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Abstract

Therapeutic molecules must selectively interact with a target protein while avoiding1

structurally or functionally similar off-targets. However, no existing generative2

strategy explicitly optimizes both target affinity and off-target avoidance. To ad-3

dress this, we introduce SOAPIA, a framework for the Siamese-guided generation4

of Off-target-Avoiding Protein Interactions with high target Affinity. SOAPIA5

generates de novo peptide binders by steering the generative process of a Diffu-6

sion Protein Language Model (DPLM) using a multi-objective Monte Carlo Tree7

Search (MCTS). Affinity is optimized via a pre-trained predictor, while speci-8

ficity is enforced using a Siamese model trained with an adaptive Log-Sum-Exp9

Decoy Loss. This dual-guidance scheme enables Pareto-efficient exploration of10

discrete sequence space without gradient access. In benchmarks across 18 fusion11

oncoproteins, SOAPIA consistently identifies binders with strong affinity and high12

selectivity. In a targeted case study, SOAPIA generated a peptide that preferentially13

binds DHRSX::RPS4Y1 by engaging both the head and tail domains of the fusion14

while avoiding the wild-type counterparts. These results underscore SOAPIA’s15

promise for designing safe, specific biologics for fusion-driven cancers and other16

rare, currently untreatable diseases.17

1 Introduction18

Selective modulation of pathogenic proteins is essential for drug design [Nada et al., 2024]. Off-19

target interactions can reduce efficacy or lead to toxicity, a challenge shared across small molecules,20

PROTACs, and biologics [Garon et al., 2017, Chen et al., 2023a]. Since large-scale in vitro screening21

is costly and impractical, computational methods for designing drug-target interactions (DTIs) and22

protein-protein interactions (PPIs) are increasingly important. Structure-based approaches offer23

atomistic resolution but fail on disordered and chimeric proteins and are too slow for high-throughput24

design [Chen et al., 2023a]. Sequence-based models for DTIs [Singh et al., 2023, McNutt et al., 2024,25

Gao et al., 2024], PPIs [Sledzieski et al., 2021, Singh et al., 2022], and peptide design [Bhat et al.,26

2025, Tang et al., 2025] address this limitation by operating directly on primary sequences.27

Yet, most generative approaches optimize only for target binding, without explicitly avoiding off-target28

interactions. This is particularly problematic for fusion oncoproteins, which drive many pediatric29

cancers and result from chromosomal translocations, often retaining high sequence identity with their30

wild-type head and tail domains [Vincoff et al., 2025]. Designing binders for such targets requires31

a multi-objective formulation that simultaneously maximizes affinity and enforces specificity—not32

just against a generic background proteome, but against multiple known off-targets. Including two33

explicit decoys during training and generation better reflects real-world therapeutic constraints, where34

safe and selective binding is essential [Chen et al., 2023a].35
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Discrete diffusion models have become a powerful class of generative frameworks for sequence design,36

enabling high-quality, controllable generation at the token level without requiring 3D structures or37

continuous embeddings [Campbell et al., 2024, Shi et al., 2024, Sahoo et al., 2024]. These models38

have recently shown strong performance in protein design tasks; as examples, DPLM [Wang et al.,39

2024] and EvoDiff [Alamdari et al., 2023] support structure-free generation of valid, foldable protein40

sequences. Most recently, PepTune [Tang et al., 2025] extended this paradigm to multi-objective41

optimization by introducing a Monte Carlo Tree Search (MCTS) framework that guides discrete42

diffusion using multiple non-differentiable reward functions. Operating in therapeutic peptide43

SMILES space, PepTune demonstrates that MCTS can efficiently explore the denoising landscape to44

discover Pareto-optimal solutions, even in the absence of gradient signals [Tang et al., 2025].45

We build on these insights with SOAPIA: a framework for the Siamese-guided generation of Off-46

target-Avoiding Protein Interactions with high Affinity. SOAPIA combines a contrastive Siamese47

protein language model—trained with an adaptive Log-Sum-Exp Decoy Loss to separate binders48

from multiple off-targets—with a pre-trained affinity predictor. These soft-value signals define49

a dual-objective reward function that guides a Pareto-aware MCTS over the denoising trajectory50

of DPLM [Wang et al., 2024], enabling efficient sampling of short protein sequences that satisfy51

both constraints. We show that SOAPIA outperforms Best-of-N sampling baselines on both affinity52

and specificity and generates peptide-like binders that preferentially dock to fusion proteins while53

avoiding their head and tail domains. In silico docking with AlphaFold-Multimer [Evans et al., 2021]54

confirms SOAPIA’s ability to design safe and selective binders for undruggable and isoform-sensitive55

targets, such as fusion oncoproteins.56

2 Methods57

Data curation and handling All data curation, splitting, and clustering details can be found in the58

