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Abstract

Therapeutic molecules must selectively interact with a target protein while avoiding
structurally or functionally similar off-targets. However, no existing generative
strategy explicitly optimizes both target affinity and off-target avoidance. To ad-
dress this, we introduce SOAPIA, a framework for the Siamese-guided generation
of Off-target-Avoiding Protein Interactions with high target Affinity. SOAPIA
generates de novo peptide binders by steering the generative process of a Diffu-
sion Protein Language Model (DPLM) using a multi-objective Monte Carlo Tree
Search (MCTS). Affinity is optimized via a pre-trained predictor, while speci-
ficity is enforced using a Siamese model trained with an adaptive Log-Sum-Exp
Decoy Loss. This dual-guidance scheme enables Pareto-efficient exploration of
discrete sequence space without gradient access. In benchmarks across 17 fusion
oncoproteins, SOAPIA consistently produces binders with strong affinity and high
selectivity for over 75% of targets. For multiple clinically relevant targets, SOAPIA
generated peptides that preferentially bind the fusion by engaging both its head and
tail domains, while avoiding the wild-type counterparts. These results underscore
SOAPIA’s promise for designing safe, specific biologics for fusion-driven cancers
and other rare, currently untreatable diseases.

1 Introduction

Selective modulation of pathogenic proteins is essential for drug design [Nada et al., 2024]. Off-
target interactions can reduce efficacy or lead to toxicity, a challenge shared across small molecules,
PROTACs, and biologics [Garon et al., 2017, Chen et al., 2023a]. Since large-scale in vitro screening
is costly and impractical, computational methods for designing drug-target interactions (DTIs) and
protein-protein interactions (PPIs) are increasingly important. Structure-based approaches offer
atomistic resolution but fail on disordered and chimeric proteins and are too slow for high-throughput
design [Chen et al., 2023a]. Sequence-based models for DTIs [Singh et al., 2023, McNutt et al., 2024,
Gao et al., 2024], PPIs [Sledzieski et al., 2021, Singh et al., 2022], and peptide design [Bhat et al.,
2025, Tang et al., 2025] address this limitation by operating directly on primary sequences.

Yet, most generative approaches optimize only for target binding, without explicitly avoiding off-target
interactions. This is particularly problematic for fusion oncoproteins, which drive many pediatric
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cancers and result from chromosomal translocations, often retaining high sequence identity with their
wild-type head and tail domains [Vincoff et al., 2025]. Designing binders for such targets requires
a multi-objective formulation that simultaneously maximizes affinity and enforces specificity—not
just against a generic background proteome, but against multiple known off-targets. Including two
explicit decoys during training and generation better reflects real-world therapeutic constraints, where
safe and selective binding is essential [Chen et al., 2023a].

Discrete diffusion models have become a powerful class of generative frameworks for sequence design,
enabling high-quality, controllable generation at the token level without requiring 3D structures or
continuous embeddings [Campbell et al., 2024, Shi et al., 2024, Sahoo et al., 2024]. These models
have recently shown strong performance in protein design tasks; as examples, DPLM [Wang et al.,
2024] and EvoDiff [Alamdari et al., 2023] support structure-free generation of valid, foldable protein
sequences. Most recently, PepTune [Tang et al., 2025] extended this paradigm to multi-objective
optimization by introducing a Monte Carlo Tree Search (MCTS) framework that guides discrete
diffusion using multiple non-differentiable reward functions. Operating in therapeutic peptide
SMILES space, PepTune demonstrates that MCTS can efficiently explore the denoising landscape to
discover Pareto-optimal solutions, even in the absence of gradient signals [Tang et al., 2025].

We build on these insights with SOAPIA: a framework for the Siamese-guided generation of Off-
target-Avoiding Protein Interactions with high Affinity. SOAPIA combines a contrastive Siamese
protein language model—trained with an adaptive Log-Sum-Exp Decoy Loss to separate binders
from multiple off-targets—with a pre-trained affinity predictor. These soft-value signals define
a dual-objective reward function that guides a Pareto-aware MCTS over the denoising trajectory
of DPLM [Wang et al., 2024], enabling efficient sampling of short protein sequences that satisfy
both constraints. We show that SOAPIA outperforms Best-of-N sampling baselines on both affinity
and specificity and generates peptide-like binders that preferentially dock to fusion proteins while
avoiding their head and tail domains. In silico docking with AlphaFold-Multimer [Evans et al., 2021]
confirms SOAPIA’s ability to design safe and selective binders for undruggable and isoform-sensitive
targets, such as fusion oncoproteins.

