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ABSTRACT

Modern neural networks are expected to simultaneously satisfy a host of desirable
properties: accurate fitting to training data, generalization to unseen inputs, pa-
rameter and computational efficiency, and robustness to adversarial perturbations.
While compressibility and robustness have each been studied extensively, a unified
understanding of their interaction still remains elusive. In this work, we develop a
principled framework to analyze how different forms of compressibility - such as
neuron-level sparsity and spectral compressibility - affect adversarial robustness.
We show that these forms of compression can induce a small number of highly
sensitive directions in the representation space, which adversaries can exploit to
construct effective perturbations. Our analysis yields a simple yet instructive ro-
bustness bound, revealing how neuron and spectral compressibility impact £, and
{5 robustness via their effects on the learned representations. Crucially, the vulnera-
bilities we identify arise irrespective of how compression is achieved - whether via
regularization, architectural bias, or implicit learning dynamics. Through empirical
evaluations across synthetic and realistic tasks, we confirm our theoretical predic-
tions, and further demonstrate that these vulnerabilities persist under adversarial
training and transfer learning, and contribute to the emergence of universal adver-
sarial perturbations. Our findings show a fundamental tension between structured
compressibility and robustness and highlight new pathways for designing models
that are both efficient and safe.

1 INTRODUCTION

Machine learning (ML) systems are increasingly deployed in high-stakes domains such as health-
care (Rajpurkar et al., 2022) and autonomous driving (Hussain & Zeadally, 2019), where reliability
is paramount. With their growing social impact, modern neural networks are now expected to meet a
suite of often conflicting demands: they must fit the data (explain observations), generalize to unseen
inputs, remain efficient in storage and inference, i.e., be compressible, and exhibit robustness against
adversarial perturbations, as well as other distribution shifts. While each of these desiderata has been
studied extensively in isolation, a mature and unified understanding of how they interact - and in
particular, how compressibility shapes robustness - remains elusive.

As desirable as adversarial robustness and compressibility both are, the research has been equivocal
regarding whether/when/how their simultaneous achievement is possible (Guo et al., 2018; Balda
et al., 2020; Li et al., 2020a; Merkle et al., 2022; Liao et al., 2022; Piras et al., 2024). However,
recent work has started to provide mechanism-based explanations for the relationship between
the two, highlighting how compressibility impacts models’ vulnerability to adversarial noise. For
example, Savostianova et al. (2023) demonstrate that low-rank parameterizations may inadvertently
amplify local Lipschitz constants, increasing sensitivity to perturbations. Nern et al. (2023) connect
adversarial transferability to layer-wise operator norms and their impact on representation geometry.
Feng et al. (2025) further shows that while moderate sparsity can enhance robustness, excessive
sparsity causes ill-conditioning that reintroduces fragility and vulnerability. These results hint at a
delicate, regime-dependent relationship between compressibility and robustness - but a principled
and general framework is still lacking.

In this work, we develop a framework to investigate the effect of structured sparsity on adversarial
robustness through its effect on parameter operator norms and network’s Lipschitz constant. We
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Figure 1: A visual preview of our findings. (Left) Sparsification expedites compression but creates
sensitive latent directions. (Center) Adversaries exploit these sensitive directions to increase their
potency. (Right) This leads to decreased adversarial robustness.

jointly study how different forms of compressibility - particularly neuron-level sparsity and spectral
compression - affect adversarial robustness. Our central result is an intuitive and instructive adversarial
robustness bound that reveals how compressibility can induce a small set of highly sensitive directions
in the representation space. These “adversarial directions” dramatically amplify perturbations and are
readily exploited by adversaries. Empirically, we confirm that these axes are not merely theoretical
constructs: adversarial attacks reliably identify and exploit them across architectures, datasets, and
attack models. Figure 1 provides a visual preview of our findings. Previous research tightly links
compressibility to generalization (Arora et al., 2018; Barsbey et al., 2021); however, our findings
imply that the very mechanisms that promote generalization can also introduce structural weaknesses.
In summary, our contributions are:

1. We provide an adversarial robustness bound that decomposes into analytically interpretable
terms, and predicts that neuron and spectral compressibility create adversarial vulnerability against
{ and {5 attacks, through their effects on networks’ Lipschitz constants.