Supplementary Methods.59

Protein encoding We encode four protein sequences—a binder, target, and two off-targets—into a60

shared latent space using the 33-layer ESM-2-650M model. The final two layers are unfrozen during61

training. A positional multi-head attention module (n_heads = 10) with rotary positional embeddings62

(RoPE) [Su et al., 2024] captures sequence-order information. Outputs are passed through two63

SiLU-activated linear layers with skip connections, and attention pooling produces fixed-length64

embeddings (Figure A1).65

Specificity loss To enforce off-target avoidance, we train a Siamese model using an Adaptive66

Log-Sum-Exp Decoy Loss. Let b, t, ot1, and ot2 represent the embeddings of the binder, target,67

and two off-targets. The loss is:68

L =
∑
b

max

(
0, dist(b, t)− 1

β
log
(
eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ

)
+ α

)
(1)

where β controls sharpness, α is a margin, and ϵ = 10−8 ensures numerical stability.69

Implementation details All models were implemented using PyTorch Lightning [Falcon, 2019]70

and trained on 4xA100 NVIDIA GPUs with an effective batch size of 128. Learning rate was71

initialized at 1× 10−4 and decayed using cosine annealing with 200 warmup steps. Training was72

stopped after loss plateaued for three epochs (10 total). See Table A2 for full hyperparameters.73

Embedding separation visualization After each epoch, we computed Euclidean distances between74

binder-target, binder-off-target 1, and binder-off-target 2 embeddings across the training set, and75

visualized them using matplotlib v3.8.2 (Figure A2).76

Binder recovery screen To test specificity, 50,000 random amino acid sequences (lengths 56–856)77

were generated per target and scored using the Siamese model. The true binder was ranked by:78

D = dist(b, t)− 1

β
log
(
eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ

)
+ α (2)
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Lower D implies better specificity. Rankings were evaluated across multiple thresholds (Figure A3).79

Masked discrete diffusion Binder generation is based on a masked discrete diffusion model80

(MDM) [Sahoo et al., 2024, Shi et al., 2024, Campbell et al., 2024]. The forward process corrupts a81

clean sequence x0 with:82

pt(xt|x0) =

n∏
i=1

Cat(xi
t;αtδ(x

i
0) + (1− αt)δ(m)), (3)

and the reverse process denoises via:83

pt(x
i
t−1|xi

t, x
i
0) ∝ αt−1δ(x

i
0) + (1− αt−1)δ(m). (4)

Training minimizes weighted cross-entropy:84

L = −Ext∼pt

n∑
i=1

xi
0 logµθ(x

i
t, t). (5)

Sampling and generation strategies (SOAPIA) SOAPIA generates peptide binders by applying85

MCTS over the denoising trajectory of DPLM [Wang et al., 2024], guided by two soft-value reward86

functions which are maximized for the optimal binder: one reward from the Siamese model trained for87

off-target avoidance as described here (r(x) = −D) (2), and one from a pre-trained peptide-protein88

affinity predictor Chen et al. [2025]. At each expansion step, candidate sequences are sampled from89

the DPLM transition distribution pθ(xt−1 | xt, t) and completed via ancestral decoding. Each fully90

unmasked sequence is scored along both objectives and compared to a dynamically updated Pareto91

frontier. Soft reward vectors—computed from overlap with frontier members—encourage exploration92

of diverse trade-offs, while heavily dominated sequences are pruned.93

We evaluate multiple guidance mechanisms to direct sequence refinement, including SVDD [Li et al.,94

2024], which selects the best of m candidates at each step; simple guidance [Schiff et al., 2025],95

which applies reward-informed local updates; and NOS [Gruver et al., 2023], which performs iterative96

local search through the reward landscape. These samplers and guidance methods are combined97

with higher-level generation strategies. The Basic strategy generates N samples without filtering;98

Best-of-N selects the top N from a larger pool; Scalarized Best-of-N applies a weighted reward99

R(x) = λr1(x) + (1− λ)r2(x); and Pareto Best-of-N returns non-dominated sequences. The MCTS100

strategies used by SOAPIA integrate sampling and guidance at each expansion and rollout step,101

updating the Pareto frontier online as sequences are generated. MCTS uses specificity scores only,102

while MultiMCTS performs multi-objective guidance with both specificty and affinity scores. See103

