
Published in Transactions on Machine Learning Research (01/2024)

Temporally Rich Deep Learning Models for Magnetoen-
cephalography

Tim Chard timothy.chard@hdr.mq.edu.au
School of Computing
Macquarie University

Mark Dras mark.dras@mq.edu.au
School of Computing
Macquarie University

Paul Sowman paul.sowman@mq.edu.au
School of Psychological Sciences
Macquarie University

Steve Cassidy steve.cassidy@mq.edu.au
School of Computing
Macquarie University

Jia Wu jia.wu@mq.edu.au
School of Computing
Macquarie University

Reviewed on OpenReview: https: // openreview. net/ forum? id= zSeoG5dRHK

Abstract

Deep learning has been used in a wide range of applications, but it has only very recently
been applied to Magnetoencephalography (MEG). MEG is a neurophysiological technique
used to investigate a variety of cognitive processes such as language and learning, and is
an emerging technology in the quest to identify neural correlates of cognitive impairments
such as those occurring in dementia. Recent work has shown that it is possible to apply
deep learning to MEG to categorise induced responses to stimuli across subjects. While
novel in the application of deep learning, such work has generally used relatively simple
neural network (NN) models compared to those being used in domains such as computer
vision and natural language processing. In these other domains, there is a long history in
developing complex NN models that combine spatial and temporal information. We propose
more complex NN models that focus on modelling temporal relationships in the data, and
apply them to the challenges of MEG data. We apply these models to an extended range
of MEG-based tasks, and find that they substantially outperform existing work on a range
of tasks, particularly but not exclusively temporally-oriented ones. We also show that an
autoencoder-based preprocessing component that focuses on the temporal aspect of the
data can improve the performance of existing models. Our source code is available at
https://github.com/tim-chard/DeepLearningForMEG.

1 Introduction

Magnetoencephalography (MEG) is a brain imaging technique that detects magnetic fields generated by
the brain at a high temporal resolution (Gross, 2019; Proudfoot et al., 2014). Like Electroencephalography
(EEG), it has applications in diagnosing neuropsychiatric disorders; one key clinical application is epileptic
source localisation (Stufflebeam, 2011). MEG, unlike EEG which captures the neuronal activity by recording

1

https://openreview.net/forum?id=zSeoG5dRHK
https://github.com/tim-chard/DeepLearningForMEG


Published in Transactions on Machine Learning Research (01/2024)

Figure 1: The four components of our new model architecture for handling temporally rich data: the MEG
study data, the spatial and temporal processing of the data, and finally the classification. Our SERes
architecture is focused on extracting temporal relationships within the data; compared to the LF-CNN of
Zubarev et al. (2019), for example, it is capable of extracting much more complex relationships in the data.

the electrical potential on the surface of the scalp, detects the magnetic flux that is associated with electrical
brain activity (Hari & Puce, 2017). As magnetic fields pass through the skull relatively unaltered, MEG
has the relative advantage of capturing neuronal activity with less spatial mixing of the underlying signal
(Proudfoot et al., 2014; Brookes et al., 2011; Luckhoo et al., 2012).

The magnetic flux that is captured by MEG is in the picoTesla and femtoTesla range, which is more than
7 orders of magnitude smaller than Earth’s ambient magnetic field (Hari & Puce, 2017). Notwithstanding
precautions to shield these machines from all other sources of magnetic fields, MEG still has a low signal-
to-noise ratio. It is thus not surprising that it has been a challenge to process such data, and in particular
to apply machine learning to it.

Early work on classifying MEG signals (Georgopoulos et al., 2005; Waldert et al., 2008) used relatively simple
linear models. Conventional machine learning techniques like Support Vector Machines were later employed
by, for example, Quandt et al. (2012) (with mixed success) and Westner et al. (2018). It was only in 2019
that deep learning was first seriously applied to MEG analysis (Zubarev et al., 2019; Kostas et al., 2019; Aoe
et al., 2019), showing the superiority of end-to-end deep learning over earlier feature engineering, with some
further work since (Dash et al., 2020; Pantazis & Adler, 2021; Huang et al., 2021; Giovannetti et al., 2021;
Lopez-Martin et al., 2020; Ovchinnikova et al., 2021). In general these applied ideas from image processing
and computer vision, and specifically the Convolutional Neural Network (CNN) architecture, similarly to
the earlier EEGNet (Lawhern et al., 2018).

Some of this prior work focuses on analysis of resting state data, typically for predicting neurological issues
(Aoe et al., 2019; Huang et al., 2021; Giovannetti et al., 2021); other work such as Pantazis & Adler (2021)
focuses on improvement of tools, source localisation or various kinds of signal cleaning. The focus of the
present work is what Roy et al. (2019), in their survey of deep learning in EEG, characterise as “active
Brain-Computer Interface (BCI) classification”, covering activity such as motor imagery, speech decoding
and mental tasks. The three core works in this category for MEG are Dash et al. (2020), which aims to
classify real and imagined speech utterances; Kostas et al. (2019), which although it aims to predict the
static property of subject age, does so on the basis of mental tasks and speech utterances; and Zubarev
et al. (2019), which examines a number of motor imagery and mental tasks. Among all of these, where more
complex systems from computer vision are used directly, it is not generally in an end-to-end architecture:

2



Published in Transactions on Machine Learning Research (01/2024)

Giovannetti et al. (2021) used AlexNet, but only for feature extraction rather than end-to-end learning, while
Dash et al. (2020) used AlexNet and two others pretrained on image data, where the MEG data had to be
preprocessed into scalograms to fit those systems.

Otherwise, the models involve relatively simple architectures, such as a spatial de-mixing layer followed by
a temporal convolution layer (Kostas et al., 2019; Zubarev et al., 2019). The spatial de-mixing layer applies
a set of spatial filters to the raw input, which separates spatial patterns into higher-level features. The next
layer then identifies rudimentary temporal patterns in these spatial features. Despite the relative simplicity,
these works all found that their models performed better on average than baseline conventional machine
learning models like Support Vector Machines. Zubarev et al. (2019) also compared against domain-specific
and general computer vision neural networks trained end-to-end, and found that their models performed
better than those, which suggested that the much more complex architectures from computer vision and
elsewhere do not necessarily suit this domain.

However, only one of the datasets used by Zubarev et al. (2019), Cam-CAN (Shafto et al., 2014), is a large
one, and it is well-known that deep learning approaches need much larger amounts of high-quality data
than conventional machine learning; it was on this dataset that their computer vision architecture, VGGNet
(Simonyan & Zisserman, 2015), performed competitively. Moreover, the classification task on the Cam-CAN
dataset was an easy one that does not require sophisticated models to perform well. Indeed, all approaches
tested achieved well over 90% accuracy, and none performed statistically significantly better than any other,
thus not allowing a true determination to be made about the superiority of different models. In this paper
we extend the application of deep learning to MEG prediction tasks by considering both richer architectures
suited to the data, and additional dataset tasks that are suited to clear evaluation of these architectures. In
particular, as we observe below, these richer architectures need to better incorporate the temporal aspects
of the data. This involves three challenges.

Challenge #1: Lack of Focus on Temporal Aspects of Data The models from existing work, with
relatively few convolutional layers (two in the case of LF-CNN and VAR-CNN of Zubarev et al. (2019)), are
limited in the type of interactions that can be expressed; compare this with the 19 convolutional layers of the
VGG-19 model used as a comparison by Zubarev et al. (2019), or the many more layers in later computer
vision architectures. Further, they focus most heavily on spatial relationships in the data, and it is not
uncommon for a model’s temporal layers to learn spatio-temporal relationships, as is the case in VAR-CNN
of Zubarev et al. (2019) and SCNN and Ra-SCNN of Kostas et al. (2019). However, with MEG the signal
can only be recorded at a discrete number of locations around the head, so that the generated dataset
is spatially sparse. It also partially violates an implicit assumption in computer vision architectures, that
adjacent values in the data are a result of adjacent values in the source: in MEG data this assumption is only
strictly valid in individual channels. This means that it is difficult to develop a model that is able to learn
a hierarchy of spatial features of the kind that are learnt by state-of-the-art computer vision architectures.
In contrast, the data is dense along the temporal dimension (often sampled at around 1KHz). We therefore
propose architectures that focus on building up a hierarchy of temporal features that are combined using
residual connections, a popular method that was first used in computer vision (He et al., 2016).

The first part of this idea, of a hierarchy of temporal features, is drawn from WaveNet (Oord et al., 2016), a
speech recognition and synthesis model that is capable of tracking very long temporal dependencies. These
long-term dependencies are common in speech: for instance, in the sentence “he was sitting down because
he hurt his leg”, the gendered pronouns can have an arbitrary distance between them. However, temporal
patterns are something that existing models have not really exploited at all. Our models are therefore
designed to be capable of learning more complex temporal relationships.

The second part of the idea, of residual connections, has become a standard in image processing. While much
of the computer vision research is focused on learning spatial relationships more effectively, there has also
been a significant amount of more general work that can be applied to many domains. One such development
was in the ResNet architecture, which introduced the residual connection (He et al., 2016). The residual
connections are layers that learn the best way to alter the input to reduce superfluous data, and these layers
have allowed much larger neural networks to be trained as a result. Fig 1 gives schematic representation of
our architecture.

3



Published in Transactions on Machine Learning Research (01/2024)

Challenge #2: Use of Raw Input Data in End-to-End Models While it has conventionally been
common in brain signal analysis to use different forms of dimensionality reduction (including now using deep
learning), the above end-to-end models, existing and proposed, take the raw data as input to the neural
network. In other domains, however, the generation of intermediate latent representations via deep learning
has been found to be more useful, particularly where these can be learnt from large amounts of unlabelled
data. (For instance, in Natural Language Processing (NLP), the use of contextual language models trained
on unlabelled data as a starting point for downstream tasks like classification or machine translation has
been shown to greatly improve performance on those tasks (Devlin et al., 2018; Peters et al., 2018).)

One possible approach to learning these intermediate latent representations is via autoencoders (Masci
et al., 2011). In encoding an input into a lower-dimensional latent representation and then attempting to
reconstruct the original input from this reduced representation, autoencoders learn to encode only relevant
information in these representations which can then be used as input for downstream tasks.

In this paper, we propose an autoencoder that is only capable of learning temporal features, for use as a
preprocessing component for simpler models, as an alternative to the entirely new architectures outlined
above. In addition to separating out the processing of temporal information in a way that would allow it to
be used with future spatially-oriented architectures, it also allows us to examine our assumption about the
value of temporal features in MEG processing.

Challenge #3: Lack of Activity Detection Tasks on Large Datasets As noted, deep learning requires
very large amounts of high-quality data; in the past, the creation of datasets such as ImageNet (Deng et al.,
2009) have been pivotal for their domains. The Cam-CAN dataset, as currently released, only includes data
for a single task where subjects were exposed to either a visual or auditory stimulus: given the difference
in brain regions responsible for each of these, the simplicity of the task explains the high accuracy of all
models in Zubarev et al. (2019) on that dataset. Applying different architectures to a more difficult task
would allow scope for differentiating their performance.

Recently, another large dataset has been released, the Mother Of Unification Studies (MOUS) (Schoffelen
et al., 2019), in which subjects are presented a series of words either visually or via audio. The words could
form a sentence which is easy to process because of its syntactic structure, a sentence which is hard to
process, or an arbitrary list of words. This leads to a variety of classification tasks with a range of difficulty.
For instance, can we distinguish audio from visual stimuli? Can we distinguish stimuli corresponding to
syntactically valid sentences versus a random ordering of those words? Can we distinguish syntactically
more complex sentences from syntactically simpler ones? We can perform the same task that is used on
Cam-CAN (i.e. distinguishing audio from visual stimulus), but the other classification tasks should prove to
be much more challenging.