2. Utilizing various compressibility-inducing interventions, we empirically validate our predictions
regarding the emergence of adversarial vulnerability under structured compressibility with
various datasets and models, including commonly used modern encoder architectures.

3. We demonstrate that the detrimental effects of compressibility persist under adversarial train-
ing and transfer learning, and contribute to the appearance of universal adversarial examples.

4. We demonstrate and discuss our findings’ implications for compression in practice, and highlight
promising paths for designing models that reconcile efficiency and safety.

We will make our implementation publicly available upon publication.

2 SETUP

Notation. We denote scalars by lower case italic (k), vectors with lower case bold (x), and matrices
with upper case bold (W) characters respectively. Vector £, norms are denoted by ||z||,. For matrices,
W7, I[W]|2, IW||oo correspond to Frobenius, spectral, and £, operator norms, respectively. We
denote the i*" element of a vector  with z;, and row i of a matrix W with w;. Elements of a
sequence of matrices (e.g. layer matrices) are referred to by W', [ € [)]. For an integer n, we use

[n] :=(1,...,n).

Unless otherwise specified, we will be focusing on supervised classification problems, which will
involve the input € X and label y € ). A predictor g : X — RIYl, parametrized by € ©
produces output logits s = g(x, @), the maximum of which is the predicted label §j = arg max;¢ 1| Si-
Predictions are evaluated by a loss function ¢ : RIYI x ) — R_, . For brevity, we define the composite
loss function f(x, 0) := {(g(x, 8),y).

Risk and adversarial robustness. Assuming a data distribution 7 on X’ x ), we define the population
and empirical risks accordingly: F(0) := Egyx[f(,0)], and F(0,5) := 13" | f(x;,0),
where (x;, y; )7, denotes a set of i.i.d. samples from 7. Adversarial attacks are minimal perturbations

to input that dramatically disrupt a model’s predictions (Szegedy et al., 2014). In this paper, we focus
on bounded p-norm attacks, which we define as

a* = argmaxf(x + a,0). )
lall,<d&

Given the adversarial loss f24(x, 0;6) := f(x + a*, ), we define adversarial risk and empirical
adversarial risk as F24V(0;6) := Egr[ 29V (z, 0;0)] and ﬁ;d"(O, S;8) =150, fadv (i, 0;6),
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respectively. The type of the selected attack norm p for the attack budget §, determines the type of
adversarial attack in question, with p = 2 and p = oo as the most common choices. In this paper, we
are primarily interested in what we call the adversarial robusmess gap: A3 := F24(8,6) — F(6).

P
A model with small A;d" is considered adversarially robust.

Neural networks. Our analyses will focus on neural networks under classification. We define a fully
connected neural network (FCN) with A hidden layers of h units as below:

g(a:, 0) = C¢(W/\¢( . 'Wlx))7 (2

where 8 := (C, W', ..., W?"), ¢ is elementwise ReLU activation function. We can write g as
the composition of two functions, a linear classifier head ¢ : R — RIY |, and a feature encoder
® : X — R", such that g(x, ) := c(-,C) o ®(-, W' ... W?)(x). To avoid notational clutter and
without loss of generality, throughout our analyses we assume that = € R”, and omit bias parameters.

Lipschitz continuity. Given two L? spaces X and ), a function g : X — ) is called Lipschitz
continuous if there exists a constant K, such that ||g(z!) — g(z?)|, < K,||z* —x?|,,V z',z? € X.
Said K, is called the (global) Lipschitz constant. Any K p that is valid for a subspace Y C X is
called a local Lipschitz constant. Although its computation is NP-hard for even the simplest neural
networks (Scaman & Virmaux, 2018); as a notion of input-based volatility, estimation, utilization,
and regularization of the Lipschitz constant have been a staple of robustness research (Cisse et al.,
2017; Bubeck et al., 2020; Muthukumar & Sulam, 2023; Grishina et al., 2025). Note that the FCN
as defined in Eq (2) is Lipschitz continuous in ¢, for p € [1, o], along with other commonly used
architectures such as convolutional neural networks (CNN) (Ziihlke & Kudenko, 2025).