2 Methods

Data curation and handling All data curation, splitting, and clustering details can be found in the
Supplementary Methods.

Protein encoding We encode four protein sequences—a binder, target, and two off-targets—into a
shared latent space using the 33-layer ESM-2-650M model. The final two layers are unfrozen during
training. A positional multi-head attention module (n_heads = 10) with rotary positional embeddings
(RoPE) [Su et al., 2024] captures sequence-order information. Outputs are passed through two
SiLU-activated linear layers with skip connections, and attention pooling produces fixed-length
embeddings (Figure A1).

Specificity loss To enforce off-target avoidance, we train a Siamese model using an Adaptive
Log-Sum-Exp Decoy Loss. Let b, t, ot1, and ot2 represent the embeddings of the binder, target,
and two off-targets. The loss is:

L =
∑
b

max

(
0, dist(b, t)− 1

β
log
(
eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ

)
+ α

)
(1)

where β controls sharpness, α is a margin, and ϵ = 10−8 ensures numerical stability.

Implementation details All models were implemented using PyTorch Lightning [Falcon, 2019]
and trained on 4xA100 NVIDIA GPUs with an effective batch size of 128. Learning rate was
initialized at 1× 10−4 and decayed using cosine annealing with 200 warmup steps. Training was
stopped after loss plateaued for three epochs (10 total). See Table A2 for full hyperparameters.
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Embedding separation visualization After each epoch, we computed Euclidean distances between
binder-target, binder-off-target 1, and binder-off-target 2 embeddings across the training set, and
visualized them using matplotlib v3.8.2 (Figure A2).

Binder recovery screen To test specificity, 50,000 random amino acid sequences (lengths 56–856)
were generated per target and scored using the Siamese model. The true binder was ranked by:

D = dist(b, t)− 1

β
log
(
eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ

)
+ α (2)

Lower D implies better specificity. Rankings were evaluated across multiple thresholds (Figure A3).

Masked discrete diffusion Binder generation is based on a masked discrete diffusion model
(MDM) [Sahoo et al., 2024, Shi et al., 2024, Campbell et al., 2024]. The forward process corrupts a
clean sequence x0 with:

pt(xt|x0) =

n∏
i=1

Cat(xi
t;αtδ(x

i
0) + (1− αt)δ(m)), (3)

and the reverse process denoises via:

pt(x
i
t−1|xi

t, x
i
0) ∝ αt−1δ(x

i
0) + (1− αt−1)δ(m). (4)

Training minimizes weighted cross-entropy:

L = −Ext∼pt

n∑
i=1

xi
0 logµθ(x

i
t, t). (5)

Sampling and generation strategies (SOAPIA) SOAPIA generates peptide binders by applying
MCTS over the denoising trajectory of DPLM [Wang et al., 2024], guided by two soft-value reward
functions which are maximized for the optimal binder: one reward from the Siamese model trained for
off-target avoidance as described here (r(x) = −D) (2), and one from a pre-trained peptide-protein
affinity predictor Chen et al. [2025]. At each expansion step, candidate sequences are sampled from
the DPLM transition distribution pθ(xt−1 | xt, t) and completed via ancestral decoding. Each fully
unmasked sequence is scored along both objectives and compared to a dynamically updated Pareto
frontier. Soft reward vectors—computed from overlap with frontier members—encourage exploration
of diverse trade-offs, while heavily dominated sequences are pruned.