Contributions This paper makes the following contributions.

• We present several new deep learning architectures designed to suit the temporally rich, spatially
sparse nature of MEG data (addressing Challenge #1).

• We present an autoencoder for use with previous models in preprocessing the temporal aspect of
MEG data, and show that these can improve the performance of previous models on relevant tasks
(addressing Challenge #2).

• We compare these experimentally with previous work, both on prior data and on a new large dataset
with a range of more challenging classification tasks (addressing Challenge #3).

• We show that these new architectures clearly outperform the previous state of the art on tasks where
temporal information is important; and we analyse which of the models best suits which kind of
classification task (also addressing Challenge #3).

2 Background

Neurons in the brain rely on electrical currents for their functioning; by recording this electrical activity
we will be capturing aspects of brain activity Two related technologies are able to capture these electrical

4



Published in Transactions on Machine Learning Research (01/2024)

Figure 2: LF-CNN and VAR-CNN architectures from Zubarev et al. (2019).

impulses: Magnetoencephalography (MEG) and Electroencephalography (EEG). EEG captures the activity
by recording the electrical potential on the surface of the scalp, while MEG detects the magnetic flux that is
created by electric fields (Hari & Puce, 2017). Both MEG and EEG have a high temporal resolution (often
sampled at around 1KHz) but are not known for their spatial resolution. This contrasts with functional
magnetic resonance imaging (fMRI) which provides high spatial resolution but can not be reliably used to
study rapid changes in the brain.

Early work on predicting human activity from MEG data were motivated by Brain-Computer Interfaces
(BCIs) that could operate without invasive brain-monitoring technology. Georgopoulos et al. (2005) and
Waldert et al. (2008), for example, looked a predicting hand movement trajectory; the former looked only
at MEG signals and used linear summations of weighted MEG components for prediction, while the latter
considered both MEG and EEG signals and produced predictions from regularised linear discriminant anal-
ysis. Subsequent work extended this to conventional machine learning techniques. Quandt et al. (2012), for
example, looked at predicting finger movement, also considering both MEG and EEG signals, using them
as input to a linear Support Vector Machine (SVM). They found that the use of MEG signals led to better
performance and attributed the result to the better spatial resolution. Other work like Westner et al. (2018)
looked at a different stimulus: their task was to distinguish auditory from visual presentation of words, using
Random Forests for the prediction.

While related, the literature on using EEG is more extensive, probably because of the relatively greater
accessibility of the technology: a comprehensive review of work applying machine learning to EEG data can
be found in Lotte et al. (2018). EEG has consequently seen earlier applications of deep learning: Roy et al.
(2019) gives a survey of this, and a standard open source tool based on Convolutional Neural Networks,
EEGNet (Lawhern et al., 2018), is available. However, it is only more recently that deep learning has been
applied to MEG.

One strand of work involves only resting state data, typically for clinical applications, such as Aoe et al. (2019)
and Giovannetti et al. (2021), both of which aim to identify neurological issues in subjects. Aoe et al. (2019)
proposed MNet, a CNN consisting of 10 convolutional layers to distinguish patients with epilepsy or spinal
injury from healthy patients; Giovannetti et al. (2021), aiming to detect dementia, proposed Deep-MEG,
which used AlexNet (Krizhevsky et al., 2012) to extract functional connectivity (FC) indices as features in
an ensemble approach.

Of the work directly relevant to the focus of the present paper — tasks that would fall under the active BCI
classification of Roy et al. (2019) — Dash et al. (2020) used data from 8 subjects, where those subjects were

5



Published in Transactions on Machine Learning Research (01/2024)

presented with five possible phrases that they were required to utter; the aim was then to predict which is the
chosen phrase at several possible stages (pre-stimulus, perception, preparation and production). They used
two kinds of models for this prediction, a single fully-connected neural network with one hidden layer, and
three much richer architectures from computer vision (AlexNet (Krizhevsky et al., 2012), ResNet101 (Wu
& He, 2020), and Inception-Resnet-v2 (Szegedy et al., 2017)). These latter architectures were pretrained on
ImageNet (which contains images of everyday objects like cars), and so to be compatible with this type of
input the MEG signal was converted to scalograms based on (spatial-)spectral-temporal features, and these
were converted to the necessary image dimensions for the architectures. Another work, Kostas et al. (2019),
aimed to detect the age of subjects performing a speech production task, with the primary dataset for the
simplest task (eliciting the phoneme /pah/ ) consisting of 89 subjects, and the most challenging (eliciting
a verb) consisting of a subset of those of size 28. For the age prediction, they developed two deep neural
network models: the SCNN, a CNN which consists of a spatial filtering component with several convolutions,
followed by a temporal component also consisting of several convolutions; and the Ra-SCNN, which adds an
LSTM and attention mechanism to the end of the temporal component. These models, unlike Dash et al.
(2020) but like our own work, take the raw MEG signal as input. The closest to our own work is that of
Zubarev et al. (2019), who proposed two deep learning architectures, LF-CNN and VAR-CNN (Fig 2), which
were based on the generative model of non-invasive electromagnetic measurements of the brain activity of
Daunizeau & Friston (2007). They also developed methods for analyzing the models’ predictions, where
they looked at the spatial and temporal features that were most strongly related to each predicted class.
This allowed them to visualise how these networks derived their prediction and how these prediction were
associated with regions of the brain.

They performed four different experiments that looked at three different tasks, and focused on generalization
to new subjects. The experiments covered a five-class classification task, distinguishing five different sensory
stimuli (visual, auditory and electrical) on a private dataset of 7 subjects; a three-class motor imagery task on
a private dataset of 17 subjects, on both the static dataset and a version with real-time data; and a two-class
task distinguishing a visual stimulus from an audio stimulus, using the large-scale public Cam-CAN dataset
(Shafto et al., 2014), from which they used 250 subjects. These experiments were in the context of BCIs,
and so in addition to the standard validation and test accuracy for evaluation they also simulated a real-time
brain-computer interface environment. This was similar to test accuracy except the model parameters were
updated after it had made a prediction for each trial and aimed to gauge how well the models could adapt to
new subjects as the subject is using the BCI. Comparison systems were two SVMs (linear and RBF kernels),
two deep learning systems for EEG analysis (EEGNet (Lawhern et al., 2018) and ShallowFBCSP-CNN
(Schirrmeister et al., 2017)), and a computer vision model (VGG19 (Simonyan & Zisserman, 2015)); the
comparison deep learning systems generally have more complex architectures than LF-CNN and VAR-CNN.

On the first three experiments, with small datasets, the comparison deep learning models all performed
poorly: for instance, in Experiment 1, the comparison deep learning models scored between 60.1% and 76.8%,
against 80.2% and 82.7% for the SVMs and 83.1% and 85.9% for LF-CNN and VAR-CNN respectively. In
contrast, on the large Cam-CAN dataset, the lowest accuracy was 92.1% for the linear SVM, with EEGNet
and VGG19 at 93.0% and 92.3% respectively, and LF-CNN and VAR-CNN 95.1% and 95.8% respectively.
This is in line with the general understanding that deep learning methods require more data for reasonable
performance (see e.g. Brigato & Iocchi (2021) for discussion). This suggests that with large datasets more
complex architectures are a promising line of research.

3 Models

In this section, we propose a number of different network architectures that are capable of modelling more
complex relationships than the models discussed in §2. Our first architecture, TimeConv, is the simplest
one that explores the importance of temporal relationships in the data. These ideas are then refined into
a spatially invariant autoencoder architecture (TimeAutoencoder) that is built with a number of temporal
residual blocks which exploit these temporal relationships with residual connections (He et al., 2016). Our
third model (SERes) combines the same temporal residual blocks with the spatial relationships that have
already been found to be effective in the models of Zubarev et al. (2019). Our final new architecture (SETra)
uses the Transformer architecture (Vaswani et al., 2017) which follows from the way that we have thought

6



Published in Transactions on Machine Learning Research (01/2024)

t

C

Input

32 t/
2

Temporal Conv 1

64 t/
4

Temporal Conv 2

32 1

Temporal Conv 3

12
8

fc1

cl
as
se
s

fc2

Data Convolution + ReLU Dense Dense + ReLU Pooling

Figure 3: The TimeConv architecture.

about the MEG image as a sequence of spatial embeddings. Following these, we propose a preprocessing
component based on an autoencoder (TimeAutoencoder) that can be combined with LF-CNN and VAR-CNN
to improve their ability to use temporal information.

3.1 TimeConv

The input to these models consists of a 2-dimensional matrix, one representing time and the other repre-
senting the spatial aspect of the data. We can think of this data as a monochrome image, where spatial
dimension (the MEG channels) corresponds to the height and the temporal dimension is the width. This
architecture is designed to help gauge the importance of temporal relationships in the data. As such, a
separation between temporal and spatial relationships is enforced throughout the body of the network, such
that the network learns spatial features only at the final fully-connected layers. Fig 3 shows the high-level
structure of the network.

Even though the main body is composed of just three temporal convolution layers, this is already deeper
than most previous work. Each temporal convolution layer consists of a 2D convolution (a convolution
that is applied over the height and width of the input), limited to act only on a single meg channel; this
encourages the network to focus on temporal aspects of the data and effectively disallows it from learning
spatial features. These convolutions have a kernel size of (1, 5), dilation of (1, 3) and a stride of (1, 3) and
use “same” padding, and are followed by a standard ReLU activation function. There are 32 filters in the
first layer, 64 in the second, and 32 in the last. These settings were chosen to allow for more expressiveness
than the models of Zubarev et al. (2019) while also keeping the number of elements in the output of the
last layer relatively small. These layers are followed by a max-pooling layer, which means that ultimately
the network is learning a non-linear function that maps the activity in each channel into a 32 dimension
temporal embedding (the number of filters in the last layer). These embeddings are then concatenated and
fed into a dense layer with 128 output features, a ReLU and finally an output layer with the number of
classes as its dimension.

3.2 Temporal Residual Block

The Temporal Residual Block is a self-contained logical group of layers; we will use these in different config-
urations of these blocks in SERes and the TimeAutoencoder below. The structure of this block follows from
the ideas in TimeConv, but unlike that model, the Temporal Residual Block is completely prevented from
learning any spatial features. This means that this block is completely independent of the size of the spatial
embeddings (or the number of MEG channels) in the input.

We implement this by with a 2D convolution that uses kernel of size (1, 3). This has two consequences. First,
because the kernel is effectively 1-dimensional, it is incapable of learning any spatial relationships. Second,

7



Published in Transactions on Machine Learning Research (01/2024)

t

C

Input

t

16

Spatial
Embedding

16

16

16 16 16 16 t/
2

Temporal Block 1

16

16

16 16 16 16 t/
4

Temporal Block 2

16

16

16 16 16 16 t/
8

Temporal Block 3
t/
8

16

12
8

fc1

cl
as
se
s

fc2

Data Convolution Residual Convolution Dense Dense + ReLU

Figure 4: The Spatial Embedding Residual (SERes) network architecture.

because it is a 2D convolution, the kernel is applied to all channels, which encourages the network to learn
low-level relationships that exist in all channels.

This convolution has some similarities to the LF-CNN, in that they both use a 1-dimensional kernel, but
they are significantly different in the type of patterns they are able to learn. Consider how these convolutions
will act on a black and white image, assuming the same number of kernels and same kernel size (i.e. both
will have the same number of trainable parameters). Both architectures will apply a 1-dimensional kernel
to each row of the image. However, the LF-CNN will apply a different kernel to each row, whereas our
convolution will apply each kernel to all rows.

