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ABSTRACT

The goal of coreset selection methods is to identify representative subsets of datasets
for efficient model training. Yet, existing methods often ignore the possibility of
annotation errors and require fixed pruning ratios, making them impractical in
real-world settings. We present HyperCore, a robust and adaptive coreset selec-
tion framework designed explicitly for noisy environments. HyperCore leverages
lightweight hypersphere models learned per class, embedding in-class samples
close to a hypersphere center while naturally segregating out-of-class samples based
on their distance. By using Youden’s J statistic, HyperCore can adaptively select
pruning thresholds, enabling automatic, noise-aware data pruning without hyper-
parameter tuning. Our experiments reveal that HyperCore consistently surpasses
state-of-the-art coreset selection methods, especially under noisy and low-data
regimes. HyperCore effectively discards mislabeled and ambiguous points, yield-
ing compact yet highly informative subsets suitable for scalable and noise-free
learning. The code for HyperCore will be published upon acceptance.

1 INTRODUCTION

Modern deep learning excels with scale, but scale comes at a cost. Training on massive datasets drains
resources and introduces noise, creating a growing need for efficient and robust data selection (Wang
et al., 2018} |Csiba & Richtarik, |2018}; Zheng et al.| 2022; [Katharopoulos & Fleuret, 2018). In
practice, acquiring or maintaining such large datasets is often infeasible due to storage limits, privacy
constraints, or annotation costs (Ganguli et al., 2022} [Yang & Su, 2024)). Coreset selection seeks
to address this challenge by identifying a small, informative subset that preserves the performance
of training on the full dataset (?Sorscher et al., [2022; |Guo et al., 2022} Bhalerao} |2024). Beyond
efficiency, coresets can improve robustness by excluding noisy, redundant, or overly difficult examples,
reducing overfitting and sharpening generalization (Bengio et al.l 2019} [Katharopoulos & Fleuret,
2018). As highlighted by Sorscher et al.| (2022)), with the right pruning ratio, a well-selected coreset
can even outperform full-data training, a surprising and powerful result, which has been verified in
some applications (Na et al., 2021; Moser et al., 2022; Yao et al.| [2023; Moser et al.| [2024; Ding
et al.l [2023)).

Despite these benefits, selecting an optimal coreset remains nontrivial (Zheng et al., [2022} Sener
& Savarese, [2017). Most methods rely on gradient heuristics (Paul et al., 2021; Mirzasoleiman
et al.,|2020; Killamsetty et al.,|2021a)), influence estimation (Toneva et al.,[2018}; [Paul et al., |2021)),
or decision boundary estimates (Ducoffe & Precioso, 2018}, Margatina et al., 2021)). Yet, current
methods struggle with noise, computational overhead, and lack of class-awareness - key challenges
in real-world applications (Zhang et al., [2021). Crucially, these approaches often prune via fixed
sampling budgets rather than adapting to the natural density or ambiguity within each class (Agarwal
et al.| 20055 [Sorscher et al., 2022 |Guo et al., |2022; |Zheng et al., [2022).

Our method, HyperCore, offers a new perspective. We train lightweight hypersphere models (Tax &
Duin, 2004; [Ruff et al., 2018} [Liznerski et al., 2020) that learn to separate in-class from out-of-class
samples in a class-conditional embedding space. Here, “out-of-class” refers not only to samples
from other classes but also to mislabeled, ambiguous, or corrupted inputs that appear atypical when
measured against a given class distribution. Treating such points as outliers is natural in a per-class
setting, since they provide conflicting training signals for that class. By measuring the distance of
each point to its class-specific hypersphere center, we obtain an interpretable conformity score.
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To determine the hypersphere decision boundary, we adaptively select pruning thresholds without
tuning hyperparameters. More explicitly, we exploit Youden’s J statistic (Youden, [1950), a well-
known criterion from signal detection theory, to filter uncertain or atypical examples in a per-class,
data-driven way. This thresholding adapts automatically to class imbalance, ambiguity, and noise, in
contrast to fixed global ratios.

HyperCore is computationally lightweight: each class-specific model is trained independently,
enabling parallelization across classes; thresholding reduces to a one-pass scan over sorted distances,
i.e., O(n.logn,) per class. In practice, this cost scales linearly with the number of classes and can
be amortized by parallel workers or shared backbones.

