
Under review as a conference paper at ICLR 2023

ADVERSARIAL COUNTERFACTUAL ENVIRONMENT
MODEL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A good model for action-effect prediction, i.e., the environment model, is essential
for sample-efficient policy learning, in which the agent can take numerous free
trials to find good policies. Currently, the model is commonly learned by fitting
historical transition data through empirical risk minimization (ERM). However, we
discover that simple data fitting can lead to a model that will be totally wrong in
guiding policy learning due to the selection bias in offline dataset collection. In this
work, we introduce weighted empirical risk minimization (WERM) to handle this
problem in model learning. A typical WERM method utilizes inverse propensity
scores to re-weight the training data to approximate the target distribution. However,
during the policy training, the data distributions of the candidate policies can be
various and unknown. Thus, we propose an adversarial weighted empirical risk
minimization (AWRM) objective that learns the model with respect to the worst
case of the target distributions. We implement AWRM in a sequential decision
structure, resulting in the GALILEO model learning algorithm. We also discover
that GALILEO is closely related to adversarial model learning, explaining the
empirical effectiveness of the latter. We apply GALILEO in synthetic tasks and
verify that GALILEO makes accurate predictions on counterfactual data. We
finally applied GALILEO in real-world offline policy learning tasks and found that
GALILEO significantly improves policy performance in real-world testing.

1 INTRODUCTION
A good environment model is important for sample-efficient decision-making policy learning tech-
niques like reinforcement learning (RL) (James & Johns, 2016). The agent can take trials with this
model to find better policies, then the costly real-world trial-and-errors can be saved (James & Johns,
2016; Yu et al., 2020) or completely waived (Shi et al., 2019). In this process, the core of the models
is to answer queries on counterfactual data unbiasedly, that is, given states, correctly answer what
might happen if we were to carry out actions unseen in the training data (Levine et al., 2020).

Requiring counterfactual queries makes the environment model learning essentially different from
standard supervised learning (SL) which directly fits the offline dataset. In real-world applications,
the offline data is often collected with selection bias, that is, for each state, each action might be
chosen unfairly. Seeing the example in Fig. 1(a), to keep the ball following a target line, a behavior
policy will use a smaller force when the ball’s location is closer to the target line. When a dataset is
collected with selection bias, the association between the (location) states and (force) actions will
make SL hard to identify the correct causal relationship of the states and actions to the next states
respectively. Then when we query the model with counterfactual data, the predictions might be
catastrophic failures. In Fig. 1(c), it mistakes that smaller forces will increase the ball’s next location.

Generally speaking, the problem corresponds to a challenge of training the model in one dataset but
testing in another dataset with a shifted distribution (i.e., the dataset generated by counterfactual
queries), which is beyond the SL’s capability as it violates the independent and identically distributed
(i.i.d.) assumption. The problem is widely discussed in causal inference for individual treatment
effects (ITEs) estimation in many scenarios like patients’ treatment selection (Imbens, 1999; Alaa
& van der Schaar, 2018). ITEs are the effects of treatments on individuals, which are measured
by treating each individual under a uniform policy and evaluate the effect differences. Practical
solutions use weighted empirical risk minimization (WERM) to handle this problem (Jung et al., 2020;
Shimodaira, 2000; Hassanpour & Greiner, 2019). In particular, they estimate an inverse propensity
score (IPS) to re-weight the training data to approximate the data distribution under a uniform policy.
Then a model is trained under the reweighted data distribution. The distribution-shift problem is
solved as ITEs estimation and model training are under the same distribution.
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(a) A selection bias example
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(b) prediction for training
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Figure 1: An example of selection bias and predictions under counterfactual queries. Subfigure (a)
shows how the data is collected: a ball locates in a 2D plane whose position is (xt, yt) at time t. The
ball will move to (xt+1, yt+1) according to xt+1 = xt + 1 and yt+1 ∼ N (yt + at, 2). Here, at is
chosen by a control policy at ∼ N ((ϕ− yt)/15, 0.05) parameterized by ϕ, which tries to keep the
ball near the line y = ϕ. In Subfigure (a), ϕ is set to 62.5. Subfigure (b) shows the collected training
data (grey dashed line) and the two learned models’ prediction of the next position of y. All the
models discovered the relation that the corresponding next y will be smaller with a larger action.
However, the truth is not because the larger at causes a smaller yt+1, but the policy selects a
small at when yt is close to the target line. When we estimate the response curves by fixing yt and
reassigning action at with other actions at +∆a, where ∆a ∈ [−1, 1] is a variation of action value,
the model of SL will exploit the association and give opposite responses, while in AWRM and its
practical implementation GALILEO, the predictions are closer to the ground truths. The result is in
Subfigure (c), where the darker a region is, the more samples are fallen in.