Each block consists of four Temporal Residual Convolution layers which are similar to residual layers used by
He et al. (2016). However, we reduce the kernel to 1-dimension which means each convolution uses a kernel
size of (1, 3), stride of (1, 2) and padding of (0, 1). We use the same number of filters in each layer which we
leave as a hyper-parameter. Our implementation of the residual connection is very similar to the PyTorch
implementation (Paszke et al., 2019) and, ignoring the convolution that is being used, only differs in how
batch normalization is applied. While we use a single batch normalization layer before either convolution,
the PyTorch implementation uses two layers directly after each convolution.

3.3 SERes

While TimeConv learnt temporal relationships in the raw data, the temporal components of both the LF-
CNN and VAR-CNN have operated on spatial embeddings which are able to capture when certain regions
of the brain are active at the same time. The SERes architecture (Fig 4) combines both of these ideas,
by first learning a spatial embedding which effectively reduces the number of “channels” to 16. So given
an input (1, C, t) with C MEG channels and t time samples, the spatial embedding layer will produce an
embedding of size (1, 16, t). This spatial embedding is then processed by three temporal residual blocks.
Each of the three blocks has 16 filters and reduces the number of time samples by a factor of eight, leading
to an output of (16, 16, t/8). To reduce the number of parameters and avoid problems like overfitting, we
apply a convolution with a single (1 × 1) kernel and outputs (1, 16, t/8) and is then flattened to a 16 × t/8
feature vector. The head of the network is very simple and consists of two layers. The first has 128 output
features and uses the ReLU activation. The last predicts the weighting of the classes which are used as part
of the cross-entropy loss, which combines the softmax activation and the negative log-likelihood loss.

3.4 SETra

The evolution and impact of Transformer architectures (Vaswani et al., 2017) in machine learning have
been substantial, with their application now extending beyond the initial natural language processing (NLP)
domain into areas such as computer vision.

8



Published in Transactions on Machine Learning Research (01/2024)

A key strength of Transformers lies in their ability to process information from an entire input sequence,
unlike conventional convolutional networks that are limited to exploiting data within a specific receptive field
of neurons. This limited scope means that a convolutional network can only integrate details from distant
parts of the input as the receptive field progressively expands through deeper layers.

However, applying attention to each pixel in an image in a naive manner becomes computationally infeasible
as the image size increases because the computational cost grows quadratically with the number of pixels.
This has led to the development of innovative methods and architectures to manage this computational
complexity.

Recent years have witnessed the emergence of architectures such as Vision Transformer (ViT) (Dosovitskiy
et al., 2021), Image Generative Pre-trained Transformer (I-GPT) (Chen et al., 2020), Swin Transformer
(Liu et al., 2021), and Cross-Covariance Image Transformer (XCiT) (Ali et al., 2021) that have successfully
incorporated Transformers in computer vision tasks. These models have introduced various strategies like
patch-based attention, hierarchical structures, or sophisticated mechanisms to make attention more compu-
tationally efficient. A detailed exploration of these models can be found in (Khan et al., 2022) as well as other
approaches to optimize the computational cost of attention itself such as in Longformer and Reformer (Kitaev
et al., 2020; Beltagy et al., 2020).

In our work, we address the computational challenge with a different approach. Our problem formulation
as a sequence of spatial embeddings inherently results in sequence length scaling linearly with image width,
unlike the quadratic scaling seen in other methods. To illustrate, for an input of size (224 × 224), while the
ViT would split this into 142 patches of (16 × 16) for attention, our method would attend to all 224 columns
(or rows). This circumvents the need for any form of downsampling, while still remaining computationally
feasible.

Distinguishing features of our SETra architecture compared to other Transformers include its size and training
methodology. Despite their impressive flexibility, Transformers’ ability to learn intricate relationships can
lead to overfitting. To counteract this, our models are significantly smaller than even the smallest models
used in other contexts. Moreover, while most Transformers are pre-trained using a next token prediction
task, our SETra is trained directly on the classification task, consistent with other models evaluated in this
work.

Similar to the previous model, we employ a spatial embedding of size 16, an equivalent to a “word embedding”
in the NLP context. Our model includes four transformer layers as implemented by PyTorch (Paszke et al.,
2019), each with an embedding size of 16 and a feedforward dimension of 64. Despite these dimensions being
much smaller than typical, they are necessary for the effective training of our model.

3.5 TimeAutoencoder

As noted above, the TimeAutoencoder differs from the above new architectures in that it is a preprocessing
component to be used by LF-CNN and VAR-CNN. It has two main components, the encoder and the decoder.
Fig 5 shows these components separated by the latent representation that captures temporal information.
Given an input with size (1, C, t) where C is the number of channels and t is the number of time steps, this
will be compressed down to (1, C, t/2) before the original input is reproduced.

The first layer in the encoder increases the number of filters to (32, C, t), which is then passed to Temporal
Residual Block with 32 filter layers, maintaining the same dimensions. The last layer in the encoder is a
strided temporal convolution that forms the bottleneck in the network. This layer uses the same settings as
the other layers in the Temporal Residual Block, but in addition uses a stride of (1, 2). Due to the stride, it
outputs the latent representation which has half the number of time steps of the input but is otherwise the
same (1, C, t/2).

The decoder is similar to the encoder but replaces the first and last layer convolutions with transpose-
convolution equivalents. The first layer will increase the number of filters to 32 so that the data has a shape
of (32, C, t/2) and like the encoder, this is input to the Temporal Residual Block. The last layer in the
decoder is responsible for recreating the missing time steps and reproducing the input.

9



Published in Transactions on Machine Learning Research (01/2024)

t

C

Input

32 t 32 32 32 32 t

Encoder

t/
2

t/
2

Latent

32 32 32 32 32 t/
2

Decoder t

C

Output

Data Convolution Residual Convolution

Figure 5: The TimeAutoencoder architecture.

4 Experimental Setup

In this section, we describe the datasets and the classification tasks derived from those datasets, and following
that the experimental protocol.

4.1 Datasets

4.1.1 Cam-CAN dataset

Cam-CAN is the largest MEG dataset that is available, consisting of more than 600 subjects (Shafto et al.,
2014). This MEG dataset is part of a much larger study that looks at the effects of aging, but at the time
of this work only the second stage of the study had been released. In this stage subjects were involved in a
clinical session with three MEG recordings, a resting state recording and a passive and active sensorimotor
task. The same stimulus was used in both the active and passive stage which consisted of a checkerboard
pattern or an auditory tone played at one of three different frequencies (300Hz, 600Hz and 1200Hz). These
stimuli were presented for 34ms and 300ms for the visual and audio stimulus respectively. In the passive
stage, which is used by Zubarev et al. (2019), no action is required by the subject and a trial consists of
a unimodal stimulus, either auditory or visual, where half the trials are auditory and half are visual. This
differs from both the active state and resting state recordings of the study which is not used in this work.

Our use of this dataset differs slightly from Zubarev et al. (2019). First, unlike Zubarev et al. (2019), we did
not limit the number of subjects to 250. Instead, we only exclude five subjects from Cam-CAN (CC120208,
CC510220, CC610462, CC620193, CC620685) where there were issues with the data (for example, sessions
with no data), leaving 644 subjects and just over 77000 epochs. Second, partly as a consequence of this,
we use a different split for training / validation / test, with our split chosen to allow us to run repeated
experiments while still holding out a test set for use once only at the end, to genuinely measure model
generalization. Specifically, we assign 60% of the subjects to the training set (388), 20% to the validation set
(128), and the remaining 20% to the test set (128). In addition to the training, validation and test set, we also
use a development set which is created by partitioning half the data (instead of subjects) from the validation
set. We use the validation set for early stopping and hyperparameter selection, and the development set as
a stand-in for the test set for producing results over the course of experiments. (Note that unlike the other
splits, the validation-development split is not looking to evaluate inter-subject performance, but instead is
used to evaluate intra-subject performance. This means that while the validation and test sets consist of
different subjects, the validation and development have the same subjects but different trials.)

One other subtle difference concerns the epoching of the data, which in this context refers to dividing the
continuous EEG signal into shorter, fixed intervals based on specific events, such as the onset of a stimulus.
We broadly epoch the data in the same way as Zubarev et al. (2019), by taking an 800ms window that
starts 300ms before the stimulus onset. However, in Zubarev et al. (2019), after the data was epoched it was
downsampled and then normalized, whereas we do these final two steps in the reverse order. Zubarev et al.

10



Published in Transactions on Machine Learning Research (01/2024)

Table 1: Literal translations of the Dutch sentences that were used as stimulus. Target words (highlighted
in bold) are in the same ordinal position in both the Sentence and the Word List (in the original Dutch
sentences)

Sentence Word List
Difficult The nice lady gave Henk, who had bought

a colourful parrot, a bag of seeds
Bag a colourful nice a had who lady parrot
gave the bought seeds Henk

Het aardige vrouwtje gaf Henk die een
kleurige papegaai gekocht had een zak pit-
jes

Zak een kleurige aardige een had die
vrouwtje papegaai gaf het gekocht pitjes
Henk

Easy These are no regional problems such as
those on the Antilles

such as no those Antilles problems re-
gional are the these on

Dit zijn geen regionale problemen zoals
die op de Antillen.

zoals geen die Antillen problemen re-
gionale zijn de dit op

(2019) normalized the data using the first 280ms of the downsampled data, leaving the rest to be processed
by their neural networks. This means that this data would include a small amount of prestimulus data. In
contrast, for strict correctness, we normalize based on the whole prestimulus period, and the input to the
networks starts precisely at the stimulus onset.

4.1.2 Mother Of Unification Studies

In addition to Cam-CAN, another large dataset has also been recently released, the Mother Of Unification
Studies (MOUS) (Schoffelen et al., 2019), which has a much richer stimulus. The focus of the study was
understanding the way that humans process written and spoken language, with a focus on the processing
of individual words in a sentence. The study consisted of 204 participants and like the Cam-CAN dataset,
the subjects were exposed to an auditory and a visual stimulus giving us more than 50000 epochs in total.
We split these subjects in the same manner as Cam-CAN, with 124 subjects in the training set, 40 in the
validation set and 40 in the test set. In this case, however, subjects were only subjected to one stimulus,
with half being shown written text and the other half hearing spoken words. In each case, the stimulus
consists of linguistic utterances (in Dutch), either a valid sentence or an arbitrary list of words. In addition,
there were two types of sentences: a sentence with a main clause plus a simple subordinate clause that is
easier for cognitive processing, and a sentence with a relative clause that is harder to process. Sentences or
word lists were presented word-by-word with a mean duration of 351 ms for each word (minimum of 300 ms
and maximum of 1400 ms, depending on word length). Examples of the stimuli can be found in Table 1.
In this work, we will look at three different classification tasks: distinguishing auditory from visual stimuli
(AudioVis), sentences from word lists (SentWordlist), and sentences that are easy to process from those
harder to process (HardEasySent).

Our three classification tasks all use the same data. Our data is structured to align with the classification
tasks used by (Zubarev et al., 2019), and as a result we restrict our window to contain only a single word. For
each trial, we extract a window of the data from the point where the subject was presented with the target
word. We epoch the data in the same way as Zubarev et al. (2019) as described in §4.1.1, taking 300ms
before the onset and 500ms after. However, this results in a small change in the resulting input because the
MOUS is sampled at a higher frequency. So while the final Cam-CAN data has 64 time samples, the final
MOUS data has 85. In both cases we are normalizing by the mean and standard deviation of the first 36
samples of the epoched data which means that the MOUS data includes more prestimulus data.

The other deviation from the Cam-CAN data is the number of channels that are included. We are using
270 channels from the MOUS (compared to 204 for Cam-CAN), but we have also increased the number of
time samples that are included as well. This does not constitute all of the channels that are available in
the datasets: there are a number of channels which are not present in all recordings, and there were also
channels from other sources (such as EEG). These channels were not considered in any of our experiments.