Our contributions can be summarized as follows:

* We introduce a simple class-wise hypersphere formulation with fixed centers and pseudo-
Huber loss, yielding interpretable conformity scores and avoiding costly center estimation.

* We propose adaptive pruning via Youden’s J statistic, eliminating the need for global ratio
tuning and naturally adjusting to per-class density and noise.

* We demonstrate robustness under label noise and high pruning ratios, where HyperCore
outperforms state-of-the-art coreset selection methods across ImageNet-1K and CIFAR-10.

* We provide scalability analysis, showing that HyperCore remains efficient due to embarrass-
ingly parallel training and near-linear complexity.

2 PRELIMINARIES

2.1 CORESET SELECTION

Consider a supervised learning setup, where the training set 7 = {(x;, )}, contains N i.i.d.
samples drawn from an unknown distribution P. Each input x; € X is paired with a label y; € ).

Definition 1 (Coreset Selection). The goal is to extract a subset S C T with |S| < |T|, such that
training a model 8° on S achieves comparable generalization to training 07 on the full dataset T :
S*= argmin Ex,y)~P [ﬁ()gy; 05) — L(x,y; 97)] , )

L 1S1 o
SCT: FRl-a

where « € (0, 1) denotes the pruning ratio and (1 — «) is the retained fraction. L is the task-specific
loss.

Notation. Throughout the paper we use « for the pruning ratio and (1 — «) for the retained fraction.

While simple in form, this objective is difficult to achieve in practice. Effective coreset selection
depends on identifying training samples that best support generalization. Popular approaches estimate
sample importance via gradients, influence scores, or diversity heuristics (Nogueira et al.| 2018} |Song
et al., 2022} | Xiao et al., 2025 [Zheng et al., [2022). Yet, these methods are often sensitive to noise,
expensive to compute, or agnostic to class structure.

2.2 HYPERSPHERE CLASSIFIER

Hypersphere classifiers, such as Deep SVDD (Ruff et al., [2018]) and FCDD (Liznerski et al.| 2020),
represent a class of anomaly detection methods that embed nominal data into a compact region of the
feature space while mapping anomalies away.

Definition 2 (Hypersphere Classifier). Given a collection of samples X1, . .. ,X, with labels y; €
{0,1} (where y; = 0 denotes a nominal sample and y; = 1 denotes an anomaly), a hypersphere
classifier seeks to learn a neural network mapping ¢(x; W) with parameters W and a randomly
(non-trivial) center c € R by optimizing the objective:
1
min — Z (1 —wi) h(l[o(xs;; W) —¢l]) —yilog (1 —exp (=h([|o(x;; W) —cl)))|, @
=1

where h : R — R is the pseudo-Huber loss (Huber, |1992)) defined as h(a) = v/a? + 1 — 1. This loss
function robustly penalizes deviations, interpolating from a quadratic penalty for small distances to a
linear penalty for larger deviations.
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Figure 1: Left: Visualization of HyperCore. In-class samples are pulled toward the center, while
out-of-class samples are pushed away, creating a clear separation. Right: Illustration of adaptive
pruning ratio selection via Youden’s J statistic. Two candidate thresholds are compared, with the
purple threshold yielding a higher J value and thus being considered more optimal for pruning.

Coreset Selection Context. This geometric intuition naturally facilitates threshold-based selection
of representative data points, making hypersphere classifiers particularly suitable for robust coreset
selection tasks. In a one-vs-rest view, we ask if a sample is typical of class c. Four sources tend
to fall farther from the c-center in a class-conditional embedding: (i) true out-of-class samples, (ii)
mislabeled instances whose content supports another class, (iii) borderline examples mixing evidence
from multiple classes, and (iv) low-quality or corrupted inputs. All four inject conflicting gradients for
class ¢, so excluding them when curating ¢’s coreset improves representativeness. In our experiments
section, we show empirically that our derived coresets preferentially retain clean, central exemplars.

3 METHODOLOGY

Our method is built upon class-wise hypersphere models that assess the representativeness of each
sample by measuring the distance to a fixed hypersphere center, as illustrated in (left).
Specifically, we classify samples from the target class as normal, and all others as anomalies.

