬂ—i (xi)”ﬂ-zase (xz))

aleA hex?
= argmax Z Pr (h|7y) Z m'(z',a") A% (h,a') — €Dk, (7' (2")|| 7 gse (21))
m(@)EAA) L pegi aicA

By Lemma[3] for any i € N, 7% € I, 2% € X%

2 Pr(hir.) (Z m(@',0) A%, (he,a') = eDiaw (mi (@ >|7rbase<wi>)>

hext ateA
> 3 Pr(hi.) (Z wi(at, ) Al (') — D (ﬂ(xiﬂwéase(ﬂ)))
hext ateA

For € > 0, it is clear that T = T = &'(:).

For e = 0, it is clear that 7} (2%) € argmax {(7'(z?),yi(z%))},Va' € X"
i (z?)eEA(A)

Since 4y = U(7;) — i = 0(7,) — U(7,) = 0, we prove that (7(7, ), @) is a rest point of single-round
DRDA when € > 0 and is a rest point of DA when € = 0. O
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C.5 PROOF OF LEMMA 4

Proof. With respect to £; norm ||-||,, we show that Dy, (7||p) = >, 7(a)log ZEZ; is a 1-strongly

convex function of 7 under a fixed u, using the widely known result that the negative Gibbs entropy
H(m) =3, 7(a)logn(a) is 1-strongly convex (Example 2 in|Shalev-Shwartz & Singer; (2006)).

By definition of strong convexity:
1
Har+ (1 —-a)r') <aH(m)+ (1 - a)H(x") — 504(1 —a)|lr— ﬂ"Hf
Since H () = Dy, (7||p) + > 7(a) log pu(a), we have:
Dy, (o + (1 — o)) | ) +Z am + (1 — a)7')(a) log pu(a)
< aDky (7|p) +C¥Z ) log i(a)
+ (1 —a)Dxy, (7'||p) + (1 — ) Zw )log (a
1 /

~ sa(l o)l —

Simplifying the inequality, we have:
1
Dy (am + (1 = a)n'l|p) < aDx, (rln) + (1 = @) Dy, (w'[|p) = 5a(l = a)||m — |3

which means that Dkr, (]|p) is also 1-strongly convex with respect to £1 norm ||-||; . O

C.6 PROOF OF PROPOSITION 1

Proof. Consider two joint policies (7!,--+ 7/ .-+ 7") and (7!, - ,77%, -+, ™) that differ only
in player j’s policy. We hypothesize that there always exists a constant L; such that:

i
<

Ui(ﬂ— )t aﬂ—ja"' 77Tn)7vi(,n_1’.“ 371—1-3"' 77Tn)

o W;H (14)
2 2

Now we verify this hypothesis under 7' = |S| = |O| = 1. In this case, the POSG is equivalent to an
NFG, with v(7)(z}, ) = w'(7)(a) — u'(7) for the unique decision pomt xf, where w'(7)(a) =
ul(ml, @7 is player i’s expected utility under a pure strategy 7’ () with 7 (a) = 1.

Let@ = (wt,--- 7wl - 7)), 7 = (7l 77r¥,~-~ ,W”),L:rpax ’u’(ﬁ) ,
[0 (@) = o" @I, < (o (®) =o' @), = o' >( RGICOlN
< [Jw'(#) — w' (#7)]], + Al - [u'( 4(?)’
When ¢ = j
||wl(7r) fwi(ﬁT)HI =0
i (7) — (7)) = |3 (xd, 77 <7T7(a)—7rf[(a)) <L‘7r7‘—7r{H
acA
When i # j
' (7) —w' (@), = D |[ui(ml, #7%) — i (nl, 7| < |Almax |uf(nl, 7#7%) — ul(nl, 7")
acA
|ul(7_r')fui(7r1)| = ;ﬂ(a) (ui(ﬂ;,w ') —ut (g, 7 )) <gl€aj( ut(rl, 77 —ul(r i)
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—

Let 7y = (7}, 77"), T2 = (m, @; '), and we have:

Wi, 71 — i (i ﬁ;i)} — i) —ui ()| = |3 wi(md, 7) <7r{(b) - w;(b)) < L‘ i — H1
be A
Therefore, it always holds:
o (7) — w o), + AT i () — ()| < 2 AL} — ]| < 243 L]fwd

where the last step follows Cauchy-Schwarz inequality.

