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ABSTRACT

Modern neural networks are expected to simultaneously satisfy a host of
desirable properties: accurate fitting to training data, generalization to unseen
inputs, parameter and computational efficiency, and robustness to adversarial
perturbations. While compressibility and robustness have each been studied
extensively, a unified understanding of their interaction still remains elusive.
In this work, we develop a principled framework to analyze how different
forms of structured compressibility - such as neuron-level sparsity and spectral
compressibility - affect adversarial robustness. We show that these forms
of compression can induce a small number of highly sensitive directions in
the representation space, which adversaries can exploit to construct effective
perturbations. Our analysis yields a robustness bound that reveals how neuron
and spectral compressibility impact ℓ∞ and ℓ2 robustness via their effects on
the learned representations. Crucially, the vulnerabilities we identify arise
irrespective of how compressibility is achieved - whether via regularization,
architectural bias, or implicit learning dynamics. Through empirical evaluations
across synthetic and realistic tasks, we confirm our theoretical predictions, and
further demonstrate that these vulnerabilities persist under adversarial training
and transfer learning, and contribute to the emergence of universal adversarial
perturbations. Our findings show a fundamental tension between structured
compressibility and robustness and highlight new pathways for designing
models that are both efficient and safe.

1 INTRODUCTION

Machine learning (ML) systems are increasingly deployed in high-stakes domains such as health-
care (Rajpurkar et al., 2022) and autonomous driving (Hussain & Zeadally, 2019), where reliability
is paramount. With their growing social impact, modern neural networks are now expected to meet a
suite of often conflicting demands: they must fit the data (explain observations), generalize to unseen
inputs, remain efficient in storage and inference, i.e., be compressible, and exhibit robustness against
adversarial perturbations, as well as other distribution shifts. While each of these desiderata has been
studied extensively in isolation, a mature and unified understanding of how they interact - and in
particular, how compressibility shapes robustness - remains elusive.

As desirable as adversarial robustness and compressibility both are, the research has been equivocal
regarding whether/when/how their simultaneous achievement is possible (Guo et al., 2018; Balda
et al., 2020; Li et al., 2020a; Merkle et al., 2022; Liao et al., 2022). This is even more pronounced for
structured compressibility, which is alarming given its practical relevance (Blalock et al., 2020; Piras
et al., 2025). However, recent research has started to provide mechanism-based explanations for this
relationship, highlighting how compressibility impacts models’ vulnerability to adversarial noise. For
example, Savostianova et al. (2023) demonstrate that low-rank parameterizations may inadvertently
amplify local Lipschitz constants, increasing sensitivity to perturbations. Nern et al. (2023) connect
adversarial transferability to layer-wise operator norms and their impact on representation geometry.
Feng et al. (2025) further shows that while moderate sparsity can enhance robustness, excessive
sparsity causes ill-conditioning that reintroduces fragility and vulnerability. These results hint at a
delicate, regime-dependent relationship between compressibility and robustness - but a principled
and general framework is still lacking.
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Figure 1: A visual preview of our findings. (Left) Sparsification expedites compression but creates
sensitive latent directions. (Center) Adversaries exploit these sensitive directions to increase their
potency. (Right) This leads to decreased adversarial robustness.

In this work, we develop a framework to investigate the effect of structured compressibility on
adversarial robustness through its effect on parameter operator norms and network’s Lipschitz
constant. We jointly study how different forms of compressibility - particularly neuron-level sparsity
and spectral compression - affect adversarial robustness. Our central result is an instructive adversarial
robustness bound that reveals how compressibility can induce a small set of highly sensitive directions
in the representation space. These “adversarial directions” dramatically amplify perturbations and are
readily exploited by adversaries. Empirically, we confirm that these axes are not merely theoretical
constructs: adversarial attacks reliably identify and exploit them across architectures, datasets, and
attack models. Figure 1 provides a visual preview of our findings. Previous research tightly links
compressibility to generalization (Arora et al., 2018; Barsbey et al., 2021); however, our findings
imply that the very mechanisms that promote generalization can also introduce structural weaknesses.
In summary, our contributions are:

1. We provide an adversarial robustness bound that decomposes into analytically interpretable
terms, and predicts that neuron and spectral compressibility create adversarial vulnerability against
ℓ∞ and ℓ2 attacks, through their effects on networks’ Lipschitz constants.

2. Utilizing various compressibility-inducing interventions, we empirically validate our predictions
regarding the emergence of adversarial vulnerability under structured compressibility with
various datasets and models, including commonly used modern encoder architectures.

3. We demonstrate that the detrimental effects of compressibility persist under adversarial train-
ing and transfer learning, and contribute to the appearance of universal adversarial examples.

4. We demonstrate and discuss our findings’ implications for compression in practice, and highlight
promising paths for designing models that reconcile efficiency and safety.

2 SETUP

Notation. We denote scalars by lower case italic (k), vectors with lower case bold (x), and matrices
with upper case bold (W) characters respectively. Vector ℓp norms are denoted by ∥x∥p. For matrices,
∥W∥F , ∥W∥2, ∥W∥∞ correspond to Frobenius, spectral, and ℓ∞ operator norms, respectively. We
denote the ith element of a vector x with xi, and row i of a matrix W with wi. Elements of a
sequence of matrices (e.g. layer matrices) are referred to by Wl, l ∈ [λ]. For an integer n, we use
[n] := (1, . . . , n).

Unless otherwise specified, we will be focusing on supervised classification problems, which will
involve the input x ∈ X and label y ∈ Y . A predictor g : X → R|Y|, parametrized by θ ∈ Θ
produces output logits s = g(x,θ), the maximum of which is the predicted label ŷ = argmaxi∈|Y| si.
Predictions are evaluated by a loss function ℓ : R|Y|×Y → R+. For brevity, we define the composite
loss function f(x,θ) := ℓ(g(x,θ), y).

Risk and adversarial robustness. Assuming a data distribution π on X×Y , we define the population
and empirical risks accordingly: F (θ) := Ex,y∼π[f(x,θ)], and F̂ (θ, S) := 1

n

∑n
i=1 f(xi,θ),

where (xi, yi)
n
i=1 denotes a set of i.i.d. samples from π. Adversarial attacks are minimal perturbations

to input that dramatically disrupt a model’s predictions (Szegedy et al., 2014). In this paper, we focus
on bounded p-norm attacks, which we define as

a∗ = argmax
∥a∥p≤δ

f(x+ a,θ). (1)

Given the adversarial loss fadv
p (x,θ; δ) := f(x+a∗,θ), we define adversarial risk and empirical ad-

versarial risk as F adv
p (θ; δ) := Ex,y∼π[f

adv
p (x,θ; δ)] and F̂ adv

p (θ, S; δ) := 1
n

∑n
i=1 f

adv
p (xi,θ; δ),

2
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respectively. The attack norm p chosen under the attack budget δ determines the type of adversarial
attack in question, with p = 2 and p = ∞ as the most common choices. In this paper, we are
primarily interested in what we call the adversarial robustness gap: ∆adv

p := F adv
p (θ, δ)− F (θ). A

model with small ∆adv
p is considered adversarially robust.

Neural networks. Our analyses will focus on neural networks under classification. We define a fully
connected neural network (FCN) with λ hidden layers of h units as below:

g(x,θ) = Cϕ(Wλϕ(. . .W1x)), (2)

where θ := (C,W1, . . . ,Wλ), Wl and C denote hidden layer and linear classification head
parameters respectively, and ϕ is elementwise ReLU activation function. We omit θ when it is
obvious from the context for brevity. We can write g as the composition of two functions, a
linear classifier head c : Rh → R|Y|, and a feature encoder Φ : X → Rh, such that g(x,θ) :=
c(·,C) ◦Φ(·,W1 . . .Wλ)(x). When needed, we use z = Φ(x) or zadv = Φ(xadv) to denote latent
representations, where xadv := x+ a∗. To avoid notational clutter and without loss of generality,
throughout our analyses we assume that x ∈ Rh, and omit bias parameters.

Lipschitz continuity. Given two Lp spaces X and Y , a function g : X → Y is called Lipschitz
continuous if there exists a constant Kp such that ∥g(x1)−g(x2)∥p ≤ Kp∥x1−x2∥p,∀ x1,x2 ∈ X .
Said Kp is called the (global) Lipschitz constant. Any K̄p that is valid for a subspace U ⊂ X is
called a local Lipschitz constant. Although its computation is NP-hard for even the simplest neural
networks (Scaman & Virmaux, 2018); as a notion of input-based volatility, estimation, utilization,
and regularization of the Lipschitz constant have been a staple of robustness research (Cisse et al.,
2017; Bubeck et al., 2020; Muthukumar & Sulam, 2023; Grishina et al., 2025). Note that the FCN
as defined in (2) is Lipschitz continuous in ℓp for p ∈ [2,∞], along with other commonly used
architectures such as convolutional neural networks (CNN) (Zühlke & Kudenko, 2025).

Compressibility. Various prominent approaches to neural network compression exist, such as
pruning, quantization, distillation, and conditional computing, (O’Neill, 2020). Here we focus on
pruning and low-rank approximation, two of the most commonly used and researched forms of
compression (Hohman et al., 2024). More specifically, we focus on inherent properties of network
parameters that make them amenable to pruning or low-rank approximation, i.e. their compressibility.
We will first present a formal definition of a compressible vector, and then will show how this
definition can be utilized to describe both structured prunability and low-rankness.

Definition 2.1 ((q, k, ϵ)-compressibility). Given a vector θ ∈ Rd and a non-negative integer k ≤ d,
let θk denote the compressed vector which contains the largest (in magnitude) k elements of θ with
all the other elements set to 0. Then, θ is (q, k, ϵ)-compressible if and only if

∥θ − θk∥q / ∥θ∥q ≤ ϵ. (3)

In the case of equality, we call θ to be strictly (q, k, ϵ)-compressible. Complementarily, the spread
variable β ∈ [0, 1] can be used to characterize the dispersion of top-k terms, such that |θmk

| =
(1− β)|θm1

|, where mi indexes the i’th largest magnitude element in the vector.

Moving forward we will assume any vector denoted as compressible is strictly compressible, unless
otherwise noted. See the Appendix for a more in-depth discussion of our compressibility definition
and how it relates to other notions of approximate sparsity, where we show that our definition distin-
guishes qualitatively different parameter configurations better compared to prominent alternatives.

Structured compressibility. Importantly, given that the θ can be any vector, the above definition can
be used flexibly to describe different notions of compressibility, including those of structured com-
pressibility, where particular substructures in the model dominate the rest. More specifically, given a
layer parameter matrix W ∈ Rh×h from (2), let ννν := (∥w1∥1, . . . , ∥wh∥1) denote ℓ1 norms of rows
of the matrix W. The compressibility of ννν would correspond to row/neuron compressibility, which is
a desirable property for neural network parameters as it expedites pruning of whole neurons, with tan-
gible computational gains. Note that this also would correspond to filter compressibility/prunability
in CNNs with a matricization of the convolution tensor. Similarly, let σσσ := (σ1, σ2, . . . ) denote the
singular values of matrix W. Compressibility of σσσ would correspond to spectral compressibility,
serving as a notion of approximate/numerical low-rankness.

3
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3 NORM-BASED ADVERSARIAL ROBUSTNESS BOUNDS

Motivating hypothesis. Our analysis relies on a fundamental intuition: Although structured
(neuron, spectral) compressibility is desirable from a computational perspective, it also fo-
cuses the total energy of the parameters on a few dominant terms (rows/filters, singular values).
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Figure 2: Decision bound-
aries under compressibility.