3.1 HYPERCORE L0OSS WITH ZERO CENTER

A key simplification of HyperCore is anchoring the hypersphere center at the origin, i.e. ¢ = 0, which
avoids explicit center estimation and enables lightweight optimization. Let ¢(x; W) € R¢ denote the
learned embedding of input x under parameters W. The embedding norm ||¢(x; W)|| is then used as
a measure of conformity.

Definition 3 (HyperCore Loss). Given a sample x with label y € {0,1} (where y = 0 denotes an
in-class sample and y = 1 an out-of-class sample), the HyperCore loss is defined as

Linpercore3: W) = (1= ) b6 W)]) = y log<1 — exp(~h(llox W)II))) SENE)

where h(a) = va? + 1 — 1 is the pseudo-Huber loss (Huber, |1992)). This loss penalizes small
embedding norms for anomalies and encourages in-class samples to lie close to the origin.

We now show that the trivial solution W = 0 (mapping all inputs to 0) is not optimal.

Lemma 1 (Balanced Sampling Prevents Trivial Collapse). Assume that each training batch is
balanced, i.e. the number of in-class (y = 0) samples equals the number of out-of-class (y = 1)
samples. Let Wy be the all-zero weight configuration such that ¢(x; Wy) = 0 for all x. Then the
HyperCore loss at Wy is unbounded:

LHyperCore (X; WO) — 00, (4)

which rules out the trivial solution as optimal.
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Proof. AtW — W, we have ¢(x; W) — 0 and hence ||¢(x; W)|| — 0. Since h(0) = 0, the loss
for in-class samples (y = 0) vanishes. For out-of-class samples (y = 1), the term becomes

—log(1 — exp(—h(0))) = —log(1 — €°) = —log(0) — cc. Q)
Thus, even a single out-of-class sample in a batch makes Lypercore (X; Wo) diverge. |
3.2 STATIC PRUNING: A BASELINE FOR COMPARISON

As a baseline, we adopt fixed pruning ratios. Let T.n denote the in-class dataset for class c. Each
sample x; € 7" is mapped to an embedding with norm

di = [|¢e(xi)- (©)

Given a pruning fraction «, we retain the (1 — «) - | 7| samples with the smallest d;. Formally,
St = {(xi,0) € T | di < 77, @)
where 7/*¢d is chosen such that exactly (1 — «) - |7.*| samples are kept. The global coreset is

Sfixed UC_Ol Sfixed
c= c .
Although simple, this approach does not adapt to class-specific density or noise levels. Furthermore,

finding an effective « typically requires testing multiple candidates, increasing overhead.

3.3 HYPERCORE WITH ADAPTIVE PRUNING RATIO

Instead of fixing o, we determine class-specific thresholds via Youden’s J statistic (Youden, |1950).
For each class ¢, let

D¢ = {d; = ||¢(xi;W)] : (xi,¢) € 72"}, and
D = {d; = |lo(xz; W)+ (x5,0) € T\ T2} ®)

For any candidate threshold 7, we define

_ H{deDr:d<r}| _ {de D" :d <7}

TPR,(7) = : . FPR.(7) = . )
D |D2ue|
Youden’s J statistic, as illustrated in [Figure T|(right), is then
Jo(1) = TPR.(7) — FPR.(7). (10)
The optimal threshold is
75 = argmax J (7). (11)
reDin
The class-specific coreset is '
Se ={(xi,c) € T." | d; < 7]}, (12)

and the global coreset is again the union S = Ucc:ol Se.
Lemma 2 (Threshold search complexity). For class ¢, computing 7; = arg max, ¢ pin Jo(T) requires

sorting D™ and a single linear scan, i.e., O(n.logn.) time and O(n.) memory. Summed over classes,
the total time is . O(n.logn.) and memory ), O(n.), with ), .n. = N.

3.4 PRACTICAL REMARKS AND COMPLEXITY

Training overhead. Each ¢, is a small network trained on 7 U 7.4, typically much cheaper than
full-dataset gradient-based selection.

Thresholding overhead. For each class, sorting D" costs O(n.. logn.), where n. = |T.*|. Across
classes, the complexity is near-linear in V.

No fraction tuning. HyperCore automatically derives class-specific pruning ratios without requiring
a. A global budget can be enforced if needed, but allowing classes to self-threshold often yields
greater robustness.



