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Abstract

We introduce SignNet and BasisNet—new neural architectures that are invariant1

to two key symmetries displayed by eigenvectors: (i) sign flips, since if v is an2

eigenvector then so is −v; and (ii) more general basis symmetries, which occur in3

higher dimensional eigenspaces with infinitely many choices of basis eigenvectors.4

We prove that our networks are universal, i.e., they can approximate any continu-5

ous function of eigenvectors with the desired invariances. Moreover, when used6

with Laplacian eigenvectors, our architectures are provably expressive for graph7

representation learning: they can approximate any spectral graph convolution, can8

compute spectral invariants that go beyond message passing neural networks, and9

can provably simulate previously proposed graph positional encodings. Experi-10

ments show the strength of our networks for molecular graph regression, learning11

expressive graph representations, and learning neural fields on triangle meshes.12

1 Introduction13

Numerous machine learning models process eigenvectors, which arise in various scenarios including14

principal component analysis, matrix factorizations, and operators associated to graphs or manifolds.15

An important example is the use of Laplacian eigenvectors to encode information about the structure16

of a graph or manifold [Belkin and Niyogi, 2003, Von Luxburg, 2007, Lévy, 2006]. Positional17

encodings that involve Laplacian eigenvectors have recently been used to generalize Transformers18

to graphs [Kreuzer et al., 2021, Dwivedi and Bresson, 2021], and to improve the expressive power19

and empirical performance of graph neural networks (GNNs) [Dwivedi et al., 2022]. Furthermore,20

these eigenvectors are crucial for defining spectral operations on graphs that are foundational to graph21

signal processing and spectral GNNs [Ortega et al., 2018, Bruna et al., 2014].22

However, there are nontrivial symmetries that should be accounted for when processing eigenvectors.23

For instance, if v is an eigenvector, then so is −v, with the same eigenvalue. More generally, if an24

eigenvalue has higher multiplicity, then there are infinitely many unit-norm eigenvectors that can25

be chosen. Indeed, a full set of orthonormal eigenvectors is only defined up to a change of basis26

in each eigenspace. In the case of sign invariance, for any k eigenvectors there are 2k possible27

choices of sign. Accordingly, prior works randomly flip eigenvector signs during training in order to28

approximately learn sign invariance [Kreuzer et al., 2021, Dwivedi et al., 2020]. However, learning29

all 2k invariances is challenging and limits the effectiveness of Laplacian eigenvectors for encoding30

positional information. Sign invariance is a special case of basis invariance when all eigenvalues are31

distinct, but general basis invariance is even more difficult to deal with. In Appendix C.2, we show32

that higher dimensional eigenspaces are abundant in real datasets; for instance, 64% of molecule33

graphs in the ZINC dataset have a higher dimensional eigenspace.34

In this work, we address the sign and basis ambiguity problems by developing new neural networks—35

SignNet and BasisNet. Our networks are universal and can approximate any continuous function36
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of eigenvectors with the proper invariances. Moreover, our networks are theoretically powerful37

for graph representation learning—they can approximate spectral graph convolutions and compute38

powerful spectral invariants, which allows our networks to express graph properties like subgraph39

counts that message passing neural networks cannot. Finally, Laplacian eigenvectors with SignNet40

and BasisNet can approximate many previously proposed graph positional encodings, including those41

based on random walks [Li et al., 2020, Dwivedi et al., 2022] and heat kernels [Mialon et al., 2021,42

Feldman et al., 2022]. Experiments on molecular graph regression tasks, learning expressive graph43

representations, and texture reconstruction on triangle meshes illustrate the empirical benefits of our44

models’ approximation power and invariances.45

2 Sign and Basis Invariant Networks46

 

  

 

  

 

 

 
 

   

Figure 1: Symmetries of eigenvectors of a sym-
metric matrix with permutation symmetries (e.g. a
graph Laplacian). A neural network applied to the
eigenvector matrix (middle) should be invariant or
equivariant to permutation of the rows (left product
with a permutation matrix P ) and invariant to the
choice of eigenvectors in each eigenbasis (right
product with a block diagonal orthogonal matrix
Diag(Q1, Q2, Q3)).

For an n× n symmetric matrix, let λ1 ≤ . . . ≤47

λn be the eigenvalues and v1, . . . , vn the corre-48

sponding eigenvectors, which we may assume49

to form an orthonormal basis. For instance, we50

could consider the normalized graph Laplacian51

L = I − D−1/2AD−1/2, where A ∈ Rn×n52

is the adjacency matrix and D is the diagonal53

degree matrix of some underlying graph. For54

undirected graphs, L is symmetric. Nonsymmet-55

ric matrices can be handled very similarly, as we56

show in Appendix B.1. Our goal is to parame-57

terize a class of models f(v1, . . . , vk) taking k58

eigenvectors as input in a manner that respects59

the eigenvector symmetries.60

Sign invariance. For any of the vi, the sign61

flipped −vi is also an eigenvector, so a function62

f : Rn×k → Rs (where s is an arbitrary output63

dimension) should be sign invariant:64

f(v1, . . . , vk) = f(s1v1, . . . , skvk) (1)

for all sign choices si ∈ {−1, 1}. That is, we65

want f to be invariant to the product group {−1, 1}k. This captures all eigenvector symmetries if the66

eigenvalues λi are distinct.67

Basis invariance. If the eigenvalues have higher multiplicity, then there are further symmetries.68

Let V1, . . . , Vl be bases of eigenspaces—i.e., Vi =
[
vi1 . . . vidi

]
∈ Rn×di has orthonormal69

columns and spans the eigenspace associated with the shared eigenvalue µi = λi1 = . . . = λidi .70

Any other orthonormal basis that spans the eigenspace is of the form ViQ for some orthogonal71

Q ∈ O(di) ⊆ Rdi×di (see Appendix F.2). Thus, a function f : Rn×
∑l

i=1 di → Rs that is invariant to72

changes of basis in each eigenspace satisfies73

f(V1, . . . , Vl) = f(V1Q1, . . . , VlQl), Qi ∈ O(di). (2)

In other words, f is invariant to the product group O(d1)× . . .×O(dl). The number of eigenspaces74

l and the dimensions di may vary between matrices; we account for this in Section 2.2. As O(1) =75

{−1, 1}, sign invariance is a special case of basis invariance when all eigenvalues are distinct.76

Permutation equivariance. For GNN models that output node features or node predictions, one77

typically further desires f to be invariant or equivariant to permutations of nodes, i.e., along the entries78

(or rows) of each vector. Thus, for f : Rn×d → Rn×d, we typically also require f(PV1, . . . , PVl) =79

Pf(V1, . . . , Vl) for any permutation matrix P ∈ Rn×n. Figure 1 illustrates the full setup.80

Graph Positional Encodings. A major motivation for processing eigenvector input is for graph81

positional encodings, which are additional features appended to each node in a graph that give82

information about the position of that node in the graph. These additional features are crucial for83

generalizing Transformers to graphs, and also have been found to improve performance of GNNs.84

Figure 2 illustrates a standard pipeline and the use of our SignNet within it: the input adjacency, node85

features, and eigenvectors of a graph are used to compute a prediction about the graph. Laplacian86
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eigenvectors are processed before being fed into this prediction model. Laplacian eigenvectors87

have been widely used as positional encodings, and many works have noted that sign and/or basis88

invariance must be dealt with in this case [Dwivedi and Bresson, 2021, Beaini et al., 2021, Dwivedi89

et al., 2020, Kreuzer et al., 2021, Mialon et al., 2021, Dwivedi et al., 2022].90
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Figure 2: Pipeline for using node positional encodings. After processing by our SignNet, the learned
positional encodings from the Laplacian eigenvectors are added as additional node features of an
input graph. These positional encodings along with the graph adjacency and original node features
are passed to a prediction model (e.g. a GNN). Not shown here, SignNet can also take in eigenvalues
and node features if desired.

2.1 Warmup: Neural Networks on One Eigenspace91

Before considering the general setting, we design neural networks that take a single eigenvector or92

eigenspace as input and are sign or basis invariant. These single subspace architectures will become93

building blocks for the general architectures. For one subspace, a sign invariant function is merely an94

even function, and is easily parameterized.95

Proposition 1. A continuous function h : Rn → Rs is sign invariant if and only if96

h(v) = ϕ(v) + ϕ(−v) (3)
for some continuous ϕ : Rn → Rs. A continuous h : Rn → Rn is sign invariant and permutation97

equivariant if and only if (3) holds for a continuous permutation equivariant ϕ : Rn → Rn.98

In practice, we parameterize ϕ by a neural network. Any architecture choice will ensure sign99

invariance, while permutation equivariance can be achieved using elementwise MLPs (Multi-Layer100

Perceptrons), DeepSets [Zaheer et al., 2017], Transformers [Vaswani et al., 2017], or GNNs.101

Next, we address basis invariance for a single d-dimensional subspace, i.e., we aim to parameterize102

maps h : Rn×d → Rn that are (a) invariant to right multiplication by Q ∈ O(d), and (b) equivariant103

to permutations along the row axis. For (a), we use the mapping V 7→ V V ⊤ from V to the104

orthogonal projector of its column space, which is O(d) invariant. Mapping V 7→ V V ⊤ does not lose105

information if we treat V as equivalent to V Q for any Q ∈ O(d). This is justified by the classical106

first fundamental theorem of O(d) [Kraft and Procesi, 1996], which has recently been applied in107

machine learning by Villar et al. [2021].108

Regarding (b), permuting the rows of V permutes rows and columns of V V ⊤ ∈ Rn×n. Hence, we109

desire the function ϕ : Rn×n → Rn on V V ⊤ to be equivariant to both row and column permutation:110

ϕ(PV V ⊤P⊤) = Pϕ(V V ⊤). To parameterize such a mapping from matrices to vectors, we use an111

invariant graph network (IGN) [Maron et al., 2018]—a neural network mapping to and from tensors112

of arbitrary order Rnd1 → Rnd2 that has the desired permutation equivariance. We thus parameterize113

a family with the requisite invariance and equivariance as follows:114

h(V ) = IGN(V V ⊤). (4)
Proposition 2 states that this architecture universally approximates O(d) invariant and permutation115

equivariant functions. The full approximation power requires high order tensors to be used for the116

IGN; in practice, we restrict the tensor dimensions for efficiency, as discussed in the next section.117
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Proposition 2. Any continuous, O(d) invariant h : Rn×d → Rs is of the form h(V ) = ϕ(V V ⊤) for118

a continuous ϕ. For a compact domain Z ⊆ Rn×d, maps of the form V 7→ IGN(V V ⊤) universally119

approximate continuous h : Z ⊆ Rn×d → Rn that are O(d) invariant and permutation equivariant.120

2.2 Neural Networks on Multiple Eigenspaces121

Next, we use the single-eigenspace models ϕl(Vl) as building blocks for a model on multiple122

eigenspaces. To do so, we use functions of the form f(V1, . . . , Vl) = ρ(ϕ1(V1), . . . , ϕl(Vl)), i.e., we123

first process each eigenspace individually with an invariant network, and then aggregate them via a124

function ρ. This approach is grounded in a general decomposition theorem for product spaces that125

we prove in Section A.126

SignNet. We parameterize our sign invariant network f : Rn×k → Rs on eigenvectors v1, . . . , vk as127

f(v1, . . . , vk) = ρ
(
[ϕ(vi) + ϕ(−vi)]ki=1

)
, (5)

where ϕ and ρ are unrestricted neural networks, and [·]i denotes concatenation of vectors. The form128

ϕ(vi)+ϕ(−vi) induces sign invariance for each eigenvector. Since we do not yet impose permutation129

equivariance here, we term this model Unconstrained-SignNet.130

To obtain a sign invariant and permutation equivariant f that outputs vectors in Rn×s, we restrict ϕ131

and ρ to be permutation equivariant networks from vectors to vectors, such as elementwise MLPs,132

DeepSets [Zaheer et al., 2017], Transformers [Vaswani et al., 2017], or most standard GNNs. We133

name this permutation equivariant version SignNet. If desired, we can additionally use eigenvalues λi134

and node features X ∈ Rn×q by adding them as arguments to ϕ:135

f(v1, . . . , vk, λ1, . . . , λk, X) = ρ
(
[ϕ(vi, λi, X) + ϕ(−vi, λi, X)]ki=1

)
. (6)

BasisNet. For basis invariance, let Vi ∈ Rn×di be an orthonormal basis of a di dimensional136

eigenspace. Then we parameterize our Unconstrained-BasisNet f by137

f(V1, . . . , Vl) = ρ
(
[ϕdi

(ViV
⊤
i )]li=1

)
, (7)

where each ϕdi
is shared amongst all subspaces of the same dimension di, and l is the number of138

eigenspaces (i.e., number of distinct eigenvalues, which can differ from the number of eigenvectors139

k). As l differs between graphs, we may use zero-padding or a sequence model like a Transformer to140

parameterize ρ. Again, ϕdi and ρ are generally unrestricted neural networks. To obtain permutation141

equivariance, we make ρ permutation equivariant and let ϕdi = IGNdi : Rn2 → Rn be IGNs from142

matrices to vectors. For efficiency, we will only use matrices and vectors in the IGNs (that is, no143

tensors in Rnp

for p > 2), i.e., we use 2-IGN. Our resulting BasisNet is144

f(V1, . . . , Vl) = ρ
(
[IGNdi

(ViV
⊤
i )]li=1

)
. (8)

Expressive-BasisNet. While we restrict SignNet to only use vectors and BasisNet to only use vectors145

and matrices, higher order tensors are generally required for universally approximating permutation146

equivariant or invariant functions [Keriven and Peyré, 2019, Maron et al., 2019, Maehara and NT,147

2019]. Thus, we will consider a theoretically powerful but computationally impractical variant of148

our model, in which we replace ρ and IGNdi in BasisNet with IGNs of arbitrary tensor order. We149

call this variant Expressive-BasisNet. Universal approximation requires Ω(nn) sized intermediate150

tensors [Ravanbakhsh, 2020]. We study Expressive-BasisNet due to its theoretical interest, and to151

juxtapose with the computational efficiency and strong expressive power of SignNet and BasisNet.152

For a summary of properties and more details about our models, see Appendix B.153

In the multiple subspace case, we can prove universality of our models through a general decomposi-154

tion theorem, which reduces the multiple subspace case to the single subspace case. See Section A155

for details; we have temporarily moved this Section in the revision due to space constraints, and we156

will move this Section into the main paper in the camera-ready version.157

3 Theoretical Power for Graph Representation Learning158

Next, we establish that our SignNet and BasisNet can compute useful basis invariant and permutation159

equivariant functions on Laplacian eigenvectors for graph representation learning, including: spectral160
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graph convolutions, spectral invariants, and existing graph positional encodings. Expressive-BasisNet161

can of course compute these functions, as it is universal, but this section shows that the practical162

invariant architectures SignNet and BasisNet can compute them as well.163

3.1 SignNets and BasisNets Generalize Spectral Graph Convolution164

For node features X ∈ Rn×q and an eigendecomposition V ΛV ⊤, a spectral graph convolution165

takes the form f(V,Λ, X) =
∑n

i=1 θiviv
⊤
i X = VDiag(θ)V ⊤X , for some parameters θi, that may166

optionally be continuous functions h(λi) = θi of the eigenvalues [Bruna et al., 2014, Defferrard et al.,167

2016]. This family includes important functions like heat kernels and generalized PageRanks on168

graphs [Li et al., 2019]. A spectral GNN is defined as multiple layers of spectral graph convolutions169

and node-wise linear maps, e.g. VDiag(θ2)V
⊤σ
(
VDiag(θ1)V

⊤XW1

)
W2 is a two layer spectral170

GNN. It can be seen (in Appendix H.1) that spectral graph convolutions are permutation equivariant171

and sign invariant, and if θi = h(λi) (i.e. the spectral graph convolution is parametric) they are172

additionally invariant to a change of bases in each eigenspace.173

Our SignNet and BasisNet can be viewed as generalizations of spectral graph convolutions, as our174

networks can universally approximate all spectral graph convolutions of the above form. For instance,175