Compressibility. Various prominent approaches to neural network compression exist, such as
pruning, quantization, distillation, and conditional computing, (O’Neill, 2020). Here we focus on
pruning and low-rank approximation, two of the most commonly used and researched forms of
compression (Hohman et al., 2024). More specifically, we focus on inherent properties of network
parameters that make them amenable to pruning or low-rank approximation, i.e. their compressibility.
We will first present a formal definition of a compressible vector, and then will show how this
definition can be utilized to describe both structured prunability and low-rankness.

Definition 2.1 ((¢, k, €)-compressibility). Given a vector @ € R and a non-negative integer k < d,
let 0y, denote the compressed vector which contains the largest (in magnitude) k elements of 6@ with
all the other elements set to 0. Then, 0 is (q, k, €)-compressible if and only if

16 = Oxlly /116l < e ©)

In the case of equality, we call 0 to be strictly (q, k, €)-compressible. Complementarily, the spread
variable B € [0, 1] can be used to characterize the dispersion of top-k terms, such that |0,,, | =
(1 = B)|Om, |, where m; indexes the i’th largest magnitude elements in the vector.

Moving forward we will assume any vector denoted as compressible is strictly compressible, unless
otherwise noted. See the Appendix for a more in-depth discussion of our compressibility definition
and how it relates to other notions of approximate sparsity.

Structured compressibility. Importantly, given that the 8 can be any vector, the above definition
can be used flexibly to describe different notions of compressibility, including those of structured
compressibility, where particular substructures in the model dominate the rest. More specifically,
given a layer parameter matrix W € R"*" from Eq (2), let v := (||w1]|1,-- ., [|wn|1) denote
¢1 norms of rows of the matrix W. The compressibility of ¥ would correspond to row/neuron
compressibility, which is a desirable property for neural network parameters as it expedites pruning
of whole neurons, with tangible computational gains. Note that this also would correspond to
filter compressibility/pruning in CNNs with a matricization of the convolution tensor. Similarly, let
o := (01,09,...) denote the singular values of matrix W. Compressibility of & would correspond
to spectral compressibility, closely related to the notion of approximate/numerical low-rankness.

3 NORM-BASED ADVERSARIAL ROBUSTNESS BOUNDS

Motivating hypothesis. Our analysis relies on a simple intuition: Although structured (neu-
ron, spectral) compressibility is desirable from a computational perspective, it also focuses
the total energy of the parameter on a few dominant terms (rows/filters, singular values).
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This in turn creates a few, potent directions in the latent space and Input Space Repr. Space
increases the operator norms of the parameters (¢, {2 operator norms )
respectively). This increases their sensitivity to worst-case perturba- \

tions: adversarial attacks exploiting these directions are amplified in {4

the representation space, and can more easily disrupt the predictions {

of the model. Taken from an experiment presented in full detail in ;

Section 4, Figure 2 visualizes the input image, adversarial perturba- '[

tion, and decision boundaries for a single sample under a baseline l ;r/
representations. The top row visualizes the baseline model, where ,

the minuscule adversarial perturbation fails to move the perturbed

image across class boundaries. The bottom row however, illustrates Figure 2: Decision bound-
the compressible model under attack. Here, although attack budget is  aries under compressibility.
identical in the input space, the adversarial perturbation is dramatically
amplified in the representation space, leading to a successful adversarial attack. Note that the decision
boundaries in compressible model’s input space is much more contracted to reflect this vulnerability.

Baseline Model

vs. compressible (low-rank) model, obtained through a PCA of the

Comp. Model

Compressibility-based Lipschitz bounds. Our theory will relate structured compressibility to
robustness through its effect on the network’s operator norms and Lipschitz constants. However,
this brings about a particular conceptual challenge. Our notion of (g, k, €)-compressibility, like
others’ (Diao et al., 2023), is a scale-independent measure. Therefore, any direct relation between
compressibility and Lipschitz constants would be rendered void by the arbitrary scaling of the
parameters. Therefore, we characterize ¢, and /5 operator norms of the parameters by an upper
bound that decomposes into (compressibility x Frobenius norm) terms. This “structure vs. scale”
decomposition allows us to meaningfully relate compressibility and robustness, and also allows us to
develop concrete hypotheses regarding the effect of various interventions in neural network training.

