

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HYPERCORE: CORESET SELECTION UNDER NOISE VIA HYPERSPHERE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The goal of coresets selection methods is to identify representative subsets of datasets for efficient model training. Yet, existing methods often ignore the possibility of annotation errors and require fixed pruning ratios, making them impractical in real-world settings. We present HyperCore, a robust and adaptive coresset selection framework designed explicitly for noisy environments. HyperCore leverages lightweight hypersphere models learned per class, embedding in-class samples close to a hypersphere center while naturally segregating out-of-class samples based on their distance. By using Youden’s J statistic, HyperCore can adaptively select pruning thresholds, enabling automatic, noise-aware data pruning without hyperparameter tuning. Our experiments reveal that HyperCore consistently surpasses state-of-the-art coresset selection methods, especially under noisy and low-data regimes. HyperCore effectively discards mislabeled and ambiguous points, yielding compact yet highly informative subsets suitable for scalable and noise-free learning. The code for HyperCore will be published upon acceptance.

1 INTRODUCTION

Modern deep learning excels with scale, but scale comes at a cost. Training on massive datasets drains resources and introduces noise, creating a growing need for efficient and robust data selection (Wang et al., 2018; Csiba & Richtárik, 2018; Zheng et al., 2022; Katharopoulos & Fleuret, 2018). In practice, acquiring or maintaining such large datasets is often infeasible due to storage limits, privacy constraints, or annotation costs (Ganguli et al., 2022; Yang & Su, 2024). Coreset selection seeks to address this challenge by identifying a small, informative subset that preserves the performance of training on the full dataset (Sorscher et al., 2022; Guo et al., 2022; Bhalerao, 2024). Beyond efficiency, coresets can improve robustness by excluding noisy, redundant, or overly difficult examples, reducing overfitting and sharpening generalization (Bengio et al., 2019; Katharopoulos & Fleuret, 2018). As highlighted by Sorscher et al. (2022), with the right pruning ratio, a well-selected coresset can even outperform full-data training, a surprising and powerful result, which has been verified in some applications (Na et al., 2021; Moser et al., 2022; Yao et al., 2023; Moser et al., 2024; Ding et al., 2023).

Despite these benefits, selecting an optimal coresset remains nontrivial (Zheng et al., 2022; Sener & Savarese, 2017). Most methods rely on gradient heuristics (Paul et al., 2021; Mirzasoleiman et al., 2020; Killamsetty et al., 2021a), influence estimation (Toneva et al., 2018; Paul et al., 2021), or decision boundary estimates (Ducoffe & Precioso, 2018; Margatina et al., 2021). Yet, current methods struggle with noise, computational overhead, and lack of class-awareness - key challenges in real-world applications (Zhang et al., 2021). Crucially, these approaches often prune via fixed sampling budgets rather than adapting to the natural density or ambiguity within each class (Agarwal et al., 2005; Sorscher et al., 2022; Guo et al., 2022; Zheng et al., 2022).

Our method, **HyperCore**, offers a new perspective. We train lightweight hypersphere models (Tax & Duin, 2004; Ruff et al., 2018; Liznerski et al., 2020) that learn to separate in-class from out-of-class samples in a class-conditional embedding space. Here, “out-of-class” refers not only to samples from other classes but also to mislabeled, ambiguous, or corrupted inputs that appear atypical when measured against a given class distribution. Treating such points as outliers is natural in a per-class setting, since they provide conflicting training signals for that class. By measuring the distance of each point to its class-specific hypersphere center, we obtain an interpretable conformity score.

To determine the hypersphere decision boundary, we adaptively select pruning thresholds without tuning hyperparameters. More explicitly, we exploit *Youden’s J statistic* (Youden, 1950), a well-known criterion from signal detection theory, to filter uncertain or atypical examples in a per-class, data-driven way. This thresholding adapts automatically to class imbalance, ambiguity, and noise, in contrast to fixed global ratios.

HyperCore is computationally lightweight: each class-specific model is trained independently, enabling parallelization across classes; thresholding reduces to a one-pass scan over sorted distances, i.e., $O(n_c \log n_c)$ per class. In practice, this cost scales linearly with the number of classes and can be amortized by parallel workers or shared backbones.

Our contributions can be summarized as follows:

- We introduce a simple *class-wise hypersphere formulation* with fixed centers and pseudo-Huber loss, yielding interpretable conformity scores and avoiding costly center estimation.
- We propose *adaptive pruning via Youden’s J statistic*, eliminating the need for global ratio tuning and naturally adjusting to per-class density and noise.
- We demonstrate *robustness under label noise and high pruning ratios*, where HyperCore outperforms state-of-the-art coresnet selection methods across ImageNet-1K and CIFAR-10.
- We provide *scalability analysis*, showing that HyperCore remains efficient due to embarrassingly parallel training and near-linear complexity.

2 PRELIMINARIES

2.1 CORESET SELECTION

Consider a supervised learning setup, where the training set $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ contains N i.i.d. samples drawn from an unknown distribution P . Each input $\mathbf{x}_i \in \mathcal{X}$ is paired with a label $y_i \in \mathcal{Y}$.

Definition 1 (Coreset Selection). *The goal is to extract a subset $\mathcal{S} \subset \mathcal{T}$ with $|\mathcal{S}| \ll |\mathcal{T}|$, such that training a model $\theta^{\mathcal{S}}$ on \mathcal{S} achieves comparable generalization to training $\theta^{\mathcal{T}}$ on the full dataset \mathcal{T} :*

$$\mathcal{S}^* = \arg \min_{\mathcal{S} \subset \mathcal{T}: \frac{|\mathcal{S}|}{|\mathcal{T}|} \approx 1-\alpha} \mathbb{E}_{(\mathbf{x}, y) \sim P} [\mathcal{L}(\mathbf{x}, y; \theta^{\mathcal{S}}) - \mathcal{L}(\mathbf{x}, y; \theta^{\mathcal{T}})], \quad (1)$$

where $\alpha \in (0, 1)$ denotes the pruning ratio and $(1 - \alpha)$ is the retained fraction. \mathcal{L} is the task-specific loss.

Notation. Throughout the paper we use α for the pruning ratio and $(1 - \alpha)$ for the retained fraction.