SignNet with ρ(a1, . . . , ak) =
∑k

i=1 ak and ϕ(vi, λi, X) = 1
2θiviv

⊤
i X directly yields the spectral176

graph convolution. This is captured in Theorem 1, which we prove in Appendix H.1. In fact, we may177

expect SignNet to learn spectral graph convolutions well, according to the principle of algorithmic178

alignment [Xu et al., 2020] (see Appendix H.1); this is supported by numerical experiments in179

Appendix J.2, in which our networks outperform baselines in learning spectral graph convolutions.180

Theorem 1. SignNet universally approximates all spectral graph convolutions. BasisNet universally181

approximates all parametric spectral graph convolutions.182

In fact, SignNet and BasisNet are strictly stronger than spectral graph convolutions; there are functions183

computable by SignNet and BasisNet that cannot be approximated by spectral graph convolutions184

or spectral GNNs. One way to see this is through graph isomorphism power, as captured in this185

next result.186

Proposition 3. There exist infinitely many pairs of non-isomorphic graphs that SignNet and BasisNet187

can distinguish, but spectral graph convolutions or spectral GNNs cannot distinguish.188

3.2 BasisNets can Compute Spectral Invariants189

Many works measure the expressive power of graph neural networks by comparing their power for190

testing graph isomorphism [Xu et al., 2019, Sato, 2020], or by comparing their ability to compute191

certain functions on graphs like subgraph counts [Chen et al., 2020, Tahmasebi et al., 2020]. These192

works often compare GNNs to combinatorial invariants on graphs, especially the k-Weisfeiler-Lehman193

(k-WL) tests of graph isomorphism [Morris et al., 2021].194

While we may also compare with these combinatorial invariants, as other GNN works that use spectral195

information have done [Beaini et al., 2021], we argue that it is more natural to analyze our networks196

in terms of spectral invariants, which are computed from the eigenvalues and eigenvectors of graphs.197

There is a rich literature of spectral invariants from the fields of spectral graph theory and complexity198

theory [Cvetković et al., 1997]. A spectral invariant must be invariant to permutations and changes of199

basis in each eigenspace, a characteristic shared by our networks.200

The simplest spectral invariant is the multiset of eigenvalues, which we give as input to our networks.201

Another widely studied, powerful spectral invariant is the collection of graph angles, which are202

defined as the values αij = ∥ViV ⊤
i ej∥2, where Vi ∈ Rn×di is an orthonormal basis for the ith203

adjacency matrix eigenspace, and ej is the jth standard basis vector, which is zero besides a one in204

the jth component. These are easily computed by our networks (Appendix H.3), so our networks205

inherit the strength of these invariants. We capture these results in the following theorem, which also206

lists a few properties that graph angles determine [Cvetković, 1991].207

Theorem 2. BasisNet universally approximates the graph angles αij . The eigenvalues and graph208

angles (and thus BasisNet) can determine the number of length 3, 4, or 5 cycles, whether a graph is209

connected, and the number of length k closed walks from any vertex to itself.210

5



Relation to WL and message passing. In contrast to this result, message passing GNNs are not able211

to express any of these properties (see [Arvind et al., 2020, Garg et al., 2020] and Appendix H.3).212

Although spectral invariants are strong, Fürer [2010] shows that the eigenvalues and graph angles—as213

well as some strictly stronger spectral invariants—are not stronger than the 3-WL test (or, equivalently,214

the 2-Folklore-WL test). Future work could study the combination of spectral invariants or spectral215

graph positional encodings with combinatorial algorithms and graph neural networks.216

3.3 SignNets and BasisNets Generalize Existing Graph Positional Encodings217

Many graph positional encodings have been proposed, without any clear criteria on which to choose218

for a particular task. We prove (in Appendix H.2) that our efficient SignNet and BasisNet can219

universally approximate many previously used graph positional encodings, because we unify these220

positional encodings by expressing them as either a spectral graph convolution matrix or the diagonal221

of a spectral graph convolution matrix.222

Proposition 4. SignNet and BasisNet universally approximate node positional encodings based on223

heat kernels [Feldman et al., 2022] and random walks [Dwivedi et al., 2022]. BasisNet universally224

approximates diffusion and p-step random walk relative positional encodings [Mialon et al., 2021],225

and generalized PageRank and landing probability distance encodings [Li et al., 2020].226

We note that diagonals of spectral convolutions are used as feature descriptors in the shape analysis227

literature, such as the heat kernel signature [Sun et al., 2009] and wave kernel signature [Aubry228

et al., 2011]. In the language of recent works in graph machine learning, these are node positional229

encodings computed from a discrete Laplacian of a triangle mesh. This connection appears to be230

unnoticed in recent works on graph positional encodings.231

4 Experiments232

We demonstrate the strength of our networks in various experiments. Appendix B shows simple233

pseudo-code and a diagram detailing the use of SignNet as a node positional encoding.234

4.1 Graph Regression235

Table 1: Results on the ZINC dataset with a 500k parameter budget. All models use edge features.
Numbers are the mean and standard deviation over 4 runs, each with different seeds.

Base model Positional encoding k #param Test MAE (↓)

GatedGCN

No PE N/A 492k 0.252±0.007

LapPE (flip) 8 492k 0.198±0.011

LapPE (abs.) 8 492k 0.204±0.009

LapPE (can.) 8 505k 0.298±0.019

SignNet (ϕ(v) only) 8 495k 0.148±0.007

SignNet 8 495k 0.121±0.005

SignNet All 491k 0.100±0.007

Sparse Transformer

No PE N/A 473k 0.283±0.030

LapPE (flip) 16 487k 0.223±0.007

SignNet 16 479k 0.115±0.008

SignNet All 486k 0.102±0.005

GINE

No PE N/A 470k 0.170±0.002

LapPE (flip) 16 470k 0.178±0.004

SignNet 16 470k 0.147±0.005

SignNet All 417k 0.102±0.002

PNA

No PE N/A 474k 0.133±0.011

LapPE (flip) 8 474k 0.132±0.010

SignNet 8 476k 0.105±0.007

SignNet All 487k 0.084±0.006

We study the effectiveness of SignNet for learning positional encodings (PEs) from the eigenvectors236

of the graph Laplacian on the ZINC dataset of molecule graphs [Irwin et al., 2012] (using the237
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Table 2: Comparison with SOTA methods on graph-level regression tasks. † denotes domain-specific
model. Numbers are test MAE, so lower is better. Best models within a standard deviation are bolded.

ZINC (10K) ↓ ZINC-full ↓ Alchemy (10k) ↓
HIMP † [Fey et al., 2020] .151±.006 .036±.002 —
CIN-small † [Bodnar et al., 2021] .094±.004 .044±.003 —
CIN † [Bodnar et al., 2021] .079±.006 .022±.002 —

GIN [Xu et al., 2019] .170±.002 .088±.002 .180±.006

δ-2-GNN [Morris et al., 2020b] .374±.022 .042±.003 .118±.001

δ-2-LGNN [Morris et al., 2020b] .306±.044 .045±.006 .122±.003

SpeqNet [Morris et al., 2022] — — .115±.001

GNN-IR [Dupty and Lee, 2022] .137±.010 — .119±.002

PF-GNN [Dupty et al., 2021] .122±.01 — .111±.01

Recon-GNN [Cotta et al., 2021] .170±.006 — .125±.001

SignNet (ours) .084±.006 .024±.003 .113±.002

subset of 12,000 graphs from Dwivedi et al. [2020]). We primarily consider three settings: 1) No238

positional encoding, 2) Laplacian PE (LapPE)—the k eigenvectors of the graph Laplacian with239

smallest eigenvalues are concatenated with existing node features, 3) SignNet positional features—240

passing the eigenvectors through a SignNet and concatenating the output with node features. We241

parameterize SignNet by taking ϕ to be a GIN [Xu et al., 2019] and ρ to be an MLP. We sum over ϕ242

outputs before the MLP when handling variable numbers of eigenvectors, so then the SignNet is of243

the form MLP
(∑l

i=1 ϕ(vi) + ϕ(−vi)
)

(see Appendix K.2 for further details). We consider four244

different base models that process the graph data and positional encodings: GatedGCN [Bresson and245

Laurent, 2017], a Transformer with sparse attention only over neighbours [Kreuzer et al., 2021], PNA246

[Corso et al., 2020], and GIN [Xu et al., 2019] with edge features (i.e. GINE) [Hu et al., 2020b]. The247

total number of parameters of the SignNet and the base model is kept within a 500k budget.248

Table 1 shows the results. For all 4 base models, the PE learned with SignNet yields the best test MAE249

(mean absolute error) — lower MAE is better. Notably, this includes the cases of PNA and GINE, for250

which Laplacian PE with simple random sign flipping was unable to improve performance over using251

no PE at all. Our best performing model is PNA base combined with SignNet, which achieves 0.084252

test MAE. Besides SignNet, we consider two non-learned approaches to resolving eigenvector sign253

ambiguity—canonicalization and taking element-wise absolute values (see Appendix K.2 for details).254

Results with GatedGCN show that these alternatives are not more effective than random sign flipping255

for learning positional encodings. We also consider an ablation of our SignNet architecture where we256

remove the sign invariance, using simply MLP([ϕ(vi)]
k
i=1). Although the resulting architecture is no257

longer sign invariant, ϕ still processes eigenvectors independently, meaning that only two invariances258

(±1) need be learned, significantly fewer than the 2k total sign flip configurations. Accordingly, this259

non-sign invariant learned positional encoding achieves a test MAE of 0.148, improving over the260

Laplacian PE (0.198) but falling short of the fully sign invariant SignNet (0.121). In all cases, using261

all available eigenvectors in SignNet significantly improves performance over using a fixed number262

of eigenvectors. In Appendix J.1, we also show that SignNet improves performance when no edge263

features are included in the data.264

These significant performance improvements from SignNet come with only a slightly higher compu-265

tational cost. For example, GatedGCN with no PE takes about 8.2 seconds per training iteration on266

ZINC, while GatedGCN with 8 eigenvectors and SignNet takes about 10.6 seconds; this is only a267

29% increase in time, for a reduction of test MAE by over 50%. Also, eigenvector computation time268

is neglible, we need only precompute and save the eigenvectors once, and it only takes 15 seconds to269

do this for the 12,000 graphs of ZINC.270

Comparison with SOTA. In Table 2, we compare SignNet with state-of-the-art methods on graph-271

level molecular regression tasks on ZINC (10,000 training graphs), ZINC-full (about 250,000 graphs),272

and Alchemy [Chen et al., 2019a] (10,000 training graphs). We compare against both methods that273

use domain-specific knowledge about molecules, and domain-agnostic GNNs of various architectures.274

We see that SignNet outperforms all domain-agnostic methods on ZINC and ZINC-full, and is within275

a standard deviation of the best domain-specific method. Our mean score is the second best on276
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Table 3: Test results for texture reconstruction experiment on cat and human models, following the
experimental setting of [Koestler et al., 2022]. We use 1023 eigenvectors of the cotangent Laplacian.

Cat Human

Method Params PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓
Intrinsic NF 329k 34.25 .099 .189 32.29 .119 .330
Absolute value 329k 34.67 .106 .252 32.42 .132 .363
Sign flip 329k 23.15 1.28 2.35 21.52 1.05 2.71
SignNet 324k 34.91 .090 .147 32.43 .125 .316

Alchemy, and is within a standard deviation of the best. We perform much better on ZINC (.084) than277

other state-of-the-art positional encoding methods, like GNN-LSPE (.090) [Dwivedi et al., 2022],278

SAN (.139) [Kreuzer et al., 2021], and Graphormer (.122) [Ying et al., 2021].279

4.2 Counting Substructures and Regressing Graph Properties280
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Figure 3: Counting substructures and regressing graph properties (lower is better). With Laplacian
PEs, SignNet improves performance, while sign flip data augmentation (LapPE) is less consistent.
Mean and standard deviations are reported on 3 runs. All runs use the same 4-layer GIN base model.

Substructure counts (e.g. of cycles) and global graph properties (e.g. connectedness, diameter,281

radius) are important graph features that are known to be informative for problems in bio- and282

chemo-informatics [Chen et al., 2020, Corso et al., 2020]. Following the setting of Zhao et al. [2022],283

we show that SignNet with Laplacian positional encodings boosts the ability of simple GNNs to284

count substructures and regress graph properties. We take a 4-layer GIN as the base model for all285

settings, and for SignNet we use GIN as ϕ and a Transformer as ρ to handle variable numbers of286

eigenvectors (see Appendix K.4 for details). As shown in Figure 3, Laplacian PEs with sign-flip data287

augmentation improve performance for counting substructures but not for regressing graph properties,288

while Laplacian PEs processed by SignNet significantly boost performance on all tasks.289

4.3 Neural Fields on Manifolds290

Discrete approximations to the Laplace-Beltrami operator on manifolds have proven useful for291

processing data on surfaces, such as triangle meshes [Lévy, 2006]. Recently, Koestler et al. [2022]292

propose intrinsic neural fields, which use eigenfunctions of the Laplace-Beltrami operator as positional293

encodings for learning neural fields on manifolds. For generalized eigenfunctions v1, . . . , vk, at294

a point p on the surface, they parameterize functions f(p) = MLP(v1(p), . . . , vk(p)). As these295

eigenfunctions have sign ambiguity, we use our SignNet to parameterize f(p) = MLP( ρ( [ϕ(vi(p))+296

ϕ(−vi(p))]i=1,...,k ) ), with ρ and ϕ being MLPs.297

Table 3 shows our results for texture reconstruction experiments on all models from Koestler et al.298

[2022]. The total number of parameters in our SignNet-based model is kept below that of the original299

model. We see that the SignNet architecture improves over the original Intrinsic NF model and over300

other baselines — especially in the LPIPS (Learned Perceptual Image Patch Similarity) metric, which301

has been shown to be a typically better perceptual metric than PSNR or DSSIM [Zhang et al., 2018a].302

While we have not yet tested this, we believe that SignNet would allow even better improvements303

when learning over eigenfunctions of different models, as it could improve transfer and generalization.304

See Appendix D.1 for visualizations and Appendix K.5 for more details.305
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Eigvec 11 ϕ(v11) + ϕ(−v11) Eigvec 14 ϕ(v14) + ϕ(−v14)

Figure 4: Cotangent Laplacian eigenvectors of the cat model and first principal component of
ϕ(v) + ϕ(−v) from our trained SignNet.