We evaluate multiple guidance mechanisms to direct sequence refinement, including SVDD [Li et al.,
2024], which selects the best of m candidates at each step; simple guidance [Schiff et al., 2025],
which applies reward-informed local updates; and NOS [Gruver et al., 2023], which performs iterative
local search through the reward landscape. These samplers and guidance methods are combined
with higher-level generation strategies. The Basic strategy generates N samples without filtering;
Best-of-N selects the top N from a larger pool; Scalarized Best-of-N applies a weighted reward
R(x) = λr1(x) + (1− λ)r2(x); and Pareto Best-of-N returns non-dominated sequences. The MCTS
strategies used by SOAPIA integrate sampling and guidance at each expansion and rollout step,
updating the Pareto frontier online as sequences are generated. MCTS uses specificity scores only,
while MultiMCTS performs multi-objective guidance with both specificty and affinity scores. See
Algorithm 1 for details.

3 Results

Siamese model results First, we trained our Siamese model (Figure A1) to obtain the specificity
predictor used for SOAPIA’s dual-guided sampling. The model was trained to embed binders
closer to their target than to either of two off-targets. Over the course of training, we observed
progressive separation in the embedding space: binder–target distances decreased while binder–off-
target distances increased, as shown in Figure A2. To assess its ranking performance, we evaluated
the model against 50,000 randomly generated binders per test case. The true binder was ranked in the
top-1 for 19.2% of cases and in the top-25% for 56.8% (Figure A3). Finally, protein role distributions
across train, validation, and test splits are shown in Figure A4, confirming dataset diversity and
generalization.
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Generation of specific, high-affinity peptides SOAPIA successfully generates novel, short binding
proteins with a variety of sampling strategies (Figure 1). When different methodologies were evaluated
on 20 examples from the Siamese specificity model’s test set, MultiMCTS achieved the optimal
results. Binders “passed” the specificity task if their reward scores were positive, indicating that the
binder is embedded closer to the target than the two off-targets in the model’s latent space. For the
affinity task, a passing threshold of 6.5 was selected, as indicated in MOG-DFM [Chen et al., 2025].
All three guidance methods - NOS, simple, and SVDD - performed well in the expansion and rollout
steps of MultiMCTS. Unguided generation was also competitive. NOS achieved the best results, with
a dual-objective pass rate of 48.12%, and only 5.31% of generated samples failing to meet the criteria
for either objective (Figure 1).

Figure 1: Performance of different sampling strategies on the Siamese model test set. The passing
thresholds for specificity and affinity rewards are 0 and 6.5, respectively. For each input (target,
off-target 1, and off-target 2), 10 novel binding peptides of length 10 or 20 were generated and scored.

Targeting fusion oncoproteins Next, we sought to determine whether SOAPIA can be applied
to target proteins which have no known specific binders. We evaluated MultiMCTS on 17 fusion
oncoproteins, whose off-targets are their corresponding wild-type heads and tails (Figure 2). For all
guidance strategies tested, the maximum specificity and affinity values were greater than 12 and 8
respectively, indicating very strong selectivity and affinity for the best samples. Mean affinity scores
were greater than 7 for all methods, indicating that on average, SOAPI-designed fusion oncoprotein
binders pass the affinity criterion. The four strategies were slightly more differentiated in average
specificity, with simple guidance achieving the highest value of 2.84 (Figure 2A). Accordingly,
simple guidance also produced the highest simultaneous dual-objective hit rate of 68.27% (Figure 2B,
Table A4).

Prediction of target-binder complexes To validate that SOAPIA’s rewards are meaningful, we
co-folded all peptides in the “green zone" (passing both criteria) using AlphaFold-Multimer. All
four guidance strategies produced dozens of hits, where target ipTM exceeded both off-target ipTMs.
Unguided and NOS produced the highest and lowest hit rates, respectively (36.1%, 27.3%) (Table A5).
For 46 (8.1%) green zone binders across all four strategies (Table A6), target ipTMs were above
0.7 in addition to exceeding off-target ipTMs, indicating both high specificity and high affinity. We
visualize four top-performing complexes for clinically relevant targets, each associated with a specific
cancer: APTX::ARL5B with lung squamous cell carcinoma, ETHE1::PLAUR with esophageal
carcinoma, DHRSX::RPS4Y1 with pancreatic adenocarcinoma, and AMACR::NDUFAF2 with
prostate adenocarcinoma Vincoff et al. [2025] (Figure 3, Table A3). The predicted structures of the
binder-target complexes imply selective binding modes, where the peptide engages both the head and
tail portions of the fusion oncoprotein. In total, these findings demonstrate SOAPIA’s potential to
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design peptides that selectively recognize fusion oncoproteins while minimizing interactions with
their wild-type counterparts.