The selection bias can be regarded as an instance of the problem called “distributional shift” in
offline model-based RL, which has also received great attention (Levine et al., 2020; Yu et al., 2020;
Kidambi et al., 2020; Chen et al., 2021). However, previous methods, where naive supervised
learning is used for environment model learning, ignore the problem in environment model learning to Reviewer rQ79
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Figure 2: An illustration of the predic-
tion error in counterfactual datasets.
The prediction risks is measured with
mean square error (MSE). The error of
SL is small only in training data (ϕ =
62.5) but becomes much larger in the
dataset “far away from” the training
data. AWRM-oracle selects the oracle
worst counterfactual dataset for train-
ing for each iteration (pseudocode is
in Alg. 1) which reaches small MSE in
all datasets and gives correct response
curves (Fig. 1(c)). GALILEO approxi-
mates the optimal adversarial counter-
factual data distribution based on the
training data and model. Although the
MSE of GALILEO is a bit larger than
SL in the training data, in the coun-
terfactual datasets, the MSE is on the
same scale as AWRM-oracle.

but handling the problem by suppressing the policy explo-
ration and learning in risky regions. Although these methods
have made great progress in many tasks, so far, how to learn
a better environment model that can alleviate the problem for
faithful offline policy optimization has rarely been discussed.

In this work, for faithful offline policy optimization, we in-
troduce WERM to environment model learning. The extra
challenge of model learning for policy optimization is that we
have to query numerous different policies’ feedback besides
the uniform policy for finding a good policy. Thus the target
data distribution to reweight can be various and unknown. To
solve the problem, we propose an objective called adversar-
ial weighted empirical risk minimization (AWRM). AWRM
introduces adversarial policies, of which the corresponding
counterfactual dataset has the maximal prediction error of
the model. For each iteration, the model is learned to be
as small prediction risks as possible under the adversarial
counterfactual dataset. However, the adversarial counterfac-
tual dataset cannot be obtained in the offline setting, thus
we derive an approximation of the counterfactual data dis-
tribution queried by the optimal adversarial policy and use
a variational representation to give a tractable solution to
learn a model from the approximated data distribution. As
a result, we derive a practical approach named Generative
Adversarial offLIne counterfactuaL Environment mOdel
learning (GALILEO) for AWRM. Fig. 2 shows the differ-
ence in the prediction errors learned by these algorithms. We
also discover that GALILEO is closely related to existing
generative-adversarial model learning techniques, explaining
the effectiveness of the latter.

Experiments are conducted in two synthetic and two realistic environments. The results in the
synthetic environments show that GALILEO can reconstruct correct responses for counterfactual
queries. The evaluation results in two realistic environments also demonstrate that GALILEO has
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better ability in counterfactual query compared with baselines. We finally search for a policy based
on the learned model in a real-world online platform. The policy significantly improves performance
in concerned business indicators.

2 RELATED WORK

We give related adversarial algorithms for model learning in the following and leave other related
work in Appx. F. GANTIE (Yoon et al., 2018) uses a generator to fill counterfactual outcomes for
each data pair and a discriminator to judge the source (treatment group or control group) of the
filled data pair. The generator is trained to minimize the output of the discriminator. GANITE is
trained until the discriminator cannot determine which of the components is the factual outcome. Bica
et al. (2020) propose SCIGAN to extend GANITE to continuous treatment effect estimation (a.k.a.,
dosage-response estimation) via a hierarchical discriminator architecture. In real-world applications,
environment model learning based on Generative Adversarial Imitation Learning (GAIL) has also
been adopted for sequential decision-making problems (Ho & Ermon, 2016). GAIL is first proposed
for policy imitation (Ho & Ermon, 2016), which uses the imitated policy to generate trajectories
by interacting with the environment. The policy is learned with the trajectories through RL which
maximizes the cumulative rewards given by the discriminator. Shi et al. (2019); Chen et al. (2019);
Shang et al. (2019) use GAIL for environment model learning by regarding the environment model
as the generator and the behavior policy as the “environment” in standard GAIL. These studies
empirically demonstrate that adversarial model learning algorithms have better generalization ability
for counterfactual queries, while our study reveals the connection between adversarial model learning
and the WERM through IPS. Our derived practical algorithm GALILEO is closely related to the
existing adversarial model learning algorithms, explaining the effectiveness of the latter.