4.4 Visualization of Learned Positional Encodings306

To better understand SignNet, we plot the first principal component of ϕ(v) + ϕ(−v) for two307

eigenvectors on the cat model in Figure 4. We see that SignNet encodes bilateral symmetry and308

structural information on the cat model. See Appendix D for plots of more eigenvectors and further309

details.310

5 Related Work311

In this section, we review selected related work. A more thorough review is deferred to Appendix E.312

Laplacian eigenvectors in GNNs. Various recently proposed methods in graph deep learning have313

directly used Laplacian eigenvectors as node positional encodings that are input to a neural network314

that is, e.g., a message passing GNN [Dwivedi et al., 2020, 2022], or some variant of a Transformer315

that is adapted to graphs [Dwivedi and Bresson, 2021, Kreuzer et al., 2021, Mialon et al., 2021,316

Dwivedi et al., 2022]. None of these methods address basis invariance, and they only partially address317

sign invariance for node positional encodings by randomly flipping eigenvector signs during training.318

Graph positional encodings. Other recent methods use positional encodings besides Laplacian319

eigenvectors. These include positional encodings based on random walks [Dwivedi et al., 2022,320

Mialon et al., 2021, Li et al., 2020], diffusion kernels on graphs [Mialon et al., 2021, Feldman321

et al., 2022], shortest paths [Ying et al., 2021, Li et al., 2020], and unsupervised node embedding322

methods [Wang et al., 2022]. In particular, Wang et al. [2022] use Laplacian eigenvectors for relative323

positional encodings in an invariant way, but they focus on robustness, so they have stricter invariances324

that significantly reduce expressivity (see Appendix E.2 for more details). These previously used325

positional encodings are mostly ad-hoc, less general since they can be provably expressed by SignNet326

and BasisNet (see Section 3.3), and/or are expensive to compute (e.g., all pairs shortest paths).327

6 Conclusion and Discussion328

SignNet and BasisNet are novel architectures for processing eigenvectors that are invariant to sign329

flips and choices of eigenspace bases, respectively. Both architectures are provably universal: they330

can represent any continuous function with the corresponding invariances. When used with Laplacian331

eigenvectors as inputs they can provably approximate spectral graph convolutions, spectral invariants,332

graph properties such as subgraph counts, and a number of other graph positional encodings. These333

theoretical results are supported by experiments showing that SignNet and BasisNet are highly334

expressive in practice, and learn effective graph positional encodings that improve the performance335

of message passing graph neural networks. Initial explorations show that SignNet and BasisNet can336

be useful beyond graph representation learning, as eigenvectors are ubiquitous.337

While we conduct experiments on graph machine learning tasks and a particular task on triangle338

meshes, SignNet and BasisNet should also be applicable to processing eigenvectors in other settings,339

such as recommender systems and tasks in shape analysis. We show significant empirical benefit in340

the tasks that we consider, but we expect less benefit in cases where node features are sufficient to do341

well on the task, or if the task does not require much sophisticated graph structure information to342

solve. Moreover, while we primarily consider eigenspaces in this work, sign invariance and basis343

invariance applies to any model that processes subspaces of a vector space; future work may explore344

our models on general subspaces.345
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A Universality for Multiple Spaces682

We have temporarily moved this section to the Appendix due to space constraints, we will move it683

back to the main paper in the camera-ready version.684

While the networks introduced in the Section 2.2 possess the desired invariances, it is not immediately685

obvious whether they are powerful enough to express all functions with these invariances. The686

universality of our architectures follows as a corollary of the following general decomposition result,687

which may enable construction of universal architectures for other invariances as well.688

Theorem 3 (Decomposition Theorem). Let X1, . . . ,Xk be topological spaces, and let Gi be a689

group acting on Xi for each i. We assume mild topological conditions on Xi and Gi hold. For any690

continuous f : X = X1 × . . . × Xk → Rs that is invariant to the action of G = G1 × . . . × Gk,691

there exists continuous ϕi and a continuous ρ : Z ⊆ Ra → Rs such that692

f(v1, . . . , vk) = ρ(ϕ1(v1), . . . , ϕk(vk)). (9)

Furthermore: (1) each ϕi can be taken to be invariant to Gi, (2) the domain Z of ρ is compact if each693

Xi is compact, (3) if Xi = Xj and Gi = Gj , then ϕi can be taken to be equal to ϕj .694

This result says that when a product of groups G acts on a product of spaces X , for invariance to the695

product group G it suffices to individually process each smaller group Gi on Xi and then aggregate696

the results. Along with the proof of Theorem 3, the mild topological assumptions are explained in697

Appendix G.1. The assumptions hold for sign invariance and basis invariance. By applying this698

theorem, we can prove universality of our networks:699

Corollary 1. Unconstrained-SignNet can represent any sign invariant function and Unconstrained-700

BasisNet can represent any basis invariant function. Expressive-BasisNet is a universal approximator701

of functions that are both basis invariant and permutation equivariant.702

This result shows that Unconstrained-SignNet, Unconstrained-BasisNet, and Expressive-BasisNet703

take the correct functional form for their respective invariances (proofs in Appendix G.2). Note704

that Expressive-BasisNet approximates all sign invariant functions as a special case, by treating705

all inputs as one dimensional eigenspaces. Accompanying the decomposition result, we show a706

corresponding universal approximation result (proof in Appendix G.3). Similarly to Theorem 3,707

the problem of approximating G = G1 × . . .×Gk invariant functions is reduced to approximating708

several Gi-invariant functions.709

B More Details on SignNet and BasisNet710

Table 4: Properties of our architectures: Unconstrained-SignNet, SignNet, Unconstrained-BasisNet,
and Expressive-BasisNet. The properties are: permutation equivariance, universality (for the proper
class of continuous invariant functions), and computational tractability.

Unconstr.-SignNet SignNet Unconstr.-BasisNet BasisNet Expr.-BasisNet

Permutation equiv. × ✓ × ✓ ✓
Universal ✓ × ✓ × ✓
Tractable ✓ ✓ ✓ ✓ ×

In Figure 2, we show a diagram that describes how SignNet is used as a node positional encoding711

for a graph machine learning task. In Table 4, we compare and contrast properties of the neural712

architectures that we introduce. In Figure 5, we give pseudo-code of SignNet for learning node713

positional encodings with a GNN prediction model.714

B.1 Generalization Beyond Symmetric Matrices715

In the main paper, we assume that the eigenspaces come from a symmetric matrix. This holds for many716

cases of practical interest, as e.g. the Laplacian matrix of an undirected graph is symmetric. However,717

we may also want to process directed graphs, or other data that have associated nonsymmetric matrices.718

Our SignNet and BasisNet generalize in a straightforward way to handle nonsymmetric diagonalizable719
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PyTorch-like pseudo-code for SignNet
class SignNetGNN(nn.Module):

def __init__(self, d, k, D1, D2, out_dim):
self.phi = GIN(1, D1) # in dim=1, out dim=D1
self.rho = MLP(k∗D1, D2)
self.base_model = GNN(d+D2, out_dim)

def forward(self, g, x, eigvecs):
# g contains graph information
# x shape: n x d
# eigvecs shape: n x k

n, k = eigvecs.shape
eigvecs = eigvecs.reshape(n, k, 1)
pe = self.phi(g, eigvecs) + self.phi(g, −eigvecs)
pe = pe.reshape(n, −1) # n x k x D1 −> n x k∗D1
pe = self.rho(pe)

return self.base_model(g, x, pe)

Figure 5: PyTorch-like pseudo-code for using SignNet with a GNN prediction model, where ϕ = GIN
and ρ = MLP as in the ZINC molecular graph regression experiments. Reshaping eigenvectors
from n× k to n× k × 1 allows ϕ to process each eigenvector (and its negation) independently in
PyTorch-like deep learning libraries.

matrices, as we detail here. Let A ∈ Rn×n be a matrix with a diagonalization A = V ΛV −1, where720

Λ = Diag(λ1, . . . , λn) contains the eigenvalues λi, and the columns of V = [v1 . . . vn] are721

eigenvectors. Suppose we want to learn a function on the eigenvectors v1, . . . , vk. Unlike in the722

symmetric matrix case, the eigenvectors are not necessarily orthonormal, and both the eigenvalues723

and eigenvectors can be complex.724

Real eigenvectors. First, we assume the eigenvectors vi are all real vectors in Rn. We can take the725

eigenvectors to be real if A is symmetric, or if A has real eigenvalues (see Horn and Johnson [2012]726

Theorem 1.3.29). Also, suppose that we choose the real numbers R as our base field for the vector727

space in which eigenvectors lie. Note that for any scaling factor c ∈ R \ {0} and eigenvector v,728

we have that cv is an eigenvector of the same eigenvalue. If the eigenvalues are distinct, then the729

eigenvectors of the form cv are the only other eigenvectors in the same eigenspace as v. Thus, we730

want a function to be invariant to scalings:731

f(v1, . . . , vk) = f(c1v1, . . . , ckvk) ci ∈ R \ {0}. (10)

This can be handled by SignNet, by giving unit normalized vector inputs:732

f(v1, . . . , vk) = ρ
(
[ϕ(vi/∥vi∥) + ϕ(−vi/∥vi∥)]i=1,...,k

)
. (11)

Now, say have bases of eigenspaces V1, . . . , Vl with dimensions d1, . . . , dl. For a basis Vi, we have733

that any other basis of the same space can be obtained as ViW for some W ∈ GLR(di), the set of734

real invertible matrices in Rdi×di . Indeed, the orthonormal projector for the space spanned by the735

columns of Vi is given by Vi(V ⊤
i Vi)

−1V ⊤
i . Thus, if Z ∈ Rn×di is another basis for the column736

space of Vi, we have that Vi(V ⊤
i Vi)

−1V ⊤
i = Z(Z⊤Z)−1Z⊤, so737

Vi(V
⊤
i Vi)

−1V ⊤
i Z = Z(Z⊤Z)−1Z⊤Z = Z, (12)

so let W = (V ⊤
i Vi)

−1V ⊤
i Z ∈ Rdi×di . Note that W is invertible, because it has inverse738

(Z⊤Z)−1Z⊤Vi, so indeed ViW = Z for W ∈ GLR(di). Thus, basis invariance in this case is739

of the form740

f(V1 . . . , Vl) = f(V1W1, . . . , VlWl) Wi ∈ GLR(di). (13)
Note that the distinct eigenvalue invariance is a special case of this invariance, as GR(1) = R \ {0}.741

We can again achieve this basis invariance by using a BasisNet, where the inputs to the ϕdi
are742

orthogonal projectors of the corresponding eigenspace:743

f(V1, . . . , Vl) = ρ
([
ϕdi

(Vi(V
⊤
i Vi)

−1V ⊤
i )
]
i=1,...,l

)
. (14)
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Recall that if Vi is an orthonormal basis, then the orthogonal projector is just ViV ⊤
i , so this is a direct744

generalization of BasisNet in the symmetric case.745

Complex eigenvectors. More generally, suppose V ∈ Cn×n are complex eigenvectors, and we take746

the base field of the vector space to be C. The above arguments generalize to the complex case; in747

the case of distinct eigenvalues, we want748

f(v1, . . . , vk) = f(c1v1, . . . , ckvk) ci ∈ C \ {0}. (15)

However, this symmetry can not be as easily reduced to a unit normalization and a discrete sign749

invariance, as it can be in the real case. Nonetheless, the basis invariant architecture directly750

generalizes, so we can handle the case of distinct eigenvalues by a more general basis invariant751

architecture as well. The basis invariance is752

f(V1, . . . , Vl) = f(V1W1, . . . , VlWl) Wi ∈ GLC(di). (16)

The orthogonal projector of the image of Vi is Vi(V ∗
i Vi)

−1V ∗
i , where there are now conjugate753

transposes replacing the transposes. Thus, BasisNet takes the form:754

f(V1, . . . , Vl) = ρ
([
ϕdi

(Vi(V
∗
i Vi)

−1V ∗
i )
]
i=1,...,l

)
. (17)

B.2 Broader Impacts755

We believe that our models and future sign invariant or basis invariant networks could be useful in a756

wide variety of applications. As eigenvectors arise in many domains, it is difficult to predict the uses757

of these models. We test on several molecular property prediction tasks, which have the potential758

for much positive impact, such as in drug discovery [Stokes et al., 2020]. However, recent work759

has found that the same models that we use for finding beneficial drugs can also be used to design760

biochemical weapons [Urbina et al., 2022]. Another major application of graph machine learning761

is in social network analysis, where positive (e.g. malicious node detection [Pandit et al., 2007])762

and negative (e.g. deanonymization [Narayanan and Shmatikov, 2009]) uses of machine learning763

are possible. Even if there is no negative intent, bias in learned models can differentially impact764

particular subgroups of people. Thus, academia, industry, and policy makers must be aware of such765

potential negative uses, and work towards reducing the likelihood of them.766

C More on Eigenvalue Multiplicities767

In this section, we study the properties of eigenvalues and eigenvectors computed by numerical768

algorithms on real-world data.769

C.1 Sign and Basis Ambiguities in Numerical Eigensolvers770

When processing real-world data, we use eigenvectors that are computed by numerical algorithms.771

These algorithms return specific eigenvectors for each eigenspace, so there is some choice of sign772

or basis of each eigenspace. The general symmetric matrix eigensolvers numpy.linalg.eigh773

and scipy.linalg.eigh both call LAPACK routines. They both proceed as follows: for a774

symmetric matrix A, they first decompose it as A = QTQ⊤ for orthogonal Q and tridiago-775

nal T , then they compute the eigendecomposition of T = WΛW⊤, so the eigendecomposition776

of A is A = (QW )Λ(W⊤Q⊤). There are multiple ambiguities here: for diagonal sign matri-777

ces S = Diag(s1, . . . , sn) and S′ = Diag(s′1, . . . , s
′
n), where si, s′i ∈ {−1, 1}, we have that778

A = QS(STS)SQ⊤ is also a valid tridiagonalization, as QS is still orthogonal, SS = I , and STS779

is still tridiagonal. Also, T = (WS′)Λ(S′W⊤) is a valid eigendecomposition of T , as WS′ is still780

orthogonal.781

In practice, we find that the general symmetric matrix eigensolvers numpy.linalg.eigh and782

scipy.linalg.eigh differ between frameworks but are consistent with the same framework. More783

specifically, for a symmetric matrix A, we find that the eigenvectors computed with the default784

settings in numpy tend to differ by a choice of sign or basis from those that are computed with the785

default settings in scipy. On the other hand, the called LAPACK routines are deterministic, so the786

eigenvectors returned by numpy are the same in each call, and the eigenvectors returned by scipy are787

likewise the same in each call.788
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Table 5: Eigenspace statistics for datasets of multiple graphs. From left to right, the columns are:
dataset name, number of graphs, range of number of nodes per graph, largest multiplicity, and percent
of graphs with an eigenspace of dimension > 1.

Dataset Graphs # Nodes Max. Mult % Graphs mult. > 1

ZINC 12,000 9-37 9 64.1
ZINC-full 249,456 6-38 10 63.8
ogbg-molhiv 41,127 2 - 222 42 68.0
IMDB-M 1,500 7 - 89 37 99.9
COLLAB 5,000 32 - 492 238 99.1
PROTEINS 1,113 4 - 620 20 77.3
COIL-DEL 3,900 3 - 77 4 4.00

Eigensolvers for sparse symmetric matrices like scipy.linalg.eigsh are required for large scale789

problems. This function calls ARPACK, which uses an iterative method that starts with a randomly790

sampled initial vector. Due to this stochasticity, the sign and basis of eigenvectors returned differs791

between each call.792

Bro et al. [2008] develops a data-dependent method to choose signs for each singular vector of a793

singular value decomposition. Still, in the worst case the signs chosen will be arbitrary, and they do794

not handle basis ambiguities in higher dimensional eigenspaces. Other works have made choices795

of sign, such as by picking the sign so that the eigenvector’s entries are in the largest lexicographic796

order [Tam and Dunson, 2022]. This choice of sign may work poorly for learning on graphs, as it is797

sensitive to permutations on nodes. For some graph regression experiments in Section 4.1, we try a798

choice of sign that is permutation invariant, but we find it to work poorly.799

C.2 Higher Dimensional Eigenspaces in Real Graphs800

Here, we investigate the normalized Laplacian eigenspace statistics of real-world graph data. For801

any graph that has distinct Laplacian eigenvalues, only sign invariance is required in processing802

eigenvectors. However, we find that graph data tends to have higher multiplicity eigenvalues, so basis803

invariance would be required for learning symmetry-respecting functions on eigenvectors.804

Indeed, we show statistics for multi-graph datasets in Table 5 and for single-graph datasets with more805

nodes per graph in Table 6. For multi-graph datasets, we consider :806

• Molecule graphs: ZINC [Irwin et al., 2012, Dwivedi et al., 2020], ogbg-molhiv [Wu et al.,807

2018, Hu et al., 2020a]808

• Social networks: IMDB-M, COLLAB [Yanardag and Vishwanathan, 2015, Morris et al.,809

2020a],810

• Bioinformatics graphs: PROTEINS [Morris et al., 2020a]811

• Computer vision graphs: COIL-DEL [Riesen and Bunke, 2008, Morris et al., 2020a].812

For single-graph datasets, we consider:813

• The 32× 32 image grid as in Section J.2814

• Citation networks: Cora, Citeseer [Sen et al., 2008]815

• Co-purchasing graphs with Amazon Photo [McAuley et al., 2015, Shchur et al., 2018].816

We see that these datasets all contain higher multiplicity eigenspaces, so sign invariance is insufficient817

for fully respecting symmetries. The majority of graphs in each multi-graph dataset besides COIL-818

DEL contain higher multiplicity eigenspaces. Also, the dimension of these eigenspaces can be819

quite large compared to the size of the graphs in the dataset. The single-graph datasets have a large820

proportion of their eigenvectors belonging to higher dimensional eigenspaces. Thus, basis invariance821

may play a large role in processing spectral information from these graph datasets.822
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Table 6: Eigenspace statistics for single graphs. From left to right, the columns are: dataset name,
number of nodes, distinct eigenvalues (i.e. distinct eigenspaces), number of unique multiplicities,
largest multiplicity, and percent of eigenvectors belonging to an eigenspace of dimension > 1.