Setting L = 2|A\%L = 2|A|%max |u(7)
7ell

, we can see that the inequality lb holds. With this

inequality, we can decompose the inner product (7} — 74, v(7;) — v (7)) for two arbitrary joint
policies 71 = (7%);en and 7o = (7);en. Specifically, we have:

(m} — 70 (7)) — ' (7))

:<7Ti _ﬂ-éavi(ﬂ-%v"' 771?) _’Ui(ﬂ-iﬂ-%a' te 77T?)>
+<7r11 77r%,”ul(7r;,7r%,-«- 77?) *UZ(”T%,W%W%V” ’W?»
4o e
+<7rli _Wéavi(ﬂév”' vﬂgilvw?) _vi(ﬂév"' ,Wg)>
<3 |k = w28t

JEN

where the last step follows Cauchy-Schwarz inequality and (T4).

Setting \ = max { > gL+ Lg)}, we have:
jEN

> {w = wh v (7)) — v (7))
€N
<33 Ll = bl |+ -

iEN jEN

<X ¥ 5k (lInt - will +|

ieN jeN

J J
™ — T3

)

1 . . ) ,
=3[ X 3@+ | [Iwi -l

ieN \jeN

<A |Im -l

i€EN

Thus, we prove that every NFG is globally A-hypomonotone, where:

>
|

= max Z |A|% (max |u' ()] + max |u/ (7)|
N | & 7ell rell
J

N———

= |A\% Z < max _ |u'(7)| +max |u3(7'r')’)

ieN, 7€l
jen =T
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C.7 PROOF OF THEOREM 2

Proof. Construct a Fenchel coupling:

ZZ (#)EA(A) {(mi(z3), y' (23)) — eDxr, (mh (@) | Thase (23.)) }

=0 hp i
- i > ({7 (@), v (2h) — eDxce (7 (@) | Mhase (7))
k=0 hy

By Lemma eDxr, (7' (z})||mh, s (24)) is an e-strongly convex function of 7 () with respect to
¢, norm. Besides, it is continuous on A(.A). Therefore, we have the following inequality (Proposition
4.3 in Mertikopoulos & Zhoul(2019)):

s A0 010) = D (o) e (1)

— (<7T1(l’;€),y1(1'2)> - 6-DKL (Wi(m};)nﬁliase(w?c)))

> Lol et - |
> sello ) -

Enumerating all (k, hy) pairs and summing up the corresponding terms for both sides, we have:
S 1 o o
F'(r',y") > §EHUT’(yL)—7TzH2 (15)

Recall that o(-) has an equivalent expressmn . Therefore, the corresponding max function is
continuously differentiable with respect to y*. Applying the envelope theorem (Theorem 1.F.1 in
Takayama & Akira (1985)), we have:

ﬂ; (z1)EA(A)

Ve ( Cmax {(re)y () — eDra, (w@(xznwzaseuz))}) T

On the other hand, we have the derivative result:
Vi) (7' (2h), 4 (21)) — €D (7 (23| Thase (1)) = 7 ()
Therefore, we have:
Vi F(r'y') =o' (y') — '
For single-round DRDA (@), define a continuously differentiable energy function:

=D Fi(niy)

i€EN

Compute its time derivative:

= > (o' (yh) — 7 (7)) — ui)
=" ((mi — w0l (#)) — (mi — 7, ul))

where 7, = &(4}).
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Since 7, = &'(¥.), by definition of &(-) (5) and the Fenchel coupling, we have:

T-1

(mi —whyp) = Fi(rlyh) + €YY (Dxn (mh (@) |7 ase (1)) — D (7 ()| Thase (21)))
k=0 hy

T—1
(me —miyl) = Fi(miyd) +e Y (Dxe (nl (@) [1Mhase (21)) = Dxce (mi (@) |Imhase (22)))

k=0 hy,

Summing up the two equations above, we have:
<7T§ - 7ri,y§> + <7Tz - 7rzz‘:7y2> = Fl(ﬂévyZ) + Fl(ﬂzztvyé)
which implies:
V() =Y ((mf =7l o' (7) —ye) — Fi(ni, i) — F'(n),y0)
i€EN