Algorithm 1 for details.104

3 Results105

Siamese model results First, we trained our Siamese model to obtain the specificity predictor used106

for SOAPIA’s dual-guided sampling. The model was trained to embed binders closer to their target107

than to either of two off-targets. The architecture is shown in Figure A1. Over the course of training,108

we observed progressive separation in the embedding space: binder–target distances decreased while109

binder–off-target distances increased, as shown in Figure A2. To assess its ranking performance, we110

evaluated the model against 50,000 randomly generated binders per test case. The true binder was111

ranked in the top-1 for 19.2% of cases and in the top-25% for 56.8% (Figure A3). Finally, protein112

role distributions across train, validation, and test splits are shown in Figure A4, confirming dataset113

diversity and generalization.114

Generation of specific, high-affinity peptides SOAPIA successfully generates novel, short binding115

proteins with a variety of sampling strategies (Figure 1). When different methodologies were evaluated116

on 20 examples from the Siamese specificity model’s test set, MultiMCTS achieved the optimal117

results. Binders “passed” the specificity task if their reward scores were positive, indicating that the118

binder is embedded closer to the target than the two off-targets in the model’s latent space. For the119

affinity task, a passing threshold of 6.5 was selected, as indicated in MOG-DFM [Chen et al., 2025].120

All three guidance methods - NOS, simple, and SVDD - performed well in the expansion and rollout121

steps of MultiMCTS. Unguided generation was also competitive. NOS achieved the best results, with122

a dual-objective pass rate of 48.12%, and only 5.31% of generated samples failing to meet the criteria123

for either objective (Figure 1).124
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Figure 1: Performance of different sampling strategies on the Siamese model test set. The passing
thresholds for specificity and affinity rewards are 0 and 6.5, respectively. For each input (target,
off-target 1, and off-target 2), 10 novel binding peptides of length 10 or 20 were generated and scored.

Targeting fusion oncoproteins Next, we sought to determine whether SOAPIA can be applied125

to target proteins which have no known specific binders. We evaluated MultiMCTS on a set of 18126

fusion oncoproteins, whose off-targets are their corresponding wild-type heads and tails (Figure 2).127

For all guidance strategies tested, the maximum specificity scores were greater than 12, indicating128

that very strong selectivity was achieved for the best samples. Similarly, the maximum affinity values129

were consistently strong, exceeding 8 in all cases. The mean affinity scores were greater than 7130

for all methods, indicating that on average, SOAPI-designed fusion oncoprotein binders pass the131

affinity criterion. The four strategies were slightly more differentiated in average specificity, with132

simple guidance achieving the highest value of 2.84 (Figure 2A). Accordingly, simple guidance also133

produced the highest simultaneous dual-objective hit rate of 68.27% (Figure 2B).134

Targeting DHRSX::RPS4Y1 as a case study To validate that SOAPIA’s rewards are meaningful,135

we co-folded one of the highest-scoring samples, with predicted specificity and affinity scores of 12.14136

and 6.92 (sequence in Table A3). The target protein, DHRSX::RSP4Y1, is implicated in pancreatic137

adenocarcinoma Vincoff et al. [2025]. When co-folded with the fusion, wild-type DHRSX, and138

wild-type RPS4Y1 in AlphaFold-Multimer, our 20-amino-acid peptide achieved a much higher ipTM139

with the target (0.75) than either “off”-target (0.40, 0.39 respectively). Additionally, the predicted140

structure of the binder-target complex implies a selective binding mode, where the peptide engages141

both the head and tail portions of the fusion oncoprotein (Figure 3A). Meanwhile, when interacting142

with the wild-type head and tail proteins alone, the peptide largely fails to adopt a stable secondary143

structure (Figure 3B-C). In total, these findings demonstrate SOAPIA’s potential to design peptides144

that selectively recognize fusion oncoproteins while minimizing interactions with their wild-type145

counterparts.146

4 Discussion147

SOAPIA is a new framework for multi-objective binder design that jointly optimizes specificity and148

affinity using a Pareto-guided MCTS over a DPLM prior. Inspired by PepTune [Tang et al., 2025],149

SOAPIA combines soft-value signals from a Siamese contrastive model and a trained affinity predictor150

Chen et al. [2025] to guide tree-based exploration during denoising, without requiring gradient access151

to either objective. This dual-guidance mechanism allows SOAPIA to perform competitively against152
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Figure 2: Performance of different guidance methods with MultiMCTS on a set of fusion
oncoproteins. A Maximum and mean rewards across 10 samples per target, for 18 targets. B Pass
rates for each objective across all generated samples.