This in turn creates a few, potent directions in the latent space and
increases the operator norms of the parameters (ℓ∞, ℓ2 operator norms
respectively). This increases their sensitivity to worst-case perturba-
tions: adversarial attacks exploiting these directions are amplified in
the representation space, and can more easily disrupt the predictions of
the model. For a more specific example using spectral compressibility,
given a single layer neural network g(x) = Cϕ(Wx), assume that
σ1 ≫ σj ̸=1, i.e. first SV dominates the remaining singular values
as a result of high compressibility. Then, an adversarial perturba-
tion a that “aligns” with the associated right singular vector v1 s.t.
vT
1 a/∥a∥2 ≈ 1, will have multiplied their post-layer representation

by ∼ σ1. This in turn would allow them to dominate the latent space
against the original image, i.e. increase ∥zadv − z∥2/∥z∥2, and ulti-
mately change the prediction of the model. Taken from an experiment
presented in full detail in Section 4, Figure 2 visualizes this phenomenon in reality. Here, we utilize
PCA to visualize the input image, adversarial perturbation, and decision boundaries for a single
sample under a baseline vs. compressible (low-rank) model. The top row visualizes the baseline
model, where the minuscule adversarial perturbation fails to move the perturbed image across class
boundaries. The bottom row however, illustrates the compressible model under attack. Here, although
attack budget is identical in the input space, the adversarial perturbation is dramatically amplified in
the representation space, leading to a successful adversarial attack. Note that the decision boundaries
in compressible model’s input space is much more contracted to reflect this vulnerability. In the
Appendix, we dedicate a section to providing a stronger, step-by-step intuition for our hypotheses.

Compressibility-based Lipschitz bounds. Our theory will relate structured compressibility to
robustness through its effect on the network’s operator norms and Lipschitz constants. However,
this brings about a particular conceptual challenge. Our notion of (q, k, ϵ)-compressibility, like
others’ (Diao et al., 2023), is a scale-independent measure. Therefore, any direct relation between
compressibility and Lipschitz constants would be rendered void by the arbitrary scaling of the
parameters. Therefore, we characterize ℓ∞ and ℓ2 operator norms of the parameters by an upper
bound that decomposes into (compressibility × Frobenius norm) terms. This “structure vs. scale”
decomposition allows us to meaningfully relate compressibility and robustness, and also allows us to
develop concrete hypotheses regarding the effect of various interventions in neural network training.
Theorem 3.1. The following statements relate operator norms and structured compressibility.

(a) Neuron compressibility (i.e. row-sparsity): Let wi, i ∈ [h] denote the rows of the matrix W, and
let ννν := (∥w1∥1, . . . , ∥wh∥1) denote ℓ1 norms of its rows. Assuming ννν is (1, kννν , ϵννν) compressible
and each row wi is (2, kr, ϵr)-compressible implies:

∥W∥∞ ≤ (1− ϵννν)

(1− βννν)

(√
hkr + hϵr

kννν

)
∥W∥F . (4)

(b) Spectral compressibility (i.e. low-rankness): Let σσσ := (σ1, σ2, . . . ) denote the singular values
of matrix W. Assuming σσσ is (1, kσσσ, ϵσσσ)-compressible implies:

∥W∥2 ≤ (1− ϵσσσ)

(1− βσσσ)

(√
h

kσσσ

)
∥W∥F . (5)

Intuitively, Theorem 3.1 describes how increasing compressibility affects layer operator norms:
Neuron compressibility, i.e. a small number of rows dominating the matrix increases ℓ∞ operator
norm of the matrix, especially if the spread within these dominant rows are high. Similarly, increased
spectral compressibility and spread increases the ℓ2 operator norm. Note that the latter result is
closely related to results from the literature that connect stable rank or condition number to robustness
(Savostianova et al., 2023; Feng et al., 2025), see Section 5. We highlight that although Theorem 3.1
directly relates neuron and spectral compressibility to perturbations defined in ℓ∞ and ℓ2 norms, we
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do not claim that relationships across attack and operator norms do not hold. Indeed in our Appendix,
we show that the two operator norms are likely to move together under compressibility, connecting
structured compressibility to a broader notion of adversarial vulnerability. Lastly, while we utilize
the upper bounds for our following theoretical results, additional theoretical results in the Appendix
characterize lower bounds on the operator norm with similar implications.

As we move on to characterizing layers within a neural network, Wl
k will be used to denote the

compressed version of the parameter matrix of layer l. In the case of row compression, this will
correspond to keeping the k dominant rows as is, and setting the h − k trailing rows to 0. In the
case of spectral compression, given the singular value decomposition (SVD), Wl = UlΣlVlT , the
compressed matrix would correspond to Wl

k := Ul
kΣ

l
kV

lT

k , where the h−k smallest singular values
are truncated.

Note that the sensitivity of the network not only relies on the characteristics of layer parameters, but
also on the interactions between them. For example, it is possible to upper bound the operator norm
of two consecutive layers interleaved by a ReLU nonlinearity with ∥Wl+1∥∥Wl∥. However, this
is an overly pessimistic bound, as it accounts for the most potent directions of each layer perfectly
lining up (unlikely in reality), and ignores the nonlinearity (Scaman & Virmaux, 2018). This is why
for our following theorem, we first introduce the interlayer alignment terms Ap: These terms will
help compute a more realistic joint operator norm across layers by correcting for the said overly
pessimistic assumption by using the “alignment” of the top-k terms in each layer. With D as the set
of all diagonal binary matrices representing ReLU activations, we define Ap for p ∈ {2,∞} as:

A∞(l) ≜ max
D∈D

∥Wl+1
k DWl

k∥∞
∥Wl+1∥∞∥Wl∥∞

+R∞(ϵ) (6)

A2(l) ≜ max
D∈D

∥
√

Σl+1
k Vl+1T

k DUl
k

√
Σl

k∥2√
∥Wl+1∥2∥Wl∥2

+R2(ϵ), (7)

where R∞, R2 are remainder alignment terms defined and shown to be Rp(ϵ) → 0 as ϵ → 0 in the
Appendix for brevity. We refer the reader to our proofs in the Appendix to explain the exact form the
alignment terms take and a comparison to previous approaches (Scaman & Virmaux, 2018), where
we also dedicate a section to provide a more intuitive understanding for them. Having Theorem 3.1
to help characterize the compressibility-based sensitivity of layers, and (6) and (7) to help connect
them, we now provide an upper bound to the Lipschitz constant of the complete encoder network.

Theorem 3.2. Let Lp
Φ be the Lipschitz constant of the encoder Φ defined following (2). Let D denote

the set of all diagonal binary matrices, corresponding to ReLU activation layers. Then:

(a) Neuron compressibility: The ℓ∞ Lipschitz constant of Φ can be upper bounded by:

L∞
Φ ≤ L̂∞

Φ :=

λ∏
l=1

(1− ϵννν)

(1− βννν)

(√
hkr + hϵr

kννν

)
∥Wl∥F

λ−1∏
l=1

Ã∞(l), (8)

where Ã∞(l) = A∞(l) if l ∈ Sopt, and 1 otherwise. Sopt ⊆ {1, 2, . . . , λ − 1} is the optimal
alignment partition set (See Definition A.4) that can be determined in O(λ) time.

(b) Spectral compressibility: The ℓ2 Lipschitz constant of Φ can be upper bounded by:

L2
Φ ≤ L̂2

Φ :=

λ∏
l=1

(1− ϵσσσ)

(1− βσσσ)

(√
h

kσσσ

)
∥Wl∥F

λ−1∏
l=1

A2(l). (9)

We note that this upper bound can be directly used in conjunction with other results from the literature
(Ribeiro et al., 2023) to characterize adversarial robustness gap:

Corollary 3.3. Under a binary classification task with cross-entropy loss, ℓ(y,x⊤θ) = ℓ(y, ŷ) =
log
(
1 + e−yŷ

)
, given a neural network classifier as described in (2), under the same assump-

tions with (8), F adv
∞ (θ; δ) ≤ F (θ) + δL̂∞

Φ ∥θ∥1. Similarly, under the assumptions of (9), we have
F adv
2 (θ; δ) ≤ F (θ) + δL̂2

Φ∥θ∥2.

5
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Figure 3: Corollary 3.3 vs.
empirical robustness gap.

Note that although bounds provided in Theorem 3.2 are tighter than the
pessimistic “product-of-norms” bounds, it deliberately trades off some
tightness by utilizing Theorem 3.1. However, in return, this results in
a bound that decomposes into analytically interpretable and actionable
terms. Such bounds have proven valuable in analyzing adversarial
robustness in deep learning (Wen et al., 2020). Regardless, Figure 3
demonstrates the close correlation our bound shows with the empir-
ical robustness gap (ρ = 0.947), in a 2-hidden-layer neural network
with varying spectral compressibility (obtained through systematically
varying the rank of factorized layer matrices). We provide full details
in the Appendix, where we also show that as the global Lipschitz constant increases, empirically
estimated local Lipschitz constants scale accordingly. There, we also explore the alignment terms’
empirical behavior and estimation techniques, although a detailed analysis thereof lies beyond our
primary focus. We now translate these theoretical insights into concrete hypotheses and test them
through experiments.

4 EXPERIMENTAL EVALUATION

We now validate our theoretical findings through systematic experimentation. We first validate our
motivating hypothesis and then empirically show that (i) neuron and spectral compressibility-inducing
interventions will reduce adversarial robustness against ℓ∞ and ℓ2 adversarial attacks; (ii) the negative
effects of compressibility to persist under adversarial training, (iii) the compressibility-related vulner-
abilities being baked into the learned representations during pretraining, will impact any downstream
task in transfer learning; (iv) increasing compressibility creates vulnerable directions in the latent
space, further enabling universal adversarial examples (UAEs), while increasing Frobenius norm will
create vulnerability without leading to UAEs; and (v) compressed models will inherit the vulnerability
of the original models, and conducting compression based on (q, k, ϵ)-compressibility, reducing the
spread of the dominant terms, or regularizing interlayer alignment will improve robustness.

Datasets, architectures, and training. We conduct our experiments in the most commonly used
datasets and architectures in the literature on adversarial robustness and compression (Piras et al.,
2025). Datasets we use include MNIST (Deng, 2012), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009), SVHN (Netzer et al., 2011), Flickr30k (Young et al., 2014), and ImageNet-1k (Deng et al.,
2009). Architectures we utilize include fully connected networks (FCN), ResNet18 (He et al., 2016),
VGG16 (Simonyan & Zisserman, 2014), WideResNet-101-2 (Zagoruyko & Komodakis, 2016), vision
transformer (ViT) - both as a standalone classifier (Dosovitskiy et al., 2021) and as part of a CLIP
encoder (Radford et al., 2021), and Swin Transformer (Liu et al., 2021). Unless otherwise noted, we
use softmax cross-entropy loss, the AdamW optimizer with a weight decay of 0.01, a learning rate of
0.001, and use a validation set based model selection for early stopping. See the associated code base
for additional implementation details, to be made publicly available upon publication.

Evaluating and training for adversarial robustness. When evaluating adversarial robustness, we
utilize AutoPGD as the primary adversarial attack algorithm for evaluation (Croce & Hein, 2020),
as implemented by Nicolae et al. (2018). When training for adversarial robustness, we utilize a
PGD attack to generate adversarial samples at every iteration (Madry et al., 2018). Unless otherwise
noted, we use a ratio of 0.5 for adversarial samples in a training minibatch. We use ϵ = 8/255 and
ϵ = 0.5 for ℓ∞ and ℓ2 attacks respectively for end-to-end adversarially trained models. We use
0.25× of these budgets for evaluating standard trained or adversarially fine-tuned models to allow a
visible comparison (See Appendix for qualitatively identical results under different budgets and attack
algorithms). By default, we present results for ℓ∞ and ℓ2 attacks when evaluating robustness under
neuron and spectral compressibility respectively, and defer the cross-norm results to the supplementary
material, which also includes further details on our experiment settings and implementation.

Comparison across methods. Given that our theory is agnostic to the source of structured compress-
ibility, we experiment and confirm our predictions with various methods to induce compressibility.
Therefore, to retain the equivalence between these different methods and prevent confounding from
specific compression procedures, we primarily compare uncompressed models while explicitly high-
lighting their different levels of compressibility. However, in approaches where a specific compression
procedure is commonly utilized in practice (e.g. filter pruning after regularized training), we show
that our results apply to the compressed models as well.
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Figure 4: Model statistics under increasing strength of nuclear norm regularization (α).