While simple in form, this objective is difficult to achieve in practice. Effective coresnet selection depends on identifying training samples that best support generalization. Popular approaches estimate sample importance via gradients, influence scores, or diversity heuristics (Nogueira et al., 2018; Song et al., 2022; Xiao et al., 2025; Zheng et al., 2022). Yet, these methods are often sensitive to noise, expensive to compute, or agnostic to class structure.

2.2 HYPERSPHERE CLASSIFIER

Hypersphere classifiers, such as Deep SVDD (Ruff et al., 2018) and FCDD (Liznerski et al., 2020), represent a class of anomaly detection methods that embed nominal data into a compact region of the feature space while mapping anomalies away.

Definition 2 (Hypersphere Classifier). *Given a collection of samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with labels $y_i \in \{0, 1\}$ (where $y_i = 0$ denotes a nominal sample and $y_i = 1$ denotes an anomaly), a hypersphere classifier seeks to learn a neural network mapping $\phi(\mathbf{x}; W)$ with parameters W and a randomly (non-trivial) center $\mathbf{c} \in \mathbb{R}^d$ by optimizing the objective:*

$$\min_W \frac{1}{n} \sum_{i=1}^n \left[(1 - y_i) h(\|\phi(\mathbf{x}_i; W) - \mathbf{c}\|) - y_i \log (1 - \exp (-h(\|\phi(\mathbf{x}_i; W) - \mathbf{c}\|))) \right], \quad (2)$$

where $h : \mathbb{R} \rightarrow \mathbb{R}$ is the pseudo-Huber loss (Huber, 1992) defined as $h(a) = \sqrt{a^2 + 1} - 1$. This loss function robustly penalizes deviations, interpolating from a quadratic penalty for small distances to a linear penalty for larger deviations.

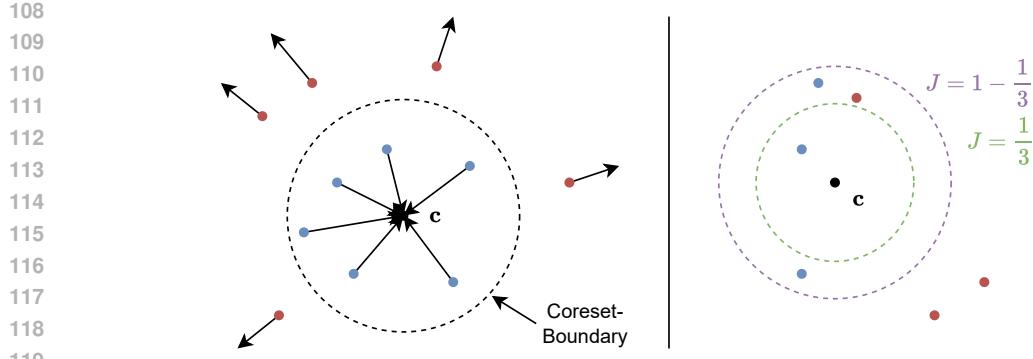


Figure 1: **Left:** Visualization of HyperCore. In-class samples are pulled toward the center, while out-of-class samples are pushed away, creating a clear separation. **Right:** Illustration of adaptive pruning ratio selection via Youden’s J statistic. Two candidate thresholds are compared, with the purple threshold yielding a higher J value and thus being considered more optimal for pruning.

Coreset Selection Context. This geometric intuition naturally facilitates threshold-based selection of representative data points, making hypersphere classifiers particularly suitable for robust coresets selection tasks. In a one-vs-rest view, we ask if a sample is *typical of class c* . Four sources tend to fall farther from the c -center in a class-conditional embedding: (i) true out-of-class samples, (ii) mislabeled instances whose content supports another class, (iii) borderline examples mixing evidence from multiple classes, and (iv) low-quality or corrupted inputs. All four inject conflicting gradients for class c , so excluding them when curating c ’s coresset improves representativeness. In our experiments section, we show empirically that our derived coresets preferentially retain clean, central exemplars.

3 METHODOLOGY

Our method is built upon class-wise hypersphere models that assess the representativeness of each sample by measuring the distance to a fixed hypersphere center, as illustrated in Figure 1 (left). Specifically, we classify samples from the target class as normal, and all others as anomalies.

3.1 HYPERCORE LOSS WITH ZERO CENTER

A key simplification of HyperCore is anchoring the hypersphere center at the origin, i.e. $\mathbf{c} = \mathbf{0}$, which avoids explicit center estimation and enables lightweight optimization. Let $\phi(\mathbf{x}; W) \in \mathbb{R}^d$ denote the learned embedding of input \mathbf{x} under parameters W . The embedding norm $\|\phi(\mathbf{x}; W)\|$ is then used as a measure of conformity.

Definition 3 (HyperCore Loss). *Given a sample \mathbf{x} with label $y \in \{0, 1\}$ (where $y = 0$ denotes an in-class sample and $y = 1$ an out-of-class sample), the HyperCore loss is defined as*

$$L_{\text{HyperCore}}(\mathbf{x}; W) = (1 - y) h(\|\phi(\mathbf{x}; W)\|) - y \log \left(1 - \exp(-h(\|\phi(\mathbf{x}; W)\|)) \right), \quad (3)$$

where $h(a) = \sqrt{a^2 + 1} - 1$ is the pseudo-Huber loss (Huber, 1992). This loss penalizes small embedding norms for anomalies and encourages in-class samples to lie close to the origin.

We now show that the trivial solution $W = 0$ (mapping all inputs to $\mathbf{0}$) is not optimal.

Lemma 1 (Balanced Sampling Prevents Trivial Collapse). *Assume that each training batch is balanced, i.e. the number of in-class ($y = 0$) samples equals the number of out-of-class ($y = 1$) samples. Let W_0 be the all-zero weight configuration such that $\phi(\mathbf{x}; W_0) = \mathbf{0}$ for all \mathbf{x} . Then the HyperCore loss at W_0 is unbounded:*

$$L_{\text{HyperCore}}(\mathbf{x}; W_0) \rightarrow \infty, \quad (4)$$

which rules out the trivial solution as optimal.