Dataset Nodes Distinct λ # Mult. Max Mult. % Vecs mult. > 1

32× 32 image 1,024 513 3 32 96.9
Cora 2,708 2,187 11 300 19.7
Citeseer 3,327 1,861 12 491 44.8
Amazon Photo 7,650 7,416 8 136 3.71

C.3 Relationship to Graph Automorphisms823

Higher multiplicity eigenspaces are related to automorphism symmetries in graphs. For an adjacency824

matrix A, the permutation matrix P is an automorphism of the graph associated to A if PAP⊤ = A.825

If P is an automorphism, then for any eigenvector v of A with eigenvalue λ, we have826

APv = PAP⊤Pv = PAv = Pλv = λPv, (18)

so Pv is an eigenvector of A with the same eigenvalue λ. If Pv and v are linearly independent, then827

λ has a higher dimensional eigenspace. Thus, under certain additional conditions, automorphism828

symmetries of graphs lead to repeated eigenvalues [Sachs and Stiebitz, 1983, Teranishi, 2009].829

C.4 Multiplicities in Random Graphs830

It is known that almost all random graphs under the Erdős-Renyi model have no repeated eigenvalues831

in the infinite number of nodes limit [Tao and Vu, 2017]. Likewise, almost all random graphs832

under the Erdős-Renyi model are asymmetric in the sense of having no nontrivial automorphism833

symmetries [Erdos and Rényi, 1963]. These results contrast sharply with the high eigenvalue834

multiplicities that we see in real-world data in Section C.2. Likewise, many types of real-world graph835

data have been found to possess nontrivial automorphism symmetries [Ball and Geyer-Schulz, 2018].836

This demonstrates a potential downside of using random graph models to study real-world data: the837

eigenspace dimensions and automorphism symmetries of random graphs may not agree with those of838

real-world data.839
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D Visualization of SignNet output840

D.1 Cat Model Visualization841

Eigenvector 1 ϕ(v1) + ϕ(−v1)

Eigenvector 9 ϕ(v9) + ϕ(−v9)

Eigenvector 11 ϕ(v11) + ϕ(−v11)

Eigenvector 14 ϕ(v14) + ϕ(−v14)

Eigenvector 1023 ϕ(v1023) + ϕ(−v1023)

Figure 6: (Left) Cotangent Laplacian eigenvectors of the cat model. (Right) First principal component
of ϕ(v) + ϕ(−v) from our trained SignNet.

In Figure 6, we plot the eigenvectors of the cotangent Laplacian on a cat model, as well as the first842

principal component of the corresponding learned ϕ(v) + ϕ(−v) from our SignNet model that was843

trained on the texture reconstruction task. Interestingly, this portion of our SignNet encodes bilateral844

symmetry; for instance, while some eigenvectors differ between left feet and right feet, this portion of845

our SignNet gives similar values for the left and right feet. This is useful for the texture reconstruction846

task, as the texture regression target has bilateral symmetry.847
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Figure 7: First three principal components of the full SignNet output on the cat model.

We also show principal components of outputs for the full SignNet model in Figure 7. This is not848

as interpretable, as the outputs are high frequency and appear to be close to the texture that is the849

regression target. If instead we trained the network on a task involving eigenvectors of multiple850

models, then we may expect the SignNet to learn more structurally interpretable mappings (as in the851

case of the molecule tasks).852

D.2 Molecule visualization853

To better understand SignNet, in Figure 9 we visualize the learned positional encodings of a SignNet854

with ϕ = GIN, ρ = MLP (with a summation to handle variable eigenvector numbers) trained on855

ZINC as in Section 4.1. SignNet learns interesting structural information such as min-cuts (PC 3)856

and appendage atoms (PC 2) that qualitatively differ from any single eigenvector of the graph.857

For this visualization we use a SignNet trained with a GatedGCN base model on ZINC, as in858

Section 4.1. This SignNet uses GIN as ϕ and ρ as an MLP (with a sum before it to handle variable859

numbers of eigenvectors), and takes in all eigenvectors of each graph. See Figure 8 for all of the860

eigenvectors of fluorescein.861

E More Related Work862

E.1 Graph Positional Encodings863

Various graph positional encodings have been proposed, which have been motivated for increasing ex-864

pressive power or practical performance of graph neural networks, and for generalizing Transformers865

to graphs. Positional encodings are related to so-called position-aware network embeddings [Chami866

et al., 2020], which capture distances between nodes in graphs. These include network embedding867

methods like Deepwalk [Perozzi et al., 2014] and node2vec [Grover and Leskovec, 2016], which have868

been recently integrated into GNNs that respect their invariances by Wang et al. [2022]. Further, Li869

et al. [2020] studies the theoretical and practical benefits of incorporating distance features into graph870

neural networks. Dwivedi et al. [2022] proposes a method to inject learnable positional encodings into871

each layer of a graph neural network, and uses a simple random walk based node positional encoding.872

You et al. [2021] proposes a node positional encoding diag(Ak), which captures the number of873

closed walks from a node to itself. Dwivedi et al. [2020] propose to use Laplacian eigenvectors as874

positional encodings in graph neural networks, with sign ambiguities alleviated by sign flipping data875

augmentation. Srinivasan and Ribeiro [2019] theoretically analyze node positional embeddings and876

structural representations in graphs, and show that most-expressive structural representations contain877

the information of any node positional embedding.878

While positional encodings in sequences as used for Transformers [Vaswani et al., 2017] are able to879

leverage the canonical order in sequences, there is no such useful canonical order for nodes in a graph,880

due in part to permutation symmetries. Thus, different permutation equivariant positional encodings881

have been proposed to help generalize Transformers to graphs. Dwivedi and Bresson [2021] directly882

add in linearly projected Laplacian eigenvectors to node features before processing these features883

with a graph Transformer. Kreuzer et al. [2021] propose an architecture that uses attention over884

Laplacian eigenvectors and eigenvalues to learn node or edge positional encodings. Mialon et al.885

[2021] uses spectral kernels such as the diffusion kernel to define relative positional encodings that886

modulate the attention matrix. Ying et al. [2021] achieve state-of-the-art empirical performance887

with simple Transformers that incorporate shortest-path based relative positional encodings. Zhang888
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Figure 8: All normalized Laplacian eigenvectors of the fluorescein graph. The first principal
components of SignNet’s learned positional encodings do not exactly match any eigenvectors.

et al. [2020] also utilize shortest-path distances for positional encodings in their graph Transformer.889

Kim et al. [2021] develop higher-order transformers (that generalize invariant graph networks),890

which interestingly perform well on graph regression using sparse higher-order transformers without891

positional encodings.892

E.2 Eigenvector Symmetries in Graph Representation Learning893

Many works that attempt to respect the invariances of eigenvectors solely focus on sign invariance894

(by using data augmentation) [Dwivedi et al., 2020, Dwivedi and Bresson, 2021, Dwivedi et al., 2022,895

Kreuzer et al., 2021]. This may be reasonable for continuous data, where eigenvalues of associated896

matrices may be usually distinct and separated (e.g. Puny et al. [2022] finds that this empirically897

holds for covariance matrices of n-body problems). However, discrete graph Laplacians are known898

to have higher multiplicity eigenvalues in many cases, and in Appendix C.2 we find this to be true in899

various types of real-world graph data. Graphs without higher multiplicity eigenspaces are easier900

to deal with; in fact, graph isomorphism can be tested in polynomial time on graphs of bounded901
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Figure 9: Normalized Laplacian eigenvectors and learned positional encodings for the graph of
fluorescein. (Top row) From left to right: smallest and second smallest nontrivial eigenvectors,
then second largest and largest eigenvectors. (Bottom row) From left to right: first four principal
components of the output ρ([ϕ(vi) + ϕ(−vi)]i=1,...,n) of SignNet. Note: we will put this back in the
main paper for the camera-ready.

multiplicity for adjacency matrix eigenvalues [Babai et al., 1982], with a time complexity that is902

lower for graphs with lower maximum multiplicities.903

A recent work of Wang et al. [2022] proposes full orthogonal group invariance for functions that904

process positional encodings. In particular, for positional encodings Z ∈ Rn×k, they parameterize905

functions f(Z) such that f(Z) = f(ZQ) for all Q ∈ O(k). This indeed makes sense for network906

embeddings like node2vec [Grover and Leskovec, 2016], as their objective functions are based907

on inner products and are thus orthogonally invariant. While they prove stability results when908

enforcing full orthogonal invariance for eigenvectors, this is a very strict constraint compared to909

our basis invariance. For instance, when k = n and all eigenvectors are used in V , the condition910

f(V ) = f(V Q) implies that f is a constant function on orthogonal matrices, since any orthogonal911

matrix W can be obtained as W = V Q for Q = V ⊤W ∈ O(n). In other words, for bases of912

eigenspaces V1, . . . , Vl and V = [V1 . . . Vl], Wang et al. [2022] enforces V Q ∼= V , while we913

enforce VDiag(Q1, . . . , Ql) ∼= V . While the columns of VDiag(Q1, . . . , Ql) are still eigenvectors,914

the columns of V Q generally are not.915

E.3 Graph Spectra and Learning on Graphs916

More generally, graph spectra are widely used in analyzing graphs, and spectral graph theory [Chung,917

1997] studies the connection between graph properties and graph spectra. Different graph kernels918

have been defined based on graph spectra, which use robust and discriminative notions of generalized919

spectral distance [Verma and Zhang, 2017], the spectral density of states [Huang et al., 2021], random920

walk return probabilities [Zhang et al., 2018b], or the trace of the heat kernel [Tsitsulin et al., 2018].921

Graph signal processing relies on spectral operations to define Fourier transforms, frequencies,922

convolutions, and other useful concepts for processing data on graphs [Ortega et al., 2018]. The923

closely related spectral graph neural networks [Wu et al., 2020, Balcilar et al., 2020] parameterize924

neural architectures that are based on similar spectral operations.925

F Definitions, Notation, and Background926

F.1 Basic Topology and Algebra Definitions927

We will use some basic topology and algebra for our theoretical results. A topological space (X , τ)928

is a set X along with a family of subsets τ ⊆ 2X satisfying certain properties, which gives useful929

notions like continuity and compactness. From now on, we will omit mention of τ , and refer to a930
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topological space as the set X itself. For topological spaces X and Y , we write X ∼= Y and say that931

X is homeomorphic to Y if there exists a continuous bijection with continuous inverse from X to932

Y . We will say X = Y if the underlying sets and topologies are equal as sets (we will often use this933

notion of equality for simplicity, even though it can generally be substituted with homeomorphism).934

For a function f : X → Y between topological spaces X and Y , the image imf is the set of values935

that f takes, imf = {f(x) : x ∈ X}. This is also denoted f(X ). A function f : X → Y is called a936

topological embedding if it is a homeomorphism from X to its image.937

A group G is a set along with a multiplication operation G × G → G, such that multiplication is938

associative, there is a multiplicative identity e ∈ G, and each g ∈ G has a multiplicative inverse g−1.939

A topological group is a group that is also a topological space such that the multiplication and inverse940

operations are continuous.941

A group G may act on a set X by a function · : G × X → X . We usually denote g · x as gx. A942

topological group is said to act continuously on a topological space X if · is continuous. For any943

group G and topological space X , we define the coset Gx = {gx : g ∈ G}, which can be viewed as944

an equivalance class of elements that can be transformed from one to another by a group element.945

The quotient space X/G = {Gx : x ∈ X} is the set of all such equivalence classes, with a topology946

induced by that of X . The quotient map π : X → X/G is a surjective continuous map that sends x947

to its coset, π(x) = Gx.948

For x ∈ Rs, ∥x∥2 denotes the standard Euclidean norm. By the ∞ norm of functions f : Z → Rs949

from a compact Z to a Euclidean space Rs, we mean ∥f∥∞ = supz∈Z∥f(z)∥2.950

F.2 Background on Eigenspace Invariances951

Let V = [v1 . . . vd] and W = [w1 . . . wd] ∈ Rn×d be two orthonormal bases for the same952

d dimensional subspace of Rn. Since V and W span the same space, their orthogonal projectors953

are the same, so V V ⊤ = WW⊤. Also, since V and W have orthonormal columns, we have954

V ⊤V =W⊤W = I ∈ Rd×d. Define Q = V ⊤W . Then Q is orthogonal because955

Q⊤Q =W⊤V V ⊤W =W⊤WW⊤W = I (19)

Moreover, we have that956

V Q = V V ⊤W =WW⊤W =W (20)

Thus, for any orthonormal bases V and W of the same subspace, there exists an orthogonal Q ∈ O(d)957

such that V Q =W .958

For another perspective on this, define the Grassmannian Gr(d, n) as the smooth manifold consisting959

of all d dimensional subspaces of Rn. Further define the Stiefel manifold St(d, n) as the set960

of all orthonormal tuples [v1 . . . vd] ∈ Rn×d of d vectors in Rn. Letting O(d) act by right961

multiplication, it holds that St(d, n)/O(d) ∼= Gr(d, n). This implies that any O(d) invariant function962

on St(d, n) can be viewed as a function on subspaces. See e.g. Gallier and Quaintance [2020] Chapter963

5 for more information on this. We will use this relationship in our proofs of universal representation.964

When we consider permutation invariance or equivariance, the permutation acts on dimensions of size965

n. Then a tensor X ∈ Rnk×d is called an order k tensor with respect to this permutation symmetry,966

where order 0 are called scalars, order 1 tensors are called vectors, and order 2 tensors are called967

matrices. Note that this does not depend on d; in this work, we only ever consider vectors and scalars968

with respect to the O(d) action.969

G Proofs of Universality970

We begin by proving the two propositions for the single subspace case from Section 2.1.971

Proposition 1. A continuous function h : Rn → Rs is sign invariant if and only if972

h(v) = ϕ(v) + ϕ(−v) (3)

for some continuous ϕ : Rn → Rs. A continuous h : Rn → Rn is sign invariant and permutation973

equivariant if and only if (3) holds for a continuous permutation equivariant ϕ : Rn → Rn.974
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Proof. If h(v) = ϕ(v) + ϕ(−v), then h is obviously sign invariant. On the other hand, if h is sign975

invariant, then letting ϕ(v) = h(v)/2 gives that h(v) = ϕ(v)+ϕ(−v), and ϕ is of course continuous.976

If h(v) = ϕ(v) + ϕ(−v) for a permutation equivariant ϕ, then h(−Pv) = ϕ(−Pv) + ϕ(Pv) =977

Pϕ(−v) +Pϕ(v) = P (ϕ(v) + ϕ(−v)) = Ph(v), so h is permutation equivariant and sign invariant.978

If h is permutation equivariant and sign invariant, then define ϕ(v) = h(v)/2 again; it is clear that ϕ979

is continuous and permutation equivariant.980

Proposition 2. Any continuous, O(d) invariant h : Rn×d → Rs is of the form h(V ) = ϕ(V V ⊤) for981

a continuous ϕ. For a compact domain Z ⊆ Rn×d, maps of the form V 7→ IGN(V V ⊤) universally982

approximate continuous functions h : Z ⊆ Rn×d → Rn that are O(d) invariant and permutation983

equivariant.984

Proof. The case without permutation equivariance holds by the First Fundamental Theorem of O(d)985

(Lemma 2).986

For the permutation equivariant case, let Z ′ = {V V ⊤ : V ∈ Z} and let ϵ > 0. Note that Z ′987

is compact, as it is the continuous image of a compact set. Since h is O(d) invariant, the first988

fundamental theorem of O(d) shows that there exists a continuous function ϕ : Z ′ ⊆ Rn×n → Rn989

such that h(V ) = ϕ(V V ⊤). Since h is permutation equivariant, for any permutation matrix P we990

have that991

h(PV ) = P · h(V ) (21)

ϕ(PV V ⊤P⊤) = P · ϕ(V V ⊤), (22)

so ϕ is a continuous permutation equivariant function from matrices to vectors. Then note that Keriven992

and Peyré [2019] show that invariant graph networks (of generally high tensor order in hidden layers)993

universally approximate continuous permutation equivariant functions from matrices to vectors on994

compact sets of matrices. Thus, an IGN can ϵ-approximate ϕ, and hence V 7→ IGN(V V ⊤) can995

ϵ-approximate h.996

G.1 Proof of Decomposition Theorem997

X1 × . . .×Xk

(X1/G1)× . . .× (Xk/Gk) Rs

Z = im(ψ) ⊆ Ra

π = π1 × . . . πk
f = f̃ ◦ πϕ = ψ ◦ π

ψ = ψ1 × . . .× ψk

f̃ψ−1

ρ = f̃ ◦ ψ−1

Figure 10: Commutative diagram for our proof of Theorem 3. Black arrows denote functions from
topological constructions, and red dashed lines denote functions that we parameterize by neural
networks (ϕ = ϕ1 × . . .× ϕk and ρ).