4.1 RESULTS

Testing the motivating hypothesis. We start our empirical analysis with a demonstrative experiment
to visually investigate the implications of our motivating hypothesis. For this, we train a single
400-width hidden layer FCN with ReLU activations on the MNIST dataset. We use nuclear norm
regularization (NNR) to encourage spectral compressibility, adding the term α∥σσσ∥1 to the training
objective, with α as a hyperparameter. To avoid confounding by NNR decreasing overall parameter
norms, we apply Frobenius norm normalization to W1 at every iteration (Miyato et al., 2018).
While our following experiments will utilize more practically relevant norm control mechanisms, we
currently apply normalization to fully isolate the effects of compressibility.
In Figure 4 (left) we validate that our intervention indeed increases spectral norm compressibility.
As expected, Figure 4 (center left) shows that spectral compressibility actually allows pruning:
the more compressible models retain their performance under stronger spectral pruning. Figure 4
(center right) shows that increased compressibility comes at the cost of adversarial robustness: as
α increases, adversarial accuracy dramatically falls. We further investigate whether this fall is due
to our hypothesized mechanism. As in our motivating hypothesis at the beginning of Section 3, we
let z = Φ(x) and zadv = Φ(x + a∗) denote the learned representations of clean and perturbed
input images. If the adversarial attacks are taking advantage of the potent directions created by
compressibility, then as compressibility increases: (1) The perturbations a∗ should align more with
the dominant singular directions, i.e., v⊺

i a
∗ ≫ v⊺

ja
∗ ∀i ∈ [k], j /∈ [k], (2) representations of

adversarial perturbations should grow stronger in relation to the original image’s representation, i.e.
∥zadv − z∥2/∥z∥2 should increase. Results presented in Figure 4 (right) confirms both predictions,
further supporting our motivating hypothesis. Lastly, the previously presented Figure 2 visualizes
the effect of compressibility in the input and representation space. We provide a more detailed,
step-by-step account of how potent leading directions are exploited by white box and black box
adversaries in the Appendix for stronger intuition.
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Figure 5: Results with FCN (top) and ResNet18 (bottom)
trained on CIFAR-10 dataset.

Adversarial robustness and compress-
ibility under standard training. For im-
plications of our analysis under more re-
alistic settings, we start by investigating
the effects of compressibility on adversar-
ial robustness in fully connected networks
(FCN). We induce neuron and spectral
compressibility through group lasso regu-
larization1 and low-rank factorization, re-
spectively (latter avoids the excessive cost
of nuclear norm regularization). As above,
we conduct Frobenius norm normalization
at every iteration. Figure 5 (top) presents
the results of these experiments: The re-
duction in adversarial robustness as a func-
tion of increasing compressibility is clear
in both cases, confirming our main hypoth-
esis. Note that we present robust accuracy (RA) / standard accuracy (SA) ratio alongside RA to
highlight that the obtained results are not due to baseline SA being lower under compressibility.

We then investigate whether our hypotheses apply beyond the context of our theory, starting with
convolutional neural networks (CNNs). We first test our predictions in ResNet18 models trained
on CIFAR-10 datasets. Here we eschew Frobenius norm normalization for standard weight decay.

1Group lasso regularization penalizes the ℓ1 norm of row ℓ2 norms of each layer, promoting row-sparsity.
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Figure 7: (Left) Effects of compressibility under adversarial training. UAEs under increasing (center
left) compressibility vs. (center right) parameter scale. (Right) Robustness under transfer learning.
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Figure 6: Results with ViT (left) and CLIP (right).

However, to prevent confounding from
group lasso’s effect on general parameter
scales, we create a scale-invariant version
that regularizes row norms’ ℓ1/ℓ2 norm ra-
tio.2 Figure 5 (bottom) demonstrates that
the above effects clearly translate to this
setting as well, further solidifying the rela-
tionship between structured compressibil-
ity and adversarial robustness. We present
similar results on two other architectures (VGG16, WideResNet-101) and two other datasets (CIFAR-
100, SVHN) in the Appendix. Going forward, for brevity we will focus on neuron compressibility
results, and defer corresponding spectral compressibility results to the Appendix, where we also
discuss unstructured compressibility and inductive bias-based emergent compressibility.

Experiments with transformers. We next test our hypotheses under transformer architectures.
Figure 6 (left) replicates our results under a ViT classifier model trained on CIFAR-10 dataset.
Further, to test whether our hypothesis holds under a zero-shot classification setting, we fine-tune a
pre-trained CLIP model on Flickr30k dataset under varying degrees of sparsification regularization,
and conduct standard and adversarial zero-shot classification using ImageNet-1k dataset. We find
that our results (Figure 6, right) replicate here as well. That simply fine-tuning with sparsification
can create this vulnerability with commonly repurposed encoder backbones highlights the safety
implications of our results. See Appendix for further details and findings under other training settings.

Effects of compressibility on robustness under adversarial training. Given that adversarial
training is the primary method for obtaining models that are robust against adversaries, we next
investigate whether the effects we have observed will persist under this regime. To make this setting
as close to practice as possible, we also include a learning rate annealing schedule (Cosine annealing)
and basic data augmentation (random horizontal flip and crops). The results almost identically
replicate our observations under standard training (Figure 7, left). Although adversarial training
increases adversarial robustness overall, the relative effect of compressibility remains as it is.

Universal adversarial examples. Examining the terms in Theorem 3.2, we predict that while both
compressibility and Frobenius norm are likely to increase vulnerability, only the former is likely to
lead to universal adversarial examples (UAEs) (Moosavi-Dezfooli et al., 2017), due to the global
vulnerable directions it creates. To test our hypothesis, we modify the setting of FCN experiments
presented above: In contrast to increasing row sparsity regularization under a fixed Frobenius norm,
in an alternative set of experiments we systematically increase the constant to which Frobenius
norm of the layers is fixed, without any row sparsity regularization. We utilize a FGSM-based
(Goodfellow et al., 2015) UAE computation to develop adversarial samples. Figure 7 (center left,
center right) confirms our hypothesis: while increasing Frobenius norm only decreases standard
adversarial robustness, increasing compressibility additionally creates vulnerability to UAEs. In the
Appendix, we replicate these results under a ResNet18. Importantly, we also show that the converse
relationship also holds: Training against UAEs vs. standard adversarial samples decreases top-k
parameter spread β, providing further support for our arguments.

Adversarial vulnerability under transfer learning. Next, we investigate our hypothesis that the
effects of compressibility should persist under transfer learning due to the structural effects created
on representations. We train a ResNet18 model on CIFAR-100 dataset with increasing row sparsity
regularization. After the training is complete, we freeze the encoder parameters and train a linear

2In the Appendix, we show that standard group lasso creates a “tug-of-war” between increasing compress-
ibility and decreasing parameter scales; the former eventually wins, resulting in decreased robustness.
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classifier head for prediction on CIFAR-10 dataset and evaluate the robustness of the resulting
model. Figure 7 (right) shows that the effects of compressibility observed above directly translate
to the context of transfer learning, where increased compressibility in pretraining affects robustness
performance in the downstream task, for which the network is fine-tuned.

Compression and robustness. We now investigate the behavior of models under layerwise filter
pruning. Using the ResNet18 and CIFAR-10 combination under adversarial training, in Figure 8
(left), we compare the baseline model (α = 0.0) to a model regularized to be compressible (α = 0.1).
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Figure 8: Robustness under compression. SA/RA: Stan-
dard/Robust Acc. LW/Glob.: Layerwise vs. global pruning.

We see that at no point the com-
pressed models surpass the uncom-
pressed performance of the baseline
model in terms of standard and ro-
bust accuracy. However, as pruning ra-
tio increases, the baseline model fails
to retain its standard and robust per-
formance, whereas the compressible
(sparsified) model does considerably
better, demonstrating the fundamental
tension between robustness and com-
pressibility. In the Appendix, we show that these results hold after post-pruning fine-tuning as well.
Additionally, there we demonstrate that post-pruning fine-tuning acts as an additional source of
vulnerability in and of itself, as under this procedure adversarial robustness deteriorates much faster
than standard accuracy, confirming our results under yet another source of norm imbalance.

In Figure 8 (right), we show that conducting pruning based on two simple interventions inspired
by our bounds results in tangible improvements in standard and robust performance under pruning.
Given the fact that layerwise pruning is known to produce harmful bottlenecks that lead to layer
collapse (Blalock et al., 2020), instead of targeting a pruning ratio and pruning each layer accordingly,
we set a target ϵ for each layer, and for each compute k that satisfies this ϵ level. Given a target
global pruning ratio, we scan over different levels of ϵ and determine the level that gets closest
to the target ratio. Moreover, during training we control the spread of the dominant terms, β,
which our analyses show to be harmful for robustness, without decreasing compressibility. We
accomplish this through regularizing the variance of the top 0.05 of each layer’s filters’ norms.
Figure 8 (right) demonstrates that our interventions create a tangible improvement in performance
retention. In the Appendix, we provide additional results showing that interlayer alignment can
also be successfully used as a regularization target for robust compressibility. We consider these
interventions both as validations of our theory and promising directions for future robust compression
research. However, we also highlight that it may not be possible to completely negate the fundamental
dangers of concentrating parameter energy in very few substructures, extensively demonstrated by
our theory and experiments. Therefore, while pruning and low-rank approximation remain valuable
compression methods, combining intermediate levels thereof with other compression methods such
as quantization or knowledge distillation seems to be the most promising approach in reconciling
safety and robustness, which is in line with recent findings in the literature (Pavlitska et al., 2023).

5 RELATED WORK

Adversarial robustness. The susceptibility of the neural network models to adversarial examples
created through small perturbations (Szegedy et al., 2014) engendered a lot of research investigating
the issue (Madry et al., 2018). To this day adversarial robustness remains one of the most important
topics in machine learning safety (Malik et al., 2024). The literature ranges from the development
of new attacks and defenses (Moosavi-Dezfooli et al., 2016; Abdollahpoorrostam et al., 2024), to
investigating sources/mechanisms of adversarial vulnerability, to implications of AEs for the inductive
biases of modern machine learning architectures (Ilyas et al., 2019; Ortiz-Jimenez et al., 2021; Xu
et al., 2024), to developing strategies to retain model expressivity and generalization while defending
against adversarial attacks (Tsipras et al., 2019; Zhang et al., 2024).

Pruning and low-rank approximation. Prominent compression approaches include pruning, quanti-
zation, distillation, conditional computing, and efficient architecture development (O’Neill, 2020).
Out of these, pruning remains among the most actively researched compression approaches due to
its versatility (Cheng et al., 2024). Inducing compressibility / sparsity at training time is one of
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the easiest way to obtain prunable models (Hohman et al., 2024). Compressibility across different
substructures, a.k.a group sparsity (Li et al., 2020b), allows for structured pruning (e.g. neuron/row,
filter/channel, kernel pruning), which is computationally efficient (Yang et al., 2018), yet leads to
a sharp reduction in network connectivity, threatening performance (Blalock et al., 2020). Lastly,
spectral compressibility relaxes the notion of low-rankness, utilized for approximating large matrices
with appealing theoretical properties (Suzuki et al., 2020; Schotthöfer et al., 2022). While nuclear
norm regularization is not a commonly utilized intervention due to the computational costs involved,
low-rank factorization continues to be a prominent architectural design choice due to its attractive
theoretical and empirical properties (Savostianova et al., 2023).

Compressibility and robustness. Whereas some research argues that compressibility/sparsity is
beneficial for adversarial robustness (Guo et al., 2018; Balda et al., 2020; Liao et al., 2022), others
indicate the relation is at best highly dependent on the degree and type of compressibility, as well
as attack type (Li et al., 2020a; Merkle et al., 2022; Savostianova et al., 2023; Feng et al., 2025).
While a stream of new methods that incorporate adversarial robustness in novel ways to pruning (an
approach sometimes termed adversarial pruning), newly emerging systematic benchmarks reveal at
best marginal benefits for such methods compared to weight-based pruning (Lee et al., 2020; Piras
et al., 2025). Whereas some methods demonstrate benefits of adversarial training-aware sparsification
(Gui et al., 2019; Sehwag et al., 2020; Pavlitska et al., 2023), infamous problems adversarial training
poses for standard generalization, transferability, as well as computational feasibility especially for
larger models still plague such methods (Tsipras et al., 2019; Wen et al., 2020; Yang et al., 2024).