162 *Proof.* At $W \rightarrow W_0$, we have $\phi(\mathbf{x}; W) \rightarrow \mathbf{0}$ and hence $\|\phi(\mathbf{x}; W)\| \rightarrow 0$. Since $h(0) = 0$, the loss
 163 for in-class samples ($y = 0$) vanishes. For out-of-class samples ($y = 1$), the term becomes
 164

$$165 \quad -\log(1 - \exp(-h(0))) = -\log(1 - e^0) = -\log(0) \rightarrow \infty. \quad (5)$$

166 Thus, even a single out-of-class sample in a batch makes $L_{\text{HyperCore}}(\mathbf{x}; W_0)$ diverge. \blacksquare
 167

168 3.2 STATIC PRUNING: A BASELINE FOR COMPARISON

170 As a baseline, we adopt fixed pruning ratios. Let $\mathcal{T}_c^{\text{in}}$ denote the in-class dataset for class c . Each
 171 sample $\mathbf{x}_i \in \mathcal{T}_c^{\text{in}}$ is mapped to an embedding with norm

$$172 \quad d_i = \|\phi_c(\mathbf{x}_i)\|. \quad (6)$$

174 Given a pruning fraction α , we retain the $(1 - \alpha) \cdot |\mathcal{T}_c^{\text{in}}|$ samples with the smallest d_i . Formally,

$$175 \quad \mathcal{S}_c^{\text{fixed}} = \{(\mathbf{x}_i, c) \in \mathcal{T}_c^{\text{in}} \mid d_i \leq \tau_c^{\text{fixed}}\}, \quad (7)$$

177 where τ_c^{fixed} is chosen such that exactly $(1 - \alpha) \cdot |\mathcal{T}_c^{\text{in}}|$ samples are kept. The global coresset is
 178 $\mathcal{S}^{\text{fixed}} = \bigcup_{c=0}^{C-1} \mathcal{S}_c^{\text{fixed}}$.

179 Although simple, this approach does not adapt to class-specific density or noise levels. Furthermore,
 180 finding an effective α typically requires testing multiple candidates, increasing overhead.
 181

182 3.3 HYPERCORE WITH ADAPTIVE PRUNING RATIO

184 Instead of fixing α , we determine class-specific thresholds via Youden's J statistic (Youden, 1950).
 185 For each class c , let

$$186 \quad D_c^{\text{in}} = \{d_i = \|\phi(\mathbf{x}_i; W)\| : (\mathbf{x}_i, c) \in \mathcal{T}_c^{\text{in}}\}, \text{ and} \\ 187 \quad D_c^{\text{out}} = \{d_j = \|\phi(\mathbf{x}_j; W)\| : (\mathbf{x}_j, c) \in \mathcal{T} \setminus \mathcal{T}_c^{\text{in}}\}. \quad (8)$$

189 For any candidate threshold τ , we define
 190

$$191 \quad \text{TPR}_c(\tau) = \frac{|\{d \in D_c^{\text{in}} : d \leq \tau\}|}{|D_c^{\text{in}}|}, \quad \text{FPR}_c(\tau) = \frac{|\{d \in D_c^{\text{out}} : d \leq \tau\}|}{|D_c^{\text{out}}|}. \quad (9)$$

193 Youden's J statistic, as illustrated in Figure 1 (right), is then

$$195 \quad J_c(\tau) = \text{TPR}_c(\tau) - \text{FPR}_c(\tau). \quad (10)$$

196 The optimal threshold is

$$197 \quad \tau_c^* = \arg \max_{\tau \in D_c^{\text{in}}} J_c(\tau). \quad (11)$$

200 The class-specific coresset is

$$201 \quad \mathcal{S}_c = \{(\mathbf{x}_i, c) \in \mathcal{T}_c^{\text{in}} \mid d_i \leq \tau_c^*\}, \quad (12)$$

202 and the global coresset is again the union $\mathcal{S} = \bigcup_{c=0}^{C-1} \mathcal{S}_c$.

203 **Lemma 2** (Threshold search complexity). *For class c , computing $\tau_c^* = \arg \max_{\tau \in D_c^{\text{in}}} J_c(\tau)$ requires
 204 sorting D_c^{in} and a single linear scan, i.e., $O(n_c \log n_c)$ time and $O(n_c)$ memory. Summed over classes,
 205 the total time is $\sum_c O(n_c \log n_c)$ and memory $\sum_c O(n_c)$, with $\sum_c n_c = N$.*

207 3.4 PRACTICAL REMARKS AND COMPLEXITY

209 **Training overhead.** Each ϕ_c is a small network trained on $\mathcal{T}_c^{\text{in}} \cup \mathcal{T}_c^{\text{out}}$, typically much cheaper than
 210 full-dataset gradient-based selection.

211 **Thresholding overhead.** For each class, sorting D_c^{in} costs $O(n_c \log n_c)$, where $n_c = |\mathcal{T}_c^{\text{in}}|$. Across
 212 classes, the complexity is near-linear in N .

214 **No fraction tuning.** HyperCore automatically derives class-specific pruning ratios without requiring
 215 α . A global budget can be enforced if needed, but allowing classes to self-threshold often yields
 greater robustness.

216 **Table 1: Coreset selection performance on ImageNet-1K.** We evaluate various pruning methods
 217 by training randomly initialized ResNet-18 models on their selected subsets and testing on the full
 218 ImageNet validation set. DeepFool and GraNd are excluded due to their substantial memory and
 219 computational demands.

Fraction $(1 - \alpha)$	10%	20%	30%	40%	50%	100%
Herding (Welling, 2009)	29.17 \pm 0.23	41.26 \pm 0.43	48.71 \pm 0.23	54.65 \pm 0.07	58.92 \pm 0.19	69.52 \pm 0.45
k-Center Greedy (Sener & Savarese, 2017)	48.11 \pm 0.29	59.06 \pm 0.22	62.91 \pm 0.22	64.93 \pm 0.22	66.04 \pm 0.05	69.52 \pm 0.45
Forgetting (Toneva et al., 2018)	55.31\pm0.07	60.36\pm0.12	62.45 \pm 0.11	63.97 \pm 0.01	65.06 \pm 0.02	69.52 \pm 0.45
CAL(Margatina et al., 2021)	46.08 \pm 0.10	53.71 \pm 0.19	58.11 \pm 0.13	61.17 \pm 0.06	63.67 \pm 0.28	69.52 \pm 0.45
Craig (Mirzasoleiman et al., 2020)	51.39 \pm 0.13	59.33 \pm 0.22	62.72 \pm 0.13	64.96\pm0.00	66.29 \pm 0.00	69.52 \pm 0.45
GradMatch (Killamsetty et al., 2021a)	47.57 \pm 0.32	56.29 \pm 0.31	60.62 \pm 0.28	64.40 \pm 0.33	65.02 \pm 0.50	69.52 \pm 0.45
Glister (Killamsetty et al., 2021b)	47.02 \pm 0.29	55.93 \pm 0.17	60.38 \pm 0.17	62.86 \pm 0.07	65.07 \pm 0.08	69.52 \pm 0.45
HyperCore (ours)	49.94 \pm 0.02	58.12 \pm 0.11	62.96\pm0.01	64.96\pm0.04	65.32 \pm 0.13	69.52 \pm 0.45

229 **Table 2: Fixed coresets selection accuracy on CIFAR-10** using randomly initialized ResNet-18
 230 models (He et al., 2016). Bold entries indicate the highest performance at each data fraction.