11



Published in Transactions on Machine Learning Research (01/2024)

In total ten channels were not present in all recordings (BP2, EEG061, EEG062, EEG063, EEG064, MLC11,
MLF62, MLT37, MRF66, MRO52); of these channels, 5 were MEG-related channels and were consequently
excluded.

In terms of our derived classification tasks, the auditory vs visual stimulus task (AudioVis) is similar to
that for the Cam-CAN dataset in Zubarev et al. (2019): we are trying to predict if the subject was seeing
a written word or if they were hearing a spoken word. However, it is important to note that unlike the
Cam-CAN datasets this is a between-subject variable. A subject was shown either the words, or they heard
them; none of the subjects experienced both. This is important for two reasons. First, different subjects
might encode the relationships between the stimuli very differently; and second, deep learning is very good
at picking up on unintended features (particularly noise) that correlates strongly with the output class:
Ribeiro et al. (2016) demonstrated this for image classification systems, noting a classification task where
the presence of snow in an image leads a model to predict that the class is ‘wolf’ rather than the correct ‘dog’.
In this case, we will have to consider the possibility that the neural network is picking up a characteristic of
the session (such as background noise) instead of the stimulus; we analyse the results in light of this.

In our second classification task (SentWordlist) we aim to distinguish a sentence from an arbitrary list of
words: more specifically, if the stimulus target word is part of a syntactically correct sentence or part of an
arbitrary list of words. Similarly, our third classification task (HardEasySent) is to predict if the target
word was part of a sentence with a syntactically complex structure or a simple one.

We can further break down each of these last two classification problems into more fine-grained tasks by
also taking into account how the stimulus is presented. We evaluate each task by training models on three
different subsets of the data; audio, visual and both together. This means that in each of the audio and
visual subset we will be restricted to 102 subjects, although this restriction may allow models to focus on
more fine-tuned features for each of the modes of stimulus.

4.2 Training and Evaluation

Aligning with previous work with similarly balanced datasets, our main metric is classification accuracy.
In addition to this we look at the variability of the results in two ways. To characterise variability across
subjects, we calculate a 95% confidence Wilson score interval for the classifier (Brown et al., 2001), which
is based on a binomial assumption; the lower and upper bounds are indicated by LB, UB respectively. We
report these confidence intervals in the main results. For additional analysis, to characterise the pairwise
difference between models,1 we report the bootstrap confidence interval (95%) using the percentile method
(Cohen, 1995) for per-subject accuracy under each model. For each bootstrap iteration for a pair of models,
we sample random combinations of subjects with replacement and compute the mean difference in subject
accuracy for the sampled subjects. Using these sampled differences across many iterations, we generate a 95%
bootstrap confidence interval employing the percentile method (Cohen, 1995). This allows us to distinguish
between differences in models that are statistically significantly different from those that are not. We give
further detail in Appendix A.

In each case, we trained three different models and then applied the model with the best validation loss to
the test set. During all development we use the development set as a proxy for the test set. In addition to
the results on the test set, we also report the validation accuracy of the last model that was trained.

We trained each model on a GPU with a batch size of 128, using the Adam gradient descent optimization
algorithm (Kingma & Ba, 2015) with a learning rate of 10−3 which optimized the cross-entropy loss of each
model. We used early stopping on the validation loss with a patience of 3.

4.2.1 Baselines

Our core baselines are LF-CNN and VAR-CNN from Zubarev et al. (2019). Like Zubarev et al. (2019),
we also include high-performing computer vision models: GoogLeNet (Szegedy et al., 2015) and ResNet18

1We calculate bootstrap interval between each pair of models twice, comparing the difference between A and B and again
between B and A.

12



Published in Transactions on Machine Learning Research (01/2024)

(He et al., 2016).2 These models are designed to process images with three colour channels, so we added a
1 × 1 convolution with three filters to form three “colour” channels where each “colour” can have different a
“brightness” that is optimized by the model. We also considered the SCNN and Ra-SCNN models of Kostas
et al. (2019), whose code is also helpfully available. However, their models do not fit our data.3

4.2.2 TimeAutoencoder

Training Instead of using a next-token prediction, we focus on the traditional autoencoder training task
where we train our model to reproduce an input from a compressed latent embedding. Specifically, we train
our model to minimise the mean square error between the output to the decoder and the original input. This
architecture builds on the ideas from our other models and relies on the Temporal Residual Block that we
described in §3. However, unlike our other models, this architecture has no method of learning any spatial
relationships at all. The intention here is that by limiting the types of interactions that it can model, it will
be forced to learn low-level features that are more easily generalized in downstream tasks.

As the TimeAutoencoder only operates on temporal relationships, the latent embedding that it generates
can be thought of as data that has been downsampled. We can also train the TimeAutoencoder on a
larger input window to generate a latent representation that has the same dimensions as the inputs that we
used in §4.1, allowing more temporal data to be incorporated. As training the autoencoder is significantly
more computationally intensive than the other models, we only evaluate the architecture by training the
TimeAutoencoder on MOUS with 128 time steps which will then halve the temporal dimension. We train
models in five different configurations: two baselines which use the raw data, and three configurations which
incorporate the encoder and differ in how the encoder is trained.

Configurations We compare five different experimental configurations. The first two (Raw64, Raw128)
will not use the TimeAutoencoder at all and instead use the raw data, with either 64 or 128-time steps.
These will allow us to evaluate whether any performance increase is simply due to extra information that is
present in the larger input. Of those that use the autoencoder, the Frozen configuration will use the latent
representation of the encoder as part of a pre-processing step, and the parameters of the encoder will not be
updated. In contrast, the Unfrozen will also use the latent representation but will be fine-tuned as part of
training the classifier. The Uninitialized will use an encoder with randomly initialized parameters, and like
Unfrozen the parameters will be updated while training the classifier. For each of these configurations, we
will train four different model architectures (SERes, SETra, LF-CNN and VAR-CNN). We will apply these
to the HardEasySent and SentWordlist tasks on MOUS, to assess the benefit of temporal information
there.

Despite the simplicity of the TimeAutoencoder, there is a substantial computational expense and training
these models took more than 8 hours. As a result, unlike our other experiments, we only train one instance
of each model, do not develop stimulus-specific models, and use the Both subset to train the models. In
addition, because of the increased memory requirements, we use a batch size of 32. To compensate for this
we accumulate gradients across 4 batches to maintain an effective batch size of 128.

5 Results

In this section, we first present the performance on each task of our new models (TimeConv, SERes, SETra)
relative to the selected baselines, followed our investigation on the utility of incorporating the TimeAutoen-
coder.

2Zubarev et al. (2019) used the older VGGNet, modified to include batch normalization. When we implemented it, we were
unable to train a single model successfully. Instead of altering the architecture, we implemented architectures that already
incorporated batch normalization.

3Their models assume a much larger temporal window than we are using. For instance, we found that when running their
code for the BCI dataset, the temporal window is 1125. In contrast, we use 64 time samples, and their model cannot be run on
a window of this size using the published configuration.

13



Published in Transactions on Machine Learning Research (01/2024)

Table 2: Results of the AudioVis task on both the Cam-CAN and MOUS datasets. Included is the Validation
Accuracy, Test Subject Accuracy (mean ± 95% Wilson score CI) and the Lower and Upper Bound of the
Subject Accuracy (i.e. bottom and top of the 95% CI). Highest results for each dataset are in bold.

Val. Acc. Test Sub. Acc. Sub. Acc. LB Sub. Acc. UB
Dataset Architecture
Cam-CAN SERes (ours) 95.12 95.70±0.8 94.93 96.47

TimeConv (ours) 94.91 95.71±0.7 94.96 96.46
SETra (ours) 93.48 94.31±1.0 93.34 95.28
LF-CNN 93.19 93.87±1.1 92.80 94.95
VAR-CNN 92.84 94.23±0.9 93.29 95.18
GoogLeNet 93.10 94.05±0.9 93.14 94.96
ResNet18 94.09 94.32±1.0 93.36 95.27

MOUS SERes (ours) 77.54 77.63±5.5 72.09 83.16
TimeConv (ours) 74.80 74.03±5.1 68.89 79.17
SETra (ours) 72.63 73.57±4.2 69.41 77.73
LF-CNN 79.75 82.92±4.9 78.03 87.81
VAR-CNN 81.62 83.67±5.0 78.64 88.71
GoogLeNet 75.71 73.04±9.5 63.58 82.50
ResNet18 75.07 75.30±6.8 68.54 82.05

5.1 AudioVis

Table 2 shows the results for the AudioVis task for both the Cam-CAN and MOUS datasets. We report
the overall accuracy on the validation set and the mean subject accuracy and the confidence interval on the
test set. For more detail, bootstrap confidence intervals are given in Appendix A.

Overall, the differences in results between the two datasets are substantial, despite conceptually being a
similar task. Our new SERes model statistically significantly outperforms all others on Cam-CAN, whereas
existing models VAR-CNN and LF-CNN are best on MOUS. The important distinction between the tasks on
these datasets is that in MOUS it is a between-subject classification task, where each subject is only exposed
to one stimulus. It is likely then that LF-CNN and VAR-CNN in particular are picking up on characteristics
of the session rather than the essential properties of the MEG signal for the task. We also observe the much
larger variation in the results for MOUS than Cam-CAN, seen in the differences between subject accuracy
LB and UB (e.g. for SERes, 1.54 for Cam-CAN versus 11.09 for MOUS). In terms of existing computer
vision models ResNet18 and GoogLeNet, performance is poor to moderate on both datasets; we note here
also that these models would not always train successfully to convergence, on this task or on the others.

5.2 SentWordlist

Table 3 shows the results of the SentWordlist task on the MOUS dataset (bootstrap confidence intervals
in Table 8). SERes, the best performing in AudioVis on Cam-CAN, outperformed the LF-CNN and VAR-
CNN baselines in every case for the Visual and Both subsets. The computer vision models significantly more
difficult to train and thus generally do not do well on this task, and the GoogLeNet in particular falls behind.
However the ResNet18 shows the potential of more complex architectures on the visual subset.

As in the AudioVis task, there is a substantial difference between the different subsets, with the Visual
subset much more challenging. This may be due to the way that the information can be processed. When
a word is presented visually the subject can immediately focus on any part of the word. For audio, on the
other hand, the subject’s attention will always initially be at the start of the word which may result in more
informative temporal relationships. Despite having half the available data, the Audio subset achieves the
best results.

14



Published in Transactions on Machine Learning Research (01/2024)

Training on all of the data does not seem to improve compared to the results of each subset. This may be
because the low-level features are not easily transferred from one modality to the other. This makes sense
because these models are limited to learning a spatial embedding which only allows focusing on the brain
activity in 16 distinct ways. When trained together, the models will need to focus on activity that applies
on both modalities. Increasing the size of the spatial embedding could improve the results, although it may
also make it easier for the network to overfit.