Comparing our results to previous research. Our work addresses a critical gap in the literature:
paucity of research that establishes a principled, theoretical relationship between structured com-
pressibility and adversarial robustness with extensive empirical confirmation. While doing so, we
find that it produces complementary results to most closely related previous work. For example,
Savostianova et al. (2023) and Feng et al. (2025) highlight the adversarial vulnerability created by
increased condition numbers due to high unstructured sparsity or low-rank training, respectively. Our
results complement and extend their conclusions by providing convergent theoretical results with a
more fine-grained, source-agnostic notion of compressibility, and can naturally incorporate neuron
compressibility/prunability, which the cited work do not address. We also find that our results provide
important evidence for research on adversarial pruning (Piras et al., 2025). Indeed, in our Appendix
we investigate two prominent structured adversarial pruning methods (Zhao & Wressnegger, 2023;
Zhong et al., 2023), and demonstrate that such methods implicitly conduct operator norm control - in
a way that cannot be simply attributed to adversarial training. Our complementary findings highlight
the design of theoretically informed robust pruning methods as a promising future research direction.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a unified theoretical and empirical treatment of how structured compressibil-
ity shapes adversarial robustness. Via a novel analysis of neuron-level and spectral compressibility,
we uncover a fundamental mechanism: compression concentrates sensitivity along a small number
of directions in representation space, rendering models more vulnerable—even under adversarial
training and transfer learning. Our norm-based robustness bounds offer interpretable decompositions
that predict both standard and universal adversarial vulnerability, and shed light on the trade-offs
between efficiency and safety in modern neural networks. Empirically, we validate these insights
across datasets, architectures, and training regimes, showing how compressibility determines adver-
sarial susceptibility in various learning contexts. Inspired by our bounds, we outline simple, targeted
strategies that can mitigate these vulnerabilities.

Our work provides a novel insight into the relationship between structured compressibility and
adversarial vulnerability. A limitation is our theory’s reliance on global Lipschitz constants to
characterize network performance: future work should focus on providing a unified view that
incorporates both structural/global weaknesses, localization of sensitivity in the input space, as well
as incorporating novel Lipschitz estimation methods for tighter bounds. Extending our work to
incorporate other types of compression (e.g. layer, attention head, or semi-structured pruning) and
distribution shifts (e.g. other ℓp attacks, spurious correlations, label noise) are other important future
directions. Moreover, while the simple interventions suggested by our theory provide cost-effective
improvements to the compressibility-robustness trade-off, these insights should be combined with
alternative, novel compression methods to improve the frontiers of robust compression.
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On the Interaction of
Compressibility and Adversarial Robustness
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A PROOFS

We start with a number of auxiliary results that are used in the theorems and corollary presented in
Section 3.
Lemma A.1. For any strictly (q, k, ϵ)compressible vector θ and for all q ≥ 1, ∥θ(k)∥q = (1 −
ϵq)1/q∥θ∥q .

Proof. ∥θ−θ(k)∥qq = ϵq∥θ∥qq follows from the definition of compressibility. Adding ∥θ(k)∥qq to both
sides leads to ∥θ∥qq = ϵq∥θ∥qq + ∥θ(k)∥qq, with LHS due to elements of x and θ − θ(k) populating
disjoint sets of coordinates. Result follows with simple algebraic manipulation.

Note that for the results in this section, we use θ(k) and θk equivalently to denote a vector that
includes only the k dominant terms.
Lemma A.2. For p∗ < q, given the (2, k, ϵ)-compressible vector θ ∈ Rd, we have:

∥θ∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q + d
1
p∗ − 1

q ϵ∥θ∥q. (10)

Proof. We start by applying Minkowski’s inequality to ∥θ∥p∗ :

∥θ∥p∗ ≤ ∥θ(k)∥p∗ + ∥θ − θ(k)∥p∗ . (11)

We now bound the terms on RHS separately. For the first term, since p∗ < q by Hölder’s inequality
for k-sparse vectors we have

∥θ(k)∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q.
For the next term, we can write

∥θ − θ(k)∥p∗ ≤ d
1
p∗ − 1

q ∥θ − θ(k)∥q ≤ d
1
p∗ − 1

q ϵ∥θ∥q,

with the left inequality due to Hölder’s inequality, and the right due to θ(k)’s (q, k, ϵ) compressibility.
Combining the expressions for both terms, we have

∥θ∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q + d
1
p∗ − 1

q ϵ∥θ∥q. (12)

Proposition A.3. Given a linear binary classifier and binary cross-entropy loss function, we have
the following bound:

F adv
p (θ; δ) ≤ F (θ; δ) + δ∥θ∥p∗ (13)

Proof of Proposition A.3. For binary cross-entropy loss we have:

fadv(x,θ; δ) = log
(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

))
.

We observe that fadv(x,θ; δ) ≤ f(x,θ; δ) + δ∥θ∥p∗ since

fadv(x,θ; δ) = log
(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

))
= log

(
1 + exp

(
−y(x⊤θ)

))
+ log

(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

)
1 + exp (−y(x⊤θ))

)

= f(x,θ; δ) + log

(
1 + (exp (δ∥θ∥p∗)− 1)

exp
(
−y(x⊤θ)

)
1 + exp (−y(x⊤θ))

)
≤ f(x,θ; δ) + δ∥θ∥p∗ ,

with the last inequality due to the fact that
exp(−y(x⊤θ))

1+exp(−y(x⊤θ))
< 1. Taking the expectation of the

expression gives:
F adv(θ; δ) ≤ F (θ; δ) + δ∥θ∥p∗

2
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Main results. We now present the proofs for Theorem 3.1 and 3.2 and Corollary 3.3.

Proof of Theorem 3.1. For brevity we will omit ννν as a subscript, such that ϵ = ϵννν , k = kννν , β = βννν .

For (a), we assume ννν is in a descending order w.l.o.g., and ν̂νν is the corresponding vector of ℓ2 norms
for each row. We note that

∥ννν(k)∥1 =

k∑
i=1

νi ≥ kνk (14)

≥ k(1− β)ν1 (15)
(1− ϵ)∥ννν∥1 ≥ k(1− β)ν1 (16)

(1− ϵ)

(1− β)

1

k
∥ννν∥1 ≥ ν1 (17)

(1− ϵ)

(1− β)

1

k
∥ννν∥1 ≥ ∥W∥∞ (18)

with (14) being the smallest magnitude element in ννν(k), (15) due to the definition of slack variable
β, and (16) due to Lemma A.1, and (18) due to the fact that ∥W∥∞ = ν1, as ννν is assumed to be
magnitude-ordered. We then move on to characterizing ∥ννν∥1. Notice that

∥ννν∥1 =

h∑
i=1

νi ≤
h∑

i=1

√
hν̂i (19)

≤
√
h∥ν̂νν∥1 (20)

≤
√
h
(√

kr∥ν̂νν(kr)∥2 +
√
h∥ν̂νν∥2

)
(21)

≤
(√

hkr +
√
hϵr

)
∥ν̂νν∥2 (22)

≤
(√

hkr +
√
hϵr

)
∥W∥F (23)

Note that (19) is due to standard norm inequality between ℓ1 and ℓ2 rows, (21) is due to Lemma A.2,
and (23) is due to ℓ2 norm of the vector of row ℓ2 rows equals the Frobenius norm. Plugging (23)
back into (18) gives the desired result.

For (b) the proof follows similarly through steps (14)-(17) by replacing ννν with σσσ. After that, we
continue with

(1− ϵ)

(1− β)

1

k
∥σσσ∥1 ≥ σ1 (24)

(1− ϵ)

(1− β)

1

k
∥σσσ∥1 ≥ ∥W∥2 (25)

(1− ϵ)

(1− β)

√
h

k
∥σσσ∥2 ≥ ∥W∥2 (26)

(1− ϵ)

(1− β)

√
h

k
∥W∥F ≥ ∥W∥2 (27)

with (25) due to ∥W∥2 = σ1, (26) due to standard norm inequality between ℓ1 and ℓ2 norms, and
(27) due to the fact that ℓ2 norm of singular values equals Frobenius norm, i.e. ∥W∥F = ∥σσσ∥2.

Proof of Theorem 3.2. Proofs for both conditions rely on an additive decomposition of the layer
matrices Wl into dominant/leading terms vs. remainder terms, i.e. Wl = Wl

k +Wl
r. In structured

compressibility this takes the form of Wl
k and Wl

r including k leading (largest ℓ1 norm) rows and
h − k remaining rows, respectively, with the rest of the rows set to 0 in both cases. In spectral
compressibility, this takes the form of Wl

k + Wl
r = Ul

kΣ
l
k

(
Vl

k

)⊤
+ Ul

rΣ
l
r

(
Vl

r

)⊤
, where the

remaining h− k vs. leading k singular values are set to 0 respectively.

3



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Let zl denote the post-activation representations of the network after layer l ∈ [λ]. The Jacobian of
the network output zλ with respect to the input x is given by:

JΦ(x) = Dλ(x)WλDλ−1(x)Wλ−1Dλ−2(x) . . .D1(x)W1, (28)
where Dl(x) is the diagonal binary matrix corresponding to the ReLU activation after layer l, i.e.,
(Dl)ii = I[(z̄l)i > 0], with z̄l being the pre-activation representation at layer l for input x.

Letting Lp
Φ denote the p-norm Lipschitz constant of the encoder in the input domain, it can be

computed as the maximum p → p operator norm of the Jacobian over the input space X :

Lp
Φ = sup

x∈X
∥JΦ(x)∥p = sup

x∈X
∥Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1∥p. (29)

For brevity, we use the following notation:
P(D) := Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1. (30)

Note that the optimization over X can be replaced with the optimization over all binary activation
matrices Dl ∈ D for each layer whenever convenient. We replace the notation Dl(x) with Dl when
doing so.

Note that in this proof, for increased precision and brevity we introduce the following notation for the
interlayer alignment terms:

A∗
p,l := max

D∈D
Ap,l (31)

where Ap,l stands for the inner RHS term optimized over in (6) and (7).

(a) Row/neuron compressibility We aim to bound L∞
Φ as:

L∞
Φ ≤ max

D1,...,Dλ
∥P(D)∥∞. (32)

We start by noting that we can upper bound this norm by partitioning the inside terms based on the
submultiplicative property:

∥P(D)∥∞ ≤ ∥DλWλDλ−1Wλ−1 . . .D1W1∥∞ (33)

≤ ∥WλDλ−1Wλ−1∥∞∥Dλ−2∥∞∥Wλ−2∥∞
. . . ∥Wl+1DlWl∥∞ . . . ∥D1∥∞∥W1∥∞ (34)

Note that any such parsing is valid as long as a layer does not appear in two interlayer terms at once.
Given a valid parsing set S ⊆ {1, 2, . . . , λ− 1}, we have the interlayer alignment terms for l ∈ S, i.e.
∥Wl+1DlWl∥∞ and standalone terms for all remaining layers {l | l /∈ S, l + 1 /∈ S}: ∥Wl∥∞. We
denote all such valid parsing layer subsets with S , where S does not include any consecutive indices
for any S ∈ S. We will first prove the bound for any valid parsing set, and then define the optimal
alignment parsing set that would lead to the tightest bound.

We first analyze a generic alignment term, using the additive decomposition into leading and remainder
terms. Remember that for layer l we denote the row ℓ1 norms with νννl = (νl1, . . . , ν

l
h), and w.l.o.g.

assume that the rows are ordered in descending order according to νl. Also note that ∥Wl
k∥∞ =

∥Wl∥∞ = νl1.
∥Wl+1DlWl∥∞ ≤ ∥Wl+1

k DlWl
k∥∞ + ∥Wl+1

k DlWl
r∥∞

+ ∥Wl+1
r DlWl

k∥∞ + ∥Wl+1
r DlWl

r∥∞ (35)

≤ ∥Wl+1
k DlWl

k∥∞ + ∥Wl+1
k ∥∞∥Wl

r∥∞
+ ∥Wl+1

r ∥∞∥Wl
k∥∞ + ∥Wl+1

r ∥∞∥Wl
r∥∞ (36)

≤ ∥Wl+1∥∞∥Wl∥∞
( ∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+

νlk+1

νl1

+
νl+1
k+1

νl+1
1

+
νlk+1ν

l+1
k+1

νl1ν
l+1
1

)
. (37)

≤ ∥Wl+1∥∞∥Wl∥∞

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
. (38)

4



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since the remaining, standalone layer norms also contribute ∥Wl∥∞, we have

∥P(D)∥∞ ≤
λ∏

l=1

∥Wl∥∞
∏
l∈S

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
. (39)

Bounding the Lipschitz constant accordingly:

L∞
Φ ≤ max

D1,...,Dλ

λ∏
l=1

∥Wl∥∞
λ−1∏
l=1

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
(40)

=

λ∏
l=1

∥Wl∥∞
∏
l∈S

(
max
D∈D

∥Wl+1
k DWl

k∥∞
∥Wl+1∥∞∥Wl∥∞

+R∞(ϵ)

)
(41)

=

λ∏
l=1

∥Wl∥∞
∏
l∈S

A∗
∞(Wl+1,Wl) +R∞(ϵ). (42)

Contributing an alignment term of 1 for {l | l /∈ S, l + 1 /∈ S} gives the desired result if S = Sopt,
which we define below.