Theorem 3.1. The following statements relate operator norms and structured compresibility.

(a) Neuron compressibility (i.e. row-sparsity): Letw;,i € [h] denote the rows of the matrix W, and
letv:= (||will1,-- ., ||Wnl|l1) denote £1 norms of its rows. Assuming v is (1, ky, €,) compressible
and each row w; is (2, k., €,.) compressible implies:

(1—e) (Vhk, + he,
oy () e

(b) Spectral compressibility (i.e. low-rankness): Let ¢ := (01,02, ...) denote the singular values
of matrix W. Assuming o is (1, ks, €5) compressible implies:

Wi < §=) (f) Wi )

Wl < )

v

Intuitively, Theorem 3.1 describes how increasing compressibility affects layer operator norms:
Neuron compressibility, i.e. a small number of rows dominating the matrix increases ¢, operator
norm of the matrix, especially if the spread within these dominant rows are high. Similarly, increased
spectral compressibility and spread increases the {5 operator norm. Note that the latter result is
closely related to results from the literature that connect stable rank or condition number to robustness
(Savostianova et al., 2023; Feng et al., 2025). We highlight that although Theorem 3.1 directly relates
neuron and spectral compressibility to perturbations defined in /., and ¢ norms, we do not claim
that relationships across attack and operator norms do not hold. Indeed in our Appendix, we show
that the two operator norms are likely to move together under compressibility, connecting structured
compressibility to a broader notion of adversarial vulnerability. Lastly, while we utilize the upper
bounds for our following theoretical results, additional theoretical results in the Appendix characterize
lower bounds on the operator norm with similar implications.

As we move on to characterizing layers within a neural network, W will be used to denote the
compressed version of the parameter matrix of layer [. In the case of row compression, this will
correspond to keeping the k£ dominant rows as is, and setting the h — k trailing rows to 0. In the
case of spectral compression, given the singular value decomposition (SVD), W! = U'S!V!" | the
compressed matrix would correspond to W' := UL L VL" where the h— k smallest singular values
are truncated.
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Note that the sensitivity of the network not only relies on the characteristics of layer parameters, but
also on the interactions between them. As an informative extreme case, assume that layer W' greatly
amplifies the input in the direction uy, due to spectral compressibility producing a large ;. Ignoring
nonlinearities for now, if u; is in the null space of Wit this amplification will have no effect on the
sensitivity of the overall network. Thus, potent attack directions in the network are determined not
only through layers’ inherent properties, but how well the dominant directions in consecutive layers
“align”, in consideration with the nonlinearities between them. We will characterize this crucial
interaction with the interlayer alignment terms A% and A3. With D as the set of all diagonal binary
matrices, standing for all possible ReLLU activation patterns, these are defined as:
||Wl+1le ||oo

* 1+1 k
A (Wi W) S e i _pwi + e ©)

/ T
. || El+1vl+1 DUl / ”2
A (W, Wk = .
VIIWE o [WE

where R (€) := vp /vl + V,ifl/vl“ + vf vt /viviT! s a remainder alignment term and

likewise, Ra(€) := \/ak/al + \/Uf:rll AR \/ ,CJrlaf:fl/olalJrl In the Appendix, we show
that for p € {2, 00}, Rp(e) — 0ase — 0. There we also show that for all layers A* < 1; alignment
terms can therefore be interpreted to act as a normalized function that corrects the worst-case bound
based on the dominant terms’ misalignment. Next theorem will use Theorem 3.1 and Eq. (6) and (7)
to provide an upper bound to the Lipschitz constant of the network.