Under review as a conference paper at ICLR 2026

Table 1: Coreset selection performance on ImageNet-1K. We evaluate various pruning methods
by training randomly initialized ResNet-18 models on their selected subsets and testing on the full
ImageNet validation set. DeepFool and GraNd are excluded due to their substantial memory and
computational demands.

Fraction (1 — ) 10% 20% 30% 40% 50% 100%
Herding (Welling![2009) 29.1740.23  41.26+0.43 48.71+0.23 54.65+0.07 5892 +0.19 69.524+0.45
k-Center Greedy (Sener & Savarese,2017) 48.11£0.29 59.06+0.22 62.91+0.22 6493 +£0.22 66.04 +0.05 69.524+0.45
Forgetting (Toneva et al.|[2018) 55.31+0.07 60.36+0.12 62.45+0.11 63.97 £0.01 65.06 £0.02 69.5240.45
CAL(Margatina et al.|[2021) 46.08+0.10 53.71+0.19 58.11+0.13  61.17+0.06  63.67 £0.28  69.52+0.45
Craig (Mirzasoleiman et al.|[2020) 51.394£0.13  59.33+0.22 62.724+0.13  64.96+0.00  66.29 £0.00  69.52+0.45
GradMatch (Killamsetty et al.|[2021a) 47.574£0.32  56.29+0.31 60.62+0.28  64.40+0.33  65.02 +0.50 69.52+0.45
Glister (Killamsetty et al.||2021b) 47.0240.29 55.93+£0.17 60.38+0.17  62.86+0.07  65.07+0.08  69.524+0.45
HyperCore (ours) 49.94+0.02 58.12+0.11  62.96+£0.01  64.96+0.04  65.32+0.13  69.52+£0.45

Table 2: Fixed coreset selection accuracy on CIFAR-10 using randomly initialized ResNet-18
models (He et al.,[2016)). Bold entries indicate the highest performance at each data fraction.

Fraction (1 — a) 0.1% 0.5% 1% 5% 10% 20% 30% 40% 50% 60% 90% 100%
Herding (Welling|[2009] 19.842.7 29.242.4 31.1£2.9 50.7£1.6 63.1£3.4 75.241.0 80.8+1.5 85.4+1.2 88.4%0.6 90.940.4 94.40.1 95.6+0.1
k-Center Greedy (Sener & Savarese|2017} 19.940.9 25.340.9 32.6+1.6 55.642.8 74.6+0.9 87.3+0.2 91.0+0.3 92.6+£0.2 93.5£0.5 94.3+£0.2 95.5+0.2 95.6+0.1
Forgetting (Toneva et al..[2018) 21.3£1.2 29.740.3 35.641.0 51.1£2.0 66.9£2.0 86.641.0 91.74+0.3 93.0+0.2 94.1£0.2 94.6+0.2 95.440.1 95.610.1
GraNd (Paul et al.{2021] 14.6£0.8 17.240.8 18.6+0.8 28.940.5 41.3£1.3 71.1£1.3 88.3+1.0 93.04+0.4 94.8+0.1 95.2+0.1 95.5£0.1 95.6+0.1
CAL (Margatina et al.|[2021} 23.1£1.8 31.740.9 39.74+3.8 60.8+1.4 69.7£0.8 79.440.9 85.14+0.7 87.6+0.3 89.6+0.4 90.9+£0.4 94.740.2 95.610.1
DeepFool (Ducotfe & Precioso2018)  18.7+£0.9 26.4+1.1 28.3+0.6 47.74+3.5 61.2+2.8 82.7+£0.5 90.840.5 92.94:0.2 94.4+0.1 94.8+0.1 95.60.1 95.6+0.1
Craig (Mirzasoleiman et al.|[2020] 19.3+£0.3 29.1£1.6 32.841.8 42.54+1.7 59.9+2.1 78.1£2.5 90.0£0.5 92.840.2 94.3+0.2 94.8+0.1 95.5£0.1 95.6+0.1
GradMatch (Killamsetty et al.{2021a]  17.4£1.6 27.1£1.1 27.7£2.0 41.8£2.4 55.5£2.3 78.1£2.0 89.6+0.7 92.740.5 94.1+0.2 94.740.3 95.440.1 95.6+0.1
Glister (Killamsetty et al.||2021b)} 18.4%1.3 26.54+0.7 29.4+1.9 42.1£1.0 56.8£1.8 77.242.4 88.840.6 92.7+0.4 94.2£0.1 94.840.2 95.540.1 95.630.1
HyperCore (ours) 24.5+1.3 35.4+1.0 40.7+1.0 60.3+1.3 71.1+0.9 83.54+0.5 88.6+0.4 91.140.3 92.340.1 93.1£0.1 95.0£0.2 95.6+0.1