Given multiple valid parsing sets are possible whenever λ > 2, we lastly define the optimal alignment
parsing set, Sopt.

Definition A.4 (Optimal Alignment Parsing Set). The Optimal Alignment Parsing Set Sopt is a set in
S that achieves the minimum product of the corresponding maximum alignment factors:

Sopt ∈ argmin
S∈S

∏
l∈S

A∗
∞,l. (43)

Note that Sopt might not be unique, but min
S∈S

∏
l∈S A∗

∞,l is.

Complexity of finding Sopt: Finding Sopt ∈ argmin
S∈S

∏
l∈S A∗

∞,l is equivalent to finding the

independent set S in the path graph G = (V,E) with V = {1, . . . , L− 1} that maximizes
∑

l∈S wl,
where weights wl = − logA∗

∞,l (assuming A∗
∞,l > 0; we handle A∗

∞,l = 0 as a special case yielding∏
l∈Sopt

A∗
∞,l = 0). This is the Maximum Weight Independent Set, which can be solved in linear

time in chordal graphs, of which path graphs are a subfamily (Frank, 1976).

(b) Spectral compressibility: We can upper bound L2
Φ by considering all possible activation patterns

(all possible binary diagonal matrices Dl):

L2
Φ ≤ max

D1,...,Dλ
∥P(D)∥2 (44)

We modify the SVD decomposition for layers as

Wl = Ul
√
Σl

√
Σl
(
Vl
)⊤

(45)

=

(
Ul

k

√
Σl

k +Ul
r

√
Σl

r

)
︸ ︷︷ ︸

Al

(√
Σl

k

(
Vl

k

)⊤
+
√
Σl

r

(
Vl

r

)⊤)
︸ ︷︷ ︸

Bl

. (46)

Note that we assume untruncated singular vector matrices for Wl
k and Wl

r for the equation above to
be valid. We then decompose the spectral norm using the submultiplicative property:

∥P(D)∥2 = ∥DλWλDλ−1Wλ−1Dλ−2 . . .D1W1∥2 (47)

≤ ∥Aλ∥2∥BλDλ−1Aλ−1∥2∥Bλ−1Dλ−2Aλ−2∥2
. . . ∥Bl+1DlAl∥2 . . . ∥B2D1A1∥2∥B1∥2 (48)

We then analyze the central term ∥Bl+1DlAl∥2, and decompose it using the submultiplicative
and subadditivity properties. Remember that for layer l we denote the singular values with σσσl =
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(σl
1, . . . , σ

l
h). Also note that ∥Wl

k∥2 = ∥Wl∥2 = σl
1.

∥Bl+1DlAl∥2

≤ ∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2 + ∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

r

√
Σl

r∥2

+ ∥
√

Σl+1
r

(
Vl+1

r

)⊤
DlUl

k

√
Σl

k∥2 + ∥
√
Σl+1

r

(
Vl+1

r

)⊤
DlUl

r

√
Σl

r∥2 (49)

≤ ∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2 +
√

σl+1
1 ∥

(
Vl+1

k

)⊤
DlUl

r∥2
√

σl
k+1

+
√
σl+1
k+1∥

(
Vl+1

r

)⊤
DlUl

r∥2
√
σl
1 +

√
σl+1
k+1∥

(
Vl+1

r

)⊤
DlUl

r∥2
√

σl
k+1 (50)

≤
√

σl+1
1

√
σl
1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+

√
σl
k+1

σl
1

+

√
σl+1
k+1

σl+1
1

+

√
σl
k+1σ

l+1
k+1

σl
1σ

l+1
1


(51)

≤
√

σl+1
1

√
σl
1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 , (52)

where we set all cross-alignment terms other than dominant-dominant interaction to 1. This is made
possible by the fact that they are the multiplication of orthogonal matrices and a ReLU matrix, all
of which have spectral norms upper bounded by 1. Note that for all layers l ∈ 1, . . . , λ,

√
σl
1 will

appear twice in the multiplication, including the first and last layers due to the leading and final terms
in (48), leading to the expression:

∥P(D)∥2 ≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (53)

Bounding the Lipschitz constant:

L2
Φ ≤ max

D1,...,Dλ
∥P(D)∥2 (54)

≤ max
D1,...,Dλ

λ∏
l=1

∥Wl∥2
λ−1∏
l=1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (55)

≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

max
D∈D

∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (56)

≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

A∗
2(W

l+1
k ,Wl

k), (57)

yielding the desired result.

Proof of Corollary 3.3. Let a denote the adversarial perturbation on the input x, where ∥a∥p ≤ δ.
We define the effective perturbation budget in ℓp norm for the feature encoder Φk as δΦk

p :=
max ∥Φ(x)−Φ(x+ p)∥p. Note that by definition of the Lipschitz constant and by Theorem 3.2, we
have

δΦp = max ∥Φ(x)− Φ(x+ a)∥p ≤ ∥x− (x+ a)∥pL2
Φ ≤ ∥a∥pL̃2

Φ = δL̃2
Φ. (58)

Plugging the result back into (13) yields the desired result.

Lemma A.5. Under the conditions described in Theorem 3.2, Rp(ϵ) → 0 as ϵ → 0 for p ∈ {2,∞}.

6



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. p = ∞: Due to the definition of compressibility, for all l ∈ [λ],

∥νννl − νννlk∥1 ≤ ϵ∥νννl∥1 (59)

νlk+1 ≤ ϵh∥Wl∥F , (60)

by applying standard norm inequalities across rows and columns. The result follows from noting that
the final inequality applies to both νlk+1 and νl+1

k+1.

p = 2: Similarly, due to the definition of compressibility, for all l ∈ [λ],

∥σσσl − σσσl
k∥1 ≤ ϵ∥σσσl∥1 (61)

σl
k+1 ≤ ϵ

√
h∥Wl∥F , (62)

since ∥σσσl∥2 = ∥W l∥F . The result follows from noting that the final inequality applies to both σl
k+1

and σl+1
k+1.

Lemma A.6. Under the conditions described in Theorem 3.2, A∗
p(W

l+1,Wl) ≤ 1 for p ∈ {2,∞}.

Proof. For p = ∞,

A∗
∞(Wl+1,Wl) = max

D∈D

∥Wl+1DWl∥∞
∥Wl+1∥∞∥Wl∥∞

(63)

≤ ∥Wl+1∥∞ maxD∈D ∥D∥∞∥Wl∥∞
∥Wl+1∥∞∥Wl∥∞

(64)

≤ ∥Wl+1∥∞∥Wl∥∞
∥Wl+1∥∞∥Wl∥∞

= 1. (65)

The proof follows identically for p = 2.

B ADDITIONAL TECHNICAL RESULTS AND ANALYSES

B.1 (q, k, ϵ)-COMPRESSIBILITY VS. OTHER NOTIONS OF APPROXIMATE SPARSITY

Further discussion of (q, k, ϵ)-compressibility.

Our concept of compressibility can be thought of as the generalization of sparsity, with the obvious
advantage of being applicable to domains where true sparsity is rare, such as neural network parameter
values. Note that our intuitive definition of compressibility is based on foundational results in
compressed sensing and is well exploited in the established machine learning literature (Amini
et al., 2011; Gribonval et al., 2012; Barsbey et al., 2021; Diao et al., 2023; Wan et al., 2024). More
specifically, when k ≪ d and ϵ ≪ 1, Definition 2.1 is equivalent to Gribonval et al. (2012)’s definition
of compressible vector. Inspired by desiderata from an ideal metric of sparsity in the economics
literature, Diao et al. (2023) recently introduced another scale-invariant notion of approximate
sparsity:

Definition B.1 (PQ Index Diao et al. (2023)). For any 0 < p < q, the PQ Index of a non-zero vector
w ∈ Rd is

Ip,q(w) = 1− d
1
q−

1
p
∥w∥p
∥w∥q

. (66)

Interestingly, it is possible to directly relate this notion of sparsity to (q, k, ϵ)-compressibility, as
shown in the following proposition.

Proposition B.2. Given 0 < p < q, for a vector θ, its (q, k, ϵ) compressibility implies the following
lower bound for its PQ Index:

1− ϵ− κϕ ≤ Ip,q(θ), (67)

where κ = k/d and ϕ = 1
p − 1

q . Note that the constraints on p, q imply ϕ > 0.

7



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. Let γ = 1
p − 1

q . Note that from (12) we know that ∥θ∥p ≤ (kγ + dγϵ) ∥θ∥q . This implies

∥θ∥p
∥θ∥q

≤ kγ + dγϵ. (68)

Note that PQ Index from (66) can be written as (1− Ip,q(θ))d
γ =

∥θ∥p

∥θ∥q
. Plugging this into the LHS

of (68) and simple algebraic manipulation gives the desired result.

Remark B.3. Assume that θ and θ′ are (q, k, ϵ) and (q, k′, ϵ′) compressible respectively. If k = k′

and ϵ < ϵ′; or k < k′ and ϵ = ϵ′ implies a larger lower bound on PQI. That is, a larger (q, k, ϵ)
compressibility suggests a larger PQI.

Dominance vs. spread. While (q, k, ϵ)-compressibility quantifies how well a vector can be approxi-
mated using its top-k entries (e.g. top-k filters or singular values), it does not fully capture the internal
structure among those dominant terms. Consider the vectors x1 = (10, 2, 1, 1) and x2 = (6, 6, 1, 1):
both yield the same 2-term relative approximation error under q = 1, yet their dominant components
differ markedly in structure. To formalize this distinction, we introduce the spread variable as
a complementary descriptor. Given a vector θ with elements sorted by magnitude, we define its
spread β ∈ [0, 1] via the relation |θk| = (1 − β)|θ1|. Intuitively, β quantifies the relative decay
from the largest to the k-th largest entry, capturing an additional degree of freedom in the geometry
of compressibility, better describing and distinguishing compressible distributions beyond what is
possible with approximation error alone.

Lastly, to provide a numerical comparison, consider x1 = (6.00, 1.50, 0.75, 0.75) and x2 =
(4.00, 4.00, 0.057, 0.057). The qualitative difference between the two vectors is obvious, and is easy
to observe under our compressibility definition: with q = 2, k = 2, we have ϵ = 0.169, β = 0.75
vs. ϵ = 0.014, β = 0.00, respectively. Note that this difference is captured neither by the classical
notion of sparsity (neither vector includes any 0 elements), nor the more modern PQ Index, as both
vectors have a PQI(2, 1) of 0.697.

B.2 LOWER BOUNDS ON OPERATOR NORMS

The following theorem characterizes the compressibility-based lower bounds of operator norms,
complementing the upper bounds presented in the main paper.
Theorem B.4. The following statements lower bound operator norms using compressibility and
Frobenius norm.