Figure 2: Performance of different guidance methods with MultiMCTS on a set of fusion
oncoproteins. A Maximum and mean rewards across 10 samples per target, for 18 targets. B Pass
rates for each objective across all generated samples.

4 Discussion

SOAPIA is a new framework for multi-objective binder design that jointly optimizes specificity and
affinity using a Pareto-guided MCTS over a DPLM prior. Inspired by PepTune [Tang et al., 2025],
SOAPIA combines soft-value signals from a Siamese contrastive model and a trained affinity predictor
Chen et al. [2025] to guide tree-based exploration during denoising, without requiring gradient access
to either objective. This dual-guidance mechanism allows SOAPIA to perform competitively against
Best-of-N sampling baselines across both objectives, generating peptide sequences that exhibit strong
binding while avoiding homologous off-targets. Notably, SOAPIA is capable of generating binders
to fusion oncoproteins that show preferential docking to the full fusion but not to the individual
head or tail proteins. This level of selectivity is critical for therapeutic applications, particularly in
pediatric fusion-driven cancers, where targeting the aberrant fusion protein while sparing wild-type
counterparts is essential for minimizing toxicity Vincoff et al. [2025].
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Figure 3: AlphaFold-Multimer-predicted structures of top-performing binders. (A-D) For each
fusion oncoprotein, the binder is displayed in complex with the target, off-target 1 (wild-type head
protein), and off-target 2 (wild-type tail protein)

Looking ahead, we will refine SOAPIA’s guidance weights and rollout policies to further improve
sample efficiency, and conduct experimental validation in cellular systems focused on disordered
fusion oncoproteins. For this, we plan to integrate FusOn-pLM embeddings [Vincoff et al., 2025]
to better capture breakpoint-localized context, and incorporate PTM-Mamba embeddings [Peng
et al., 2025] to enable peptide design sensitive to post-translational modification states. In addition
to MCTS, recent work on multi-objective guided flow matching (MOG-DFM [Chen et al., 2025])
offers a potential alternative decoding framework for joint optimization in discrete sequence space.
Finally, when paired with experimental platforms such as ubiquibodies (uAbs) and deubiquibodies
(duAbs) for targeted protein degradation [Brixi et al., 2023, Bhat et al., 2025, Chen et al., 2023b]
and stabilization [Hong et al., 2025], SOAPIA provides a generalizable, programmable approach to
modulating previously undruggable proteins, with potential impact across oncology, rare disease, and
immunotherapy.
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A Algorithm

Algorithm 1 SOAPIA: Pareto-Guided MCTS with Dual Objective Scoring
1: Input: Denoising model pθ(xt−1 | xt, t), specificity model fspec(x), affinity model faff(x), number of

MCTS iterations Nmcts, number of children Nchild
2: Output: Pareto frontier of guided binders P∗

3: Initialize: xT ← [M ]L (fully masked), P∗ ← {}, t← T
4: for i = 1 to Nmcts do
5: Selection: xleaf ← SELECTLEAF(xT )
6: Expansion:
7: for j = 1 to Nchild do
8: Sample x

(j)
t−1 ∼ pθ(· | xleaf, t)

9: Unmask k positions to form x
(j)
child

10: Add x
(j)
child to children(xleaf)

11: end for
12: Rollout:
13: for each x

(j)
child do

14: x̃(j) ← ROLLOUTTOCOMPLETION(x
(j)
child)

15: Compute scores: s(j) ←
[
fspec(x̃

(j)), faff(x̃
(j))

]
16: Compute soft reward vector: r(j) ← MULTICOMPAREPARETOFRONT(x̃(j), s(j), tokens)
17: Update P∗ with x̃(j) if non-dominated
18: end for
19: Backpropagation: BACKPROPAGATE(xleaf, {r(j)})
20: end for
21: return P∗

MultiCompareParetoFront provides a mechanism for prioritizing items on the Pareto front to optimize
performance. Over the first few MCTS iterations, binders may be added to the Pareto front even if they
are dominated. This ensures that the user receives the total number of binders they have requested. In
later iterations, newly generated binders may dominate multiple members of this initially sub-optimal
front. MultiCompareParetoFront tracks which Pareto front members dominate each other so that in
later iterations, a new superior candidate will replace the weakest current member of the front.