Since (¥, ) is a rest point of single-round DRDA, we have:

V(gt) = Z <7T§ - ﬂ—zﬂvi(ﬁt) - vl('ﬁe)> - ZFl(ﬂ—;yz) - ZFZ(W;M’UE)

ieN iEN iEN
Using the assumption on the local hypomonotonicity (TT)) and the inequality (T3)), it holds in £2:
S i i 1 i i i i
V@) SAY i =il =2 5e X I =il = A=) [|ni = =il <0
iEN ieN iEN

Using inequality (T5), we further have:
2(e — A\ N A .
ANy = 20— 2

SN <
V(yt)_ p p

Note that V(%) is non-negative. Therefore, with ¢ > A, we have:

. . A
V() < Vg exp (201~ 2)t)
which means V(¥;) approaches zero exponentially fast.

Also note that by , V@ =0= Y |loiy) — 7] = 0= 7 = 5(§) = 7.
€N

As Q is a compact set positively invariant with respect to (@), we prove that for a single-round DRDA
starting from an arbitrary 3y € €2, the policy always converges to 7. at a linear rate. O
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C.8 PROOF OF THEOREM 3

Proof. By Theorem[I] every generalized Nash distribution under ¢ > 0 or € = 0 induces a rest point
in single-round DRDA or DA, respectively. If there exists a GND 7, that induces the unique rest
point (¢, 7) in single-round DRDA, then 7, must be the unique GND under the corresponding
€ > 0 and Tpqse. Since Nash equilibrium always exists, if (4., 7,.) is the unique DA rest point, then
7 must be the unique GND under € = 0 (i.e., the unique NE).

Therefore, by Deﬁnition forany ¢ € N and 7* € II*:
ui(ﬂ'i, ﬁ;z) _ uz(ﬁr) S

T-1
€ Z /Vt Z (DKL (Fi(xi)H’]rl’iase(xi)) - DKL ( (xt) |7Tbase th Z PT ht|7r*
t=0

i
) htezt

For the non-negative KL-divergence terms, we let X = max — 1 and further have:
iEN,zi€Xi a€A ﬂ-baae(mf’a)

DKL (772(5”;)||7Téme(93;)) = Z ﬂi(xia a) log ﬂ_i(‘ri? a) - Z ﬂi(xi7 CL) IOg ﬂ—li)ase(xiv a’) <

acA acA
— ,a)l ,a) = i ,a)l < ,a)log K =log K
Z xt Og Trbase(xt a) Z ™ (xt ) og —— 7~ 7Tb (th7 Z xt Og 0g
acA acA ase acA
Therefore:

T-1
u'(n, @) —ut (7)) <€y 4" | logK > Pr(h7.)
t=0

i i
T} hi€x}

—eloglCZ*y Z Z Pr (h¢|7y)

a:t htEmt

Note that >~ >~ Pr (k@) = > Pr (he|7) = 1,Vt > 0. Therefore, we have:
he

xt hy€xt
T-1
NashConv(7,.)= X;Pear}[( {u'(x*,7") — ' (7,)} < enlogKk tz; 7
1

Clearly, when (., 7 is the unique rest point of DA, it corresponds to the case of ¢ = 0, which
implies that 7, is an exact Nash equilibrium. O

C.9 PROOF OF THEOREM 4

Proof. By Deﬁnition the rest points p; = (4, ;) under different / in multi-round DRDA corre-
spond to the solutions to ¢ = ¥(7) under different policy selections.

Let 7, be the limit of the policy sequence (7;);>o when I — oco. Then, we have:

lim Dy, (wj (@) |7y (")) = Dt (i (") Imi(2")) = 0

Therefore, as the policy sequence converges, the regularization term —e Dy, (7 (¢?)||7} . (¢")) in
(5) approaches zero at the rest point (¥(7), 7). As a result, ((7), 7c) corresponds to a rest point of
DA. By Theorem [3] the limit policy 7 is a Nash equilibrium when DA has a unique rest point. [
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D GAME HYPOMONOTONICITY

Since hypomonotonicity (see|Gao & Pavel| (2021)); |(Gadjov & Pavel| (2023))) is less commonly used in
the existing literature of game theory than in the field of optimization, here we provide numerical
simulations to show that it can be practically used to characterize multiplayer dynamic games.