3 PRELIMINARIES

3.1 SINGLE-STEP INDIVIDUALIZED TREATMENT EFFECTS ESTIMATION AND WEIGHTED
EMPIRICAL RISKS MINIMIZATION

We first introduce individualized treatment effects (ITEs) estimation (Rosenbaum & Rubin, 1983),
which can be regarded as the scenario in which the environment model has only a single step. ITEs
are typically defined as ITE(x) := E[M∗(y|x, 1)|A = 1, X = x]− E[M∗(y|x, 0)|A = 0, X = x],
where y is the feedback of the environment M∗(y|x, a), X denotes the state vector containing
pre-treatment covariates (such as age and weight), A denotes the treatment variable which is the
action intervening to the state X , and A should be sampled from a uniform policy. In the two-
treatment scenario, A is in {0, 1} where 1 is the action to intervene and 0 is the action to do
nothing. A correct ITEs estimation should be done in Randomized Controlled Trials (RCT) in
which we have the same probability of samples of A = 1 and A = 0 for each X . Here we
use lowercase x, a and y to denote samples of random variables X,A and Y , and use X ,A and
Y to denote space of the samples. In practice, we prefer to estimate ITEs under observational
studies. In observational studies, datasets are pre-collected from the real world by a behavior
policy such as a human-expert policy. In this case, a common approach for estimating the ITEs
can be ˆITE(xi) = ai(y

F
i −M(xi, 1 − ai)) + (1 − ai)(M(xi, 1 − ai) − yFi ) (Shalit et al., 2017)

in deterministic prediction, where xi and yFi denote the covariate and factual feedback of the i-th
sample, and M ∈ M denotes an approximated feedback model. M is the space of the model. In
this formulation, the training set is an empirical factual data distribution PF = {(xi, ai)}ni and
the testing set is an empirical counterfactual data distribution PCF = {(xi, 1 − ai)}ni . If a does
not sample from a discrete uniform policy, i.e., the policy has selection bias, PF and PCF will be
two different distributions, which violate the i.i.d. assumption of standard supervised learning. In
stochastic prediction, ˆITE(x) = E[M(y|x, 1)]−E[M(y|x, 0)] and the counterfactual distribution for
testing is the dataset with action sampling from a uniform policy.

Generally speaking, in ITEs estimation, the risks of queries under counterfactual data are caused
by the gap between the policy in training and testing data distributions. Without further processing,
minimizing the empirical risks cannot guarantee the counterfactual-query risks being minimized.
Assuming that the policy in training data µ satisfies µ(a|x) > 0,∀a ∈ A,∀x ∈ X (often named
overlap assumption), a classical solution to handle the above problem is weighted empirical risk
minimization (WERM) through an inverse propensity scoring (IPS) term ω (Shimodaira, 2000;
Assaad et al., 2021; Hassanpour & Greiner, 2019; Jung et al., 2020):
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Definition 3.1. The learning objective of WERM through IPS is formulated as

min
M∈M

L(M) = min
M∈M

Ex,a,y∼pµ
M∗ [ω(x, a)ℓ(M(y|x, a), y)],

s.t. ω(x, a) =
β(a|x)
µ(a|x)

,
(1)

where β and µ denote the policies in testing and training domains, and pµM∗ is the joint probability
pµM∗(x, a, y) := ρ0(x)µ(a|x)M∗(y|x, a) in which ρ0(x) is the distribution of state.M is the model
space. ℓ is a loss function for model learning.

The ω is also known as importance sampling (IS) weight, which corrects the sampling bias. In this
objective, ω is to align the training data distribution to the testing data. By selecting different ω̂
to approximate ω to learn the model M , current environment model learning algorithms for ITEs
estimation are fallen into the framework. In standard supervised learning and some works for ITEs
estimation (Wager & Athey, 2018; Weiss et al., 2015), ω̂(x, a) = 1 as the distribution-shift problem
is ignored. In Shimodaira (2000); Assaad et al. (2021); Hassanpour & Greiner (2019), ω = 1

µ̂ (i.e., β
a uniform policy) for balancing treatment and control group, where µ̂ is an approximation of behavior
policy µ. Note that it is a reasonable weight in ITEs estimation: ITEs are defined to evaluate the
effect of each state between treatment and control behavior under a uniform policy.

3.2 SEQUENTIAL DECISION-MAKING SETTING

Decision-making processes in a sequential environment are often formulated into Markov Decision
Process (MDP) (Sutton & Barto, 1998). MDP depicts an agent interacting with the environment
through actions. In the first step, states are sampled from an initial state distribution x0 ∼ ρ0(x). Then
at each time-step t ∈ {0, 1, 2, ...}, the agent takes an action at ∈ A through a policy π(at|xt) ∈ Π
based on the state xt ∈ X , then the agent receives a reward rt from a reward function r(xt, at) ∈
R and transits to the next state xt+1 given by a transition function M∗(xt+1|xt, at) built in the
environment. Π, X , and A denote the policy, state, and action spaces.