(a) Neuron compressibility (i.e. row-sparsity): Let wi, i ∈ [h] denote the rows of the matrix W,
and let ννν := (∥w1∥1, . . . , ∥wh∥1) denote ℓ1 norms of its rows. Assuming ννν is (1, kννν , ϵννν) and
each row wi is (2, kr, ϵr) compressible implies:( √

kr√
kr(1− ϵ2r) +

√
ϵr

)
(1− ϵννν)

kννν
∥W∥F ≤ ∥W∥∞. (69)

(b) Spectral compressibility (i.e. low-rankness): Let σσσ := (σ1, σ2, . . . ) denote the singular values
of matrix W. Assuming σσσ is (1, kσσσ, ϵσσσ) compressible implies:√

(1− hϵ2σσσ)

kσσσ
∥W∥F ≤ ∥W∥2. (70)

Proof. For (a) note that ∥W∥∞ = ∥ννν∥∞. Note that the minimum value this value can take is
∥νννk∥1/kννν . By the definition of strict compressibility, we know that ∥νννk∥1 = (1− ϵ)∥ννν∥1. This gives
us the inequality:

(1− ϵννν)

kννν
∥ννν∥1 ≤ ∥W∥∞. (71)

We then turn to the components of ννν, and examine the relationship between ∥w∥2 and ∥w∥1 for any
row w. We will use wk, wr to refer to the dominant and remainder terms of w respectively. We
invoke Minkowski’s inequality:

∥w∥2 ≤ ∥wk∥2 + ∥wr∥2. (72)

8
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We bound the leftmost term by ∥wk∥2 ≤
√

1− ϵ2r∥w∥2 ≤
√

1− ϵ2r∥w∥1 due to Lemma A.1. For
the term ∥wr∥2, we observe that due to interpolation inequality:

∥wr∥2 ≤ ∥wr∥
1
2
1 ∥wr∥

1
2∞. (73)

Examining ∥wr∥∞, we note that the maximum magnitude wr can contain is less than or equal to the
maximum value the lowest magnitude element of wk can take. This is the case when all elements
of wk are equal, therefore ∥wr∥∞ ≤ ∥wk∥1/k. Using this, the fact that ∥wk∥1 ≤ ∥w∥1, and that
∥wr∥1 ≤ ϵ∥w∥1 by compressibility definition, we can write:

∥wr∥2 ≤ ∥wr∥
1
2
1 ∥wr∥

1
2∞ ≤ ϵ

1
2 ∥w∥

1
2
1

(
∥w∥1
k

) 1
2

≤
√
ϵ√
k
∥w∥1,

Plugging this back into the additive decomposition of ∥w∥2 above, we have:
√
k√

k(1− ϵ2) +
√
ϵ
∥w∥2 ≤ ∥w∥1. (74)

Let ν̂νν denote the ℓ2 norms of W’s rows. Then, plugging this back to the main inequality:

∥W∥∞ ≥ (1− ϵννν)

kννν
∥ννν∥1. (75)

≥
√
k√

k(1− ϵ2) +
√
ϵ

(1− ϵννν)

kννν
∥ν̂νν∥1 (76)

≥
√
k√

k(1− ϵ2) +
√
ϵ

(1− ϵννν)

kννν
∥ν̂νν∥2 (77)

≥
√
k√

k(1− ϵ2) +
√
ϵ

(1− ϵννν)

kννν
∥W∥F (78)

which gives use the desired inequality.

For (b), we will use σσσk, σσσr to refer to the dominant and remainder terms of σσσ respectively. Note
that ∥W∥2F = ∥σσσ∥22 = ∥σσσk∥22 + ∥σσσr∥22. We bound the norm of the dominant singular values by
∥σσσk∥22 ≤ kσσσ2

1 = k∥W∥22. We bound the remainder singular values by noting that

∥σσσr∥22 ≤ (∥σσσr∥1)2 ≤ (ϵσσσ∥σσσ∥1)2 ≤ ϵ2σσσ(
√
h∥σσσ∥2)2 = hϵ2σσσ∥W∥2F . (79)

This gives us the inequality:

∥W∥2F ≤ k∥W∥22 + hϵ2σσσ∥W∥2F . (80)

Rearranging the terms gives the desired lower bound.

B.3 RELATIONSHIPS BETWEEN OPERATOR NORMS

Although Theorem 3.1 directly relates ℓ∞ and ℓ2 operator norms to neuron and spectral compress-
ibility, both the known norm inequality relationships and our results on cross-norm adversarial
attacks imply that these two quantities are likely to be strongly correlated under this context. We
conduct simple experiment to test this hypothesis: We optimize for either ℓ∞ or ℓ2 operator norm of a
random i.i.d. Gaussian matrix A where Ai,j

i.i.d.∼ N (0, 1). We then conduct a gradient ascent-based
optimization of the matrix’s either ℓ∞ or ℓ2 operator norms, while normalizing the Frobenius norm
to its initialization value. In Figure 9, as an average of 10 random seeds, we show how ℓ∞ and ℓ2
evolve while either ℓ∞ (top) and ℓ2 (bottom) are optimized. We note that in both case both norms
are strongly associated in increasing simultaneously. Note that given the inequality ∥A∥2 ≤ ∥A∥F ,
by the end of optimization the spectral norm reaches its limit in Frobenius norm. While the left
column shows the norms across iterations, center and right columns portray the qualitative differences
produced by optimizing for either columns. As expected, optimizing for ℓ∞ collects all energy in a
single row, while optimizing for ℓ2 produces a 1-rank matrix.

9
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Figure 9: Optimizing for ℓ∞ (top) and ℓ2 (bottom) operator norms.
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Figure 10: Empirically investigating the implications of Theorem 3.2.

B.4 EMPIRICAL ANALYSES OF THE ROBUSTNESS BOUND AND RELATED QUANTITIES

In this section, we directly investigate how well our bound correlates with the adversarial robustness
gap, as predicted in Corollary 3.3. In order to fully conform to the setting of Corollary 3.3, we convert
the previously introduced MNIST dataset to a binary classification task by converting its labels to
0-1, by assigning 0-4 to class 0 and 5-9 to class 1. We create a fully connected network (FCN) with
two hidden layers of width 300, with ReLU activations after each layer. We then create networks
with various spectral compressibility through varying the rank of the hidden layers, imposed through
low-rank factorization. While computing the bound, we determine k (num. dominant terms), and
compute ϵ and β as statistics. Note that if β = 1, this would make the bound undefined - however,
instead of being a numerical problem, this implies that k should be selected lower, as dominant terms
including 0 is an undesired corner case. Figure 10 demonstrates the results of our experiment. First,
Figure 10 (left) shows that our bound is closely correlated with adversarial robustness gap. This
shows that although our bound is an order of magnitude above the empirical loss difference, it is still
a faithful indicator of adversarial robustness.

We then investigate whether local input sensitivity of the network tracks its global properties. As
in the main paper, letting z = Φ(x) and zadv = Φ(x + a∗) denote the learned representations
of clean and perturbed input images, we compute ∥z − zadv∥2/∥a∗∥2 for 1000 test samples. We

10
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Figure 11: Adversarial fine-tuning (left) and training (center). Robust accuracy under increasing
learning rate (right).

take this metric as a secant approximation of the local Lipschitz constant around input x. We then
use the maximum and the mean of this statistic over the samples as empirical lower bounds to the
global and expected local Lipschitz constants respectively. Figure 10 (center) shows that these two
values are closely correlated: An increase in the maximum sensitivity to perturbation is reflected in a
similar increase in the average sensitivity. Lastly, Figure 10 (right) investigates the effect of spectral
compressibility on interlayer alignment, in parallel to product of spectral norms of the layers (to
quantify the intra- vs. interlayer dynamics in our bound). Results show that while norms increase as
expected, interlayer alignment does not necessarily portray a consistent pattern. We consider how
and why interlayer alignment changes in response to various compressibility inducing sparsity and
training dynamics to be a crucial future research direction.

B.5 APPROXIMATING THE INTERLAYER ALIGNMENT TERMS
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Figure 12: Effects of standard
group lasso on compressibility and
adversarial robustness.

Note that the interlayer alignment terms used in Theorem 3.2
lead to a combinatorial optimization problem due to the discrete-
ness of ReLU gradients, i.e. {0, 1}. A closely related precedent
from the literature is SeqLip by Scaman & Virmaux (2018),
with the differences relating to the normalization of the terms,
and the k-term adaptation. However, since these differences
do not lead to any changes with respect to the optimization
of these terms (i.e.their maxima), the authors’ approximation
methodology is an attractive choice for determining A∗

p. Sca-
man & Virmaux (2018) report that their gradient-ascent based
greedy search algorithm is in ∼ 1% of the analytical solution
for cases where the latter is computationally feasible. We adopt
their solution to our case for both interlayer alignment terms.
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C DETAILS OF THE EXPERIMENTAL SETTINGS

C.1 DATASETS

Our experiments are conducted using the most commonly utilized datasets and ar-
chitectures in research on adversarial robustness under pruning (Piras et al., 2025).
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Figure 13: Results with SVHN & Wide ResNet 101-2 (top),
CIFAR-100 & VGG16 (bottom).

Our datasets include MNIST (Deng,
2012), CIFAR-10, CIFAR-100
(Krizhevsky & Hinton, 2009), SVHN
(Netzer et al., 2011), Flickr30k (Young
et al., 2014), and ImageNet-1k (Deng
et al., 2009). As detailed in Appendix B,
we convert MNIST into a binary
classification task for empirically
investigating how our bound correlates
with adversarial robustness gap. In all
datasets, we use the canonical train-test
splits. Whenever validation set-based
model selection or early stopping is
used, we utilize 5% of the training set
for this task, and conduct early stopping
with a patience of 10 epochs based on
validation loss.

C.2 MODELS
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Figure 14: Unstructured alongside
structured comp., for row sparsity
(top) and spectral comp. (bottom).

Architectures we utilize include fully connected networks
(FCN), ResNet18 (He et al., 2016), VGG16 (Simonyan & Zis-
serman, 2014), WideResNet-101-2 (Zagoruyko & Komodakis,
2016), vision transformer (ViT) - both as a standalone classi-
fier (Dosovitskiy et al., 2021) and as part of a CLIP encoder
(Radford et al., 2021), and Swin Transformer (Liu et al., 2021).
Whenever needed, we apply modifications to the standard ar-
chitectures in question. For our visualization experiments at
the beginning of Section 4, we utilize a 1-hidden layer FCN
with ReLU activation, with no bias nodes, and a width of 400.
For our main results with CIFAR-10, we utilize a 2000-width
FCN with 4 hidden layers, with the remaining architectural
choices remain identical. Regarding the VGG16 architecture,
due to our datasets being size 32× 32, we remove the redun-
dant 4096-width linear layers (along with their interleaving
dropout and ReLU layers). Lastly, when conducting the low-
rank factorization experiments, we modify linear layers with
a factorized layer, and do the equivalent for 2D convolutional
layers (Zhong et al., 2023).

For transformer models, we utilize a Base ViT architecture with 8× 8 patch size. When fine-tuning a
pre-trained version, we utilize a version pretrained on ImageNet-21K and fine-tuned on ImageNet-1K,
hosted by the HuggingFace platform (Wolf et al., 2020). For the Swin Transformer we use a tiny
version of the architecture, and utilize an ImageNet-1K pretrained version hosted by torchvision
(maintainers & contributors, 2016). For CLIP experiments, we utilize a pre-trained CLIP model, CLIP
ViT-B/32, trained on LAION 2B dataset, hosted by Open CLIP (Ilharco et al., 2021). To conduct
the zero-shot classification with the fine-tuned CLIP, we fine-tune the dataset with the Flickr30k
dataset using a weight decay of 0.01 and a learning rate of 1e− 5 for 30 epochs. For the classification
that follows, we present results with top-5 (standard and adversarial) accuracy, and we utilize the
following prompts to embed the text descriptions, which serve as the class vectors:

• a photo of a . . .

• a blurry photo of a . . .
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• a photo of the . . .
• a close-up photo of a . . .
• a black and white photo of a . . .
• a cropped photo of a . . .
• a bright photo of a . . .

C.3 STANDARD AND ADVERSARIAL TRAINING

Standard training. We normally use softmax cross-entropy loss, the AdamW optimizer with a
weight decay of 0.01, a learning rate of 0.001, and use validation set based model selection for early
stopping. For adversarial training tasks, we also include a cosine learning rate annealing schedule
(epochs = 60, min. learning rate = 0), basic data augmentation in the form of random cropping and
horizontal flips, and an adversarial validation set, again constituting 10% of the training set.