4 EXPERIMENTS

In this section, we present experiments on ImageNet-1K (Deng et al., 2009) and CIFAR-10
(Krizhevsky et al., 2009) that assess HyperCore across several dimensions, including overall coreset
quality, runtime efficiency, and robustness.

Backbone and training. For all experiments, we use ResNet-18 (He et al.| [2016), following training
protocols from DeepCore (Guo et al.,[2022). Models are trained with SGD for 200 epochs using a
cosine-annealed learning rate (initial 0.1), momentum 0.9, weight decay 5 x 10~4, and standard data
augmentation (random crop + flip). On CIFAR-10, we use a batch size of 128; on ImageNet-1K, a
batch size of 256. To establish upper-bound references, we also train ResNet-18 on random subsets
of varying fractions of the full dataset.

HyperCore training. Each class-specific HyperCore model is trained on balanced batches (half
in-class, half out-of-class). We use Adam with learning rate 10~%, batch size 128 for CIFAR-10
and 512 for ImageNet, and train for 100 epochs per class. Since classes are independent, training
runs fully in parallel, making the overall wall-clock cost scale with available compute rather than the
number of classes.

Robustness protocol. To evaluate label noise tolerance, we adopt the poisoning setup of Zhang et al.
(2021), injecting label noise and malicious relabeling into the training data.

4.1 IMAGENET-1K RESULTS

Our evaluation on ImageNet-1K in demonstrates that HyperCore achieves consistently strong
performance, positioning itself among the top-performing coreset selection methods despite being
explicitly designed with robustness as its primary objective. Specifically, at moderate to high retained
fractions (30-50%), HyperCore matches or slightly surpasses established state-of-the-art methods
such as Craig and GradMatch. Even at more aggressive pruning (e.g., (1 — ) = 10%-20% retained),
HyperCore closely follows the best-performing methods and achieves highly competitive results.
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Table 3: Fixed coreset selection performance under label noise on CIFAR-10, where 10% of the
training labels are randomly corrupted by assigning them to incorrect classes. Bold entries indicate
the highest performance at each data fraction.

Fraction (1 — ) 0.1%  05% 1% 5% 10% 20% 30% 40% 50% 60% 90% 100%

Herding (Welling] 009] 114409 10.8+0.5 11.140.9 10.6+1.1 11.740.9 26.0+3.4 50.141.3 71.0+£0.6 79.141.8 84.6+0.6 90.4+0.1 90.8+0.1
2184 =200  -40.1  -514  -492 307 -144 93 63 -4.0 4.8

k-Center Greedy (Sener & Savarese|[2017] 12. 6413 143408 16,1210 20.651.6 41.73.0 62.042.0 738 1.8 802407 83.940.7 86.6=0.5 90403 90.8-0.1
73 110 -165 260 329 253 -172  -124 9.6 7.7 -5.1 4.8

Forgetting (Toneva ct al. 2018} 21.8+1.6 31.1+1.0 35.041.3 52.8+1.2 66.4+1.3 83.2+1.0 88.940.2 90.7+0.2 91.040.4 91.5+0.4 90.940.1 90.8+0.1
+0.5 +1.4 0.6 +1.7 0.5 34 238 23 3.1 3.1 45 4.8

GraNd (Paul et al.|[2021 11. 5i09 11.940.8 11.1£0.6 10.8+1.1 10.6+1.2 25.440.9 44.8+2.0 67.242.6 79.4+1.3 86.3£0.3 90.2+0.2 90.8+0.1
53 75 ;181 307 -457 435 258 -154 -8.9 5.3 4.8

CAL (Margatina et al.|2021] 21.341.7 30.8+1.0 36.841.3 59.9+0.8 71.341.0 80.0+0.2 83.940.6 87.1+0.3 89.140.2 90.6+0.2 91.940.1 90.8+0.1
09 29 09 16 +0.6 12 05 05 03 2.8 4.8