Theorem 3.2. Let LY, be the Lipschitz constant of the encoder ® defined following Eq (2). Let D
denote the set of all diagonal binary matrices, corresponding to ReLU activation layers. Then:

(N

(a) Row/neuron compressibility: The (. Lipschitz constant of ® can be upper bounded by:
A A—1
o Poo 1—e€) (Vhk, + he, e
g <ip =[5 ( ) IWie [T AW wh), @)
=1 (1 - 51/) Ky =1
where A% (W Wiy — a5 (WY W) if | € So, and 1 otherwise. Sop C
{1,2,...,L — 1} is the optimal alignment partition set (See Definition A.4) that can be de-
termined in O()\) time.
(b) Spectral compressibility: The {5 Lipschitz constant of ® can be upper bounded by:

A A—1
i (,{) Wi IT A5 (Wi, wi). ©

=1

We note that this upper bound can be directly used in conjunction with other results from the literature
(Ribeiro et al., 2023) to characterize adversarial robustness gap:

Corollary 3.3. Under a binary classification task with cross-entropy loss, {(y,x " 0) = {(y, 7)) =
log (1 + e_yy), given a neural network classifier as described in (2), under the same assumptions

with (8), F"‘dV(H' §) < F(0) 4 6L |0||1. Similarly, under the assumptions of F2V(8;6) <
F(6) + 6L3|0]|2-

x103

Note that although bounds provided in Theorem 3.2 are tighter than the .., l e
pessimistic “product-of-norms” bounds, it deliberately trades off some  120{,—  -= sound 1
tightness by utilizing Theorem 3.1. However, in return, this results in 100 l ) o
a bound that decomposes into analytically interpretable and actionable oz m—
terms. Such bounds have proven valuable in analyzing adversarial o e
robustness in deep learning (Wen et al., 2020). Regardless, Figure 3 o4 H of06
demonstrates the close correlation our bound shows with the empirical 10

robustness gap (p = 0.947), in a 2-hidden-layer neural network with Layer Rank ()

varying spectral compressibility (layer rank). We provide full details Figure 3: Theorem 3.2 vs.
in the Appendix, where we also show that as the global Lipschitz empirical robustness gap.
constant increases, empirically estimated local Lipschitz constants scale accordingly. There, we
also explore the alignment terms’ empirical behavior and estimation techniques, although a detailed
analysis thereof lies beyond our primary focus. We now translate these theoretical insights into
concrete hypotheses and test them through experiments.
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Figure 4: Model statistics under increasing strength of nuclear norm regularization (c).

4 EXPERIMENTAL EVALUATION

We now validate our theoretical findings through specific experimentation. We first validate our
motivating hypothesis and then empirically show that (i) neuron and spectral compressibility-inducing
interventions will reduce adversarial robustness against /., and {5 adversarial attacks; (ii) the
negative effects of compressibility to persist under adversarial training, (iii) the compressibility-
related vulnerabilities being baked into the learned representations during pretraining, will impact any
downstream task in transfer learning; (iv) increasing compressibility creates vulnerable directions in
the latent space, further enabling universal adversarial examples (UAEs), while increasing Frobenius
norm will create vulnerability without leading to UAEs; and (v) compressed models will inherit the
vulnerability of the original models, and conducting compression based on (g, k, €)-compressibility
and reducing the spread of the dominant terms will improve robustness.

Datasets, architectures, and training. We conduct our experiments in the most commonly used
datasets and architectures in the literature on adversarial robustness under pruning (Piras et al.,
2024). Datasets we use include MNIST (Deng, 2012), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009), SVHN (Netzer et al., 2011), Flickr30k (Young et al., 2014), and ImageNet-1k (Deng et al.,
2009). Architectures we utilize include fully connected networks (FCN), ResNet18 (He et al., 2016),
VGG16 (Simonyan & Zisserman, 2014), WideResNet-101-2 (Zagoruyko & Komodakis, 2016), vision
transformer (ViT) - both as a standalone classifier (Dosovitskiy et al., 2021) and as part of a CLIP
encoder (Radford et al., 2021), and Swin Transformer (Liu et al., 2021). Unless otherwise noted, we
use softmax cross-entropy loss, the AdamW optimizer with a weight decay of 0.01, a learning rate of
0.001, and use a validation set based model selection for early stopping.