Here, we give the formal statement of Theorem 3, which provides the necessary topological assump-998

tions for the theorem to hold. In particular, we only require the Gi be a topological group that acts999

continuously on Xi for each i, and that there exists a topological embedding of each quotient space1000

into some Euclidean space. That the group action is continuous is a very mild assumption, and it1001

holds for any finite or compact matrix group, which all of the invariances we consider in this paper1002

can be represented as.1003

A topological embedding of the quotient space into a Euclidean space is desired, as we know how to1004

parameterize neural networks with Euclidean outputs and inputs, whereas dealing with a quotient1005
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space is generally difficult. Many different conditions can guarantee existence of such an embedding.1006

For instance, if the quotient space is a smooth manifold, then the Whitney Embedding Theorem1007

(Lemma 5) guarantees such an embedding. Also, if the base space Xi is a Euclidean space and Gi is1008

a finite or compact matrix Lie group, then a map built from G-invariant polynomials gives such an1009

embedding (González and de Salas [2003] Lemma 11.13).1010

Figure 10 provides a commutative diagram representing the constructions in our proof.1011

Theorem 3 (Decomposition Theorem). Let X1, . . . ,Xk be topological spaces, and let Gi be a1012

topological group acting continuously on Xi for each i. Assume that there is a topological embedding1013

ψi : Xi/Gi → Rai of each quotient space into a Euclidean space Rai for some dimension ai.1014

Then, for any continuous function f : X = X1 × . . .× Xk → Rs that is invariant to the action of1015

G = G1 × . . . × Gk, there exists continuous functions ϕi : Xi → Rai and a continuous function1016

ρ : Z ⊆ Ra → Rs, where a =
∑

i ai such that1017

f(v1, . . . , vk) = ρ(ϕ1(v1), . . . , ϕk(vk)). (23)

Furthermore: (1) each ϕi can be taken to be invariant to Gi, (2) the domain Z is compact if each Xi1018

is compact, (3) if Xi = Xj and Gi = Gj , then ϕi can be taken to be equal to ϕj .1019

Proof. Let πi : Xi → Xi/Gi denote the quotient map for Xi/Gi. Since each Gi acts continuously,1020

Lemma 3 gives that the quotient of the product space is the product of the quotient spaces, i.e. that1021

(X1 × . . .×Xk)/(G1 × . . . Gk) ∼= (X1/G1)× . . .× (Xk/Gk), (24)

and the corresponding quotient map π : X/G is given by1022

π = π1 × . . .× πk, π(x1, . . . , xk) = (π1(x1), . . . , πk(xk)). (25)

By passing to the quotient (Lemma 1), there exists a continuous f̃ : X/G → Rs on the quotient1023

space such that f = f̃ ◦ π. By Lemma 4, each Xi/Gi is compact if Xi is compact. Defining the1024

image Zi = ψi(Xi/Gi) ⊆ Rai , we thus know that Zi is compact if Xi is compact.1025

Moreover, as ψi is a topological embedding, it has a continuous inverse ψ−1
i on its image Zi. Further,1026

we have a topological embedding ψ : X/G → Z = Z1 × . . . × Zk given by ψ = ψ1 × . . . × ψk,1027

with continuous inverse ψ−1 = ψ−1
1 × . . .× ψ−1

k .1028

Note that1029

f = f̃ ◦ π = (f̃ ◦ ψ−1) ◦ (ψ ◦ π). (26)

So we define1030

ρ = f̃ ◦ ψ−1 ρ : Z → Rs (27)
ϕi = ψi ◦ πi ϕi : Xi → Zi (28)
ϕ = ψ ◦ π = ϕ1 × . . .× ϕk ϕ : X → Z (29)

Thus, f = ρ ◦ϕ = ρ ◦ (ϕ1 × . . .×ϕk), so equation (9) holds. Moreover, the ρ and ϕi are continuous,1031

as they are compositions of continuous functions. Furthermore, (1) holds as each ϕi is invariant1032

to Gi because each πi is invariant to Gi. Since each Zi is compact if Xi is compact, the product1033

Z = Z1 × . . .×Zk is compact if each Xi is compact, thus proving (2).1034

To show the last statement (3), note simply that if Xi = Xj and Gi = Gj , then the quotient maps are1035

equal, i.e. πi = πj . Moreover, we can choose the embeddings to be equal, so say ψi = ψj . Then,1036

ϕi = ψi ◦ πi = ψj ◦ πj = ϕj , so we are done.1037

G.2 Universality of SignNet and BasisNet1038

Here, we prove Corollary 1 on the universal representation and approximation capabilities of our1039

Unconstrained-SignNets, Unconstrained-BasisNets, and Expressive-BasisNets. We proceed in sev-1040

eral steps, first proving universal representation of continuous functions when we do not require1041

permutation equivariance, then proving universal approximation when we do require permutation1042

equivariance.1043
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G.2.1 Sign Invariant Universal Representation1044

Recall that Sn−1 denotes the unit sphere in Rn. As we normalize eigenvectors to unit norm, the1045

domain of our functions on k eigenvectors are on the compact space (Sn−1)k.1046

Corollary 2 (Universal Representation for SignNet). A continuous function f : (Sn−1)k → Rs is1047

sign invariant, i.e. f(s1v1, . . . , skvk) = f(v1, . . . , vk) for any si ∈ {−1, 1}, if and only if there1048

exists a continuous ϕ : Rn → R2n−2 and a continuous ρ : R(2n−2)k → Rs such that1049

f(v1, . . . , vk) = ρ
(
[ϕ(vi) + ϕ(−vi)]ki=1

)
. (30)

Proof. It can be directly seen that any f of the above form is sign invariant.1050

Thus, we show that any sign invariant f can be expressed in the above form. First, we show that1051

we can apply the general Theorem 3. The group Gi = {1,−1} acts continuously and satisfies that1052

Sn−1/{1,−1} = RPn−1, where RPn−1 is the real projective space of dimension n − 1. Since1053

RPn−1 is a smooth manifold of dimension n− 1, Whitney’s embedding theorem states that there1054

exists a (smooth) topological embedding ψi : RPn−1 → R2n−2 (Lemma 5).1055

Thus, we can apply the general theorem to see that f = ρ ◦ ϕ̃k for some continuous ρ and ϕ̃k. Note1056

that each ϕ̃i = ϕ̃ is the same, as each Xi = Sn−1 and Gi = {1,−1} is the same. Also, Theorem 31057

says that we may assume that ϕ̃ is sign invariant, so ϕ̃(x) = ϕ̃(−x). Letting ϕ(x) = ϕ̃(x)/2, we are1058

done with the proof.1059

G.2.2 Sign Invariant Universal Representation with Extra Features1060

Recall that we may want our sign invariant functions to process other data besides eigenvectors, such1061

as eigenvalues or node features associated to a graph. Here, we show universal representation for1062

when we have this other data that does not possess sign symmetry. The proof is a simple extension of1063

Corollary 2, but we provide the technical details for completeness.1064

Corollary 3 (Universal Representation for SignNet with features). For a compact space of features1065

Ω ⊆ Rd, let f(v1, . . . , vk, x1, . . . , xk) be a continuous function f : (Sn−1 × Ω)k → Rs.1066

Then f is sign invariant for the inputs on the sphere, i.e.1067

f(s1v1, . . . , skvk, x1, . . . , xk) = f(v1, . . . , vk, x1, . . . , xk) si ∈ {1,−1}, (31)

if and only if there exists a continuous ψ : Rn+d → R2n−2+d and a continuous ρ : R(2n−2+d)k → Rs1068

such that1069

f(v1, . . . , vk) = ρ (ϕ(v1, x1) + ϕ(−v1, x1), . . . , ϕ(vk, xk) + ϕ(−vk, xk)) . (32)

Proof. Once again, the sign invariance of any f in the above form is clear.1070

We follow very similar steps to the proof of Corollary 2 to show that we may apply Theorem 3. We1071

can view Ω as a quotient space, after quotienting by the trivial group that does nothing, Ω ∼= Ω/{1}.1072

The corresponding quotient map is idΩ, the identity map. Also, Ω trivially topologically embeds in1073

Rd by the inclusion map.1074

As Gi = {−1, 1} × {1} acts continuously, by Lemma 3 we have that1075

(Sn−1 × Ω)/({1,−1} × {1}) ∼= (Sn−1/{1,−1})× (Ω/{1}) ∼= RPn−1 × Ω, (33)

with corresponding quotient map π × idΩ, where π is the quotient map to RPn−1.1076

Letting ψ̃ be the embedding of RPn−1 → R2n−2 guaranteed by Whitney’s embedding theorem1077

(Lemma 5), we have that ψ = ψ̃ × idΩ is an embedding of RPn−1 × Ω → R2n−2+d. Thus, we can1078

apply Theorem 3 to write f = ρ ◦ ϕ̃k for ϕ̃ = (ψ̃ × idΩ) ◦ (π × idΩ), so1079

ϕ̃(vi, xi) = (ψ̃(vi), xi), (34)

where ϕ̃(vi, xi) = ϕ̃(−vi, xi). Letting ϕ(vi, xi) = ϕ̃(vi, xi)/2, we are done.1080
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G.2.3 Basis Invariant Universal Representation1081

Recall that St(d, n) is the Stiefel manifold of d-tuples of vectors (v1, . . . , vd) where vi ∈ Rn1082

and v1, . . . , vd are orthonormal. This is where our inputs lie, as our eigenvectors are unit norm and1083

orthogonal. We will also make use of the Grassmannian Gr(d, n), which consists of all d-dimensional1084

subspaces in Rn. This is because the Grassmannian is the quotient space for the group action we1085

want, Gr(d, n) ∼= St(d, n)/O(d), where Q ∈ O(d) acts on V ∈ St(d, n) ⊆ Rn×d by mapping V to1086

V Q [Gallier and Quaintance, 2020].1087

Corollary 4 (Universal Representation for BasisNet). For dimensions d1, . . . , dl ≤ n let f be a1088

continuous function on St(d1, n)× . . .× St(dl, n). Further assume that f is invariant to O(d1)×1089

. . .×O(dl), where O(di) acts on St(di, n) by multiplication on the right.1090

Then there exist continuous ρ : R
∑l

i=1 2di(n−di) → Rs and continuous ϕi : St(di, n) → R2di(n−di)1091

such that1092

f(V1, . . . , Vl) = ρ (ϕ1(V1), . . . , ϕl(Vl)) , (35)
where the ϕi are O(di) invariant functions, and we can take ϕi = ϕj if di = dj .1093

Proof. Letting Xi = St(di, n) and Gi = O(di), it can be seen that Gi acts continuously on Xi. Also,1094

we have that the quotient space St(di, n)/O(di) = Gr(di, n) is the Grassmannian of di dimensional1095

subspaces in Rn, which is a smooth manifold of dimension di(n−di). Thus, the Whitney embedding1096

theorem (Lemma 5) gives a topological embedding ψi : Gr(di, n) → R2di(n−di).1097

Hence, we may apply Theorem 3 to obtain continuous O(di) invariant ϕi : St(di, n) → R2di(n−di)1098

and continuous ρ : R
∑l

i=1 2di(n−di) → Rs, such that f = ρ ◦ (ϕ1 × . . .× ϕl). Also, if di = dj , then1099

Xi = Xj and Gi = Gj , so we can take ϕi = ϕj .1100

1101

G.2.4 Basis Invariant and Permutation Equivariant Universal Approximation1102

With the restriction that f(V1, . . . , Vl) : Rn×
∑

i di → Rn be permutation equivariant and basis invari-1103

ant, we need to use the impractically expensive Expressive-BasisNet to approximate f . Universality1104

of permutation invariant or equivariant functions from matrices to scalars or matrices to vectors is1105

difficult to achieve in a computationally tractable manner [Maron et al., 2019, Keriven and Peyré,1106

2019, Maehara and NT, 2019]. One intuitive reason to expect this is that universally approximating1107

such functions allows solution of the graph isomorphism problem [Chen et al., 2019b], which is a1108

computationally difficult problem. While we have exact representation of basis invariant functions1109

by continuous ρ and ϕi when there is no permutation equivariance constraint, we can only achieve1110

approximation up to an arbitrary ϵ > 0 when we require permutation equivariance.1111

Corollary 5 (Universal Approximation for Expressive-BasisNets). Let f(V1, . . . , Vl) : St(d1, n)×1112

. . .× St(dl, n) → Rn be continuous, O(d1)× . . .×O(dl) invariant, and permutation equivariant.1113

Then f can be ϵ-approximated by an Expressive-BasisNet.1114

Proof. By invariance, Corollary 4 of the decomposition theorem shows that f can be written as1115

f(V1, . . . , Vl) = ρ (φd1(V1), . . . , φdl
(Vl)) (36)

for some continuous O(di) invariant φdi
and continuous ρ. By the first fundamental theorem of O(d)1116

(Lemma 2), each φdi
can be written as φdi

(Vi) = ϕdi
(ViV

⊤
i ) for some continuous ϕdi

. Let1117

Z = {(V1V ⊤
1 , . . . , VlV

⊤
l ) : Vi ∈ St(di, n)} ⊆ Rn2×l, (37)

which is compact as it is the image of the compact space St(d1, n)×. . .×St(dl, n) under a continuous1118

function. Define h : Z ⊆ Rn2×l → Rn by1119

h(V1V
⊤
1 , . . . , VlV

⊤
l ) = ρ

(
ϕd1(V1V

⊤
1 ), . . . , ϕdl

(VlV
⊤
l )
)
. (38)

Then note that h is continuous and permutation equivariant from matrices to vectors, so it can be1120

ϵ-approximated by an invariant graph network [Keriven and Peyré, 2019], call it ĨGN. If we define1121

ρ̃ = ĨGN and IGNdi(ViV
⊤
i ) = ViV

⊤
i (this identity operation is linear and permutation equivariant,1122

so it can be exactly expressed by an IGN), then we have ϵ-approximation of f by1123

ĨGN(V1V
⊤
1 , . . . , VlV

⊤
l ) = ρ̃

(
IGNd1(V1V

⊤
1 ), . . . , IGNdl

(VlV
⊤
l )
)
. (39)

1124
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G.3 Proof of Universal Approximation for General Decompositions1125

Theorem 4. Consider the same setup as Theorem 3, where Xi are also compact. Let Φi be a1126

family of Gi-invariant functions that universally approximate Gi-invariant continuous functions1127

Xi → Rai , and let R be a set of continuous function that universally approximate continuous1128

functions Z ⊆ Ra → Rs for every compact Z , where a =
∑

i ai. Then for any ε > 0 and any1129

G-invariant continuous function f : X1 × . . .× Xk → Rs there exists ϕ ∈ Φ and ρ ∈ R such that1130

∥f − ρ(ϕ1, . . . , ϕk)∥∞ < ε.1131

Proof. Consider a particular G-invariant continuous function f : X1 × . . . × Xk → Rs. By1132

Theorem 3 there exists Gi-invariant continuous functions ϕ′i : Xi → Rai and a continuous function1133

ρ′ : Z ⊆ Ra → Rs (where a =
∑

i ai) such that1134

f(v1, . . . , vk) = ρ′(ϕ′1(v1), . . . , ϕ
′
k(vk)).