Table 3: Results of the SentWordlist task on the MOUS dataset
Val. Acc. Test Sub. Acc. Sub. Acc. LB Sub. Acc. UB

Subset Architecture
Audio SERes (ours) 66.33 67.21±2.5 64.75 69.68

TimeConv (ours) 63.72 64.91±1.8 63.07 66.74
SETra (ours) 64.28 65.86±2.1 63.74 67.98
LF-CNN 63.85 64.27±2.1 62.22 66.32
VAR-CNN 62.83 64.47±2.4 62.11 66.82
GoogLeNet 51.09 50.82±1.7 49.16 52.47
ResNet18 63.25 64.25±1.9 62.38 66.11

Both SERes (ours) 58.61 59.99±2.1 57.84 62.14
TimeConv (ours) 57.67 58.87±1.9 57.00 60.73
SETra (ours) 58.21 59.86±1.9 57.93 61.79
LF-CNN 57.60 58.32±1.8 56.57 60.07
VAR-CNN 57.36 58.29±2.0 56.29 60.29
GoogLeNet 52.64 52.91±1.1 51.83 53.98
ResNet18 56.56 58.46±1.7 56.81 60.12

Visual SERes (ours) 54.97 56.60±1.4 55.20 58.00
TimeConv (ours) 56.07 56.24±2.0 54.28 58.19
SETra (ours) 55.96 56.18±1.5 54.69 57.68
LF-CNN 55.96 55.16±1.7 53.49 56.82
VAR-CNN 55.05 55.50±1.7 53.80 57.19
GoogLeNet 53.72 55.10±0.6 54.50 55.69
ResNet18 53.57 57.33±1.6 55.76 58.91

5.3 HardEasySent

Table 4 shows the results of the HardEasySent task on the MOUS dataset for both the Audio and Visual
subsets (bootstrap confidence intervals in Table 9). Like the SentWordlist task, there is a difference
between the subsets, but in this case, the classes are more easily distinguishable with a Visual stimulus
compared to the Audio equivalent. We also note that only one of the models (this same SETra) trained
on the Audio subset did better than chance (50%), whereas in both of the other subsets each model lower
bound of the 95% confidence interval was better than chance.

This also seems to be a task that does not see much benefit of the temporal features that our proposed
models focus on. The best overall result is the SETra, with this Visual stimulus, although none of the results
for models under the Visual stimulus are statistically significantly different. On the Both and Audio subsets
the LF-CNN scores highest, but looking at statistical significance, only the computer vision architectures are
actually worse on Both, and as noted above, most results on Audio are essentially at chance. In any case,
this is a challenging task, but all of the models are able to distinguish the difference when the stimulus is
presented visually.

5.4 TimeAutoencoder

Table 5 shows the results of applying TimeAutoencoder to LF-CNN and VAR-CNN on the SentWordlist
task, which have substantially improved relative to other models. (Table 10 gives the bootstrap confidence

15



Published in Transactions on Machine Learning Research (01/2024)

Table 4: Results of the HardEasySent task on the MOUS dataset
Val. Acc. Test Sub. Acc. Sub. Acc. LB Sub. Acc. UB

Subset Architecture
Audio SERes (ours) 50.79 49.95±0.4 49.50 50.40

TimeConv (ours) 50.71 49.70±0.7 49.00 50.39
SETra (ours) 51.95 51.83±1.3 50.54 53.12
LF-CNN 51.70 51.92±2.3 49.59 54.25
VAR-CNN 50.04 49.96±1.8 48.16 51.75
GoogLeNet 51.79 49.17±1.1 48.10 50.25
ResNet18 51.79 50.02±1.6 48.46 51.59

Both SERes (ours) 54.11 54.97±1.6 53.36 56.58
TimeConv (ours) 54.60 54.90±1.8 53.13 56.67
SETra (ours) 53.81 55.26±1.7 53.56 56.97
LF-CNN 54.49 56.02±1.5 54.56 57.49
VAR-CNN 55.89 55.34±1.6 53.70 56.98
GoogLeNet 53.62 53.29±1.3 51.94 54.64
ResNet18 55.06 53.51±1.9 51.64 55.37

Visual SERes (ours) 57.27 59.78±1.6 58.19 61.37
TimeConv (ours) 55.25 58.20±2.0 56.17 60.24
SETra (ours) 57.90 59.98±1.7 58.27 61.69
LF-CNN 56.37 59.40±1.1 58.35 60.46
VAR-CNN 56.44 59.24±2.2 57.04 61.44
GoogLeNet 57.83 59.16±0.6 58.60 59.72
ResNet18 57.62 58.58±0.9 57.66 59.50

intervals for comparing across encoders, and Table 12 for comparing across models using the best encoder.)
The best configuration (Unfrozen) produced Test Accuracies of 59.56% and 59.84%, respectively. This
reduced the difference in test accuracy between SERes and VAR-CNN to just 0.53% from 2.08%. For
both the LF-CNN and VAR-CNN the Unfrozen configuration outperforms all other configuration in every
evaluation set.

Interestingly, the Frozen in contrast decreases performance in most cases. However, we can also see the
benefit of pre-training by comparing the results to Uninitialized, which are consistently lower on the LF-
CNN and VAR-CNN models. This might suggest that the TimeAutoencoder is overfitting and is learning
how to model noise as well as useful information.

Looking at SERes and SETra, Disabled (128) performs better than the Disabled (64) in three out or four
configurations, suggesting that unlike LF-CNN and VAR-CNN, these models are more capable of exploiting
temporal information. We also see that these models perform no better when the encoder is added. Taken
together this suggests that the these models are already sufficiently capable of modelling the temporal
relationships; and that the potential overfitting from the pretrained network may outweigh the benefit to
further temporal modelling.

Table 6, containing results on the HardEasySent task, shows no clear optimal configuration. (Table 11
gives the bootstrap confidence intervals for comparing across encoders, and Table 13 for comparing across
models using the best encoder.) This is not entirely surprising: we observed in Table 4 and §5.3 that
the models that incorporated temporal features performed no better than those without. This result more
directly supports the idea that temporal features are more important in some tasks than others.

6 Discussion

We have introduced three novel architectures that have demonstrated that, by learning temporal relationships
in the data, we are able to improve the performance on temporally oriented tasks. In particular, our SERes

16



Published in Transactions on Machine Learning Research (01/2024)

Table 5: Results of the applying the TimeAutoencoder to the SentWordlist task on the MOUS dataset
Val. Acc. Test Sub. Acc. Sub. Acc. LB Sub. Acc. UB

Architecture Encoder
SERes (ours) Disabled (128) 59.94 60.37±2.2 58.18 62.55

Disabled (64) 58.13 59.34±2.1 57.25 61.43
Frozen 58.61 59.21±1.9 57.34 61.08
Unfrozen 57.69 59.18±1.9 57.25 61.10
Uninitialized 59.37 59.82±2.0 57.86 61.78

SETra (ours) Disabled (128) 59.11 60.26±2.0 58.29 62.24
Disabled (64) 58.21 59.59±2.0 57.58 61.60
Frozen 55.92 57.21±1.5 55.73 58.69
Unfrozen 57.93 58.32±2.0 56.29 60.35
Uninitialized 59.57 60.28±2.1 58.18 62.38

LF-CNN Disabled (128) 57.89 58.61±1.9 56.67 60.55
Disabled (64) 57.95 58.69±2.0 56.73 60.65
Frozen 55.98 56.85±1.7 55.19 58.51
Unfrozen 59.11 59.56±1.7 57.83 61.29
Uninitialized 58.83 59.30±1.8 57.49 61.10

VAR-CNN Disabled (128) 57.06 58.29±2.0 56.30 60.27
Disabled (64) 57.69 58.36±1.9 56.42 60.31
Frozen 55.03 55.88±1.4 54.46 57.30
Unfrozen 58.85 59.84±2.1 57.71 61.97
Uninitialized 58.99 59.56±1.9 57.64 61.48

Table 6: Results of the applying the TimeAutoencoder to the HardEasySent task on the MOUS dataset
Val. Acc. Test Sub. Acc. Sub. Acc. LB Sub. Acc. UB

Architecture Encoder
SERes (ours) Disabled (128) 54.07 53.98±1.4 52.54 55.42

Disabled (64) 53.20 54.68±1.7 52.99 56.38
Frozen 54.11 54.35±1.5 52.84 55.86
Unfrozen 54.11 54.35±1.5 52.84 55.86
Uninitialized 54.11 54.35±1.5 52.84 55.86

SETra (ours) Disabled (128) 54.60 55.84±1.7 54.10 57.58
Disabled (64) 53.13 54.41±1.6 52.80 56.01
Frozen 54.38 54.24±1.5 52.75 55.74
Unfrozen 54.11 54.33±1.5 52.83 55.83
Uninitialized 55.25 54.69±1.9 52.81 56.57

LF-CNN Disabled (128) 54.11 55.34±1.5 53.80 56.88
Disabled (64) 52.75 55.56±1.6 54.01 57.12
Frozen 53.92 54.43±1.3 53.15 55.72
Unfrozen 54.26 55.90±1.7 54.18 57.63
Uninitialized 54.41 54.57±1.8 52.81 56.33

VAR-CNN Disabled (128) 53.62 54.86±2.0 52.91 56.81
Disabled (64) 53.96 54.79±1.9 52.94 56.64
Frozen 52.29 51.35±1.6 49.73 52.97
Unfrozen 55.17 55.62±1.8 53.80 57.44
Uninitialized 53.77 54.43±1.5 52.94 55.91

was able to beat all our baseline models on the SentWordlist task where it achieved the highest overall
accuracy in two of three subsets (Audio and Both) and was only outperformed by our ResNet18 in the third

17



Published in Transactions on Machine Learning Research (01/2024)

(Visual) subset. This is the task that is most strongly temporally oriented: what distinguishes a grammatical
sentence from an arbitrarily ordered list of those same words is exactly the temporal sequence of the words.
Supporting that, at the level of an individual word (with the stimulus being presented one word at a time),
we point out that these temporal patterns were easiest to identify on the audio subset of the data. This
difference may be due to the way that the word is processed because the subject’s attention will always
initially be at the start of the word for the audio stimulus whereas this is not the case for the visual stimulus.
(We note also that it was on this task where the TimeAutoencoder boosted baseline model scores.)

Similarly, SERes performs better by a statistically significant margin than all other models except TimeConv
on the AudioVis task of the Cam-CAN dataset. In both of these tasks, as well as performing better than
the simpler LF-CNN and VAR-CNN models, it beats the computer vision baselines even though these have
more than 150 times more trainable parameters.

On the other hand, where the simpler LF-CNN and VAR-CNN models do do significantly better than all of
our new models, on the AudioVis task on the MOUS dataset, this is likely due to learning characteristics
of the session, because of the between-subjects nature of the experimental data. Less definitively, in the
HardEasySent task, our SETra performs well as does LF-CNN and VAR-CNN, although the difference
between models is not statistically significant with the exception of SETra, which is the only model to do
better than chance on the visual subset, and the computer vision models which significantly underperform on
the both subset. It is interesting to consider how this HardEasySent might differ from SentWordlist.
We note first that, following Zubarev et al. (2019), we only look at a very short time interval (the 500ms
period immediately after onset); with the mean duration of word utterance being 351ms as well as a 300ms
delay between words this period only includes one word. It has been recognised for some time that relative
clauses of the sort in the MOUS dataset are cognitively challenging (e.g. Bach et al. (1986)) — unlike main
clauses where the verb comes second (e.g. gaf ‘gave’ in the first example of Table 1), in these relative clauses
the tensed verb comes at the end (e.g. had ‘had’ in that same example). Work such as Bach et al. (1986)
has theorised that in these kinds of relative clause constructions, noun phrases in the relative clause must
be stored in memory awaiting assignment to their respective verbs that appear at the end of the clause,
although the precise details of the temporal course of lexical processing still constitute an open question (e.g.
de Goede et al. (2009)). That is, what differentiates the harder from simpler constructions in the dataset in
terms of processing complexity might not occur until after the time interval we use. Within that interval, all
that differentiates the types of sentences is whether a relative pronoun (e.g. die ‘who’, ‘that’, etc) or other
lexical item (e.g. zoals ‘such as’) is used. That is, the task may rely more on distinguishing among single
lexical items than any strongly temporal aspect.