The original Kuhn poker has two players with three ranks. Here we numerically test the hypomono-
tonicity of 3-player Kuhn poker with 5 ranks and 4-player Kuhn poker with 6 ranks, both of which
are also used as test environments in the experiment section.

«10% 3-player Kuhn poker x10% 4-player Kuhn poker

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4
Value Value

> (i —mht(R) =0t (72))
d &8 = - in multiplayer Kuhn poker
iEN 2

Figure 4: Histograms of sample —
T T2

T (wi =gt (7)) v (72))
By Definition |8} the supremum of the computed value =X =
iEN

of a global hypomonotonicity value A and thus reflect its order of magnitude when the sampling is
sufficient. Therefore, we compute the value by randomly sampling 10° joint policy pairs (71, 72).
The histograms of the sampled value are shown in Figure 4]

can be an estimate

- 2
T —7l
1 21lo

For 3-player Kuhn poker, the computed value is within the range of [—0.505869, 0.472063].
For 4-player Kuhn poker, the computed value is within the range of [—0.295345, 0.349964].

Note that the maximum value is at the level of 0.1, which implies that the order of magnitude of
A should not be too large. Therefore, the hypomonotonicity assumption used in our convergence
analysis is realistic in multiplayer Kuhn poker. Actually, as long as A is a finite quantity, we can
always guarantee the convergence of single-round DRDA by setting a sufficiently large €. On the
other hand, however, Theorem [3] suggests that a large € leads to a large NE gap for the rest-point
policy. This could be viewed as a trade-off in the selection of ¢ for single-round DRDA.
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E IMPLEMENTATION DETAILS

E.1 DISCRETE-TIME ALGORITHMS

We use the discrete-time counterpart of (@) as a practical implementation of single-round DRDA. An
iteration variable m is in place of the continuous time variable ¢. With the introduction of a step size
7, the single-round algorithm can be viewed as an Euler method that solves the original ODE, and an
iteration is exactly one step. The pseudocode for single-round DRDA is shown in Algorithm|[T}

Algorithm 1: Single-round DRDA (SDRDA)

Input: Initial score g, initial policy 7y, iteration number M, and regularization parameter €
Set Tpase = To

form € {0,1,--- ,M — 1} do

Compute all Pr (h|7,,) and Aj?m (h,a*) forall i € N (using dynamic programming)
for i € N do
for ' € X do
for a’ € Ado
. o }Zi Pr(h|#y) AL, (h,a')
Compute v* (7, ) (2, a’) = 2= SR
hex?
Update i, 1 (21, %) = g (o, a") + 1 (0" (7o) (&%, 07) — g, (2%, 01)
end
for a’ € A do
i i iy Thase(xha)exp(Lyl 4 (a,a?)
Update 7Tm+1(x Y ) - > ”éase(xivb) ex(p(%yﬁ,bﬂ(ri,bz)
be A
end
end
end
end

Output: Last-iterate (s, Tar)

For the multi-round algorithm, we use SDRDA (Algorithm|T) as the oracle M in Definition[3] The
pseudocode for multi-round DRDA is shown in Algorithm 2}

Algorithm 2: Multi-round DRDA (MDRDA)

Input: Round number L, iteration number M, and regularization parameter €
Initialize 3o and 7
forl € {0,1,--- ,L—1}do
‘ (Y141, Ti+1) = SDRDA (4, @1, M, €)
end
OQutput: Last-iterate policy 7y,

E.2 RELATIONSHIP WITH MAGNETIC MIRROR DESCENT

Magnetic mirror descent (MMD) (Sokota et al.,[2023)) is a discrete-time learning dynamic based on
mirror descent. Like single-round DRDA, MMD exhibits last-iterate convergence to QRE. Since
mirror descent itself can be converted to a special form of FTRL by introducing a score y, here we try
to mathematically compare MMD with DRDA.