Now fix an ε > 0. For any ρ ∈ R and any ϕi ∈ Φi (i = 1, . . . k) we may bound the difference from1135

f as follows (suppressing the vi’s for brevity),1136

∥f − ρ(ϕ1, . . . , ϕk)∥∞
= ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞
= ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ

′
k) + ρ(ϕ′1, . . . , ϕ

′
k)− ρ(ϕ1, . . . , ϕk)∥∞

≤ ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ
′
k)∥∞ + ∥ρ(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞

= I + II

Now let K ′ =
∏k

i=1 imϕ′i. Since each ϕ′i is continuous and defined on a compact set Xi we know1137

that imϕ′i is compact, and so the product K is also compact. Since K ′ is compact, it is contained in a1138

closed ball B(r) of radius r > 0 centered at the origin. Let K be the closed ball B(r + 1) of radius1139

r + 1 centered at the origin, so K contains K ′ and a ball of radius 1 around each point of K ′. We1140

may extend ρ′ continuously to K as needed, so assume ρ′ : K → Rs. By universality of R we may1141

pick a particular ρ : K → Rs, ρ ∈ R such that1142

I = sup
{vi∈Xi}k

i=1

∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ
′
k)∥∞ ≤ sup

z∈K
∥ρ′(z)− ρ(z)∥2 < ε/2.

Keeping this choice of ρ, it remains only to bound II. As ρ is continuous on a compact domain, it1143

is in fact uniformly continuous. Thus, we can choose a δ′ > 0 such that if ∥y − z∥2 ≤ δ′, then1144

∥ρ(y)− ρ(z)∥∞ < ϵ/2, and then we define δ = min(δ′, 1).1145

Since Φi universally approximates ϕ′i we may pick ϕi ∈ Φi such that ∥ϕi − ϕ′i∥∞ < δ/
√
k, and1146

thus ∥(ϕ1, . . . , ϕk) − (ϕ′1, . . . ϕ
′
k)∥∞ ≤ δ. With this choice of ϕi, we know that

∏k
i=1 imϕi ⊆ K1147

(because each ϕi(xi) is within distance 1 of ϕ′i(xi)). Thus, ρ(ϕ1(x1), . . . , ϕk(xk)) is well-defined,1148

and we have1149

II = ∥ρ(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞
= sup

{xi∈Xi}k
i=1

∥ρ(ϕ′1(x1), . . . , ϕ′k(xk))− ρ(ϕ1(x1), . . . , ϕk(xk))∥2

< ε/2

due to our choice of δ, which completes the proof.1150

H Basis Invariance for Graph Representation Learning1151

H.1 Spectral Graph Convolution1152

In this section, we consider spectral graph convolutions, which for node features X ∈ Rn×q take the1153

form f(V,Λ, X) =
∑n

i=1 θiviv
⊤
i X for some parameters θi. We can optionally take θi = h(λi) for1154

some continuous function h : R → R of the eigenvalues. This form captures most popular spectral1155

graph convolutions in the literature [Bruna et al., 2014, Hamilton, 2020, Bronstein et al., 2017]; often,1156

such convolutions are parameterized by taking h to be some analytic function such as a simple affine1157

function [Kipf and Welling, 2017], a linear combination in a polynomial basis [Defferrard et al.,1158
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2016, Chien et al., 2021], or a parameterization of rational functions [Levie et al., 2018, Bianchi et al.,1159

2021].1160

First, it is well known and easy to see that spectral graph convolutions are permutation equivariant, as1161

for a permutation matrix P we have1162

f(PV,Λ, PX) =
∑
i

θiPviv
⊤
i P

⊤PX =
∑
i

θiPviv
⊤
i X = Pf(V,Λ, X). (40)

Also, it is easy to see that they are sign invariant, as (−vi)(−vi)⊤ = viv
⊤
i . However, if the θi do not1163

depend on the eigenvalues, then the spectral graph convolution is not necessarily basis invariant. For1164

instance, if v1 and v2 are in the same eigenspace, and we change basis by permuting v′1 = v2 and1165

v′2 = v1, then if θ1 ̸= θ2 the spectral graph convolution will generally change as well.1166

On the other hand, if θi = h(λi) for some function h : R → R, then the spectral graph convolution1167

is basis invariant. This is because if vi and vj belong to the same eigenspace, then λi = λj so1168

h(λi) = h(λj). Thus, if vi1 , . . . , vid are eigenvectors of the same eigenspace with eigenvalue λ,1169

we have that
∑d

l=1 h(λil)vilv
⊤
il
= h(λ)

∑d
l=1 vilv

⊤
il

. Now, note that
∑d

l=1 vilv
⊤
il

is the orthogonal1170

projector onto the eigenspace [Trefethen and Bau III, 1997]. A change of basis does not change this1171

orthogonal projector, so such spectral graph convolutions are basis invariant.1172

Another way to see this basis invariance is with a simple computation. Let V1, . . . , Vl be the1173

eigenspaces of dimension d1, . . . , dl, where Vi ∈ Rn×di . Let the corresponding eigenvalues be1174

µ1, . . . , µl. Then for any orthogonal matrices Qi ∈ O(di), we have1175

n∑
i=1

h(λi)viv
⊤
i =

l∑
j=1

Vjh(µj)Idj
V ⊤
j (41)

=

l∑
j=1

Vjh(µj)Idj
QjQ

⊤
j V

⊤
j (42)

=

l∑
j=1

(VjQj)h(µj)Idj
(VjQj)

⊤, (43)

so the spectral graph convolution is invariant to substituting VjQj for Vj .1176

Now, we give the proof that shows SignNet and BasisNet can universally approximate spectral graph1177

convolutions.1178

Theorem 1 (Learning Spectral Graph Convolutions). Suppose the node features X ∈ Rn×q take1179

values in compact sets. Then SignNet can universally approximate any spectral graph convolution,1180

and both BasisNet and Expressive-BasisNet can universally approximate any parametric spectral1181

graph convolution.1182

Proof. Note that eigenvectors and eigenvalues of normalized Laplacian matrices take values in1183

compact sets, since the eigenvalues are in [0, 2] and we take eigenvectors to have unit-norm. Thus,1184

the whole domain of the spectral graph convolution is compact.1185

Let ε > 0. First, consider a spectral graph convolution f(V,Λ, X) =
∑n

i=1 θiviv
⊤
i X . For SignNet,1186

let ϕ(vi, λi, X) approximate the function ϕ̃(vi, λi, X) = θiviv
⊤
i X to within ε/n error, which1187

DeepSets can do since this is a continuous permutation equivariant function from vectors to vectors1188

[Segol and Lipman, 2019] (note that we can pass λi as a vector in Rn by instead passing λi1, where1189

1 is the all ones vector). Then ρ =
∑n

i=1 is a linear permutation equivariant operation that can1190

be exactly expressed by DeepSets, so the total error is within ε. The same argument applies when1191

θi = h(λi) for some continuous function h.1192

For the basis invariant case, consider a parametric spectral graph convolution f(V,Λ, X) =1193 ∑n
i=1 h(λi)viv

⊤
i X . Note that if the eigenspace bases are V1, . . . , Vl with eigenvalues µ1, . . . , µl, we1194

can write the f(V,Λ, X) =
∑l

i=1 h(µj)VjV
⊤
j X . Again, we will let ρ =

∑l
i=1 be a sum function,1195

which can be expressed exactly by DeepSets. Thus, it suffices to show that h(µj)VjV
⊤
j X can be ϵ/n1196

approximated by a 2-IGN (i.e. an IGN that only uses vectors and matrices).1197
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Note that since h is continuous, we can use an elementwise MLP (which IGNs can learn) to1198

approximate f1(µ11⊤, V V ⊤, X) = (h(µ)11⊤, V V ⊤, X) to arbitrary precision (note that we rep-1199

resent the eigenvalue µ as a constant matrix µ11⊤). Also, since a 2-IGN can learn matrix vector1200

multiplication (Cai and Wang [2022] Lemma 10), we can approximate f2(h(µ)11⊤, V V ⊤, X) =1201

(h(µ)11⊤, V V ⊤X), as ViV ⊤
i ∈ Rn2

is a matrix and X ∈ Rn×q is a vector with respect to permuta-1202

tion symmetries. Finally, we use an elementwise MLP to approximate the scalar-vector multiplication1203

f3(h(µ)11
⊤, V V ⊤, X) = h(µ)V V ⊤X . Since f3 ◦ f2 ◦ f1(µ11⊤, V V ⊤, X) = h(µ)V V ⊤X , and1204

since 2-IGNs universally approximate each fi, applying Lemma 6 shows that a 2-IGN can approx-1205

imate h(µ)V V ⊤X to ϵ/n accuracy, so we are done. Since Expressive-BasisNet is stronger than1206

BasisNet, it can also universally approximate these functions.1207

From the proof, we can see that SignNet and BasisNet need only learn simple functions for the ρ and1208

ϕ when h is simple, or when the filter is non-parametric and we need only learn θi. Xu et al. [2020]1209

propose the principle of algorithmic alignment, and show that if separate modules of a neural network1210

each need only learn simple functions (that is, functions that are well-approximated by low-order1211

polynomials with small coefficients), then the network may be more sample efficient. If we do not1212

require permutation equivariance, and parameterize SignNet and BasisNet with simple MLPs, then1213

algorithmic alignment may suggest that our models are sample efficient. Indeed, ρ =
∑

is a simple1214

linear function with coefficients 1, and ϕ(V, λ,X) = h(λ)V V ⊤X is quadratic in V and linear in X ,1215

so it is simple if h is simple.1216

Proposition 3. There exist infinitely many pairs of non-isomorphic graphs that SignNet and BasisNet1217

can distinguish, but spectral graph convolutions or spectral GNNs cannot distinguish.1218

Proof. The idea is as follows: we will take graphs G and give them the node feature matrix XG =1219

D1/21, i.e. each node has as feature the square root of its degree. Then any spectral graph convolution1220

(or, the first layer of any spectral GNN) will map VDiag(θ)V ⊤X to something that only depends on1221

the degree sequence and number of nodes. Thus, any spectral graph convolution or spectral GNN1222

will have the same output (up to permutation) for any such graphs G with node features XG and the1223

same number of nodes and same degree sequence. On the other hand, SignNet and BasisNet can1224

distinguish between infinitely many pairs of graphs (G(1), G(2)) with node features (XG(1) , XG(2))1225

and the same number of nodes and degree sequence; this is because SignNet and BasisNet can tell1226

when a graph is bipartite.1227

For each n ≥ 5, we will define G(1) and G(2) as connected graphs with n nodes, with the same1228

degree sequence. Also, we define G(1) to have node features X(1)
i =

√
d
(1)
i , where d(1)i is the degree1229

of node i in G(1), and similarly G(2) has node features X(2)
i =

√
d
(2)
i . Now, note that X(1) is an1230

eigenvector of the normalized Laplacian of G(1), and it has eigenvalue 0. As we take the eigenvectors1231

to be orthonormal (since the normalized Laplacian is symmetric), for any spectral graph convolution1232

we have that1233

n∑
i=1

θiviv
⊤
i X

(1) = θ1v1v
⊤
1 X

(1) = θ1D
1/2
1 1(D

1/2
1 1)⊤D

1/2
1 1 = θ1

n∑
j=1

(d
(1)
j )D

1/2
1 1. (44)

Where D1 is the diagonal degree matrix of G(1). Likewise, any spectral graph convolution outputs1234

θ1
∑

j(d
(2)
j )D

1/2
2 1 for G(2). Since D1 and D2 are the same up to a permutation, we have that any1235

spectral graph convolution has the same output for G(1) and G(2), up to a permutation. In fact, this1236

also holds for spectral GNNs, as the first layer will always have the same output (up to a permutation)1237

on G(1) and G(2), so the latter layers will also have the same output up to a permutation.1238

Now, we concretely define G(1) and G(2). This is illustrated in Figure 11 and Figure 12. For n = 5,1239

let G(1) contain a triangle with nodes w1, w2, w3, and have a path of length 2 coming out of one of1240

the nodes in the triangle, say w1 connects to w4, and w4 connects to w5. This is not bipartite, as there1241

is a triangle. Let G(2) be a bipartite graph that has 2 nodes on the left (v1, v2) and 3 nodes on the1242

right (v3, v4, v5). Connect v1 with all nodes on the right, and connect v2 with v3 and v4.1243

Note that both G(1) and G(2) have the same number of nodes and the same degree sequence1244

{3, 2, 2, 2, 1}. Thus, spectral graph convolutions or spectral GNNs cannot distinguish them. How-1245
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w1
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G(2)

Figure 11: Illustration of our constructed G(1) and G(2) for n = 5, as used in the proof of Proposi-
tion 3.

w1

w2 w3

w4 w5 w6

G(1)

v1

v2

v3

v4

v5v6

G(2)

Figure 12: Illustration of our constructed G(1) and G(2) for n = 6, as used in the proof of Proposi-
tion 3.

ever, SignNet and BasisNet can distinguish them, as they can tell whether a graph is bipartite by1246

checking the highest eigenvalue of the normalized Laplacian. This is because the multiplicity of1247

the eigenvalue 2 is the number of bipartite components. In particular, SignNet can approximate1248

the function ϕ(vi, λi, X) = λi and ρ ≈ maxni=1. Likewise, BasisNet can approximate the function1249

ϕdi
(ViV

⊤
i , λi) = λi and ρ ≈ maxli=1.1250

This in fact gives an infinite family of graphs that SignNet / BasisNet can distinguish, but spectral1251

graph convolutions or spectral graph GNNs cannot. To see why, suppose we have G(1) and G(2) for1252

some n ≥ 5. Then we construct a pair of graphs on n+ 1 nodes with the same degree sequence. To1253

do this, we add another node to the path of G(1), thus giving it degree sequence {3, 2, . . . , 2, 1}. For1254

G(2), we add a node vn+1 to the side that vn is not contained on (e.g. for n = 5, we add v6 to the left1255

side, as v5 was on the right), then connect vn to vn+1 to also give a degree sequence {3, 2, . . . , 2, 1}.1256

Note that the non-bipartiteness of G(1) and bipartiteness of G(2) are preserved.1257

1258

H.2 Existing Positional Encodings1259

Here, we show that our SignNets and BasisNets universally approximate various types of existing1260

graph positional encodings. The key is to show that these positional encodings are related to spectral1261

graph convolution matrices and the diagonals of these matrices, and to show that our networks can1262

approximate these matrices and diagonals.1263

Proposition 5. If the eigenvalues take values in a compact set, SignNets and BasisNets universally ap-1264

proximate the diagonal of any spectral graph convolution matrix f(V,Λ) = diag
(∑n

i=1 h(λi)viv
⊤
i

)
.1265

BasisNets can additionally universally approximate any spectral graph convolution matrix f(V,Λ) =1266 ∑n
i=1 h(λi)viv