7 Conclusion

In this paper we introduced three new deep learning models for MEG data, and evaluated them on a
previously defined large-dataset classification task, as well as several new classification tasks derived from
the recently released MOUS dataset. Compared with prior work, the new classification tasks demonstrate a
wide range of difficulty, allowing differentiation of the performance of models.

Our three new architectures concentrated on learning temporal relationships in the data that were ignored
in the prior literature. Our new SERes model outperformed both previous state of the art and baseline
computer vision architectures on the previously defined classification task on the Cam-CAN dataset, as
well as the new tasks where a temporal aspect was clear. We further found that an autoencoder-based
preprocessing component that learned temporal information could be combined with previous models to
improve their performance on temporal tasks.

MEG is a relatively new domain for deep learning, and there is much to be understood on the best way
to train models. We have noted that models which contain more than one million parameters (GoogLeNet
and ResNet18) would not always train successfully. This suggests that there is some unknown, intermittent
and undesirable interaction taking place while training these models. Understanding the cause of this may
increase the performance of all architectures significantly.

18



Published in Transactions on Machine Learning Research (01/2024)

In this work we have shown the benefits of pre-training using an autoencoder; however, we constrained the
encoder to only be able to learn temporal features. Developing a method of pre-training that builds on
spatial features as well is likely to further increase performance.

In terms of characterising what kinds of tasks will be improved by including temporal information, while
our SERes architecture achieved state-of-the-art results on temporally-oriented tasks, it is not clear what
aspects of those tasks benefits from the architecture. A deeper understanding of the underlying cognitive
processes that cause the difference in temporal behavior between our tasks derived from the MOUS dataset
is necessary; this kind of understanding will likely contribute to further performance improvements in neural
network architectures for MEG processing.

Another important direction for future research is the visualisation of the activation patterns. Zubarev
et al. (2019) used traditional source estimation algorithms (Dale et al., 2000) in a way that was fairly
straightforward for their particular relatively shallow architectures but that might be more complex for our
models; the deep learning-based source estimation work of Pantazis & Adler (2021) that has appeared since
that time is a promising alternative for integrating into our models.

In summary, we have made four main contributions. First, we have introduced three temporally rich deep
learning models. Second, we have evaluated these models to existing work on both existing and novel more
challenging classification tasks. Third, we have demonstrated that our proposed models outperform the
previous state-of-the-art on temporally-oriented classification tasks. Finally, we have shown that when we
incorporate a temporal preprocessing component into existing models, we can improve their performance on
temporal tasks.

Broader implications of this work span both methodological advancements and applications in neuroscience.
Deep learning’s integration into Magnetoencephalography (MEG) data analysis, as showcased here, under-
scores a paradigm shift in our approach to neuroimaging. The ability to identify nuanced patterns using
intricate deep neural network architectures could pave the way for more accurate diagnoses and improved
understanding of neurological disorders. As the intersection of neuroscience and machine learning continues
to grow, the contributions of this study could serve as a foundational step for subsequent research endeavors,
driving the pursuit of better insights into cognitive processes and brain functions.

References
A. Ali, H. Touvron, M. Caron, P. Bojanowski, M. Douze, A. Joulin, I. Laptev, N. Neverova, G. Synnaeve,

J. Verbeek, and H. Jégou. Xcit: Cross-covariance image transformers. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 20014–20027, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/a655fbe4b8d7439994aa37ddad80de56-Abstract.html.

J. Aoe, R. Fukuma, T. Yanagisawa, T. Harada, M. Tanaka, M. Kobayashi, Y. Inoue, S. Yamamoto,
Y. Ohnishi, and H. Kishima. Automatic diagnosis of neurological diseases using MEG signals with a
deep neural network. Scientific Reports, 9:5057, 2019. doi: 10.1038/s41598-019-41500-x.

E. Bach, C. Brown, and W. Marslen-Wilson. Crossed and nested dependencies in German and Dutch:
A psycholinguistic study. Language and Cognitive Processes, 1(4):249–262, 1986. doi: 10.1080/
01690968608404677.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. CoRR,
abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

L. Brigato and L. Iocchi. A Close Look at Deep Learning with Small Data. In Proceedings of the 25th
International Conference on Pattern Recognition (ICPR), 2021.

M. J. Brookes, M. Woolrich, H. Luckhoo, D. Price, J. R. Hale, M. C. Stephenson, G. R. Barnes, S. M. Smith,
and P. G. Morris. Investigating the electrophysiological basis of resting state networks using magnetoen-
cephalography. Proceedings of the National Academy of Sciences of the United States of America, 108(40):
16783–16788, 2011. doi: 10.1073/pnas.1112685108.

19

https://proceedings.neurips.cc/paper/2021/hash/a655fbe4b8d7439994aa37ddad80de56-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a655fbe4b8d7439994aa37ddad80de56-Abstract.html
https://arxiv.org/abs/2004.05150


Published in Transactions on Machine Learning Research (01/2024)

L. D. Brown, T. T. Cai, and A. Das Gupta. Interval estimation for a binomial proportion. Statistical Science,
16(2):101–117, 2001. ISSN 08834237. doi: 10.1214/ss/1009213286.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan, and I. Sutskever. Generative
pretraining from pixels. In Proceedings of the 37th International Conference on Machine Learning, 2020.

P. Cohen. Empirical methods for artificial intelligence. In IEEE Expert, 1995.

A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau, J. D. Lewine, and E. Halgren. Dynamic
statistical parametric mapping: combining fmri and meg for high resolution imaging of cortical activity.
Neuron, 26(1):55–67, 2000. doi: 10.1016/S0896-6273(00)81138-1.

D. Dash, P. Ferrari, and J. Wang. Decoding imagined and spoken phrases from non-invasive neural (MEG)
signals. Frontiers in Neuroscience, 14:290, 2020. ISSN 1662-453X. doi: 10.3389/fnins.2020.00290. URL
https://www.frontiersin.org/article/10.3389/fnins.2020.00290.

J. Daunizeau and K. J. Friston. A mesostate-space model for EEG and MEG. NeuroImage, 38(1):67–
81, 2007. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2007.06.034. URL https://www.
sciencedirect.com/science/article/pii/S105381190700568X.

D. de Goede, L. P. Shapiro, F. Wester, D. A. Swinney, and R. Bastiaanse. The time course of verb processing
in Dutch sentences. Journal of Psycholinguistic Research, 38:181–199, 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE,
aug 2009. ISBN 9781424439911. doi: 10.1109/cvprw.2009.5206848.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

A. P. Georgopoulos, F. J. Langheim, A. C. Leuthold, and A. N. Merkle. Magnetoencephalographic signals
predict movement trajectory in space. Experimental Brain Research, 167(1):132–135, 2005. doi: 10.1007/
s00221-005-0028-8.

A. Giovannetti, G. Susi, P. Casti, A. Mencattini, S. Pusil, M. E. López, C. Di Natale, and E. Martinelli.
Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early
signs of Alzheimer’s disease with magnetoencephalography. Neural Computing and Applications, 2021.
doi: 10.1007/s00521-021-06105-4.

J. Gross. Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron, 104(2):189–204, oct 2019.
ISSN 10974199. doi: 10.1016/j.neuron.2019.07.001.

R. Hari and A. Puce. MEG-EEG Primer. Oxford University Press, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

M.-X. Huang, C. W. Huang, D. L. Harrington, A. Robb-Swan, A. Angeles-Quinto, S. Nichols, J. W. Huang,
L. Le, C. Rimmele, S. Matthews, A. Drake, T. Song, Z. Ji, C.-K. Cheng, Q. Shen, E. Foote, I. Lerman,
K. A. Yurgil, H. B. Hansen, R. K. Naviaux, R. Dynes, D. G. Baker, and R. R. Lee. Resting-state
magnetoencephalography source magnitude imaging with deep-learning neural network for classification
of symptomatic combat-related mild traumatic brain injury. Human Brain Mapping, 42(7):1987–2004,
2021.

20

https://www.frontiersin.org/article/10.3389/fnins.2020.00290
https://www.sciencedirect.com/science/article/pii/S105381190700568X
https://www.sciencedirect.com/science/article/pii/S105381190700568X
https://openreview.net/forum?id=YicbFdNTTy


Published in Transactions on Machine Learning Research (01/2024)

S. H. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision: A
survey. ACM Comput. Surv., 54(10s):200:1–200:41, 2022. doi: 10.1145/3505244. URL https://doi.org/
10.1145/3505244.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.

N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient transformer. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=rkgNKkHtvB.

D. Kostas, E. W. Pang, and F. Rudzicz. Machine learning for MEG during speech tasks. Scientific Reports,
9:1609, 2019. doi: 10.1038/s41598-019-38612-9.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance. Eegnet: a compact
convolutional neural network for eeg-based brain–computer interfaces. Journal of Neural Engineering, 15
(5):056013, Jul 2018. ISSN 1741-2552. doi: 10.1088/1741-2552/aace8c. URL http://dx.doi.org/10.
1088/1741-2552/aace8c.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical
vision transformer using shifted windows. In 2021 IEEE/CVF International Conference on Computer
Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pp. 9992–10002. IEEE, 2021. doi:
10.1109/ICCV48922.2021.00986. URL https://doi.org/10.1109/ICCV48922.2021.00986.

M. Lopez-Martin, A. Nevado, and B. Carro. Detection of early stages of alzheimer’s disease based on
meg activity with a randomized convolutional neural network. Artificial Intelligence in Medicine, 107:
101924, 2020. ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.2020.101924. URL https://www.
sciencedirect.com/science/article/pii/S0933365720300749.

F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger. A review of
classification algorithms for EEG-based brain-computer interfaces: A 10 year update. 15(3), apr 2018.
ISSN 17412552. doi: 10.1088/1741-2552/aab2f2.

H. Luckhoo, J. R. Hale, M. G. Stokes, A. C. Nobre, P. G. Morris, M. J. Brookes, and M. W. Woolrich.
Inferring task-related networks using independent component analysis in magnetoencephalography. Neu-
roImage, 62(1):530–541, 2012. doi: 10.1016/j.neuroimage.2012.04.046.

J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders for hierarchical
feature extraction. In Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59, 2011.
ISBN 9783642217340. doi: 10.1007/978-3-642-21735-7_7.

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu. Wavenet: A generative model for raw audio. ArXiv, abs/1609.03499, 2016.

A. O. Ovchinnikova, A. N. Vasilyev, I. Zubarev, B. L. Kozyrskiy, and S. L. Shishkin. Meg-based detection
of voluntary eye fixations used to control a computer. Frontiers in Neuroscience, 15, 2021.

D. Pantazis and A. Adler. MEG Source Localization via Deep Learning. Sensors, 21(13):4278, 2021. doi:
10.3390/s21134278.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pp. 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

21

https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://openreview.net/forum?id=rkgNKkHtvB
http://dx.doi.org/10.1088/1741-2552/aace8c
http://dx.doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1109/ICCV48922.2021.00986
https://www.sciencedirect.com/science/article/pii/S0933365720300749
https://www.sciencedirect.com/science/article/pii/S0933365720300749
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html


Published in Transactions on Machine Learning Research (01/2024)

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep contextualized
word representations. feb 2018. URL http://arxiv.org/abs/1802.05365.

M. Proudfoot, M. W. Woolrich, A. C. Nobre, and M. R. Turner. Magnetoencephalography. Practical
Neurology, 14(5):336–343, 2014. doi: 10.1136/practneurol-2013-000768.

F. Quandt, C. Reichert, H. Hinrichs, H. J. Heinze, R. T. Knight, and J. W. Rieger. Single trial discrimination
of individual finger movements on one hand: a combined MEG and EEG study. NeuroImage, 59(4):3316–
3324, 2012. doi: /10.1016/j.neuroimage.2011.11.053.