For MMD, if we set the mirror map to be negative entropy and the step size to be 1, it has the
closed-form update formula ;1 (thae‘h)“%a, where , is the policy at discrete time ¢, p is
the magnet policy, g; is the Q-value, and « is the regularization temperature. Note that p and ¢,
in MMD are analogous to the base policy 7,5 and the advantage value v in DRDA, respectively.

When p is set to be a uniform policy, we have ;41 o (me%)T+=. Through recursion, we can write

ot 1 \t+1—k
Ty o< e¥t+1, where ¢4 1 = Zk:1(1+a) B
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For DRDA, if we also set mp45¢ to be uniform, it can be generally written as 7y o< e¥*+1 in discrete
time. If we further consider a form of discretization based on the integral formula (6) rather than the
original ODE (4)) and use ¢, to replace v(m;), we directly have y; 11 = 22:1 (1)17*g,. Clearly,
this score is the same as that of MMD when we enforce 1 + o« = e. Thus, DRDA can be related to
MMD through a specific discretization if we ignore the base policy or the magnet.

Now we use a common notation p to indicate the base policy in DRDA. When p moves along time ¢
and is not kept as a fixed uniform policy, however, the update formula 7,1 o pse¥+! for DRDA

is quite different from the update formula 7,1 o p;+° (me®) T for moving-magnet MMD. The
above-mentioned relationship can no longer be established. That is to say, when employing a moving
magnet, the behavior of DRDA will be completely different from MMD.

From a theoretical perspective, our continuous-time dynamic guarantees last-iterate convergence to
QRE in all games with certain hypomonotonicity, while MMD is restricted to two-player zero-sum
or (strictly) monotone games. When considering finding exact Nash equilibrium, our multi-round
learning method theoretically requires the base policy p = 7y, se to be a fixed rest-point policy in
each round. In comparison, moving-magnet MMD directly learns in a single round under a changing
p = p¢ and does not provide theoretical guarantees.

E.3 PARAMETER SETTINGS
In Table [2] we show the parameter settings in our experiments on the discrete-time DRDA from

Appendix Under the parameter settings, each single run of DRDA can be finished within one
hour using a single Intel Core 17-12700F CPU.

Table 2: Parameter settings of DRDA

matrix game | bimatrix game | 3-player game || Kuhn-3 | Kuhn-4 | soccer game
L 10 10 10 20 20 5
M 5000 5000 5000 1x10° | 1x10° 20
€ 0.1 0.1 0.3 0.02 0.015 0.1
n 0.005 0.005 0.005 0.001 0.001 0.002

In principle, an arbitrary regularization parameter € can be used as long as it is greater than a
hypomonotonicity threshold A for the game (see Theorem [2). However, our experimental results show
that a smaller gap for the rest point of single-round DRDA generally guarantees better performance
for multi-round DRDA. Therefore, ¢ should not be too large as well (see Theorem . The setting
above provides a moderate choice for € and guarantees the performance of DRDA when the step size
7 is sufficiently small (no greater than the level of 0.01).

In Table 3] we compare the NashConv of DRDA under different . When 7 is too large, DRDA will
no longer converge (marked as “—). Also note that when 7 is overly small, the result can be not
as good since DRDA has not reached its rest point in each single round under the same number of
iterations. In each game scenario, a range of 77 can guarantee good performance of DRDA.

Table 3: Last-iterate NashConv of DRDA under different

n matrix bimatrix 3-player Kuhn-3 Kuhn-4 soccer
0.001 || 1.4x107% | 1.9x 107° 0.014 11x10710 [ 13x107% | 6.9x10°8
0002 [ 20x 1071 [ 1.6 x1072 [ 20x107* | 1.1 x107W | 1.3x 107 | 5.7 x 10~ 13
0.005 [ 21 x107 1T [ 1.2x 1072 [ 35x10° | 6.0x 1077 — 9.8 x 10°15
001 [[21x107 11 — 3.5x%x 107° — — 1.6 x 10~1°

0.1 = — — — — -
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F EXPERIMENT DETAILS

F.1

The payoff matrices of the 2-action matrix game (zero-sum) and the 3-action bimatrix game are

NORMAL-FORM GAME (NFG)

shown in Tables ] and [5] respectively.