Fraction $(1 - \alpha)$	0.1%	0.5%	1%	5%	10%	20%	30%	40%	50%	60%	90%	100%
Herding (Welling, 2009)	19.8 \pm 2.7	29.2 \pm 2.4	31.1 \pm 2.9	50.7 \pm 1.6	63.1 \pm 3.4	75.2 \pm 1.0	80.8 \pm 1.5	85.4 \pm 1.2	88.4 \pm 0.6	90.9 \pm 0.4	94.4 \pm 0.1	95.6 \pm 0.1
k-Center Greedy (Sener & Savarese, 2017)	19.9 \pm 0.9	25.3 \pm 0.9	32.6 \pm 1.0	55.6 \pm 2.8	74.6 \pm 0.9	87.3\pm0.2	91.0 \pm 0.3	92.6 \pm 0.2	93.5 \pm 0.5	94.3 \pm 0.2	95.5 \pm 0.2	95.6 \pm 0.1
Forgetting (Toneva et al., 2018)	21.3 \pm 1.2	29.7 \pm 0.3	35.6 \pm 1.0	51.1 \pm 2.0	66.9 \pm 2.0	86.6 \pm 1.0	91.7\pm0.3	93.0\pm0.2	94.1 \pm 0.2	94.6 \pm 0.2	95.4 \pm 0.1	95.6 \pm 0.1
GraNd (Paul et al., 2021)	14.6 \pm 0.8	17.2 \pm 0.8	18.6 \pm 0.8	28.9 \pm 0.5	41.3 \pm 1.3	71.1 \pm 1.3	88.3 \pm 1.0	93.0\pm0.4	94.8\pm0.1	95.2\pm0.1	95.5 \pm 0.1	95.6 \pm 0.1
CAL (Margatina et al., 2021)	23.1 \pm 1.8	31.7 \pm 0.9	39.7 \pm 3.8	60.8\pm1.4	69.7 \pm 0.8	79.4 \pm 0.9	85.1 \pm 0.7	87.6 \pm 0.3	89.6 \pm 0.4	90.9 \pm 0.4	94.7 \pm 0.2	95.6 \pm 0.1
DeepFool (Ducoffe & Precioso, 2018)	18.7 \pm 0.9	26.4 \pm 1.1	28.3 \pm 0.6	47.7 \pm 3.5	61.2 \pm 2.8	82.7 \pm 0.5	90.8 \pm 0.5	92.9 \pm 0.2	94.4 \pm 0.1	94.8 \pm 0.1	95.6\pm0.1	95.6 \pm 0.1
Craig (Mirzasoleiman et al., 2020)	19.3 \pm 0.3	29.1 \pm 1.6	32.8 \pm 1.8	42.5 \pm 1.7	59.9 \pm 2.1	78.1 \pm 2.5	90.0 \pm 0.5	92.8 \pm 0.2	94.3 \pm 0.2	94.8 \pm 0.1	95.5 \pm 0.1	95.6 \pm 0.1
GradMatch (Killamsetty et al., 2021a)	17.4 \pm 1.6	27.1 \pm 1.1	27.7 \pm 2.0	41.8 \pm 2.4	55.5 \pm 2.3	78.1 \pm 2.0	89.6 \pm 0.7	92.7 \pm 0.5	94.1 \pm 0.2	94.7 \pm 0.3	95.4 \pm 0.1	95.6 \pm 0.1
Glister (Killamsetty et al., 2021b)	18.4 \pm 1.3	26.5 \pm 0.7	29.4 \pm 1.9	42.1 \pm 1.0	56.8 \pm 1.8	77.2 \pm 2.4	88.8 \pm 0.6	92.7 \pm 0.4	94.2 \pm 0.1	94.8 \pm 0.2	95.5 \pm 0.1	95.6 \pm 0.1
HyperCore (ours)	24.5\pm1.3	35.4\pm1.0	40.7\pm1.0	60.3 \pm 1.3	71.1\pm0.9	83.5 \pm 0.5	88.6 \pm 0.4	91.1 \pm 0.3	92.3 \pm 0.1	93.1 \pm 0.1	95.0 \pm 0.2	95.6 \pm 0.1

4 EXPERIMENTS

243 In this section, we present experiments on ImageNet-1K (Deng et al., 2009) and CIFAR-10
 244 (Krizhevsky et al., 2009) that assess HyperCore across several dimensions, including overall coresets
 245 quality, runtime efficiency, and robustness.

246 **Backbone and training.** For all experiments, we use ResNet-18 (He et al., 2016), following training
 247 protocols from DeepCore (Guo et al., 2022). Models are trained with SGD for 200 epochs using a
 248 cosine-annealed learning rate (initial 0.1), momentum 0.9, weight decay 5×10^{-4} , and standard data
 249 augmentation (random crop + flip). On CIFAR-10, we use a batch size of 128; on ImageNet-1K, a
 250 batch size of 256. To establish upper-bound references, we also train ResNet-18 on random subsets
 251 of varying fractions of the full dataset.

252 **HyperCore training.** Each class-specific HyperCore model is trained on balanced batches (half
 253 in-class, half out-of-class). We use Adam with learning rate 10^{-4} , batch size 128 for CIFAR-10
 254 and 512 for ImageNet, and train for 100 epochs per class. Since classes are independent, training
 255 runs fully in parallel, making the overall wall-clock cost scale with available compute rather than the
 256 number of classes.

257 **Robustness protocol.** To evaluate label noise tolerance, we adopt the poisoning setup of Zhang et al.
 258 (2021), injecting label noise and malicious relabeling into the training data.