Best-of-N sampling baselines across both objectives, generating peptide sequences that exhibit strong153

binding while avoiding homologous off-targets. Notably, SOAPIA is capable of generating binders154

to fusion oncoproteins that show preferential docking to the full fusion but not to the individual155

head or tail proteins. This level of selectivity is critical for therapeutic applications, particularly in156

pediatric fusion-driven cancers, where targeting the aberrant fusion protein while sparing wild-type157

counterparts is essential for minimizing toxicity Vincoff et al. [2025].158

Looking ahead, we will refine SOAPIA’s guidance weights and rollout policies to further improve159

sample efficiency, and conduct experimental validation in cellular systems focused on disordered160

fusion oncoproteins. For this, we plan to integrate FusOn-pLM embeddings [Vincoff et al., 2025]161

to better capture breakpoint-localized context, and incorporate PTM-Mamba embeddings [Peng162

et al., 2025] to enable peptide design sensitive to post-translational modification states. In addition163
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Figure 3: AlphaFold-Multimer-predicted structures of top-performing binder to
DHRSX::RPS4Y1. A Binder with target protein DHRSX::RPS4Y1. B-C Binder with off-target 1 -
head protein DHRSX (B), and off-target 2 - tail protein RPS4Y1 (C).

to MCTS, recent work on multi-objective guided flow matching (MOG-DFM [Chen et al., 2025])164

offers a potential alternative decoding framework for joint optimization in discrete sequence space.165

Finally, when paired with experimental platforms such as ubiquibodies (uAbs) and deubiquibodies166

(duAbs) for targeted protein degradation [Brixi et al., 2023, Bhat et al., 2025, Chen et al., 2023b]167

and stabilization [Hong et al., 2025], SOAPIA provides a generalizable, programmable approach to168

modulating previously undruggable proteins, with potential impact across oncology, rare disease, and169

immunotherapy.170
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A Algorithm290

Algorithm 1 SOAPIA: Pareto-Guided MCTS with Dual Objective Scoring
1: Input: Denoising model pθ(xt−1 | xt, t), specificity model fspec(x), affinity model faff(x), number of

MCTS iterations Nmcts, number of children Nchild
2: Output: Pareto frontier of guided binders P∗

3: Initialize: xT ← [M ]L (fully masked), P∗ ← {}, t← T
4: for i = 1 to Nmcts do
5: Selection: xleaf ← SELECTLEAF(xT )
6: Expansion:
7: for j = 1 to Nchild do
8: Sample x

(j)
t−1 ∼ pθ(· | xleaf, t)

9: Unmask k positions to form x
(j)
child

10: Add x
(j)
child to children(xleaf)

11: end for
12: Rollout:
13: for each x

(j)
child do

14: x̃(j) ← ROLLOUTTOCOMPLETION(x
(j)
child)

15: Compute scores: s(j) ←
[
fspec(x̃

(j)), faff(x̃
(j))

]
16: Compute soft reward vector: r(j) ← MULTICOMPAREPARETOFRONT(x̃(j), s(j), tokens)
17: Update P∗ with x̃(j) if non-dominated
18: end for
19: Backpropagation: BACKPROPAGATE(xleaf, {r(j)})
20: end for
21: return P∗

B Supplementary Methods291

B.1 Data collection292

Each sample in the training data is a protein quadruplet consisting of a binder, target, off-target 1,293

and off-target 2. Positive protein-protein interactions (PPIs) were collected from BioGRID (October294

2022) [Oughtred et al., 2021], IntAct (October 2022) [Del Toro et al., 2022], and PPIRef (January295

2025) [Bushuiev et al., 2023]. Negative interactions were collected from Negatome2.0 [Blohm et al.,296

2014], a manually curated database of proteins with experimental evidence indicating the absence of297

direct interaction. Positive PPIs were filtered by cleaning (e.g. dropping sequences with non-natural298

amino acids), swapping targets and binders to double the dataset size, removing duplicate homomer299

interactions, applying a length limit of 1022 amino acids for both target and binder sequences, and300

only retaining rows where one partner is included in the Negatome. The Negatome was filtered by301

removing any listed target and off-target pairs that are included as binder and target pairs in the PPI302

database. This produced a dataset of 245,587 positive PPIs and 7,198 negative interactions.303

B.2 Quadruplet selection304

The training, validation, and testing datasets were designed to (1) enhance generalizability by305

including diverse binders, targets, and off-targets, (2) prevent rigid role assignments by allowing306

any sequence to act in any interaction context, and (3) maximize difficulty to improve learning.307