Evaluating and training for adversarial robustness. For evaluating adversarial robustness, we
primarily employ the AutoPGD attack (Croce & Hein, 2020), using the implementation from Nicolae
et al. (2018). During adversarial training, we generate adversarial examples at each iteration using the
PGD attack (Madry et al., 2018). Unless stated otherwise, adversarial examples make up 50% of each
training minibatch. For models trained end-to-end with adversarial robustness, we set ϵ = 8/255 for
ℓ∞ attacks and ϵ = 0.5 for ℓ2 attacks. For standard or adversarially fine-tuned models, we use 25%
of these budgets to enable a clear comparison.

C.4 IMPLEMENTATION AND HARDWARE

Implementation. We utilize the Python programming language and PyTorch deep learning framework
for our implementation (Paszke et al., 2019). Whenever possible, we utilize the default torchvision
(maintainers & contributors, 2016) implementations of our models - we modify these baselines for the
changes mentioned above. For adversarial training and evaluation, we use the Adversarial Robustness
Toolbox (Nicolae et al., 2018). Our source code provides further details regarding implementation, to
be made publicly available upon publication.

Hardware and resources. All experiments are conducted on the computational server of an institute,
utilizing Nvidia L40S GPUs. The main paper experiments took a total of 600 GPU hours to complete,
including ≥ 3 seed replication for the main results. Total development time is estimated to be 3.5×
of the compute time for the final publication.

D ADDITIONAL EMPIRICAL RESULTS

D.1 EXPERIMENTS WITH OTHER DATASETS AND ARCHITECTURES

As mentioned in the main paper, we now extend our empirical findings to other datasets and archi-
tectures. Figure 13 demonstrates results with SVHN dataset and Wide ResNet 101-2 architecture
(top), and CIFAR-100 dataset and VGG16 architecture (bottom). Our results replicate with novel
datasets and architectures, as qualitatively identical results are obtained in these alternative settings.
Note that the slight initial increase under neuron compressibility seen with WideResNet 101-2 here
and ResNet18 in the main paper cannot be seen with VGG16, highlighting the regime dependence of
multiple inductive biases compressibility-inducing regularizations might have.

D.2 GROUP SPARSITY REGULARIZATION

In the main paper, we highlight that we utilize a scale-invariant version of group lasso to disentangle
the downstream effects of increasing compressibility vs. decreasing overall parameter scale. Figure 12
replicates our main results on ResNet18 and CIFAR-10 while using standard group lasso regular-
ization. While its effects are mostly similar to our version of group lasso, we note that Figure 12
presents a subtle difference, where group lasso first creates a slight but statistically significant (error
bars = 1 std. deviation) increase in robustness at very low levels. However, as indicated in the main
text, these benefits are overtaken by the negative effects of row compressibility as regularization
strength increases.
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D.3 ADVERSARIAL TRAINING RESULTS FOR SPECTRAL COMPRESSIBILITY
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Figure 15: Results with CIFAR-10, FCN (top) and
ResNet18 (bottom), with alternative attack norms to
Figure 5.

Figure 11 (left, center) presents the spec-
tral compressibility counterpart for ad-
versarial fine-tuning and training results
from the main paper, under ℓ2 adversar-
ial attacks. The patterns clearly mirror
those presented in the main paper under
row sparsity conditions.

D.4 COMPRESSIBILITY
THROUGH INDUCTIVE BIAS

We now examine whether the results we
have observed with explicit regulariza-
tion methods also apply to cases when
compressibility is obtained through the
inductive bias of the learning algorithm.
For this, we go back to the setting pre-
sented in Appendix B, and instead of
increasing regularization hyperparameter, we increase initial learning rate (η) of the training algo-
rithm. The results, presented Figure 11 (right), paint an intriguing picture. While initially increasing
η improves adversarial robustness under ℓ∞ attacks (perhaps paralleling its well-known benefits
for standard generalization), as soon as it starts to increase row compressibility, its benefits of η
quickly disappear. This highlights the fact that our results not only inform the adversarial robustness
behavior under explicit regularization and architecture design, but also inductive biases of the learning
algorithm.

D.5 UNSTRUCTURED COMPRESSIBILITY
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Figure 16: Results on CIFAR-10, ResNet18 and attacks
with FGSM (top left), AutoCG (top right), Square Attack
(bottom left), and AutoAttack (bottom right).

While unstructured compressibility is
not the focus of our study, we note
that it appears in the bound for L∞

Φ in
Theorem 3.2, unlike that for L2

Φ. To in-
vestigate the significance of this result,
we replicate the setting presented in Ap-
pendix B, but this time in addition to
increasing the group lasso/nuclear norm
regularization, we run a separate set of
experiments where we either solely in-
crease L1 regularization, or increase it
along with structured sparsity-inducing
regularization. We then compare the per-
formance of the resulting models under
the corresponding adversarial attacks.
The results are presented in Figure 14.
Remember that our bound implies pos-
itive effects of unstructured compress-
ibility for L∞

Φ . Indeed, in Figure 14 we
see that L1 regularization can compensate for the negative effects of structured compressibility (top),
while it has no such benefits for spectral compressibility (bottom). We believe that understanding the
intricate relationships among different types of compressibility is a crucial future research direction.

D.6 RESULTS WITH ALTERNATIVE NORMS, BUDGETS, AND ATTACKS

While for brevity we presented our main results to include robustness against ℓ∞ attacks under neuron
sparsity, and ℓ2 attacks under spectral compressibility, for completeness we provide our central results
with the cross-norm attacks, i.e.ℓ∞ attacks under spectral compressibility, and ℓ2 attacks under neuron
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sparsity. The results are presented in Figure 15, and are fully in line with the results presented in the
main paper.

Model performance under varying attack budgets.. As described in the main paper, in order to
investigate the effects of structural interventions on standard trained models’ adversarial robustness,
we utilize a smaller attack budget to avoid floor effects from obscuring the effects we are investigating.
Table 1 demonstrates that our results are not dependent on a specific attack budget, and the patterns
that confirm our hypotheses hold across various attack budgets; however in standard trained models
floor effects indeed prevent the observation of the results of our interventions, justifying our utilization
of a reduced budget in such cases.

Table 1: Robust accuracy of a ViT model trained on CIFAR-10, under increasing adversarial sample
ratio in training (ρ) vs. increasing ℓ∞ attack budgets (ϵ).

ρ = 0.0 ρ = 0.05 ρ = 0.1 ρ = 0.25 ρ = 0.5
ϵ = 2/255 0.111 0.333 0.479 0.519 0.510
ϵ = 4/255 0.002 0.061 0.263 0.371 0.390
ϵ = 8/255 0.000 0.002 0.032 0.113 0.179
ϵ = 16/255 0.000 0.000 0.000 0.005 0.019

Model performance under alternative attacks.. We investigate whether our results replicate under
alternative attacks. We therefore repeat our experiments with ResNet18 and CIFAR-10 in the main
paper with FGSM (Goodfellow et al., 2015), AutoCG (Yamamura et al., 2022), Square Attack
(Andriushchenko et al., 2020), and the composite AutoAttack (Croce & Hein, 2020); as opposed to
the original AutoPGD. Results in Figure 16 confirm that our results are qualitatively identical under
different attacks.

D.7 FINE-TUNING RESULTS WITH TRANSFORMERS

As described in the main text and above, we investigate whether we can replicate our results while
fine-tuning ImageNet-pretrained transformer models, ViT and Swin Transformer, on CIFAR-10 and
SVHN respectively, while utilizing sparsification regularization. The results are presented in Table 2
and Table 3, and replicate our hypotheses.

Table 2: Robust and standard accuracies of pretrained ViT models fine-tuned on CIFAR-10 dataset
under varying neuron sparsification regularization strength (α), i.e. group lasso.

α = 0.0 α = 0.001 α = 0.005 α = 0.01 α = 0.05 α = 0.1
Rob. Acc. 0.383 0.362 0.369 0.219 0.123 0.111
Std. Acc. 0.920 0.926 0.921 0.893 0.873 0.829
RA/SA 0.416 0.401 0.391 0.245 0.141 0.134

Table 3: Robust and standard accuracies of pretrained Swin Transformer models fine-tuned on SVHN
dataset under varying neuron sparsification regularization strength (α).

α = 0.0 α = 0.001 α = 0.005 α = 0.01 α = 0.05 α = 0.1
Rob. Acc. 0.384 0.360 0.357 0.326 0.155 0.083
Std. Acc. 0.889 0.877 0.887 0.880 0.881 0.875
RA/SA 0.432 0.410 0.402 0.370 0.176 0.095

Given that classification accuracy is the most commonly utilized and communicated metric in the
literature on adversarial robustness, the main paper reports these as our primary metric. However, we
find that same hypothesized patterns can be observed when robust loss - standard loss is utilized as the
main metric, instead of accuracy. Table 4 demonstrates these results in the fine-tuning experiments
described above, replicating our findings with robust and standard accuracy.

D.8 RESULTS WITH POST-PRUNING FINE-TUNING
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Table 4: Robust and standard accuracies and loss differences for pretrained Swin Transformer models
fine-tuned on SVHN dataset under varying neuron sparsification regularization strength (α).

α = 0.0 α = 0.001 α = 0.005 α = 0.01 α = 0.05 α = 0.1
Rob. Acc. 0.384 0.360 0.357 0.326 0.155 0.083
Std. Acc. 0.889 0.877 0.887 0.880 0.881 0.875

Adv. Loss - Test Loss 0.505 0.517 0.530 0.554 0.726 0.792
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Figure 17: Post-pruning fine-tuning and robustness.

Utilizing a baseline model adversari-
ally trained on CIFAR-10 dataset with
ResNet18 architecture, instead of regular-
izing for compressibility, we prune and
then fine tune our models to investigate
1- whether the main paper’s results will
replicate under post-pruning fine-tuning,
2- whether fine-tuning procedure will be
another source of vulnerability in and of
itself.
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Figure 18: Adversarial post-
pruning fine-tuning and robustness.

After layerwise structured pruning, we fine-tune the models
until convergence on the standard validation set. Our results,
presented in Figure 17, demonstrate that 1- results from our
main paper replicate under post-pruning fine-tuning, and 2- fine-
tuning procedure creates an independent vulnerability - as after
fine-tuning robustness deteriorates much faster compared to the
standard accuracy vs. pre-fine-tuning results. Figure 18 demon-
strates that the same results apply even when post-pruning fine-
tuning is adversarial (conducted as defined above). These re-
sults are significant for both strengthening the main paper’s con-
clusions, and for showcasing another compressibility-inducing
intervention that leads to structure-induced vulnerabilities.

D.9 EXPLOITATION OF VULNERABLE LATENT DIRECTIONS

Let us consider an MLP with a single hidden layer,

g(x) = Cϕ(Wx),
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Figure 19: Comparing singular values of
a baseline (top) vs. compressible (bot-
tom) model.

where ϕ corresponds to the elementwise ReLU function,
and we ignore bias nodes without loss of generality for a
cleaner exposition.

When two such networks have been trained on a dataset
with no regularization vs. strong nuclear norm regular-
ization, we can expect the latter’s W to have much more
concentrated singular values (SV), i.e. more spectrally
compressible.

Indeed, in Figure 19, we provide a comparison of two such
networks trained on CIFAR-10 (regularization strength 0
vs. 0.05), with hidden layer size 400. We conduct a singu-
lar value decomposition (SVD) of W = UΣV⊺, and plot
singular values of W for both networks σσσ := diag(Σ) =
(σ1, σ2, . . . ). As in the main paper (Figure 2, left), in the
compressible model the singular values are much more
concentrated, creating the vulnerable directions in ques-
tion.

But what exactly do we mean by attacks “aligning” with
and “exploiting” these directions? For this, let us decom-
pose an adversarial sample: xadv = x+a, where x is the
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clean image and a is the adversarial perturbation. Examine the pre-activation representation of this
attack:

Wxadv = W(x+ a) = Wx+Wa.

Note that for a given sample x, Wx, and thus ∥Wx∥2 are fixed. Having a large ∥Wa∥2 (in relation
to ∥Wx∥2) would make it easier for the attacker to dominate the representation and change the
downstream prediction.

So, how does the spikier σσσ in the compressible case help the adversary achieve this? For this, note
that for every singular value σi, there exist the right and left singular vectors ui and vi, constituting
the columns of orthogonal matrices U and rows of V⊺ respectively. So, based on the definition of
SVD, we can write:

Wa = u1σ1v
⊺
1a+ u2σ2v

⊺
2a+ u3σ3v

⊺
3a+ . . .