B Supplementary Methods

B.1 Data collection

Each sample in the training data is a protein quadruplet consisting of a binder, target, off-target 1,
and off-target 2. Positive protein-protein interactions (PPIs) were collected from BioGRID (October
2022) [Oughtred et al., 2021], IntAct (October 2022) [Del Toro et al., 2022], and PPIRef (January
2025) [Bushuiev et al., 2023]. Negative interactions were collected from Negatome2.0 [Blohm et al.,
2014], a manually curated database of proteins with experimental evidence indicating the absence of
direct interaction. Positive PPIs were filtered by cleaning (e.g. dropping sequences with non-natural
amino acids), swapping targets and binders to double the dataset size, removing duplicate homomer
interactions, applying a length limit of 1022 amino acids for both target and binder sequences, and
only retaining rows where one partner is included in the Negatome. The Negatome was filtered by
removing any listed target and off-target pairs that are included as binder and target pairs in the PPI
database. This produced a dataset of 245,587 positive PPIs and 7,198 negative interactions.

B.2 Quadruplet selection

The training, validation, and testing datasets were designed to (1) enhance generalizability by
including diverse binders, targets, and off-targets, (2) prevent rigid role assignments by allowing
any sequence to act in any interaction context, and (3) maximize difficulty to improve learning.
Quadruplet selection was formulated as a linear programming problem using length-averaged ESM-2-
650M [Lin et al., 2023] embeddings. With PuLP v2.9.0, quadruplets were optimized for difficulty
while minimizing role repetition (Supplementary Algorithm ??). Difficulty increased with higher
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cosine similarity between target and off-target embeddings, ensuring the Siamese model learned to
distinguish subtle differences. Euclidean distance was used in the loss function, but cosine similarity
was preferred for selection due to its bounded range (-1 to 1). Selecting closely related targets
and off-targets better reflects SOAPI’s real-world applications, such as designing binders that avoid
wild-type protein interactions. To ensure the model learned relationships rather than predefined roles,
four constraints were imposed: (1) each binder appears at most ten times, (2) each target-off-target
grouping appears only once, (3) each target appears once per binder, and (4) each off-target appears
once per binder. Constraint 1 was pre-enforced by subsampling positive PPIs, and Constraint 2
required a tiebreaker term (λ = 0.001) based on Euclidean binder-target distance. A total of 1,352
quadruplets were selected, consisting of 565 unique binders, 1,054 targets, and 969 off-targets.

B.3 Clustering and splitting

Quadruplets were clustered on binder sequence using MMSeqs2 easy clustering module [Steinegger
and Söding, 2017] with a minimum sequence identity of 30% and a coverage threshold of 70%. The
resulting clusters were randomly split at 80-10-10 ratio using sklearn v1.2.0 into a training set
(1,111 quadruplets, 82.2%), validation set (116 quadruplets, 8.6%), and test set (125 quadruplets,
9.2%). The distribution of roles (binder, target, off-target) played by each sequence in the full dataset
and individual splits can be found in Figure A4.
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C Supplementary Tables

Table A1: SOAPI loss on training data.

Split Size Loss

Train 1111 0.04
Validation 116 1.43
Test 125 1.57

Table A2: Siamese specificity model architecture and training hyperparameters

Hyperparameter Value
Model Architecture
ESM Model Base ESM2_t33_650M_UR50D
Embedding Dimension 1280
ESM Unfrozen Layers 2
Linear Layers 2
Positional Attention Head: n_heads 10

Adaptive Log-Sum Decoy Loss
α 5
β 0.5
ϵ 1e-8

Training
Max Sequence Length 1022
Batch Size / Device 16
Effective Batch Size 128
Dataloader num_workers 30
Learning Rate (LR) 1e-4
LR Scheduler: Warmup Steps 200
LR Scheduler: Total Steps 9000
LR Scheduler: Min/Max LR Ratio 0.1
Gradient Clipping 0.5

Table A3: Peptide sequences for fusion oncoprotein visualizations.