4.1 IMAGENET-1K RESULTS

262 Our evaluation on ImageNet-1K in Table 1 demonstrates that HyperCore achieves consistently strong
 263 performance, positioning itself among the top-performing coresets selection methods despite being
 264 explicitly designed with robustness as its primary objective. Specifically, at moderate to high retained
 265 fractions (30–50%), HyperCore matches or slightly surpasses established state-of-the-art methods
 266 such as Craig and GradMatch. Even at more aggressive pruning (e.g., $(1 - \alpha) = 10\%–20\%$ retained),
 267 HyperCore closely follows the best-performing methods and achieves highly competitive results.

270
 271
 272
 273
 274 Table 3: **Fixed coresets selection performance under label noise on CIFAR-10**, where 10% of the
 275 training labels are randomly corrupted by assigning them to incorrect classes. Bold entries indicate
 276 the highest performance at each data fraction.
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286

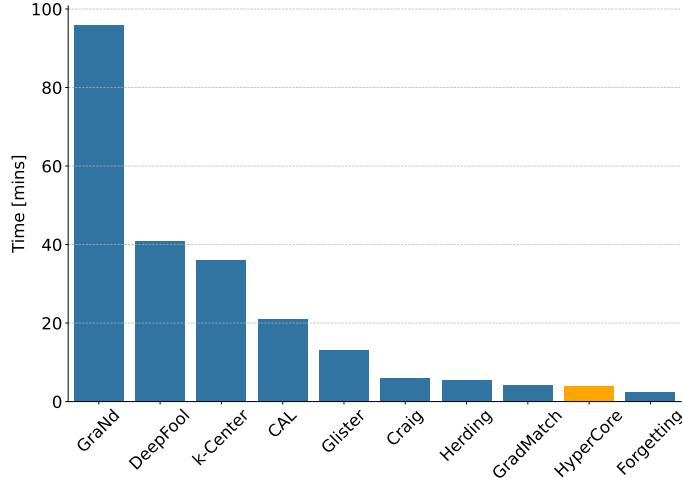
Fraction $(1 - \alpha)$	0.1%	0.5%	1%	5%	10%	20%	30%	40%	50%	60%	90%	100%
Herding (Welling, 2009)	11.4±0.9	10.8±0.5	11.1±0.9	10.6±1.1	11.7±0.9	26.0±3.4	50.1±1.3	71.0±0.6	79.1±1.8	84.6±0.6	90.4±0.1	90.8±0.1
	-8.4	-18.4	-20.0	-40.1	-51.4	-49.2	-30.7	-14.4	-9.3	-6.3	-4.0	-4.8
k-Center Greedy (Sener & Savarese, 2017)	12.6±1.3	14.3±0.8	16.1±1.0	29.6±1.6	41.7±3.0	62.0±2.0	73.8±1.8	80.2±0.7	83.9±0.7	86.6±0.5	90.4±0.3	90.8±0.1
	-7.3	-11.0	-16.5	-26.0	-32.9	-25.3	-17.2	-12.4	-9.6	-7.7	-5.1	-4.8
Forgetting (Toneva et al., 2018)	21.8±1.6	31.1±1.0	35.0±1.3	52.8±1.2	66.4±1.3	83.2±1.0	88.9±0.2	90.7±0.2	91.0±0.4	91.5±0.4	90.9±0.1	90.8±0.1
	+0.5	+1.4	-0.6	+1.7	-0.5	-3.4	-2.8	-2.3	-3.1	-3.1	-4.5	-4.8
GraNd (Paul et al., 2021)	11.5±0.9	11.9±0.8	11.1±0.6	10.8±1.1	10.6±1.2	25.4±0.9	44.8±2.0	67.2±2.6	79.4±1.3	86.3±0.3	90.2±0.2	90.8±0.1
	-3.1	-5.3	-7.5	-18.1	-30.7	-45.7	-43.5	-25.8	-15.4	-8.9	-5.3	-4.8
CAL (Margatina et al., 2021)	21.3±1.7	30.8±1.0	36.8±1.3	59.9±0.8	71.3±1.0	80.0±0.2	83.9±0.6	87.1±0.3	89.1±0.2	90.6±0.2	91.9±0.1	90.8±0.1
	-1.8	-0.9	-2.9	-0.9	-1.6	+0.6	-1.2	-0.5	-0.5	-0.3	-2.8	-4.8
DeepFool (Ducoffe & Precioso, 2018)	17.4±0.9	21.6±1.4	25.3±1.3	33.6±0.4	43.9±3.2	65.5±1.6	77.0±1.3	84.5±0.5	86.6±0.9	88.7±0.5	90.8±0.2	90.8±0.1
	-1.3	-4.8	-3.0	-14.1	-17.3	-17.2	-13.8	-8.4	-7.8	-6.1	-4.8	-4.8
Craig (Mirzasoleiman et al., 2020)	19.5±1.4	20.2±1.1	24.8±1.1	30.4±0.9	31.7±1.6	39.2±1.5	58.4±2.9	73.1±1.4	81.4±0.6	85.3±0.4	90.5±0.3	90.8±0.1
	+0.2	-8.9	-8.0	-12.1	-28.2	-38.9	-31.6	-19.7	-12.9	-9.5	-5.0	-4.8
GradMatch (Killamsetty et al., 2021a)	15.7±2.0	21.4±0.7	23.0±1.6	27.6±2.4	31.4±2.5	37.7±2.1	55.6±2.5	72.0±1.4	80.3±0.4	85.3±0.5	90.2±0.2	90.8±0.1
	-1.7	-5.7	-4.7	-14.2	-24.1	-40.4	-34.0	-20.7	-13.8	-9.4	-5.2	-4.8
Gilster (Killamsetty et al., 2021b)	14.9±2.0	20.9±1.5	24.5±1.3	29.0±1.9	31.7±2.1	40.2±2.3	57.2±1.3	72.2±1.3	80.6±0.4	85.4±0.5	90.2±0.2	90.8±0.1
	-3.5	-5.6	-4.9	-13.1	-25.1	-37.0	-31.6	-20.5	-13.6	-9.4	-5.3	-4.8
HyperCore (ours)	20.9±1.5	32.6±1.1	41.4±1.0	60.5±1.4	70.0±0.9	84.2±0.9	89.1±0.4	91.0±0.5	92.6±0.1	93.5±0.2	93.7±0.3	90.8±0.1
	-3.6	-2.8	+0.7	+0.2	-1.1	+0.7	+0.5	-0.1	+0.3	+0.4	-1.3	-4.8

288 4.2 CIFAR-10 RESULTS

289
 290 Comparisons to other coresets
 291 baselines are shown in Table 2.
 292 HyperCore achieves *up to 5.6%*
 293 *higher accuracy than the best*
 294 *baseline at aggressive pruning*
 295 *levels*. More specifically, HyperCore
 296 is on par for larger retained
 297 fractions while reaching the
 298 overall best results between
 299 $(1 - \alpha) = 0.1\%$ and 10% . Fur-
 300 thermore, the parallelizable
 301 design of HyperCore enables us
 302 to obtain these outcomes with
 303 significantly reduced execution
 304 times, as shown in Figure 2.