Evaluating and training for adversarial robustness. When evaluating adversarial robustness, we
utilize AutoPGD as the primary adversarial attack algorithm for evaluation (Croce & Hein, 2020),
through its implementation by Nicolae et al. (2018). When training for adversarial robustness, we
utilize a PGD attack to generate adversarial samples at every iteration (Madry et al., 2018). Unless
otherwise noted, we use a ratio of 0.5 for adversarial samples in a training minibatch. We use
e = 8/255 and ¢ = 0.5 for ¢, and /5 attacks respectively for end-to-end adversarially trained
models. We use 0.25x of these budgets for standard trained or adversarially fine-tuned models to
allow a visible comparison (See Appendix for qualitatively identical results under different budgets).
By default, we present results for ¢, and /5 attacks when evaluating robustness under neuron and
spectral compressibility respectively, and defer the cross-norm results to the supplementary material,
which also includes further details on our experiment settings and implementation.

4.1 RESULTS

Testing the motivating hypothesis. We start our empirical analysis with a demonstrative experiment
to visually investigate the implications of our initial hypothesis. For this, we train a single 400-width
hidden layer FCN with ReLU activations on the MNIST dataset. We use nuclear norm regularization
(NNR) to encourage singular value (SV) compressibility, adding the term «||o||; to the training
objective, with «v as a hyperparameter. To avoid confounding by NNR decreasing overall parameter
norms, we apply Frobenius norm normalization to W at every iteration (Miyato et al., 2018).

In Figure 4 (left) we validate that our intervention indeed increases spectral norm compressibility.
As expected, Figure 4 (center left) shows that SV compressibility actually allows pruning: the more
compressible models retain their performance under stronger pruning. Figure 4 (center right) shows
that increased compressibility comes at the cost of adversarial robustness: as « increases, adversarial
accuracy dramatically falls. We further investigate whether this fall is due to our hypothesized
mechanism. Let z = ®(x) and 2,4, = ®(x + a*) denote the learned representations of clean and
perturbed input images. If the adversarial attacks are taking advantage of the potent directions created
by compressibility, then as compressibility increases: (1) The perturbations a* should align more
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with the dominant singular directions, i.e., via* > via* Vi € [k],j ¢ [k], (2) representations of
adversarial perturbations should grow stronger in relation to the original image’s representation, i.e.
||Zadav — 2|2/ ||z||2 should increase. Figure 4 (right) confirms both predictions. Lastly, the previously
presented Figure 2 visualizes the effect of compressibility in the input and representation space.
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general parameter scales, we create a scale-invariant version that regularizes row norms’ ¢1 /{5 norm
ratio.> Figure 5 (bottom) demonstrates that the effects described above clearly translate to this
setting as well, further solidifying the relationship between structured compressibility and adversarial
robustness. We present similar results on two other architectures (VGG16, WideResNet-101) and
two other datasets (CIFAR-100, SVHN) in the Appendix. Going forward, for brevity we will focus
on neuron compressibility results, and defer corresponding spectral compressibility results to the
Appendix, where we also discuss unstructured compressibility and inductive-bias based emergent
compressibility.

Experiments with transformers. We next test our hypotheses under transformer architectures.
Figure 6 (left) replicates our results under a ViT classifier model trained on CIFAR-10 dataset.
Further, to test whether our hypothesis holds under a zero-shot classification setting, we fine-tune a
pre-trained CLIP model on Flickr30k dataset under varying degrees of sparsification regularization,
and conduct standard and adversarial zero-shot classification using ImageNet-1k dataset. We find
that our results (Figure 6, right) replicate here as well. That simply fine-tuning with sparsification
can create this vulnerability with commonly repurposed encoder backbones highlights the safety
implications of our results. See Appendix for further details and findings under other training settings.