⊤
i .1267

Proof. Note that the vi come from a compact set as they are of unit norm. The λi are from a compact1268

set by assumption; this assumption holds for the normalized Laplacian, as λi ∈ [0, 2]. Also, as diag1269

is linear, the spectral graph convolution diagonal can be written
∑n

i=1 h(λi)diag(viv
⊤
i ).1270
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Let ϵ > 0. For SignNet, let ρ =
∑n

i=1, which can be exactly expressed as it is a permutation1271

equivariant linear operation from vectors to vectors. Then ϕ(vi, λi) can approximate the function1272

λidiag(viv
⊤
i ) to arbitrary precision, as it is a permutation equivariant function from vectors to1273

vectors [Segol and Lipman, 2019]. Thus, letting ϕ approximate the function to ϵ/n accuracy, SignNet1274

can approximate f to ϵ accuracy.1275

Let l be the number of eigenspaces V1, . . . , Vl, so f(V,Λ) =
∑l

i=1 h(µi)ViV
⊤
i . For BasisNet, we1276

need only show that it can approximate the spectral graph convolution matrix to ϵ/l accuracy, as a1277

2-IGN can exactly express the diag function in each ϕdi
, since it is a linear permutation equivariant1278

function from matrices to vectors. A 2-IGN can universally approximate the function f1(µi, ViV
⊤
i ) =1279

(h(µi), ViV
⊤
i ), as it can express any elementwise MLP. Also, a 2-IGN can universally approximate1280

the scalar-matrix multiplication f2(h(µi), ViV
⊤
i ) = h(µi)ViV

⊤
i by another elementwise MLP.1281

Since h(µi)ViV
⊤
i = f2 ◦ f1(µi, ViV

⊤
i ), Lemma 6 shows that a single 2-IGN can approximate this1282

composition to ϵ/l accuracy, so we are done.1283

1284

Proposition 4. SignNet and BasisNet universally approximate node positional encodings based on1285

heat kernels [Feldman et al., 2022] and random walks [Dwivedi et al., 2022]. BasisNet universally1286

approximates diffusion and p-step random walk relative positional encodings [Mialon et al., 2021],1287

and generalized PageRank and landing probability distance encodings [Li et al., 2020].1288

Proof. We will show that we can apply the above Proposition 5, by showing that all of these1289

positional encodings are spectral graph convolutions. The heat kernel embeddings are of the form1290

diag
(∑n

i=1 exp(−tλi)viv⊤i
)

for some choices of the parameter t, so they can be approximated by1291

SignNets or BasisNets. Also, the diffusion kernel [Mialon et al., 2021] is just the matrix of this1292

heat kernel, and the p-step random walk kernel is
∑n

i=1(1− γλi)
pviv

⊤
i for some parameter γ, so1293

BasisNets can universally approximate both of these.1294

For the other positional encodings, we let vi be the eigenvectors of the random walk Laplacian1295

I −D−1A instead of the normalized Laplacian I −D−1/2AD−1/2. The eigenvalues of these two1296

Laplacians are the same, and if ṽi is an eigenvector of the normalized Laplacian then D−1/2ṽi is an1297

eigenvector of the random walk Laplacian with the same eigenvalue [Von Luxburg, 2007].1298

Then with vi as the eigenvectors of the random walk Laplacian, the random walk positional encodings1299

(RWPE) in Dwivedi et al. [2022] take the form1300

diag
(
(D−1A)k

)
= diag

(
n∑

i=1

(1− λi)
kviv

⊤
i

)
, (45)

for any choices of integer k.1301

The distance encodings proposed in Li et al. [2020] take the form1302

f3(AD
−1, (AD−1)2, (AD−1)3, . . .), (46)

for some function f3. We restrict to continuous f3 here; shortest path distances can be obtained by a1303

discontinuous f3 that we discuss below. Their generalized PageRank based distance encodings can1304

be obtained by1305

n∑
i=1

∑
k≥1

γk(1− λi)
k

 viv
⊤
i (47)

for some γk ∈ R, so this is a spectral graph convolution. They also define so-called landing probability1306

based positional encodings, which take the form1307

n∑
i=1

(1− λi)
kviv

⊤
i , (48)

for some choices of integer k. Thus, BasisNets can approximate these distance encoding matrices.1308

Another powerful class of positional encodings is based on shortest path distances between nodes1309

in the graph [Ying et al., 2021, Li et al., 2020]. Shortest path distances can be expressed in a1310
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form similar to the spectral graph convolution, but require a highly discontinuous function. If we1311

define f3(x1, . . . , xn) = mini:xi ̸=0 i to be the lowest index such that xi is nonzero, then we can1312

write the shortest path distance matrix as f3(D−1A, (D−1A)2, . . . , (D−1A)n), where f3 is applied1313

elementwise to return an n× n matrix. As (D−1A)k =
∑n

i=1(1− λi)
kviv

⊤
i , BasisNets can learn1314

the inside arguments, but cannot learn the discontinuous function f3.1315

H.3 Spectral Invariants1316

Here, we consider the graph angles αij = ∥ViV ⊤
i ej∥2, for i = 1, . . . , l where l is the number of1317

eigenspaces, and j = 1, . . . , n. It is clear that graph angles are permutation equivariant and basis1318

invariant. These graph angles have been extensively studied, so we cite a number of interesting1319

properties of them. That graph angles determine the number of length 3, 4 and 5 cycles, the1320

connectivity of a graph, and the number of length k closed walks is all shown in Chapter 4 of Cvetković1321

et al. [1997]. Other properties may be of use for graph representation learning as well. For instance,1322

the eigenvalues of node-deleted subgraphs of a graph G are determined by the eigenvalues and graph1323

angles of G; this may be useful in extending recent graph neural networks that are motivated by node1324

deletion and the reconstruction conjecture [Cotta et al., 2021, Bevilacqua et al., 2022, Papp et al.,1325

2021, Tahmasebi et al., 2020].1326

Now, we prove that BasisNet can universally approximate the graph angles. The graph properties we1327

consider in the theorem are all integer valued (e.g. the number of cycles of length 3 in a graph is an1328

integer). Thus, any two graphs that differ in these properties will differ by at least 1, so as long as1329

we have approximation to ε < 1/2, we can distinguish any two graphs that differ in these properties.1330

Recall the statement of Theorem 2.1331

Theorem 2. BasisNet can universally approximate the graph angles αij . The eigenvalues and graph1332

angles (and thus BasisNets) can determine the number of length 3, 4, and 5 cycles, whether a graph1333

is connected, and the number of length k closed walks from any vertex to itself.1334

Proof. Note that the graph angles satisfy1335

αij = ∥ViV ⊤
i ej∥2 =

√
e⊤j ViV

⊤
i ViV

⊤
i ej =

√
e⊤j ViV

⊤
i ej , (49)

where Vi is a basis for the ith adjacency matrix eigenspace, and e⊤j ViV
⊤
i ej is the (j, j)-entry of ViV ⊤

i .1336

These graph angles are just the elementwise square roots of the diagonals of the matrices ViV ⊤
i .1337

As f1(ViV ⊤
i ) = diag(ViV

⊤
i ) is a permutation equivariant linear function from matrices to vectors,1338

2-IGN on ViV ⊤
i can exactly compute this with 0 error. Then a 2-IGN can learn an elementwise1339

MLP to approximate the elementwise square root f2(diag(ViV ⊤
i )) =

√
diag(ViV ⊤

i ) to arbitrary1340

precision. Finally, there may be remaining operations f3 that are permutation invariant or permutation1341

equivariant from vectors to vectors; for instance, the αij are typically gathered into a matrix of size1342

l × n where the columns are lexicographically sorted (l is the number of eigenspaces) [Cvetković1343

et al., 1997], or we may have a permutation invariant readout to compute a subgraph count. A1344

DeepSets can approximate f3 without any higher order tensors besides vectors [Zaheer et al., 2017,1345

Segol and Lipman, 2019].1346

As 2-IGNs can approximate each fi individually, a single 2-IGN can approximate f3 ◦ f2 ◦ f1 by1347

Lemma 6. Also, since the graph properties considered in the theorem are integer-valued, BasisNet1348

can distinguish any two graphs that differ in one of these properties.1349

To see that message passing graph neural networks (MPNNs) cannot determine these quantities, we1350

use the fact that MPNNs cannot distinguish between two graphs that have the same number of nodes1351

and where each node (in both graphs) has the same degree. For k ≥ 3, let Ck denote the cycle graph1352

of size k, and Ck + Ck denote the graph that is the union of two disjoint cycle graphs of size k.1353

MPNNs cannot distinguish between C2k and Ck +Ck for k ≥ 3, because they have the same number1354

of nodes, and each node has degree 2. Thus, MPNNs cannot tell whether a graph is connected, as1355

C2k is but Ck + Ck is not. Also, it cannot count the number of 3, 4, or 5 cycles, as Ck + Ck has two1356

k cycles while C2k has no k cycles. Likewise, any node in Ck + Ck has more length k closed walks1357

than any node in C2k. This is because any length k closed walk in C2k has an analogous closed walk1358

in Ck + Ck, but the nodes in Ck + Ck also have a closed walk that completely goes around a cycle.1359
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I Useful Lemmas1360

In this section, we collect useful lemmas for our proofs. These lemmas generally only require basic1361

tools to prove. Our first lemma is a crucial property of quotient spaces.1362

Lemma 1 (Passing to the quotient). Let X and Y be topological spaces, and let X/G be a quotient1363

space, with corresponding quotient map π. Then for every continuous G-invariant function f : X →1364

Y , there is a unique continuous f̃ : X/G→ Y such that f = f̃ ◦ π.1365

Proof. For z ∈ X/G, by surjectivity of π we can choose an xz ∈ X such that π(xz) = z. Define1366

f̃ : X/G→ Y by f̃(z) = f(xz). This is well-defined, since if π(xz) = π(x) for any other x ∈ X ,1367

then gxz = x for some g ∈ G, so1368

f(x) = f(gxz) = f(xz) = f̃(z), (50)

where the second equality uses the G-invariance of f . Note that f̃ is continuous by the universal1369

property of quotient spaces. Also, f̃ is the unique function such that f = f̃ ◦ π; if there were another1370

function h : X/G→ Y with h(z) ̸= f̃(z), then h(z) ̸= f(xz), so h(π(xz)) = h(z) ̸= f(xz).1371

Next, we give the First Fundamental Theorem of O(d), a classical result that has been recently used1372

for machine learning by Villar et al. [2021]. This result shows that an orthogonally invariant f(V )1373

can be expressed as a function h(V V ⊤). We give a proof that if f is continuous, then h is also1374

continuous.1375

Lemma 2 (First Fundamental Theorem of O(d)). A continuous function f : Rn×d → Rs is1376

orthogonally invariant, i.e. f(V Q) = f(V ) for all Q ∈ O(d), if and only if f(V ) = h(V V ⊤) for1377

some continuous h.1378

Proof. If f(V ) = h(V V ⊤), then we have f(V Q) = h(V QQ⊤V ⊤) = h(V V ⊤) so f is orthogonally1379

invariant.1380

For the other direction, invariant theory shows that the O(d) invariant polynomials are generated1381

by the inner products v⊤i vj , where vi ∈ Rd are the rows of V [Kraft and Procesi, 1996]. Let p :1382

Rn×d → Rn×n be the map p(V ) = V V ⊤. Then González and de Salas [2003] Lemma 11.13 shows1383

that the quotient space Rn×d/O(d) is homeomorphic to a closed subset p(Rn×d) = Z ⊆ Rn×n.1384

Let p̃ refer to this homeomorphism, and note that p̃ ◦ π = p by passing to the quotient (Lemma 1).1385

Then any continuous O(d) invariant f passes to a unique continuous f̃ : Rn×d/O(d) → Rs1386

(Lemma 1), so f = f̃ ◦ π where π is the quotient map. Define h : Z → Rs by h = f̃ ◦ p̃−1, and1387

note that h is a composition of continuous functions and hence continuous. Finally, we have that1388

h(V V ⊤) = h(p̃ ◦ π(V )) = f̃ ◦ π(V ) = f(V ), so we are done.1389

The next lemma allows us to decompose a quotient of a product space into a product of smaller1390

quotient spaces.1391

Lemma 3. Let X1, . . . ,Xk be topological spaces and G1, . . . , Gk be topological groups such that1392

each Gi acts continuously on Xi. Denote the quotient maps by πi : Xi → Xi/Gi. Then the quotient1393

of the product is the product of the quotient, i.e.1394

(X1 × . . .×Xk)/(G1 × . . .×Gk) ∼= (X1/G1)× . . .× (Xk/Gk), (51)
and π1 × . . .× πk : X1 × . . .Xk → (X1/G1)× . . .× (Xk/Gk) is quotient map.1395

Proof. First, we show that π1 × . . . × πk is a quotient map. This is because 1. the quotient map1396

of any continuous group action is an open map, so each πi is an open map, 2. the product of open1397

maps is an open map, so π1 × . . .× πk is an open map and 3. a continuous surjective open map is a1398

quotient map, so π1 × . . .× πk, which is continuous and surjective, is a quotient map.1399

Now, we need only apply the theorem of uniqueness of quotient spaces to show (51) (see e.g. Lee1400

[2013], Theorem A.31). Letting q : X1 × . . . × Xk → (X1 × . . . × Xk)/(G1 × . . . × Gk) denote1401

the quotient map for this space, it is easily seen that q(x1, . . . , xk) = q(y1 . . . , yk) if and only if1402

π1 × . . .× πk(x1, . . . , xk) = π1 × . . .× πk(y1, . . . , yk), since either of these is true if and only if1403

there exist gi ∈ Gi such that xi = giyi for each i. Thus, we have an isomorphism of these quotient1404

spaces.1405
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The following lemma shows that quotients of compact spaces are also compact, which is useful for1406

universal approximation on quotient spaces.1407

Lemma 4 (Compactness of quotients of compact spaces). Let X be a compact space. Then the1408

quotient space X/G is compact.1409

Proof. Denoting the quotient map by π : X → X/G and letting {Uα}α be an open cover of X/G,1410

we have that {π−1(Uα)}α is an open cover of X . By compactness of X , we can choose a finite1411

subcover {π−1(Uαi)}i=1,...,n. Then {π(π−1(Uαi))}i=1,...,n = {Uαi}i=1,...,n by surjectivity, and1412

{Uαi
}i=1,...,n is thus an open cover of X/G.1413

The Whitney embedding theorem gives a nice condition that we apply to show that the quotient1414

spaces X/G that we deal with embed into Euclidean space. It says that when X/G is a smooth1415

manifold, then it can be embedded into a Euclidean space of double the dimension of the manifold.1416

The proof is outside the scope of this paper.1417

Lemma 5 (Whitney Embedding Theorem [Whitney, 1944]). Every smooth manifold M of dimension1418

n > 0 can be smoothly embedded in R2n.1419

Finally, we give a lemma that helps prove universal approximation results. It says that if functions1420

f that we want to approximate can be written as compositions f = fL ◦ . . . ◦ f1, then it suffices1421

to universally approximate each fi and compose the results to universally approximate the f . This1422

is especially useful for proving universality of neural networks, as we may use some layers to1423

approximate each fi, then compose these layers to approximate the target function f .1424

Lemma 6 (Layer-wise universality implies universality). Let Z ⊆ Rd0 be a compact domain, let1425

F1, . . . ,FL be families of continuous functions where Fi consists of functions from Rdi−1 → Rdi1426

for some d1, . . . , dL. Let F be the family of functions {fL ◦ . . . f1 : Z → RdL , fi ∈ Fi} that are1427

compositions of functions fi ∈ Fi.1428

For each i, let Φi be a family of continuous functions that universally approximates Fi. Then the1429

family of compositions Φ = {ϕL ◦ . . . ◦ ϕ1 : ϕi ∈ Φi} universally approximates F .1430

Proof. Let f = fL ◦ . . . ◦ f1 ∈ F . Let Z̃1 = Z , and then for i ≥ 2 let Z̃i = fi−1(Z̃i−1). Then each1431