305 In Table 3, we investigate how
 306 each coresets selection strategy
 307 holds up when 10% of the
 308 CIFAR-10 training labels are cor-
 309 rupted with random misassignments
 310 (Zhang et al., 2021). As one might
 311 expect, most approaches
 312 struggle at very small retained
 313 fractions (e.g., $(1 - \alpha) = 0.1\%$ or
 314 0.5%). In fact, if we look at
 315 the leftmost columns, methods such
 316 as GraNd or DeepFool perform
 317 particularly poorly, sometimes
 318 falling below 15% accuracy. Yet even
 319 at these high pruning levels, it is
 320 notable that Forgetting stands
 321 out with a slightly higher result
 322 at $(1 - \alpha) = 0.1\%$.

323 For larger retained fractions (0.5% and
 324 beyond), one sees the advantages
 325 of HyperCore sharpen. For
 326 instance, at 1% of the data, HyperCore
 327 achieves 41.4% accuracy, surpassing
 328 the second-best method
 329 (CAL) by a margin of about 4.6%. This
 330 gap widens in the mid-range fractions
 331 (10% , 20% , 30%), underscoring
 332 the resilience of our method to label
 333 noise: whereas other approaches tend
 334 to plateau or fade noticeably, HyperCore
 335 keeps the performance or advances.
 336 As expected, accuracies converge
 337 at 90% dataset usage since almost
 338 all data is included. Notably, from
 339 40% onward, HyperCore empirically
 340 validates the theory of Sorscher et al.
 341 (2022) by surpassing even full dataset
 342 performance. Further experiments
 343 (see appendix) with VGG-16, InceptionNet,
 344 ResNet-50, and WRN-16-8 confirm
 345 these observations: HyperCore is
 346 exceptionally efficient under noisy
 347 conditions.



348 Figure 2: Time-Measurement on CIFAR-10. HyperCore ranks
 349 among the fastest techniques, including training, averaging only 4
 350 minutes per class and benefiting from a parallelizable design.

324 4.3 ADAPTIVE CORESET SELECTION
325

326 The results presented in Table 4 demonstrate
327 the effectiveness of adaptive coresset selection
328 using HyperCore across various levels of label
329 poisoning on CIFAR-10. When no label noise
330 is present, HyperCore matches the accuracy ob-
331 tained by training on the full dataset, illustrating
332 that adaptive selection does not compromise
333 model performance. More notably, as the level
334 of label noise increases, HyperCore significantly
335 outperforms training on the full dataset.

336 The Figure 3 shows that as the percentage of
337 relabeling increases (i.e., as the level of label
338 poisoning grows), the adaptive thresholds - the
339 hypersphere radii - tend to increase. This be-
340 havior suggests that with more noise, the em-
341 beddings become more dispersed; in order to
342 retain as many true inlier samples as possible, the
343 model adapts by enlarging the decision bound-
344 ary. Moreover, the rising standard deviation
345 across classes indicates that the impact of label
346 noise is not uniform: some classes experience a
347 greater shift in their radii than others. In short,
348 the model compensates for increased uncertainty
349 by raising the threshold, which, though it might
350 seem counterintuitive at first, is necessary to
351 maintain robust discrimination between inliers
352 and outliers under noisy conditions.

353 4.4 ANALYSIS OF YOUDEN'S J STATISTICS

354 Regarding adaptiveness, Figure 4 compares the key performance curves of **HyperCore** under increasing
355 levels of artificially introduced label noise. In the left panel, we plot the confusion-based rates,
356 namely True Positive Rate (**TPR**), False Positive Rate (**FPR**), True Negative Rate (**TNR**), and False
357 Negative Rate (**FNR**), as a function of the poisoning percentage. Broadly speaking, positive rates
358 denote included samples, while negative rates mean they are excluded. Despite the growing noise,
359 we observe that TPR and TNR remain consistently higher than FPR and FNR, indicating that our
360 hypersphere models selectively exclude corrupted or ambiguous samples. Meanwhile, FPR and FNR
361 only moderately increase, suggesting that HyperCore successfully mitigates the risk of discarding
362 genuine samples or retaining mislabeled ones.

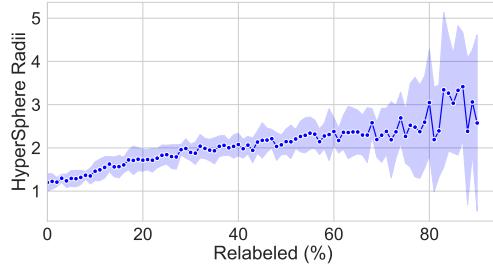
363 In the right panel, we plot Youden's J in orange, alongside the fraction of removed data in blue.
364 Even as the fraction removed escalates for severe noise, Youden's J remains relatively stable. This
365 interplay demonstrates that the pruning decisions of HyperCore are not overly conservative. Although
366 HyperCore discards an increasingly large portion of the data under extreme mislabeling, it still
367 identifies informative inliers with sufficient reliability to maintain a viable Youden's J . Overall, the
368 figure underscores strong resilience to label noise.