Effects of compressibility on robustness under adversarial training. Given that adversarial
training is the primary method for obtaining models that are robust against adversaries, we next
investigate whether the effects we have observed will persist under this regime. To make this setting

! Group lasso regularization penalizes the £1 norm of row £ norms of each layer, promoting row-sparsity.
*In the Appendix, we show that standard group lasso creates a “tug-of-war” between increasing compress-
ibility and decreasing parameter scales; the former eventually wins, resulting in decreased robustness.
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Figure 7: (Left) Effects of compressibility under adversarial training. UAEs under increasing (center
left) compressibility vs. (center right) parameter scale. (Right) Robustness under transfer learning.

as close to practice as possible, we also include a learning rate annealing schedule (Cosine annealing)
and basic data augmentation (random horizontal flip and crops). The results almost identically
replicate our observations under standard training (Figure 7, left). Although adversarial training
increases adversarial robustness overall, the relative effect of compressibility remains as it is.

Universal adversarial examples. Examining the terms in Theorem 3.2, we predict that while both
compressibility and Frobenius norm are likely to increase vulnerability, only the former is likely to
lead to universal adversarial examples (UAEs) (Moosavi-Dezfooli et al., 2017), due to the global
vulnerable directions it creates. To test our hypothesis, we modify the setting of FCN experiments
presented above: As an alternative to increasing row sparsity regularization under a fixed Frobenius
norm, in an alternative set of experiments we systematically increase the constant to which Frobenius
norm of the layers is fixed, without any row sparsity regularization. We utilize a FGSM-based
(Goodfellow et al., 2015) UAE computation to develop adversarial samples. Figure 7 (center left,
center right) confirms our hypothesis: while increasing Frobenius norm only decreases standard
adversarial robustness, increasing compressibility additionally creates vulnerability to UAEs.

Adversarial vulnerability under transfer learning. Next, we investigate our hypothesis that the
effects of compressibility should persist under transfer learning due to the structural effects created
on representations. We train a ResNet18 model on CIFAR-100 dataset with increasing row sparsity
regularization. After the training is complete, we train a linear classifier head for prediction on
CIFAR-10 dataset and evaluate the robustness of the resulting model. Figure 7 (right) shows that the
effects of compressibility observed above directly translate to the context of transfer learning, where
increased compressibility in pretraining affects robustness performance in the downstream task, for
which the network is fine-tuned.

Compression and robustness. We now investigate the behavior of models under layerwise filter
pruning. Using the ResNet18 and CIFAR-10 combination under adversarial training, in Figure 8
(left), we compare the baseline model (o = 0.0) to a model regularized to be compressible (o = 0.1).
We see that at no point the compressed 08
model surpasses the baseline model’s
uncompressed performance in terms
of standard and robust accuracy. How-
ever, as pruning ratio increases, the
baseline model fails to retain its stan-
dard and robust performance, whereas ‘ ‘ ‘ ‘ ‘ ‘ ‘ | | |
the compressible model does consid- o002 pruo,;?ng Rato v Pruoﬁ?ng Ratio
erably better, demonstrating the fun-
damental tension between robustness
and compressibility.
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Figure 8: Robustness under compression. SA/RA: Stan-
dard/Robust Acc. LW/Glob.: Layerwise vs. global pruning.

In Figure 8 (right), we show that conducting pruning based on two simple interventions inspired
by our bounds results in tangible improvements in standard and robust performance under pruning.
Given the fact that layerwise pruning is known to produce harmful bottlenecks that lead to layer
collapse (Blalock et al., 2020), instead of targeting a pruning ratio and pruning each layer accordingly,
we set a target e for each layer, and for each compute k that satisfies this € level. Given a target global
pruning ratio, we scan over different levels of € and determine the level that gets closest to the target
ratio. Moreover, during training we control the spread of the dominant terms, 3, which our analyses
show to be harmful for robustness, without decreasing compressibility. We accomplish this through
regularizing the variance of the top 0.05 of each layer’s filters’ norms. Figure 8 (right) demonstrates
that our interventions create a tangible improvement in performance retention. However, as useful
as such interventions can be, we also highlight the fundamental dangers of concentrating parameter
energy in very few substructures that our findings reveal. Therefore, while pruning and low-rank
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approximation remain valuable compression methods, combining intermediate levels thereof with
other compression methods such as quantization or knowledge distillation seems to be the most
promising approach in reconciling safety and robustness, which is in line with other recent findings
in the literature (Kuzmin et al., 2023; Hong et al., 2024).