DeepFool (Ducoffe & Preciosol2018]  17. 4i0 9 21,6414 253+1.3 33.640.4 43.9+3.2 65.5+1.6 77.0+£1.3 84.5+0.5 86.6£0.9 88.7+0.5 90.8£0.2 90.840.1
48 3.0 ‘141 -173 172 -138 8.4 78 -6.1 4.8 4.8

Craig (Mirzasoleiman et al. J2020] ~ 19.5+1.4 20.241.4 24.8:1.1 30.420.9 31.7+1.6 39.21.5 584429 73.1&1.4 81.4+0.6 853%04 90.5+0.3 90.8+0.1
+0.2 8.9 8.0 S121 282 389 316 -197  -129 95 5.0 4.8

GradMatch (Killamsetty et al J2021a] ~ 15. 7i2 0 21.440.7 23.0+1.6 27.642.4 31.4+2.5 37.742.1 55.6+2.5 72.0+1.4 80.3+0.4 85.3+0.5 90.2:£0.2 90.8+0.1
5.7 47 ;142 241 -404 340 207 -13.8 9.4 5.2 4.8

Glister (Killamsetty et al.[2021b] 14.942.0 20.9+1.5 24.541.3 29.0+1.9 31.742.1 40.2+2.3 57.241.3 72.2+1.3 80.64+0.4 85.4+0.5 90.240.2 90.8+0.1
35 5.6 4.9 S13.1 251 370 316 205 -136 9.4 5.3 4.8

HyperCore (ours) 20.941.5 32.6+1.1 41.4+1.0 60.5+1.4 70.040.9 84.2+0.9 89.1+0.4 91.0+£0.5 92.6+0.1 93.5+0.2 93.7+0.3 90.8+0.1
3.6 2.8 +0.7 +0.2 -1.1 +0.7 +0.5 0.1 +03 +0.4 -1.3 4.8

100

4.2 CIFAR-10 RESULTS

Comparisons to other coreset 80
baselines are shown in
HyperCore achieves up to 5.6%
higher accuracy than the best
baseline at aggressive pruning
levels. More specifically, Hy-
perCore is on par for larger re-
tained fractions while reaching
the overall best results between 20
(1 — ) = 0.1% and 10%. Fur-

thermore, the parallelizable de-

Time [mins]
[«)]
o

S
o

sign of HyperCore enables us Y S . R o . S N
to obtain these outcomes with PO IO N
significantly reduced execution & ¥ P @Qe S
times, as shown in[Figure 2]

In we investigate how Figure 2: Time-Measurement on CIFAR-10. HyperCore ranks
each coreset selection strategy among the fastest techniques, including training, averaging only 4

holds up when 10% of the minutes per class and benefiting from a parallelizable design.

CIFAR-10 training labels are cor-

rupted with random misassignments (Zhang et al.| 2021). As one might expect, most approaches
struggle at very small retained fractions (e.g., (1 — «) = 0.1% or 0.5%). In fact, if we look at
the leftmost columns, methods such as GraNd or DeepFool perform particularly poorly, sometimes
falling below 15% accuracy. Yet even at these high pruning levels, it is notable that Forgetting stands
out with a slightly higher result at (1 — o)) = 0.1%.

For larger retained fractions (0.5% and beyond), one sees the advantages of HyperCore sharpen. For
instance, at 1% of the data, HyperCore achieves 41.4% accuracy, surpassing the second-best method
(CAL) by a margin of about 4.6%. This gap widens in the mid-range fractions (10%, 20%, 30%),
underscoring the resilience of our method to label noise: whereas other approaches tend to plateau or
fade noticeably, HyperCore keeps the performance or advances. As expected, accuracies converge
at 90% dataset usage since almost all data is included. Notably, from 40% onward, HyperCore
empirically validates the theory of Sorscher et al.|(2022) by surpassing even full dataset performance.
Further experiments (see appendix) with VGG-16, InceptionNet, ResNet-50, and WRN-16-8 confirm
these observations: HyperCore is exceptionally efficient under noisy conditions.
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4.3 ADAPTIVE CORESET SELECTION Table 4: CIFAR-10 performance for training on
full dataset vs on adaptively derived coresets (Hy-

The results presented in demonstrate  perCore).