M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should i trust you?" Explaining the predictions of any
classifier. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, volume 13-17-Augu, pp. 1135–1144, feb 2016. ISBN 9781450342322. doi: 10.1145/2939672.
2939778. URL https://arxiv.org/abs/1602.04938.

Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert. Deep learning-based elec-
troencephalography analysis: a systematic review. Journal of Neural Engineering, 16(5):051001, aug
2019. ISSN 1741-2552. doi: 10.1088/1741-2552/ab260c. URL https://iopscience.iop.org/article/
10.1088/1741-2552/ab260c.

R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann,
F. Hutter, W. Burgard, and T. Ball. Deep learning with convolutional neural networks for EEG decoding
and visualization. Human Brain Mapping, 38(11):5391–5420, nov 2017. ISSN 10970193. doi: 10.1002/
hbm.23730. URL http://doi.wiley.com/10.1002/hbm.23730.

J. M. Schoffelen, R. Oostenveld, N. H. L. Lam, J. Uddén, A. Hultén, and P. Hagoort. A 204-subject
multimodal neuroimaging dataset to study language processing. Scientific Data, 6(1):17, apr 2019. ISSN
20524463. doi: 10.1038/s41597-019-0020-y.

M. A. Shafto, L. K. Tyler, M. Dixon, J. R. Taylor, J. B. Rowe, R. Cusack, A. J. Calder, W. D. Marslen-
Wilson, J. Duncan, T. Dalgleish, R. N. Henson, C. Brayne, E. Bullmore, K. Campbell, T. Cheung, S. Davis,
L. Geerligs, R. Kievit, A. McCarrey, D. Price, D. Samu, M. Treder, K. Tsvetanov, N. Williams, L. Bates,
T. Emery, S. Erzinçlioglu, A. Gadie, S. Gerbase, S. Georgieva, C. Hanley, B. Parkin, D. Troy, J. Allen,
G. Amery, L. Amunts, A. Barcroft, A. Castle, C. Dias, J. Dowrick, M. Fair, H. Fisher, A. Goulding,
A. Grewal, G. Hale, A. Hilton, F. Johnson, P. Johnston, T. Kavanagh-Williamson, M. Kwasniewska,
A. McMinn, K. Norman, J. Penrose, F. Roby, D. Rowland, J. Sargeant, M. Squire, B. Stevens, A. Stoddart,
C. Stone, T. Thompson, O. Yazlik, D. Barnes, J. Hillman, J. Mitchell, L. Villis, and F. E. Matthews. The
Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan,
multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 14(1), 2014. ISSN 14712377.
doi: 10.1186/s12883-014-0204-1.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, sep
2015. URL http://arxiv.org/abs/1409.1556.

S. M. Stufflebeam. Clinical magnetoencephalography for neurosurgery. Neurosurgery Clinics of North Amer-
ica, 22(2):153–67, 2011. doi: 10.1016/j.nec.2010.11.006.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 07-12-June, pp. 1–9. IEEE Computer Society, oct 2015. ISBN
9781467369640. doi: 10.1109/CVPR.2015.7298594. URL https://arxiv.org/abs/1409.4842v1.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of
residual connections on learning. In Thirty-first AAAI conference on artificial intelligence, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, 2017.

22

http://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1602.04938
https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
http://doi.wiley.com/10.1002/hbm.23730
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842v1


Published in Transactions on Machine Learning Research (01/2024)

S. Waldert, H. Preissl, E. Demandt, C. Braun, N. Birbaumer, A. Aertsen, and C. Mehring. Hand Movement
Direction Decoded from MEG and EEG. Journal of Neuroscience, 28(4):1000–1008, 2008. ISSN 0270-6474.
doi: 10.1523/JNEUROSCI.5171-07.2008. URL https://www.jneurosci.org/content/28/4/1000.

B. U. Westner, S. S. Dalal, S. Hanslmayr, and T. Staudigl. Across-subjects classification of stimulus modality
from human MEG high frequency activity. PLoS Compututational Biology, 14(3), 2018. doi: 10.1371/
journal.pcbi.1005938.

Y. Wu and K. He. Group Normalization. International Journal of Computer Vision, 128(3):742–755, mar
2020. ISSN 15731405. doi: 10.1007/s11263-019-01198-w. URL http://arxiv.org/abs/1803.08494.

I. Zubarev, R. Zetter, H. L. Halme, and L. Parkkonen. Adaptive neural network classifier for decoding MEG
signals. NeuroImage, 197:425–434, aug 2019. ISSN 10959572. doi: 10.1016/j.neuroimage.2019.04.068.

A Pairwise bootstrap confidence intervals

This section contains the results of the pairwise bootstrap confidence intervals for the models. For conve-
nience, we repeat the description of the method we use to compute the confidence intervals.

These statistical tests look at the pairwise difference in subject accuracy between models and we report
the bootstrap confidence interval (95%) using the percentile method (Cohen, 1995) for per-subject accuracy
under each model. For each bootstrap iteration for a pair of models, we sample random combinations of
subjects with replacement and compute the mean difference in subject accuracy for the sampled subjects.
Using these sampled differences across many iterations, we generate a 95% bootstrap confidence interval
employing the percentile method (Cohen, 1995). This allows us to distinguish between differences in models
that are statistically significantly different from those that are not.

We repeat the process twice for each pair of models, comparing the difference between A and B and again
between B and A. For each test, we report the lower and upper bounds of the confidence interval. If the
interval covers 0 they are not statistically significantly different; if the lower bound is positive, the model in
the row is significantly better than the one in the column. If the upper bound is negative, the model in the
column is significantly better than the one in the row. Statistically significant differences are in bold. So, for
example, in Table 7, the SERes model is statistically significantly better than all others except TimeConv.

The tables in this appendix present pairwise bootstrap confidence intervals for all datasets and tasks in the
main paper: Table 7 for AudioVis, Table 8 for SentWordlist, Table 9 for HardEasySent, Table 10
for SentWordlist autoencoder models, Table 11 for HardEasySent autoencoder models, Table 12 for
SentWordlist autoencoder configurations, Table 13 for HardEasySent autoencoder configurations.

Table 7: Pairwise bootstrap confidence intervals for models on the AudioVis task. Statistically significant
differences in bold.

SERes TimeConv SETra LF-CNN VAR-CNN ResNet18 GoogLeNet
Subset Architecture
Cam-CAN SERes (ours) - (-0.36,0.35) (0.99,1.80) (1.24,2.44) (0.92,2.05) (0.92,1.85) (1.24,2.08)

TimeConv (ours) (-0.33,0.36) - (0.96,1.86) (1.25,2.47) (0.97,1.99) (0.96,1.84) (1.28,2.06)
SETra (ours) (-1.80,-0.99) (-1.86,-0.96) - (0.03,0.87) (-0.39,0.55) (-0.48,0.46) (-0.21,0.72)
LF-CNN (-2.44,-1.24) (-2.45,-1.25) (-0.85,-0.01) - (-0.86,0.14) (-0.96,0.07) (-0.79,0.42)
VAR-CNN (-2.03,-0.92) (-2.01,-0.98) (-0.55,0.39) (-0.14,0.87) - (-0.64,0.44) (-0.40,0.77)
GoogLeNet (-2.06,-1.25) (-2.05,-1.27) (-0.73,0.21) (-0.44,0.78) (-0.76,0.42) (-0.66,0.13) -
ResNet18 (-1.86,-0.92) (-1.83,-0.96) (-0.47,0.49) (-0.08,0.98) (-0.45,0.63) - (-0.13,0.67)

MOUS SERes (ours) - (-0.36,7.80) (-0.01,7.94) (-8.33,-2.45) (-8.17,-4.10) (-1.87,6.51) (-0.13,10.07)
TimeConv (ours) (-7.75,0.51) - (-2.93,3.89) (-12.49,-5.34) (-13.36,-6.15) (-4.64,2.36) (-5.00,7.48)
SETra (ours) (-8.00,-0.12) (-3.89,2.89) - (-13.68,-4.75) (-13.93,-6.31) (-6.83,3.40) (-6.18,8.01)
LF-CNN (2.46,8.32) (5.34,12.45) (4.91,13.66) - (-2.64,1.08) (3.98,11.71) (4.05,16.08)
VAR-CNN (4.11,8.09) (6.04,13.27) (6.33,13.77) (-1.11,2.62) - (4.34,12.63) (5.27,16.66)
GoogLeNet (-9.87,-0.00) (-7.47,5.17) (-8.07,6.14) (-16.13,-4.27) (-16.65,-5.36) (-7.21,2.58) -
ResNet18 (-6.57,1.93) (-2.32,4.62) (-3.43,6.80) (-11.64,-3.83) (-12.63,-4.43) - (-2.69,7.36)

23

https://www.jneurosci.org/content/28/4/1000
http://arxiv.org/abs/1803.08494


Published in Transactions on Machine Learning Research (01/2024)

Table 8: Pairwise bootstrap confidence intervals for models on the SentWordlist task. Statistically
significant differences in bold.

SERes TimeConv SETra LF-CNN VAR-CNN ResNet18 GoogLeNet
Subset Architecture
Audio SERes (ours) - (0.92,3.65) (0.12,2.62) (1.68,4.27) (1.28,4.31) (1.37,4.50) (13.41,19.05)

TimeConv (ours) (-3.64,-0.90) - (-2.51,0.54) (-0.95,2.23) (-1.02,1.95) (-0.58,2.03) (11.73,16.16)
SETra (ours) (-2.61,-0.11) (-0.63,2.47) - (0.39,2.89) (-0.08,2.77) (0.01,3.22) (12.60,17.29)
LF-CNN (-4.27,-1.68) (-2.24,0.92) (-2.89,-0.37) - (-1.84,1.48) (-1.38,1.42) (10.89,15.85)
VAR-CNN (-4.31,-1.31) (-1.92,1.04) (-2.78,0.10) (-1.45,1.84) - (-1.14,1.51) (10.94,16.13)
GoogLeNet (-19.12,-13.47) (-16.13,-11.75) (-17.31,-12.61) (-15.83,-10.84) (-16.20,-10.91) (-15.44,-11.31) -
ResNet18 (-4.49,-1.45) (-2.04,0.59) (-3.22,-0.01) (-1.41,1.36) (-1.55,1.19) - (11.34,15.47)

Both SERes (ours) - (0.15,2.13) (-0.72,0.97) (0.52,2.85) (0.20,3.30) (0.60,2.52) (4.42,9.74)
TimeConv (ours) (-2.13,-0.16) - (-2.04,0.09) (-0.46,1.63) (-0.90,1.95) (-0.46,1.25) (3.56,8.32)
SETra (ours) (-0.97,0.71) (-0.08,2.03) - (0.50,2.58) (0.42,2.74) (0.37,2.35) (4.59,9.36)
LF-CNN (-2.83,-0.50) (-1.65,0.47) (-2.58,-0.46) - (-1.32,1.38) (-1.25,0.94) (3.20,7.68)
VAR-CNN (-3.27,-0.22) (-1.95,0.87) (-2.73,-0.42) (-1.40,1.34) - (-1.50,1.13) (3.13,7.67)
GoogLeNet (-9.71,-4.46) (-8.32,-3.62) (-9.38,-4.65) (-7.71,-3.15) (-7.79,-3.17) (-7.71,-3.44) -
ResNet18 (-2.55,-0.58) (-1.27,0.46) (-2.35,-0.38) (-0.93,1.21) (-1.14,1.46) - (3.41,7.71)

Visual SERes (ours) - (-1.19,1.98) (-0.83,1.69) (0.05,2.96) (-0.18,2.36) (-2.15,0.70) (0.07,2.90)
TimeConv (ours) (-2.00,1.16) - (-1.54,1.65) (-0.56,2.79) (-0.86,2.37) (-2.55,0.45) (-0.63,2.92)
SETra (ours) (-1.67,0.81) (-1.68,1.54) - (-0.65,2.65) (-0.80,2.19) (-2.25,-0.09) (-0.29,2.52)
LF-CNN (-2.91,0.03) (-2.80,0.61) (-2.64,0.64) - (-2.20,1.42) (-3.72,-0.67) (-1.63,1.55)
VAR-CNN (-2.38,0.16) (-2.39,0.88) (-2.19,0.80) (-1.40,2.20) - (-3.29,-0.20) (-1.01,1.79)
GoogLeNet (-2.89,-0.08) (-2.89,0.62) (-2.51,0.31) (-1.54,1.65) (-1.85,0.95) (-3.64,-0.76) -
ResNet18 (-0.71,2.13) (-0.44,2.54) (0.09,2.23) (0.70,3.72) (0.24,3.31) - (0.80,3.64)

Table 9: Pairwise bootstrap confidence intervals for models on the HardEasySent task. Statistically
significant differences in bold.