5 RELATED WORK

Adversarial robustness. The susceptibility of the neural network models to adversarial examples
created through small perturbations (Szegedy et al., 2014) engendered a lot of research investigating
the issue (Madry et al., 2018). To this day adversarial robustness remains one of the most important
topics in machine learning security (Malik et al., 2024). The literature ranges from the development
of new attacks and defenses (Moosavi-Dezfooli et al., 2016; Abdollahpoorrostam et al., 2024), to
investigating sources/mechanisms of adversarial vulnerability, to implications of AEs for the inductive
biases of modern machine learning architectures (Ilyas et al., 2019; Ortiz-Jimenez et al., 2021; Xu
et al., 2024), to developing strategies to retain model expressivity and generalization while defending
against adversarial attacks (Tsipras et al., 2019; Zhang et al., 2024).

Compressibility and pruning. Prominent compression approaches include pruning, quantization,
distillation, conditional computing, and efficient architecture development (O’Neill, 2020). Out
of these, pruning remains among the most actively researched compression approaches due to its
versatility (Cheng et al., 2024). Inducing compressibility / sparsity at training time is the easiest way
to obtain prunable models (Hohman et al., 2024). Compressibility across different substructures,
a.k.a group sparsity (Li et al., 2020b), allows for structured pruning (e.g. neuron/row, filter/channel,
kernel pruning), which is computationally efficient (Yang et al., 2018), yet lead to a sharp reduction
in network connectivity, threatening performance (Blalock et al., 2020). Lastly, spectral compress-
ibility relaxes the notion of low-rankness, utilized for approximating large matrices with appealing
theoretical properties (Suzuki et al., 2020; Schotthofer et al., 2022).

Compressibility and robustness. Whereas some research argues that compressibility is beneficial
for adversarial robustness (Guo et al., 2018; Balda et al., 2020; Liao et al., 2022), others indicate the
relation is at best highly dependent on the degree and type of compressibility, as well as attack type
(Li et al., 2020a; Merkle et al., 2022; Savostianova et al., 2023; Feng et al., 2025). While a stream
of new methods that incorporate adversarial robustness in novel ways to pruning, newly emerging
systematic benchmarks reveal at best marginal benefits for such methods compared to weight-based
pruning (Lee et al., 2020; Piras et al., 2024). Whereas some methods demonstrate benefits of
adversarial training-aware sparsification (Gui et al., 2019; Sehwag et al., 2020; Pavlitska et al., 2023),
infamous problems adversarial training (AT) poses for standard generalization, transferability, as well
as computational feasibility especially for larger models still plague such methods (Tsipras et al.,
2019; Wen et al., 2020; Yang et al., 2024).

6 CONCLUSION AND FUTURE WORK

In this paper, we present a unified theoretical and empirical treatment of how structured compressibil-
ity shapes adversarial robustness. Via a novel analysis of neuron-level and spectral compressibility,
we uncover a fundamental mechanism: compression concentrates sensitivity along a small number
of directions in representation space, rendering models more vulnerable—even under adversarial
training and transfer learning. Our norm-based robustness bounds offer interpretable decompositions
that predict both standard and universal adversarial vulnerability, and shed light on the trade-offs
between efficiency and security in modern neural networks. Empirically, we validate these insights
across datasets, architectures, and training regimes, showing how both compressibility and its spread
determines adversarial susceptibility. While these vulnerabilities can be mitigated through targeted
strategies, combining these methods with other approaches is likely the most promising approach.

Our work provides a novel insight into the relationship between structured compressibility and
adversarial vulnerability. A limitation is our theory’s reliance on global Lipschitz constants to
characterize network performance: future work should focus on providing a unified view that
incorporates both structural/global weaknesses, as well as the localization of sensitivity in the input
space. Moreover, while the simple interventions suggested by our theory provides cost-effective
improvements to the compressibility-robustness trade-off, these insights should be combined with
novel compression methods to improve the frontiers of robust compression.
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Reproducibility statement. We enable the reproduction of our work through a detailed description of
our methods in the main paper and the Appendix, as well as the source code for our main experiments
provided as supplementary material.
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