Table 4: Payoff matrix of 2-action matrix game

Player 2, Action 1 | Player 2, Action 2
Player 1, Action 1 (1,-1) (0,0)
Player 1, Action 2 (—2,2) (3,-3)

Table 5: Payoff matrix of 3-action bimatrix game

Player 2, Action 1 | Player 2, Action 2 | Player 2, Action 3
Player 1, Action 1 (9,6) (3,7) (6,0)
Player 1, Action 2 (7,0) (8,2) (4,4)
Player 1, Action 3 (2,4) (1,6) (3,7)

The payoff tensor of the 3-action 3-player game is shown in Table[6]

Table 6: Payoff matrix of 3-action 3-player game

Player 3, Action 1 | Player 3, Action 2 | Player 3, Action 3
Player 1&2, Action (1,1) (9,5,5) (8,3,8) (3,5,9)
Player 1&2, Action (1,2) 9,6,4) (3,5,7) (4,10,6)
Player 1&2, Action (1,3) (10,6,4) (6,3,0) (8,0,1)
Player 1&2, Action (2,1) (1,4,1) (0,1,1) (1,2,8)
Player 1&2, Action (2,2) (8,3,6) (5,5,6) (6,0,9)
Player 1&2, Action (2,3) (4,2,0) (1,5,8) (9,5,0)
Player 1&2, Action (3,1) (4,9,9) (9,9,7) (5,1,8)
Player 1&2, Action (3,2) (6,5,9) (10, 10, 0) (8,3,9)
Player 1&2, Action (3,3) (6,3,9) (1,2,2) (9,4,5)

F.2 EXTENSIVE-FORM GAME (EFG)

Since Kuhn poker (Kuhnl, [1950) is a benchmark game from the extensive-form game literature, we
use its multiplayer variants as EFG test environments. For 3-player Kuhn poker, we increase the
number of ranks from 3 to 5. For 4-player Kuhn poker, we further increase the number of ranks to 6.

F.3 MARKOV GAME (MG)

We use a two-player zero-sum soccer game as the test environment for infinite-horizon MG. Figure 5]
is an illustration of the game. The two players are marked with A and B. The player who keeps the
ball is marked with a cycle. Each player can choose an action from “up”, “down”, “left”, “right”,
and “stay” at each time step. If the two players collide after the simultaneous move, then the ball
possession exchanges. When the ball carrier moves into the opponent’s goal, the game terminates.
The winning player receives a reward of +100 and the opponent receives a reward of —100. The

initial state distribution p is set to be a uniform distribution, and the discount factor + is set to be 0.95.

F.4 TIGER GAME (TyPIiCcAL POSG)

Adversarial Tiger and Competitive Tiger are two typical POSGs introduced by Wiggers| (2015). We
further test multi-round DRDA in the two games. For comparison purposes, here we run a 5-round
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goal
goal

B[®

Figure 5: Illustration of soccer game

DRDA (10? iterations per round, with fixed parameters ¢ = 0.1,17 = 0.01) under time horizon
H € {2, 3,4} for each game and record the last-iterate NashConv as well as the time consumed.

According to the existing results (reported in Table 2 of |Delage et al.|(2024)), among heuristic search
value iteration (HSVI), random search, informed search, sequence form linear program (SFLP), and
CFR* algorithms, SFLP (Koller et al.,|1994) demonstrates the best performance in the tiger games
under H € {2,3,4}. However, SFLP is clearly outperformed by DRDA when we use NashConv to
describe the reported results:

Table 7: Performance comparison between SFLP (reported) and DRDA (tested) in tiger games

Game Scenario SFLP - DRDA -
NashConv Time NashConv Time
Adv Tiger H = 2 0.16 < 1sec <1074 < 1sec
Adv Tiger H = 3 0.24 < 1sec <1074 < 1sec
Adv Tiger H = 4 0.32 8 sec 0.017(0.010) | 8(10) sec
Comp Tiger H = 2 0.24 < 1sec <1074 < 1sec
Comp Tiger H =3 0.36 48 sec 0.028 3 sec
Comp Tiger H =4 0.48 14 min 0.024 5 min

Note that in Adversarial Tiger with H = 4, the 5-round DRDA actually terminates using 10 seconds,
but we also show the NashConv (without parenthesis) after 8 seconds for comparison purposes.
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