the effectiveness of adaptive coreset selection

using HyperCore across various levels of label

poisoning on CIFAR-10. When no label noise

Accuracy [%]

Poisoning gyl Dataset  HyperCore

QHyperCore [%]

is present, HyperCore matches the accuracy ob- 0% 95.640.1 95.6-0.2 00.6+0.4

in rainine on the full illustrat- 10% 90.840.1 94.84+0.2 16.4+1.3
@ ed by ¢ aining on the fu dataset, illust at 20% 87.540.4 93.5+0.3 29.4+2.4
ing that adaptive selection does not compromise 30% 85.940.3 91.1+-0.3 41.242.7
model performance. More notably, as the level 40% 83.7£0.5 86.9+1.3 50.5+£4.0

of label noise increases, HyperCore significantly
outperforms training on the full dataset.

(&)}

The shows that as the percentage of z\s 4

relabeling increases (i.e., as the level of label © i
poisoning grows), the adaptive thresholds - the ~ £3 Y /\,/ \/\
hypersphere radii - tend to increase. This be- 2, AP R R TN E
havior suggests that with more noise, the em- I§ T

beddings become more dispersed; in order to re- L

tain as many true inlier samples as possible, the 0 20 40 60 80
model adapts by enlarging the decision bound- Relabeled (%)

ary. Moreover, the rising standard deviation

across classes indicates that the impact of label  Fjgyre 3:  Average hypersphere radii (adaptive
noise is not uniform: some classes experience a  hregholds) and their standard deviations as a func-
greater shift in their radii than others. In short, (jon of the relabeling percentage. The plot reveals
the model compensates for increased uncertainty  hat both the mean radius and its variability in-
by raising the threshold, which, though it might  ¢reage with higher levels of label poisoning, reflect-
seem counterintuitive at first, is necessary to ing a broader dispersion in the embedding space

maintain robust discrimination between inliers  ang an adaptive expansion of the decision bound-
and outliers under noisy conditions. ary to accommodate noise.

4.4  ANALYSIS OF YOUDEN’S J STATISTICS

Regarding adaptiveness, [Figure 4/ compares the key performance curves of HyperCore under increas-
ing levels of artificially introduced label noise. In the left panel, we plot the confusion-based rates,
namely True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and False
Negative Rate (FNR), as a function of the poisoning percentage. Broadly speaking, positive rates
denote included samples, while negative rates mean they are excluded. Despite the growing noise,
we observe that TPR and TNR remain consistently higher than FPR and FNR, indicating that our
hypersphere models selectively exclude corrupted or ambiguous samples. Meanwhile, FPR and FNR
only moderately increase, suggesting that HyperCore successfully mitigates the risk of discarding
genuine samples or retaining mislabeled ones.

In the right panel, we plot Youden’s J in orange, alongside the fraction of removed data in blue.
Even as the fraction removed escalates for severe noise, Youden’s .J remains relatively stable. This
interplay demonstrates that the pruning decisions of HyperCore are not overly conservative. Although
HyperCore discards an increasingly large portion of the data under extreme mislabeling, it still
identifies informative inliers with sufficient reliability to maintain a viable Youden’s J. Overall, the
figure underscores strong resilience to label noise.

5 RELATED WORK

Distance-Based Pruning and Anomaly Detection. In parallel, a rich literature on anomaly or
outlier detection capitalizes on distance metrics. One-class methods such as Support Vector Data
Description (SVDD) (Tax & Duinl |2004) enclose normal samples in a minimal-radius hypersphere,
labeling points outside as outliers. Deep SVDD extends this idea to a learned representation, forcing
inliers near a randomly-sampled center in feature space (Ruff et al.,|2018]; [Liznerski et al.| [2020).
These methods align with the hypersphere concept in HyperCore: Like one-class approaches, Hyper-
Core identifies “inlier” samples with small norm while pushing outliers away. Unlike hypersphere
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Figure 4: Left: Confusion-based metrics (TPR, FPR, TNR, FNR) under increasing label poisoning in
CIFAR-10. Right: Youden’s J (orange) and fraction of removed samples (blue). Both plots highlight
HyperCore’s robust coreset selection behavior across varying degrees of poisoned labels (error-bands
highlight the variance between the class labels).

classifiers, HyperCore uses simpler per-class MLPs with Youden’s J thresholds, and a modified loss
function.