Without loss of generality, let us assume ∥a∥2 = 1, and examine these terms, uiσiv
⊺
i a. Note that

given both vi and a are unit vectors, v⊺
i a corresponds to cosine similarity of the two vectors, a very

intuitive notion of alignment.
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How aligned is a with v0 v19? 
Let i = vT
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0 = 0.13, 1 = 0.46, 2 = 0.20, 3 = 0.202

Figure 20: Examining alignment
of a single adversarial perturbation
with first 20 singular directions.

Why would a “align” with a v1 that has a large σ1 (e.g. as
in the leading SVs of the compressible model)? To see this,
let us assume a ≈ v1. Then, this would mean v⊺

1a ≈ 1, and
v⊺
ja ≈ 0,∀j > i. This in turn would imply that

∥Wa∥2 = ∥u1σ1v
⊺
1a+ u2σ2v

⊺
2a+ u3σ3v

⊺
3a+ . . . ∥2

≈ ∥u1σ1 + 0 + 0 + . . . ∥2 = ∥u1σ1∥ = ∥u1∥σ1

= σ1

This means that after this layer a got scaled by this large number
σ1, helping it dominate the representation despite the small
original attack budget:

∥Wa∥
∥Wx∥

≫ ∥a∥
∥x∥

.

This example makes clear why having a few, very large σi as
a result of compression can create a big vulnerability. Note
that Nern et al. (2023) also provide complementary theoretical
justification regarding the dangers of encoders with such potent
directions.

D.9.1 HOW DO SUCH DIRECTIONS GET EXPLOITED IN PRACTICE?
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Figure 21: Comparing singular directions exploited by adver-
saries in baseline (left) vs. compressible (right) model.

We now we move on to the ques-
tion of whether this actually hap-
pens in practice. We already
established that increased spec-
tral compressibility creates vulner-
able directions. How can we de-
cide whether successful adversar-
ial attacks are actually “exploiting”
these directions? For any given x
and its perturbation a, we can in-
vestigate the “alignment” of a with
every singular direction i, we can
compute ρi = v⊺

i
a

∥a∥2
, where we

are now normalizing since a does
not have to be unit norm in general.
Note that ρi ∈ [−1, 1] is a measure of alignment between vi and a; its absolute value |ρi| can be
utilized as a notion of alignment strength. An intuitive way to plot how much a sample aligns with
each of the first I singular directions is to plot this on a radar plot/spider plot. See Figure 20 for an
example on a single a. From this graph, we can read that a mostly aligns with v1, v4, and v14.
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Figure 22: Comparing pre-activation (∥Wa∥2/∥Wx∥2) and post-
activation (∥zadv − z∥2/∥z∥2) representations of baseline (left)
vs. compressible (right) models.

We can then use such a plot to
understand overall patterns by
plotting multiple samples. In
Figure 21, we overlay this plot
for 100 different samples for
both models, for I = 20. The
results strongly support our hy-
potheses: While the attacks in
the baseline model exploit (i.e.
align with) all 20 directions, in
the compressible model the at-
tacks focus on a few strong, vul-
nerable directions. Then, since the adversaries are using these potent directions at their disposal in
the compressible case, we would expect them to dominate the latent representations, compared to
the baseline model. Indeed, in Figure 22, we see that this is indeed the case, both for pre-activation
(∥Wa∥2/∥Wx∥2) and post-activation (∥zadv − z∥2/∥z∥2) representations. Note that these results
replicate the results presented in the main paper’s Figure 4, right.

D.9.2 HOW DO WHITE BOX AND BLACK BOX ATTACKS FIND THESE DIRECTIONS?

We now can use this visualization technique to understand the process of adversarial attacks finding
these directions. We choose two canonical, extensively cited white box and black box attacks for this
task respectively: PGD (Madry et al., 2018) and NES (Ilyas et al., 2018).

As a white box attack that assumes access to parameters, PGD is able to conduct iterative first
order optimization on the image to find a potent attack direction, projecting back to the ϵ ball
after each iteration. Since in a compressible model, aligning with these sensitive directions would
quickly increase the loss, the optimization algorithm very quickly finds these directions through its
optimization objective. We present the iterates of a PGD perturbation on a single image under the
compressible model, see Figure 23 (top). Note that the perturbation quickly aligns with a very strong
singular direction, v1; so much so that by the 6th iteration, the algorithm converged on the attack
already.

How can a black box attack make use of these exploitable directions? For this, let us take a closer
look at NES. Being a black box attack, NES assumes only access to the logits, prohibiting the use of
standard backpropagation. Instead, at every step, NES creates N random Gaussian perturbations and
evaluates the loss for all of them. It then calculates a weighted average of these directions (weighted
by their impact on the loss) to estimate a proxy gradient, and update the adversarial perturbation
accordingly. This means that whenever these random perturbations align, even slightly, with any
of the exploitable latent directions, they would dominate the weighted average, effectively pulling
the estimated gradient toward the vulnerability. So, although not as efficiently, without an explicit
knowledge of the parameter space, NES can locate these adversarially exploitable directions, just by
querying the input space. Indeed, the image in Figure 23 (bottom) presents a direct confirmation of
this hypothesis: although it takes many more steps (∼ 200) due to the randomness of its perturbations,
NES can also converge to exploiting the vulnerable directions in the latent space.

Note that we focused on the ℓ2 attacks in this exposition; however note that it is quite straightforward
to apply a similar analysis to ℓ∞ case, where the most vulnerable directions are rows wk in W with
the largest ∥ℓk∥1.

D.9.3 INTERLAYER ALIGNMENT

Following from previous example, let us now assume a two layer neural network g(x) =
Cϕ(W1ϕ(W0)) - we will use superscripts to denote the components of layers as well. As a
simple example, assume that both layers have a single, very large SV, and rest of their SVs are ≈ 0.
This implies that both have a potent singular direction that can potentially be exploited. However,
these directions between layers will need to “align” for their impact to accumulate. More concretely,
note that a unit perturbation a that aligns with the right singular vector of the first layer W0 in
the input space a ≈ v0

1 will be “amplified” by σ0
1 . The resulting output will be in the direction

of the left singular vector, i.e. u0
1σ

0
1 . Ignoring nonlinearity for now, as large as this intermediate
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Figure 23: Utilization of singular directions by a white box PGD (top) vs. black box NES (bottom)
attack under a compressible model.

representation can be, if it’s not in the direction of the next layers’ large SV, it will be “quashed”. For
example, at the extreme end, if (v1

1)
Tu0

1 ≈ 0, the attack will effectively disappear before it reaches
the final representation and can impact the prediction. This is because in the second layer we will
have ∥W1u0

1∥2 ≈ 0. So, such a theory will have to take into account how such signals are relayed
between layers, while factoring in nonlinearity.

Note that Theorem 3.2 upper bounds Lp
Φ, the p-norm Lipschitz constant of the encoder. This can be

computed as the maximum p → p operator norm of the Jacobian:

Lp
Φ = sup

x∈X
∥JΦ(x)∥p = sup

x∈X
∥Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1∥p, (81)

where the diagonal binary Dl(x) terms stand for the ReLU nonlinearity. Notice that input dependence
of these terms introduce a combinatorial complexity, making it infeasible to directly optimize this
term. Our Theorem 3.2, like all other attempts in the literature, utilizes an approximation of this
monolith.

Given the that ∥Dl∥p = 1, and submultiplicativity of the operator norm, it is possible to write:

Lp
Φ ≤ sup

x∈X
∥Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1∥p, (82)

≤ ∥Wλ∥p∥Wλ−1∥p . . . ∥W1∥p. (83)

While this is valid, notice that it corresponds to a very pessimistic assumption: It looks at how much
every layer can maximally “stretch” an incoming vector, and multiplies this across layers. This
assumes that all “worst case” directions in consecutive layers exactly line up.

Instead, in our bound, while layer operator norms appear (through their compressibility-based
decomposition), interlayer alignment terms, Ap(l) ≤ 1, act as a correction term.

Lp
Φ ≤ ∥Wλ∥pAp(λ− 1)∥Wλ−1∥pAp(λ− 2) . . . Ap(1)∥W1∥p. (84)
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Figure 24: Effects of regularizing
interlayer alignment (ILA).

It approximates and factors in how much dominant directions
actually align in consecutive layers. Every Ap(l) consists of
two terms: the main term that computes the alignment of the
dominant directions, and a remainder term that goes to 0 as
compressibility increases. See Appendix B.5 for how we approx-
imate this (much more manageable) combinatorial computation.
We refer the reader to our proofs for a full derivation of these
terms. Note that while this term is not the main focus of our
paper, Figure 10 includes empirical investigation of this term,
and demonstrates that it does not have a strong directional rela-
tionship with compressibility.

Utilizing interlayer alignment for regularization. In order to provide a more comprehensive
examination of this term, we conduct experiments that test whether this term can be used as another
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theoretically inspired intervention for robust compressibility. With a linear approximation to this term
(regularizing ∥(Ul

k)
TVl+1

k ∥2F ), we test this hypothesis. Results, presented in Figure 24, are directly
in line with our predictions: regularizing interlayer alignment between layers lead to a tangible
increase in robustness under compressibility. While some mild computational hurdles need to be
addressed for full practical utility, these results both provide a new intriguing research direction for
robust compression, as well as serving as a yet another confirmation of our theory.

D.10 COMPARISON WITH ADVERSARIAL PRUNING LITERATURE
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Figure 25: Operator norms of models
under adversarial pruning vs. baselines.

As discussed in the main paper, we consider our work to
be complementary to those in the field of adversarial prun-
ing (Piras et al., 2025). To make idea of complementarity
more concrete, we investigate two structured adversar-
ial pruning methods from the literature, and observe an
intriguing phenomenon. More specifically, our theory im-
plies that compressibility hurts robustness insofar as it
increases operator norms and creates adversarially vulner-
able directions in the latent space; then can we observe
successful adversarial pruning methods implicitly control
operator norms? For this, we investigate HARP (Zhao &
Wressnegger, 2023) and grouped kernel pruning (GKP)
(Zhong et al., 2023). We choose these two as they have
distinct motivating hypotheses, neither of which is in com-
mon with ours in a meaningful way. We use both papers’
official repositories to conduct adversarial pruning with
a ResNet18 on CIFAR-10. As baselines, for HARP we
train a uniform/layerwise pruning algorithm with standard
training set, for GKP we replace grouped kernel pruning
with standard filter pruning.

After the training, we measure the ℓ∞ operator norms for both methods and compare it to their
baselines. Intriguingly, as shown in Figure 25, although neither method conducts operator norm
control explicitly, we find that both end up controlling operator norms indirectly. Note that this cannot
just be a by-product of adversarial training as GKP relies solely on filter restructuring, and does not
involve any adversarial training. We find this to be an exciting first finding towards a comprehensive
understanding of robust structured compression.

D.11 FURTHER EXPERIMENTS WITH UAES
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Figure 26: Robustness against standard vs. universal ad-
versarial attacks under changing Frobenius norm coefficient
(left) vs. group lasso (right).

We first replicate our original results
with a ResNet18 trained on CIFAR-10
in Figure 27. Note that the x-axis in
this particular figure represents the fix-
ing of the Frobenius norms to x-times
their initialization norms - this allows
us to fix norms using a common value
for layers that have widely different
widths (while for FCN we used a sin-
gle constant). Our results qualitatively
replicate those in the main paper.
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Figure 27: β and UAEs.

To further probe this causal relationship, we conduct adversarial
training with ResNet18s under increasing compressibility. Impor-
tantly, we conduct the training either with standard adversarial ex-
amples vs. UAEs. Given the computational challenges of computing
UAEs at every iteration, we use the cheaper FGSM attack for uni-
versal and standard adversarial samples, generated from 0.1 of the
input batch. Results, presented in Figure 27, illustrate the average
spread (β) of the dominant terms in the networks under UAE vs.
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standard adversarial training. Our findings show that UAE training dramatically reduces spread of the
dominant terms compared to standard adversarial training, implying that just as creation of vulnerable
latent directions allow UAEs, training against them reduces the potency of such directions, providing
convergent evidence for our hypotheses.
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