370 5 RELATED WORK
371

372 **Distance-Based Pruning and Anomaly Detection.** In parallel, a rich literature on anomaly or
373 outlier detection capitalizes on distance metrics. One-class methods such as *Support Vector Data*
374 *Description* (SVDD) (Tax & Duin, 2004) enclose normal samples in a minimal-radius hypersphere,
375 labeling points outside as outliers. Deep SVDD extends this idea to a learned representation, forcing
376 inliers near a randomly-sampled center in feature space (Ruff et al., 2018; Lizenski et al., 2020).
377 These methods align with the *hypersphere* concept in **HyperCore**: Like one-class approaches, Hyper-
Core identifies “inlier” samples with small norm while pushing outliers away. Unlike hypersphere

378 Table 4: CIFAR-10 performance for training on
379 full dataset vs on adaptively derived coresets (Hy-
380 perCore).

Poisoning	Accuracy [%]		$\alpha_{\text{HyperCore}} [\%]$
	Full Dataset	HyperCore	
0%	95.6±0.1	95.6±0.2	00.6±0.4
10%	90.8±0.1	94.8±0.2	16.4±1.3
20%	87.5±0.4	93.5±0.3	29.4±2.4
30%	85.9±0.3	91.1±0.3	41.2±2.7
40%	83.7±0.5	86.9±1.3	50.5±4.0

381 Figure 3: Average hypersphere radii (adaptive
382 thresholds) and their standard deviations as a
383 function of the relabeling percentage. The plot
384 reveals that both the mean radius and its variabil-
385 ity increase with higher levels of label poison-
386 ing, reflecting a broader dispersion in the embed-
387 ding space and an adaptive expansion of the deci-
388 sion boundary to accommodate noise.

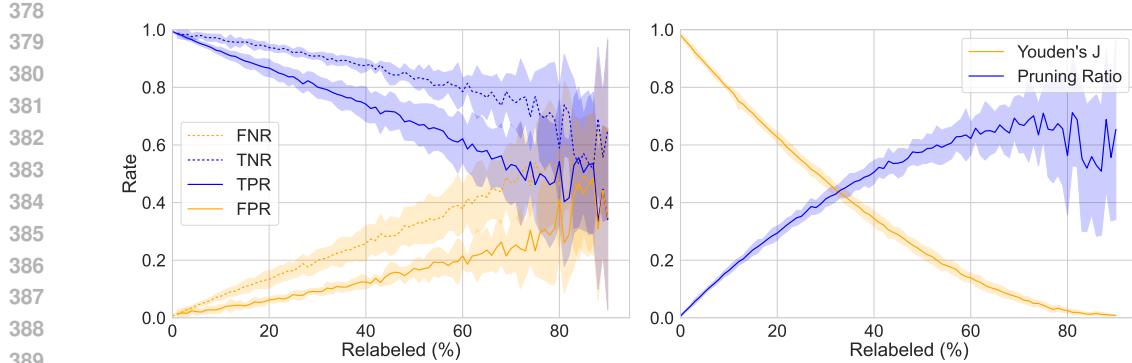


Figure 4: **Left:** Confusion-based metrics (TPR, FPR, TNR, FNR) under increasing label poisoning in CIFAR-10. **Right:** Youden’s J (orange) and fraction of removed samples (blue). Both plots highlight HyperCore’s robust coresset selection behavior across varying degrees of poisoned labels (error-bands highlight the variance between the class labels).

classifiers, HyperCore uses simpler per-class MLPs with Youden’s J thresholds, and a modified loss function.

Norm-Based Confidence Scores in Distillation and Noise Removal. Several approaches for dataset distillation or data pruning measure “confidence” using norms in feature space. For example, Lee et al. (Lee et al., 2018) compute class-conditional Gaussians on deep embeddings (Mahalanobis distance) and exclude points far from the nearest class center. Similarly, Pleiss et al. (Pleiss et al., 2020) track margin-based criteria to detect possible mislabels, effectively removing outlier examples. In coresset selection under noisy labels, Kang et al. (Kang et al., 2019) highlight that samples near the class centroid are typically correct, while label errors lie on the distribution fringe. This principle resonates with HyperCore’s geometry-driven approach: we train a *binary in/out* classifier per class to separate inlier vs. out-class data, then threshold based on distance.

Lightweight vs. Full-Model Coreset Approaches. While gradient or influence-based selection can yield high-quality coressets (Paul et al., 2021; Killamsetty et al., 2021a), such methods typically incur substantial overhead: they require partial or entire model training to compute per-sample gradients or forgetting events (Toneva et al., 2018). By contrast, HyperCore remains *partially trained* (it fits a class-wise MLP to discriminate in/out), but each MLP sees only a subset of the dataset and does not require a large architecture or global alignment. This design reduces computation while flexibly adapting to each class’s unique geometry.

Prototype Selection and Continual Learning. Prototype-based selection methods identify exemplars that approximate the class mean. For instance, iCaRL (Rebuffi et al., 2017) selects a small set of class representatives that minimize the distance to that class’s mean embedding. When data are mislabeled or heavily imbalanced, however, simple centroid-based picks can inadvertently keep outliers if they exhibit subtle bias in embedding space. HyperCore addresses such issues by *actively* learning a boundary between inliers and outliers for each class, producing a more robust subset. In continual learning, HyperCore could replace iCaRL’s herding by selecting reliably central class samples.

Relation to Our HyperCore Approach. We draw on the success of minimal, class-wise boundaries (like SVDD), but unify them with a simple *per-class in/out MLP* plus a *Youden’s J threshold* to auto-prune ambiguous points. As a result, HyperCore effectively discards label noise and yields a representative coresset *without* requiring a large network or full-model backprop. This blend of geometry-driven inlier detection, threshold-based selection, and partial learning stands in contrast to existing coresset methods that rely on global fractions or heavy optimization of large models. HyperCore complements existing methods by providing a lightweight, noise-robust, class-specific alternative.

432 **6 LIMITATIONS**

433

434 HyperCore has several limitations that are worth noting despite its significant strengths. The hyper-
 435 sphere models depend heavily on learning meaningful embeddings from relatively small per-class
 436 data subsets. In classes with extremely limited or highly imbalanced data, the learned boundaries
 437 might degrade, reducing the robustness of HyperCore’s adaptive pruning. Also, training separate hy-
 438 persphere models per class could become computationally expensive as the number of classes scales
 439 (e.g., beyond thousands of classes) and the amount of GPUs/CPUs is limited, although HyperCore
 440 significantly reduces computational overhead compared to full-model coreset methods.

441 In addition, Youden’s J implicitly treats false positives and false negatives as equally costly. In
 442 domains with highly asymmetric costs or constraints (e.g., extreme class imbalance or safety-critical
 443 false negatives), alternative thresholding rules may be preferable—such as optimizing a weighted J
 444 (cost-sensitive TPR/FPR), setting a target precision/recall operating point, or calibrating thresholds
 445 via validation risk minimization.