Z̃i is compact by continuity of the fi. For 1 ≤ i < L, let Zi = Z̃i, and for i = L let ZL be a compact1432

set containing Z̃L such that every ball of radius one centered at a point in Z̃L is still contained in ZL.1433

Let ϵ > 0. We will show that there is a ϕ ∈ Φ such that ∥f −ϕ∥∞ < ϵ by induction on L. This holds1434

trivially for L = 1, as then Φ = Φ1.1435

Now, let L ≥ 2, and suppose it holds for L− 1. By universality of ΦL, we can choose a ϕL : ZL →1436

RdL ∈ ΦL such that ∥ϕL − fL∥∞ < ϵ/2. As ϕL is continuous on a compact domain, it is also1437

uniformly continuous, so we can choose a δ̃ > 0 such that ∥y− z∥2 < δ̃ =⇒ ∥ϕL(y)− ϕL(z)∥2 <1438

ϵ/2.1439

Let δ = min(δ̃, 1). By induction, we can choose ϕL−1 ◦ . . . ◦ ϕ1, ϕi ∈ Φi such that1440

∥ϕL−1 ◦ . . . ◦ ϕ1 − fL−1 ◦ . . . ◦ f1∥∞ < δ. (52)

Note that ϕL−1 ◦ . . . ◦ ϕ1(Z) ⊆ ZL, because for each x ∈ Z , ϕL−1 ◦ . . . ◦ ϕ1(x) is within δ ≤ 11441

Euclidean distance to fL−1 ◦ . . . ◦ f1(x) ∈ Z̃L, so it is contained in ZL by construction. Thus, we1442

may define ϕ = ϕL ◦ . . . ◦ ϕ1 : Z → RdL , and compute that1443

∥ϕ− f∥∞ ≤ ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ + ∥ϕL ◦ fL−1 ◦ . . . ◦ f1 − f∥∞ (53)
< ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ + ϵ/2, (54)

since ∥ϕL − fL∥∞ < ϵ/2. To bound this other term, let x ∈ Z , and for y = ϕL−1 ◦ . . . ◦ ϕ1(x)1444

and z = fL−1 ◦ . . . ◦ f1(x), we know that ∥y − z∥2 < δ, so ∥ϕL(y)− ϕL(z)∥2 < ϵ/2 by uniform1445

continuity. As this holds for all x, we have ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ ≤ ϵ/2, so ∥ϕ− f∥∞ < ϵ1446

and we are done.1447
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Table 7: Results on the ZINC dataset with 500k parameter budget and no edge features. Numbers are
the mean and standard deviation over 4 runs each with different seeds.

Base model Positional encoding k #params Test MAE (↓)

GIN
No PE 16 497k 0.348±0.014

LapPE (flip) 16 498k 0.341±0.011

SignNet 16 500k 0.238±0.012

GAT
No PE 16 501k 0.464±0.011

LapPE (flip) 16 502k 0.462±0.013

SignNet 16 499k 0.243±0.008

J Further Experiments1448

J.1 Graph Regression with no Edge Features1449

All graph regression models in Table 1 use edge features for learning and inference. To show that1450

SignNet is also useful when no edge features are available, we ran ZINC experiments without edge1451

features as well. The results are displayed in Table 7. In this setting, SignNet still significantly1452

improves the performance over message passing networks without positional encodings, and over1453

Laplacian positional encodings with sign flipping data augmentation.1454

J.2 Learning Spectral Graph Convolutions1455

Table 8: Sum of squared errors for spectral graph convolution regression (with no test set). Lower is
better. Numbers are mean and standard deviation over 50 images from He et al. [2021].

Low-pass High-pass Band-pass Band-rejection Comb

GCN .111±.068 3.092±5.11 1.720±3.15 1.418±1.03 1.753±1.17

GAT .113±.065 .954±.696 1.105±.964 .543±.340 .638±.446

GPR-GNN .033±.032 .012±.007 .137±.081 .256±.197 .369±.460

ARMA .053±.029 .042±.024 .107±.039 .148±.089 .202±.116

ChebNet .003±.002 .001±.001 .005±.003 .009±.006 .022±.016

BernNet .001±.002 .001±.001 .000±.000 .048±.042 .027±.019

Transformer 3.662±1.97 3.715±1.98 1.531±1.30 1.506±1.29 3.178±1.93

Transformer Eig Flip 4.454±2.32 4.425±2.38 1.651±1.53 2.567±1.73 3.720±1.94

Transformer Eig Abs 2.727±1.40 3.172±1.61 1.264±.788 1.445±.943 2.607±1.32

DeepSets SignNet .004±.013 .086±.405 .021±.115 .008±.037 .003±.016

Transformer SignNet .003±.016 .004±.025 .001±.004 .006±.023 .093±.641

DeepSets BasisNet .009±.018 .003±.015 .008±.030 .004±.011 .015±.060

Transformer BasisNet .079±.471 .014±.038 .005±.018 .006±.016 .014±.051

To numerically test the ability of our basis invariant networks for learning spectral graph convolutions,1456

we follow the experimental setups of Balcilar et al. [2020], He et al. [2021]. We take the dataset of 501457

images in He et al. [2021] (originally from the Image Processing Toolbox of MATLAB), and resize1458

them from 100×100 to 32×32. Then we apply the same spectral graph convolutions on them as in1459

He et al. [2021], and train neural networks to learn these as regression targets. As in prior work, we1460

report sum of squared errors on the training set to measure expressivity.1461

We compare against message passing GNNs [Kipf and Welling, 2017, Veličković et al., 2018] and1462

spectral GNNs [Chien et al., 2021, Bianchi et al., 2021, Defferrard et al., 2016, He et al., 2021].1463

Also, we consider standard Transformers with only node features, with eigenvectors and sign flip1464

augmentation, and with absolute values of eigenvectors. These models are all approximately sign1465

invariant (they either use eigenvectors in a sign invariant way or do not use eigenvectors). We use1466

DeepSets [Zaheer et al., 2017] in SignNet and 2-IGN [Maron et al., 2018] in BasisNet for ϕ, use1467

a DeepSets for ρ in both cases, and then feed the features into another DeepSets or a standard1468

Transformer [Vaswani et al., 2017] to make the final predictions. That is, we are only given graph1469

information through the eigenvectors and eigenvalues, and we do not use message passing.1470
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Table 8 displays the results, which validate our theoretical results in Section 3.1. Without any message1471

passing, SignNet and BasisNet allow DeepSets and Transformers to perform strongly, beating the1472

spectral GNNs GPR-GNN and ARMA on all tasks. Also, our networks outperform all other methods1473

on the band-rejection and comb filters, and are mostly close to the best model on the other filters.1474

K Further Experimental Details1475

K.1 Hardware, Software, and Data Details1476

All experiments could fit on one GPU at a time. Most experiments were run on a server with 81477

NVIDIA RTX 2080 Ti GPUs. We run all of our experiments in Python, using the PyTorch [Paszke1478

et al., 2019] framework (license URL). We also make use of Deep Graph Library (DGL) [Wang et al.,1479

2019] (Apache License 2.0), and PyTorch Geometric (PyG) [Fey and Lenssen, 2019] (MIT License)1480

for experiments with graph data.1481

We open source our code [redacted for anonymous review].1482

The data we use are all freely available online. The datasets we use are ZINC [Irwin et al., 2012],1483

Alchemy [Chen et al., 2019a], the synthetic counting substructures dataset [Chen et al., 2020],1484

the multi-task graph property regression synthetic dataset [Corso et al., 2020] (MIT License), the1485

images dataset used by Balcilar et al. [2020] (GNU General Public License v3.0), the cat mesh from1486

free3d.com/3d-model/cat-v1--522281.html (Personal Use License), and the human mesh1487

from turbosquid.com/3d-models/water-park-slides-3d-max/1093267 (TurboSquid 3D1488

Model License). If no license is listed, this means that we cannot find a license for the dataset. As1489

they appear to be freely available with permissive licenses or no licenses, we do not ask for permission1490

from the creators or hosts of the data.1491

We do not believe that any of this data contains offensive content or personally identifiable information.1492

The 50 images used in the spectral graph convolution experiments are mostly images of objects, with1493

a few low resolution images of humans that do not appear to have offensive content. The only other1494

human-related data appears to be the human mesh, which appears to be from a 3D scan of a human.1495

The human mesh does have tattoos, but they do not appear to be offensive.1496

K.2 Graph Regression Details1497

ZINC. In Section 4.1 we study the effectiveness of SignNet for learning positional encodings to1498

boost the expressive power, and thereby generalization, on the graph regression problem ZINC. In1499

all cases we take our ϕ encoder to be an 8 layer GIN with ReLU activation. The input eigenvector1500

vi ∈ Rn, where n is the number of nodes in the graph, is treated as a single scalar feature for each1501

node. In the case of using a fixed number of eigenvectors k, the aggregator ρ is taken to be an 81502

layer MLP with batch normalization and ReLU activation. The aggregator ρ is applied separately to1503

the concatenatation of the k different embeddings for each node in a graph, resulting in one single1504

embedding per node. This embedding is concatenated to the node features for that node, and the result1505

passed as input to the base (predictor) model. We also consider using all available eigenvectors in1506

each graph instead of a fixed number k. Since the total number of eigenvectors is a variable quantity,1507

equal to the number of nodes in the underlying graph, an MLP cannot be used for ρ. To handle the1508

variable sized input in this case, we take ρ to be an MLP preceded by a sum over the ϕ outputs. In1509

other words, the SignNet is of the form MLP
(∑k

i=1 ϕ(vi) + ϕ(−vi)
)

in this case.1510

As well as testing SignNet, we also checked whether simple transformations that resolve the sign1511

ambiguity of the Laplacian eigenvectors p = (v1, . . . , vk) could serve as effective positional encoding.1512

We considered three options. First is to randomly flip the sign of each ±vi during training. This1513

is a common heuristic used in prior work on Laplacian positional encoding [Kreuzer et al., 2021,1514

Dwivedi et al., 2020]. Second, take the element-wise absolute value |vi|. This is a non-injective1515

map, creating sign invariance at the cost of destroying positional information. Third is a different1516

canonicalization that avoids stochasticity and use of absolute values by selecting the sign of each1517

vi so that the majority of entries are non-negative, with ties broken by comparing the ℓ1-norm of1518

positive and negative parts. When the tie-break also fails, the sign is chosen randomly. Results for1519

GatedGCN base model on ZINC in Table 1 show that all three of these approaches are significantly1520

poorer positional encodings compared to SignNet.1521
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Our training pipeline largely follows that of Dwivedi et al. [2022], and we use the GatedGCN1522

and PNA base models from the accompanying implementation (see https://github.com/1523

vijaydwivedi75/gnn-lspe). The Sparse Transformer base model architecture we use, which1524

like GAT computes attention only across neighbouring nodes, is introduced by Kreuzer et al. [2021].1525

Finally, the GINE implementation is based on the PyTorch Geometric implementation [Fey and1526

Lenssen, 2019]. For the state-of-the-art comparison, all baseline results are from their respective1527

papers, except for GIN, which we run.1528

ZINC-full. We also run our method on the full ZINC dataset, termed ZINC-full. The result we1529

report for SignNet is a larger version of the GatedGCN base model with a SignNet that takes in1530

all eigenvectors. This model has 994,113 parameters in total. All baseline results are from their1531

respective papers, except for GIN, which is from [Bodnar et al., 2021].1532

Alchemy. We run our method and compare with the state-of-the-art on Alchemy (with 10,000 training1533

graphs). We use the same data split as Morris et al. [2020b]. Our base model is a GIN that takes1534

in edge features (i.e. a GINE). The SignNet consists of GIN for ϕ and a Transformer for ρ, as in1535

the counting substructures and graph property regression experiments in Section 4.2. The model1536

has 907,371 parameters in total. Our training setting is very similar to that of Morris et al. [2022],1537

as we build off of their code. We train with an Adam optimizer [Kingma and Ba, 2014] with a1538

starting learning rate of .001, and a minimum learning rate of .000001. The learning rate schedule1539

cuts the learning rate in half with a patience of 20 epochs, and training ends when we reach the1540

minimum learning rate. All baseline results are from their respective papers, except for GIN, which1541

is from [Morris et al., 2022].1542

K.3 Spectral Graph Convolution Details1543

In Appendix J.2, we conduct node regression experiments for learning spectral graph convolutions.1544

The experimental setup is mostly taken from He et al. [2021]. However, we resize the 100 × 1001545

images to 32× 32. Thus, each image is viewed as a 1024-node graph. The node features X ∈ Rn1546

are the grayscale pixel intensities of each node. Just as in He et al. [2021], we only train and1547

evaluate on nodes that are not connected to the boundary of the grid (that is, we only evaluate on the1548

28× 28 middle section). For all experiments we limit each model to 50,000 parameters. We use the1549

Adam [Kingma and Ba, 2014] optimizer for all experiments. For each of the GNN baselines (GCN,1550

GAT, GPR-GNN, ARMA, ChebNet, BernNet), we select the best performing out of 4 hyperparameter1551

settings: either 2 or 4 convolution layers, and a hidden dimension of size 32 or D, where D is just1552

large enough to stay with 50,000 parameters (for instance, D = 128 for GCN, GPR-GNN, and1553

BernNet).1554

We use DeepSets or standard Transformers as our prediction network. This takes in the output of1555

SignNet or BasisNet and concatenates it with the node features, then outputs a scalar prediction for1556

each node. We use a 3 layer output network for DeepSets SignNet, and 2 layer output networks for1557

all other configurations. All networks use ReLU activations.1558

For SignNet, we use DeepSets for both ϕ and ρ. Our ϕ takes in eigenvectors only, then our ρ takes1559

the outputs of ϕ and the eigenvalues. We use three layers for ϕ and ρ.1560

For BasisNet, we use the same DeepSets for ρ as in SignNet, and 2-IGNs for the ϕdi . There are three1561

distinct multiplicities for the grid graph (1, 2, and 32), so we only need 3 separate IGNs. Each IGN1562

consists of an Rn2×1 → Rn×d′
layer and two Rn×d′′ → Rn×d′′′

layers, where the d′ are hidden1563

dimensions. There are no matrix to matrix operations used, as the memory requirements are intensive1564

for these ≥ 1000 node graphs. The ϕdi
only take in ViV ⊤

i from the eigenspaces, and the ρ takes the1565

output of the ϕdi
as well as the eigenvalues.1566

K.4 Substructures and Graph Properties Regression Details1567

We use the random graph dataset from Chen et al. [2020] for counting substructures and the synthetic1568

dataset from Corso et al. [2020] for regressing graph properties. For fair comparison we fix the base1569

model as a 4-layer GIN model with hidden size 128. We choose ϕ as 4-layer GIN (independently1570

applied to every eigenvector) and ρ as 1-layer Transformer (independently applied to every node).1571

Combined with proper batching and masking, we have a SignNet that takes Laplacian eigenvectors1572

V ∈ Rn×n and outputs fixed size sign-invariant encoding node features f(V,Λ, X) ∈ Rn×d, where1573
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n varies between graphs but d is fixed. We use this SignNet in our experiments and compare with1574

other methods of handling PEs.1575

K.5 Texture Reconstruction Details1576

Table 9: Parameter settings for the texture reconstruction experiments.
Params Base MLP width Base MLP layers ϕ out dim ρ out dim ρ, ϕ width

Intrinsic NF 328,579 128 6 — — —
SignNet 323,563 108 6 4 64 8

We closely follow the experimental setting of Koestler et al. [2022] for the texture reconstruction1577

experiments. In this work, we use the cotangent Laplacian [Rustamov et al., 2007] of a triangle mesh1578

with the lowest 1023 eigenvectors besides the trivial eigenvector of eigenvalue 0. We implemented1579

SignNet in the authors’ original code, which was privately shared with us. Both ρ and ϕ are taken1580

to be MLPs. Hyperparameter settings and number of parameters are given in Table 9. We chose1581

hyperparameters so that the total number of parameters in the SignNet model was no larger than that1582

of the original model.1583
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