SERes TimeConv SETra LF-CNN VAR-CNN ResNet18 GoogLeNet
Subset Architecture
Audio SERes (ours) - (-0.60,1.00) (-2.86,-0.84) (-3.89,0.06) (-1.54,1.52) (-1.51,1.42) (-0.28,1.83)

TimeConv (ours) (-1.04,0.60) - (-3.44,-0.79) (-4.37,0.10) (-1.99,1.56) (-1.94,1.20) (-0.52,1.74)
SETra (ours) (0.80,2.83) (0.75,3.43) - (-2.14,2.09) (0.25,3.58) (-0.16,3.78) (1.01,4.30)
LF-CNN (-0.07,3.94) (-0.09,4.40) (-2.06,2.15) - (0.44,3.57) (-0.77,4.71) (0.37,5.08)
VAR-CNN (-1.55,1.48) (-1.52,1.96) (-3.58,-0.21) (-3.57,-0.43) - (-2.46,2.43) (-1.28,2.89)
GoogLeNet (-1.83,0.29) (-1.69,0.54) (-4.28,-1.07) (-5.02,-0.40) (-2.88,1.29) (-2.53,0.76) -
ResNet18 (-1.40,1.52) (-1.21,1.94) (-3.75,0.16) (-4.71,0.89) (-2.44,2.43) - (-0.78,2.54)

Both SERes (ours) - (-1.38,1.60) (-1.68,1.07) (-2.42,0.25) (-1.65,0.86) (0.12,2.75) (0.47,2.91)
TimeConv (ours) (-1.53,1.37) - (-1.79,1.03) (-2.72,0.45) (-2.16,1.27) (-0.36,3.16) (0.05,3.16)
SETra (ours) (-1.10,1.68) (-1.03,1.75) - (-2.01,0.46) (-1.47,1.23) (0.16,3.35) (0.61,3.26)
LF-CNN (-0.29,2.39) (-0.41,2.74) (-0.47,2.05) - (-0.58,1.96) (1.21,3.96) (1.59,3.83)
VAR-CNN (-0.86,1.63) (-1.23,2.14) (-1.23,1.48) (-1.93,0.58) - (0.66,3.04) (0.92,3.20)
GoogLeNet (-2.89,-0.47) (-3.16,-0.05) (-3.30,-0.63) (-3.84,-1.58) (-3.21,-0.91) (-1.39,1.04) -
ResNet18 (-2.80,-0.17) (-3.16,0.37) (-3.29,-0.20) (-3.95,-1.18) (-3.02,-0.66) - (-1.02,1.39)

Visual SERes (ours) - (-0.48,3.54) (-2.15,1.47) (-1.45,2.04) (-1.84,2.53) (-0.29,2.75) (-0.79,2.01)
TimeConv (ours) (-3.53,0.48) - (-3.63,0.16) (-3.22,0.78) (-2.63,0.67) (-1.92,1.11) (-2.64,0.66)
SETra (ours) (-1.47,2.04) (-0.10,3.62) - (-0.94,2.11) (-1.40,2.63) (-0.37,3.14) (-0.77,2.49)
LF-CNN (-2.04,1.38) (-0.83,3.22) (-2.13,0.97) - (-1.91,2.04) (-0.31,1.97) (-0.96,1.31)
VAR-CNN (-2.49,1.89) (-0.62,2.62) (-2.61,1.41) (-2.03,1.92) - (-1.26,2.70) (-1.75,2.13)
GoogLeNet (-2.01,0.79) (-0.72,2.66) (-2.51,0.79) (-1.31,0.93) (-2.10,1.75) (-0.03,1.23) -
ResNet18 (-2.74,0.32) (-1.13,1.92) (-3.21,0.35) (-1.96,0.30) (-2.72,1.25) - (-1.23,0.01)

Table 10: Pairwise bootstrap confidence intervals for models with the best performing encoders configuration
on the SentWordlist task. Statistically significant differences in bold.

SERes SETra LF-CNN VAR-CNN
SERes (ours) - (-0.79,0.97) (-0.19,1.82) (-0.61,1.67)
SETra (ours) (-0.97,0.79) - (-0.14,1.54) (-0.57,1.40)
LF-CNN (-1.85,0.19) (-1.54,0.16) - (-1.24,0.76)
VAR-CNN (-1.73,0.61) (-1.41,0.53) (-0.74,1.26) -

24



Published in Transactions on Machine Learning Research (01/2024)

Table 11: Pairwise bootstrap confidence intervals for models with the best performing encoders configuration
on the HardEasySent task. Statistically significant differences in bold.

SERes SETra LF-CNN VAR-CNN
SERes (ours) - (-2.43,0.13) (-2.90,0.52) (-2.32,0.49)
SETra (ours) (-0.12,2.45) - (-1.42,1.28) (-1.10,1.57)
LF-CNN (-0.55,2.93) (-1.29,1.41) - (-1.18,1.77)
VAR-CNN (-0.53,2.33) (-1.61,1.07) (-1.78,1.15) -

Table 12: Pairwise bootstrap confidence intervals for encoders configurations of models on the Sent-
Wordlist task. Statistically significant differences in bold.

Encoder Disabled (128) Disabled (64) Frozen Unfrozen Uninitialized
Model Encoder
SERes (ours) Disabled (128) - (-0.08,2.11) (0.24,2.06) (0.17,2.25) (-0.38,1.48)

Disabled (64) (-2.12,0.07) - (-0.76,0.99) (-0.85,1.25) (-1.73,0.73)
Frozen (-2.05,-0.23) (-1.00,0.74) - (-0.84,0.92) (-1.47,0.21)
Unfrozen (-2.22,-0.18) (-1.24,0.88) (-0.93,0.81) - (-1.84,0.57)
Uninitialized (-1.50,0.39) (-0.69,1.70) (-0.21,1.47) (-0.57,1.85) -

SETra (ours) Disabled (128) - (-0.10,1.41) (1.61,4.45) (1.02,2.90) (-0.72,0.68)
Disabled (64) (-1.44,0.07) - (1.14,3.65) (0.31,2.29) (-1.64,0.28)
Frozen (-4.46,-1.66) (-3.65,-1.17) - (-2.23,-0.03) (-4.68,-1.49)
Unfrozen (-2.89,-1.01) (-2.28,-0.29) (0.04,2.24) - (-2.96,-0.97)
Uninitialized (-0.69,0.72) (-0.28,1.64) (1.49,4.67) (0.98,2.96) -

LF-CNN Disabled (128) - (-1.15,0.97) (0.85,2.73) (-2.08,0.21) (-1.95,0.54)
Disabled (64) (-0.98,1.17) - (0.79,2.93) (-1.78,0.06) (-1.65,0.52)
Frozen (-2.72,-0.85) (-2.97,-0.80) - (-3.63,-1.83) (-3.55,-1.36)
Unfrozen (-0.20,2.09) (-0.04,1.78) (1.83,3.62) - (-0.64,1.18)
Uninitialized (-0.54,1.94) (-0.49,1.68) (1.38,3.51) (-1.22,0.62) -

VAR-CNN Disabled (128) - (-1.29,1.13) (1.08,3.76) (-2.84,-0.23) (-2.56,0.03)
Disabled (64) (-1.15,1.30) - (0.94,4.06) (-2.56,-0.40) (-2.16,-0.27)
Frozen (-3.72,-1.10) (-4.06,-0.97) - (-5.55,-2.34) (-5.17,-2.21)
Unfrozen (0.21,2.85) (0.38,2.56) (2.38,5.57) - (-0.66,1.20)
Uninitialized (0.01,2.56) (0.25,2.15) (2.24,5.16) (-1.19,0.65) -

25



Published in Transactions on Machine Learning Research (01/2024)

Table 13: Pairwise bootstrap confidence intervals for encoders configurations of models on the HardEasy-
Sent task. Statistically significant differences in bold.

Encoder Disabled (128) Disabled (64) Frozen Unfrozen Uninitialized
Model Encoder
SERes (ours) Disabled (128) - (-1.76,0.36) (-1.05,0.29) (-1.05,0.28) (-1.05,0.28)

Disabled (64) (-0.35,1.80) - (-0.58,1.29) (-0.61,1.28) (-0.61,1.25)
Frozen (-0.28,1.04) (-1.23,0.58) - - -
Unfrozen (-0.27,1.06) (-1.28,0.60) - - -
Uninitialized (-0.29,1.05) (-1.28,0.60) - - -

SETra (ours) Disabled (128) - (0.09,2.86) (0.48,2.75) (0.38,2.69) (-0.14,2.48)
Disabled (64) (-2.83,-0.08) - (-1.10,1.41) (-1.22,1.34) (-1.70,1.12)
Frozen (-2.74,-0.50) (-1.39,1.11) - (-0.33,0.15) (-1.64,0.76)
Unfrozen (-2.70,-0.40) (-1.35,1.21) (-0.15,0.33) - (-1.51,0.81)
Uninitialized (-2.51,0.14) (-1.13,1.67) (-0.78,1.64) (-0.79,1.50) -

LF-CNN Disabled (128) - (-1.49,1.07) (-0.55,2.32) (-1.90,0.78) (-0.90,2.28)
Disabled (64) (-1.09,1.51) - (-0.31,2.55) (-1.82,1.08) (-0.61,2.52)
Frozen (-2.36,0.55) (-2.52,0.31) - (-2.64,-0.26) (-1.62,1.39)
Unfrozen (-0.81,1.90) (-1.08,1.77) (0.23,2.66) - (-0.33,2.91)
Uninitialized (-2.33,0.86) (-2.54,0.58) (-1.35,1.64) (-2.93,0.36) -

VAR-CNN Disabled (128) - (-1.35,1.46) (1.72,5.34) (-1.97,0.51) (-0.77,1.61)
Disabled (64) (-1.47,1.35) - (1.64,5.28) (-2.19,0.57) (-1.10,1.79)
Frozen (-5.33,-1.69) (-5.33,-1.64) - (-5.93,-2.58) (-4.64,-1.48)
Unfrozen (-0.53,1.93) (-0.54,2.19) (2.58,5.97) - (-0.10,2.52)
Uninitialized (-1.62,0.78) (-1.79,1.03) (1.50,4.70) (-2.53,0.11) -

26


	Introduction
	Background
	Models
	TimeConv
	Temporal Residual Block
	SERes
	SETra
	TimeAutoencoder

	Experimental Setup
	Datasets
	Cam-CAN dataset
	Mother Of Unification Studies

	Training and Evaluation
	Baselines
	TimeAutoencoder


	Results
	AudioVis
	SentWordlist
	HardEasySent
	TimeAutoencoder

	Discussion
	Conclusion
	Pairwise bootstrap confidence intervals