Norm-Based Confidence Scores in Distillation and Noise Removal. Several approaches for
dataset distillation or data pruning measure “confidence” using norms in feature space. For example,
Lee et al. (Lee et al.} 2018) compute class-conditional Gaussians on deep embeddings (Mahalanobis
distance) and exclude points far from the nearest class center. Similarly, Pleiss et al. (Pleiss et al.|
2020) track margin-based criteria to detect possible mislabels, effectively removing outlier examples.
In coreset selection under noisy labels, Kang et al. (Kang et al.l 2019) highlight that samples near the
class centroid are typically correct, while label errors lie on the distribution fringe. This principle
resonates with HyperCore’s geometry-driven approach: we train a binary in/out classifier per class to
separate inlier vs. out-class data, then threshold based on distance.

Lightweight vs. Full-Model Coreset Approaches. While gradient or influence-based selection can
yield high-quality coresets (Paul et al., [2021} |[Killamsetty et al., 2021a), such methods typically incur
substantial overhead: they require partial or entire model training to compute per-sample gradients
or forgetting events (Toneva et al.,[2018)). By contrast, HyperCore remains partially trained (it fits
a class-wise MLP to discriminate in/out), but each MLP sees only a subset of the dataset and does
not require a large architecture or global alignment. This design reduces computation while flexibly
adapting to each class’s unique geometry.

Prototype Selection and Continual Learning. Prototype-based selection methods identify ex-
emplars that approximate the class mean. For instance, iCaRL (Rebuffi et al.}[2017) selects a small
set of class representatives that minimize the distance to that class’s mean embedding. When data
are mislabeled or heavily imbalanced, however, simple centroid-based picks can inadvertently keep
outliers if they exhibit subtle bias in embedding space. HyperCore addresses such issues by actively
learning a boundary between inliers and outliers for each class, producing a more robust subset.
In continual learning, HyperCore could replace iCaRL’s herding by selecting reliably central class
samples.

Relation to Our HyperCore Approach. We draw on the success of minimal, class-wise boundaries
(like SVDD), but unify them with a simple per-class in/out MLP plus a Youden’s J threshold to
auto-prune ambiguous points. As a result, HyperCore effectively discards label noise and yields
a representative coreset without requiring a large network or full-model backprop. This blend of
geometry-driven inlier detection, threshold-based selection, and partial learning stands in contrast
to existing coreset methods that rely on global fractions or heavy optimization of large models.
HyperCore complements existing methods by providing a lightweight, noise-robust, class-specific
alternative.
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6 LIMITATIONS

HyperCore has several limitations that are worth noting despite its significant strengths. The hyper-
sphere models depend heavily on learning meaningful embeddings from relatively small per-class
data subsets. In classes with extremely limited or highly imbalanced data, the learned boundaries
might degrade, reducing the robustness of HyperCore’s adaptive pruning. Also, training separate hy-
persphere models per class could become computationally expensive as the number of classes scales
(e.g., beyond thousands of classes) and the amount of GPUs/CPUs is limited, although HyperCore
significantly reduces computational overhead compared to full-model coreset methods.

In addition, Youden’s J implicitly treats false positives and false negatives as equally costly. In
domains with highly asymmetric costs or constraints (e.g., extreme class imbalance or safety-critical
false negatives), alternative thresholding rules may be preferable—such as optimizing a weighted J
(cost-sensitive TPR/FPR), setting a target precision/recall operating point, or calibrating thresholds
via validation risk minimization.

7 CONCLUSION & FUTURE WORK

We introduced HyperCore, a robust coreset selection framework leveraging hypersphere models.
Unlike existing methods, HyperCore utilizes class-conditional embeddings with adaptive pruning
thresholds determined by Youden’s J statistic, enabling automatic and noise-aware subset selection
without extensive hyperparameter tuning. HyperCore raises the bar for robust coreset selection,
setting new benchmarks for pruning accuracy and label noise tolerance. By effectively discarding
mislabeled or ambiguous data points, HyperCore ensures that the retained coresets are compact yet
highly representative, thereby promoting efficient and robust model training.

Future work includes applying HyperCore to semi-supervised, continual learning, and large-scale
tasks. Additionally, analyzing dynamic updates to hypersphere boundaries could further enhance
HyperCore’s versatility.
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