Quadruplet selection was formulated as a linear programming problem using length-averaged ESM-2-308

650M [Lin et al., 2023] embeddings. With PuLP v2.9.0, quadruplets were optimized for difficulty309

while minimizing role repetition (Supplementary Algorithm ??). Difficulty increased with higher310

cosine similarity between target and off-target embeddings, ensuring the Siamese model learned to311

distinguish subtle differences. Euclidean distance was used in the loss function, but cosine similarity312

was preferred for selection due to its bounded range (-1 to 1). Selecting closely related targets313

and off-targets better reflects SOAPI’s real-world applications, such as designing binders that avoid314

wild-type protein interactions. To ensure the model learned relationships rather than predefined roles,315

four constraints were imposed: (1) each binder appears at most ten times, (2) each target-off-target316

grouping appears only once, (3) each target appears once per binder, and (4) each off-target appears317
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once per binder. Constraint 1 was pre-enforced by subsampling positive PPIs, and Constraint 2318

required a tiebreaker term (λ = 0.001) based on Euclidean binder-target distance. A total of 1,352319

quadruplets were selected, consisting of 565 unique binders, 1,054 targets, and 969 off-targets.320

B.3 Clustering and splitting321

Quadruplets were clustered on binder sequence using MMSeqs2 easy clustering module [Steinegger322

and Söding, 2017] with a minimum sequence identity of 30% and a coverage threshold of 70%. The323

resulting clusters were randomly split at 80-10-10 ratio using sklearn v1.2.0 into a training set324

(1,111 quadruplets, 82.2%), validation set (116 quadruplets, 8.6%), and test set (125 quadruplets,325

9.2%). The distribution of roles (binder, target, off-target) played by each sequence in the full dataset326

and individual splits can be found in Figure A4.327
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C Supplementary Tables328

Table A1: SOAPI loss on training data.

Split Size Loss

Train 1111 0.04
Validation 116 1.43
Test 125 1.57

Table A2: SOAPI Model Architecture and Training Hyperparameters

Hyperparameter Value
Model Architecture
ESM Model Base ESM2_t33_650M_UR50D
Embedding Dimension 1280
ESM Unfrozen Layers 2
Linear Layers 2
Positional Attention Head: n_heads 10

Adaptive Log-Sum Decoy Loss
α 5
β 0.5
ϵ 1e-8

Training
Max Sequence Length 1022
Batch Size / Device 16
Effective Batch Size 128
Dataloader num_workers 30
Learning Rate (LR) 1e-4
LR Scheduler: Warmup Steps 200
LR Scheduler: Total Steps 9000
LR Scheduler: Min/Max LR Ratio 0.1
Gradient Clipping 0.5

Target Proposed sequence
DHRSX::RPS4Y1 EWHLAGIDNRRSLFAWELPK

Table A3: Peptide sequence for fusion oncoprotein case study.
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D Supplementary Figures329

Figure A1: SOAPI model architecture. A Siamese Protein Module, the core unit of the quadruplet
network. ESM-2-650M encodes sequences into [B,1280] embeddings, refined via positional attention
(10 heads) with rotary embeddings, skip-connected linear layers, and attention pooling. B Full SOAPI
pipeline. Binder, target, and off-target sequences pass through the Siamese module with shared
weights. Euclidean distances between embeddings define a loss that pulls the binder toward the target
while pushing it away from off-targets.

Figure A2: Embedding separation throughout model training. Euclidean distances between
SOAPI embeddings of the proteins in each training quadruplet: dist(b, t) (binder and target),
dist(b, ot1) (binder and off-target 1), and dist(b, ot2) (binder and off-target 2). The inner box
of each violin plot indicates the median (white) and inter-quartile range, representing the middle 50%
of distances (grey box). Distances are plotted every three epochs throughout training, starting at the
end of epoch 1.
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Figure A3: SOAPI ranks true binders against 50,000 randomly generated candidates. SOAPI
produced a specificity-based ranking of 50,000 randomly generated binders and one true binder to
125 targets from the test set. Relative distance metrics D were calculated using Equation (2). Any
target where SOAPI ranked the true binder among the top-N or top-N% was considered a hit. Top-1,
top-10, top-100, top-1%, top-10%, and top-25% evaluations were conducted.

Figure A4: Training Data Protein Roles. Distribution of roles (binder, target, off-target) played by
proteins in the quadruplets comprising the A full training dataset (1,352 quadruplets), B train split
(1,111 quadruplets), C validation split (116 quadruplets), and D test spit (125 quadruplets).
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