Target Method Specificity Affinity Proposed sequence
APTX::ARL5B NOS 3.67 6.97 AEMQIWMWGTLKDVESMKQF

ETHE1::PLAUR Unguided 12.72 6.81 MTCAYRGLKLQDYMRLYPDL
DHRSX::RPS4Y1 Simple 11.13 7.71 CQWLWRQRCVEQLKISLSWS

AMACR::NDUFAF2 SVDD 4.18 7.11 QFLSERDRGYGIVLKVLPPN
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Table A4: Performance of MultiMCTS guidance strategies in producing “green zone" binders (passing
both objectives; specificity > 0, affinity > 6.5). The model was tasked with producing 10 binders for
each of 17 fusion oncoproteins. However, MultiMCTS will return additional binders if they lie on the
Pareto Front.

Guidance Green Zone
Binders

Green Zone
Targets (/17)

NOS 143 / 251 (57.0%) 13 (76.5%)
Simple 170 / 239 (71.1%) 13 (76.5%)
SVDD 123 / 242 (50.8%) 13 (76.5%)
Unguided 133 / 252 (55.0%) 13 (76.5%)
Total 569 / 984 (57.8%) 13/17 (76.5%)

Table A5: Performance of green zone binders for each MultiMCTS guidance strategy in AlphaFold-
Multimer. A peptide is considered a hit when its ipTM with the target is higher than its ipTM with
either off-target.

Guidance AFM Top-25
Hit Rate

AFM
Hit Rate

Targets
Hit

NOS 6 (24%) 39 / 143 (27.3%) 8 / 13 (61.5%)
Simple 7 (28%) 59 / 170 (34.7%) 7 / 13 (53.8%)
SVDD 4 (16%) 34 / 123 (27.6%) 12 / 13 (92.3%)
Unguided 4 (16%) 48 / 133 (36.1%) 12 / 13 (92.3%)
Total 21 (21%) 180 / 569 (31.6%) 12 / 13 (92.3%)

Table A6: AlphaFold-Multimer results indicating high specificity (target ipTM > offtarget1 ipTM
and offtarget2 ipTM) and high affinity (target ipTM > 0.7) on fusion oncoproteins, across all four
MultiMCTS guidance strategies.

Guidance AFM Dual-Objective
Hit Rate

NOS 11 / 143 (7.7%)
Simple 16 / 170 (9.4%)
SVDD 5 / 123 (4.1%)
Unguided 14 / 133 (10.5%)
Total 46 / 569 (8.1%)
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D Supplementary Figures

Figure A1: Siamese specificity model architecture. A Siamese Protein Module, the core unit of
the quadruplet network. ESM-2-650M encodes sequences into [B,1280] embeddings, refined via
positional attention (10 heads) with rotary embeddings, skip-connected linear layers, and attention
pooling. B Full SOAPI pipeline. Binder, target, and off-target sequences pass through the Siamese
module with shared weights. Euclidean distances between embeddings define a loss that pulls the
binder toward the target while pushing it away from off-targets.

Figure A2: Embedding separation throughout model training. Euclidean distances between
SOAPI embeddings of the proteins in each training quadruplet: dist(b, t) (binder and target),
dist(b, ot1) (binder and off-target 1), and dist(b, ot2) (binder and off-target 2). The inner box
of each violin plot indicates the median (white) and inter-quartile range, representing the middle 50%
of distances (grey box). Distances are plotted every three epochs throughout training, starting at the
end of epoch 1.
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Figure A3: Siamese model ranks true binders against 50,000 randomly generated candidates.
SOAPI produced a specificity-based ranking of 50,000 randomly generated binders and one true
binder to 125 targets from the test set. Relative distance metrics D were calculated using Equation (2).
Any target where SOAPI ranked the true binder among the top-N or top-N% was considered a hit.
Top-1, top-10, top-100, top-1%, top-10%, and top-25% evaluations were conducted.

Figure A4: Training Data Protein Roles. Distribution of roles (binder, target, off-target) played by
proteins in the quadruplets comprising the A full training dataset (1,352 quadruplets), B train split
(1,111 quadruplets), C validation split (116 quadruplets), and D test spit (125 quadruplets).
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