446

447 **7 CONCLUSION & FUTURE WORK**

448

449 We introduced HyperCore, a robust coresset selection framework leveraging hypersphere models.
 450 Unlike existing methods, HyperCore utilizes class-conditional embeddings with adaptive pruning
 451 thresholds determined by Youden’s J statistic, enabling automatic and noise-aware subset selection
 452 without extensive hyperparameter tuning. HyperCore raises the bar for robust coresset selection,
 453 setting new benchmarks for pruning accuracy and label noise tolerance. By effectively discarding
 454 mislabeled or ambiguous data points, HyperCore ensures that the retained coresets are compact yet
 455 highly representative, thereby promoting efficient and robust model training.

456 Future work includes applying HyperCore to semi-supervised, continual learning, and large-scale
 457 tasks. Additionally, analyzing dynamic updates to hypersphere boundaries could further enhance
 458 HyperCore’s versatility.

459

460 **REFERENCES**

461

462 Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via
 463 coresets. *Combinatorial and computational geometry*, 52(1):1–30, 2005.

464 Samy Bengio, Krzysztof Dembczynski, Thorsten Joachims, Marius Kloft, and Manik Varma. Extreme
 465 classification (dagstuhl seminar 18291). In *Dagstuhl Reports*, volume 8. Schloss Dagstuhl-Leibniz-
 466 Zentrum fuer Informatik, 2019.

467 Megh Manoj Bhalerao. On fine-tuning submodular functions for data subset selection. Master’s
 468 thesis, University of Washington, 2024.

469

470 Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. *The Journal of Machine
 471 Learning Research*, 19(1):962–982, 2018.

472 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 473 hierarchical image database. In *CVPR*, pp. 248–255. Ieee, 2009.

474

475 Qingtang Ding, Zhengyu Liang, Longguang Wang, Yingqian Wang, and Jungang Yang. Not all
 476 patches are equal: Hierarchical dataset condensation for single image super-resolution. *IEEE
 477 Signal Processing Letters*, 2023.

478 Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
 479 based approach. *arXiv preprint arXiv:1802.09841*, 2018.

480

481 Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
 482 Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
 483 generative models. In *2022 ACM Conference on Fairness, Accountability, and Transparency*, 2022.

484

485 Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coresset selec-
 486 tion in deep learning. In *International Conference on Database and Expert Systems Applications*,
 pp. 181–195. Springer, 2022.

486 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 487 recognition. In *CVPR*, pp. 770–778, 2016.

488

489 Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics: Methodology*
 490 and distribution

491 Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
 492 Kalantidis. Decoupling representation and classifier for long-tailed recognition. *arXiv preprint*
 493 *arXiv:1910.09217*, 2019.

494

495 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
 496 importance sampling. In *ICML*, pp. 2525–2534. PMLR, 2018.

497 Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
 498 Grad-match: Gradient matching based data subset selection for efficient deep model training. In
 499 *ICML*, pp. 5464–5474. PMLR, 2021a.

500

501 Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
 502 Generalization based data subset selection for efficient and robust learning. In *AAAI*, volume 35,
 503 pp. 8110–8118, 2021b.

504 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

505

506 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 507 out-of-distribution samples and adversarial attacks. *NeurIPS*, 31, 2018.

508 Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe Franks, Marius Kloft, and Klaus-
 509 Robert Müller. Explainable deep one-class classification. *arXiv preprint arXiv:2007.01760*,
 510 2020.

511

512 Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by
 513 acquiring contrastive examples. *arXiv preprint arXiv:2109.03764*, 2021.

514 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
 515 machine learning models. In *ICML*, pp. 6950–6960. PMLR, 2020.

516

517 Brian Moser, Federico Raue, Jörn Hees, and Andreas Dengel. Less is more: Proxy datasets in nas
 518 approaches. In *CVPR*, pp. 1953–1961, 2022.

519 Brian B Moser, Federico Raue, and Andreas Dengel. A study in dataset pruning for image super-
 520 resolution. In *International Conference on Artificial Neural Networks*, pp. 351–363. Springer,
 521 2024.

522

523 Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh Yoon. Accelerating neural architecture
 524 search via proxy data. *arXiv preprint arXiv:2106.04784*, 2021.

525

526 Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. On the stability of feature selection
 527 algorithms. *Journal of Machine Learning Research*, 18(174):1–54, 2018.

528

529 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 530 important examples early in training. *NeurIPS*, 34:20596–20607, 2021.

531

532 Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
 533 using the area under the margin ranking. *NeurIPS*, 33:17044–17056, 2020.

534

535 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 536 Incremental classifier and representation learning. In *CVPR*, pp. 2001–2010, 2017.

537

538 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
 539 Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *ICML*, pp. 4393–
 4402. PMLR, 2018.

540

541 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 542 approach. *arXiv preprint arXiv:1708.00489*, 2017.

540 Linxin Song, Jieyu Zhang, Tianxiang Yang, and Masayuki Goto. Adaptive ranking-based sample selec-
 541 tion for weakly supervised class-imbalanced text classification. *arXiv preprint arXiv:2210.03092*,
 542 2022.

543 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
 544 scaling laws: beating power law scaling via data pruning. *NeurIPS*, 35:19523–19536, 2022.

545 David MJ Tax and Robert PW Duin. Support vector data description. *Machine learning*, 54:45–66,
 546 2004.

547 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
 548 Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
 549 *arXiv preprint arXiv:1812.05159*, 2018.

550 Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv*
 551 *preprint arXiv:1811.10959*, 2018.

552 Max Welling. Herding dynamical weights to learn. In *ICML*, pp. 1121–1128, 2009.

553 Lingao Xiao, Songhua Liu, Yang He, and Xinchao Wang. Rethinking large-scale dataset compression:
 554 Shifting focus from labels to images. *arXiv preprint arXiv:2502.06434*, 2025.

555 Ruining Yang and Lili Su. Data-efficient trajectory prediction via coresnet selection. *arXiv preprint*
 556 *arXiv:2409.17385*, 2024.

557 Peng Yao, Chao Liao, Jiyuan Jia, Jianchao Tan, Bin Chen, Chengru Song, and Di Zhang. Asp:
 558 Automatic selection of proxy dataset for efficient automl. *arXiv preprint arXiv:2310.11478*, 2023.

559 William J Youden. Index for rating diagnostic tests. *Cancer*, 3(1):32–35, 1950.

560 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 561 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 562 2021.

563 Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coresnet selection for high
 564 pruning rates. *ICLR*, 2022.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593