4 METHOD

In this section, we first propose a new offline model-learning objective based on Def. 3.1 for policy
optimization tasks in Sec. 4.1; In Sec. 4.2, we derive a tractable solution to the proposed objective;
Finally, we give a practical implementation in Sec. 4.3.

4.1 PROBLEM FORMULATION

For offline policy optimization, we require the environment model to have generalization ability in
counterfactual queries since we need to query numerous different policies’ correct feedback from M .
Referring to the formulation of WERM through IPS in Def. 3.1, policy optimization requires M to
minimize counterfactual-query risks under numerous unknown different policies rather than a specific
target policy β. More specifically, the question is: If β is unknown and can be varied, how should
we reduce the risks in counterfactual queries? In this article, we call the model learning problem in
this setting “counterfactual environment model learning” and propose a new objective to handle the
problem. To be compatible with multi-step environment model learning, we first define a generalized
WERM through IPS based on Def. 3.1.
Definition 4.1. Given the MDP transition function M∗ that satisfies M∗(x′|x, a) > 0,∀x ∈ X ,∀a ∈
A,∀x′ ∈ X and µ satisfies µ(a|x) > 0,∀a ∈ A,∀x ∈ X , the learning objective of generalized
WERM through IPS is formulated as

min
M∈M

L(M) = min
M∈M

Ex,a,x′∼ρµ
M∗ [ω(x, a, x

′)ℓM (x, a, x′)],

s.t. ω(x, a, x′) =
ρβM∗(x, a, x′)

ρµM∗(x, a, x′)
,

(2)

where ρµM∗ is the training data distribution (collected by policy µ), ρβM∗ is the testing data distribution
(collected by policy β). We define ℓM (x, a, x′) := ℓ(M(x′|x, a), x′) for brevity.

In an MDP, given any policy π, ρπM∗(x, a, x′) = ρπM∗(x)π(a|x)M∗(x′|x, a) where ρπM∗(x)
denotes the occupancy measure of x for policy π, which can be defined as ρπM∗(x) :=
(1 − γ)Ex0∼ρ0 [

∑∞
t=0 γ

tPr(xt = x|x0,M
∗)] (Sutton & Barto, 1998; Ho & Ermon, 2016) where
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Prπ [xt = x|x0,M
∗] is the state visitation probability that the policy π visits x at time-step t by

executing in the environment M∗ and starting at the state x0, and γ ∈ [0, 1] is the discount factor.
Here we also define ρπM∗(x, a) := ρπM∗(x)π(a|x) for simplicity. In this definition, ω can be rewritten

as: ω(x, a, x′) =
ρβ
M∗ (x)β(a|x)M∗(x′|x,a)

ρµ
M∗ (x)µ(a|x)M∗(x′|x,a) =

ρβ
M∗ (x,a)

ρµ
M∗ (x,a)

. In single-step environments, for any policy π,

ρπM∗(x) = ρ0(x). Then we have ω(x, a, x′) = ρ0(x)β(a|x)
ρ0(x)µ(a|x) =

β(a|x)
µ(a|x) , and the objective is degraded to

Eq. 1. Therefore, Def. 3.1 is a special case of this generalized form.

Since β for counterfactual queries is unknown and can be varied in policy optimization, to reduce the
risks in counterfactual queries in this scenario, we introduce adversarial policies which can induce the
worst performance of the model predictions and propose to optimize WERM under the adversarial
policies. In particular, we propose Adversarial Weighted empirical Risk Minimization (AWRM)
based on Def. 4.1 to handle this problem.
Definition 4.2. Given the MDP transition function M∗, the learning objective of adversarial Weighted
empirical risk minimization through IPS is formulated as

M̂∗ = min
M∈M

max
β∈Π

L(ρβM∗ ,M) = min
M∈M

max
β∈Π

Ex,a,x′∼ρµ
M∗ [ω(x, a|ρ

β
M∗)ℓM (x, a, x′)],

s.t. ω(x, a|ρβM∗) =
ρβM∗(x, a)

ρµM∗(x, a)
,

(3)

where the re-weighting term ω(x, a|ρβM∗) is conditioned on the data distribution ρβM∗ of the adver-
sarial policy β. In the following, we will ignore ρβM∗ and use ω(x, a) for brevity.

According to the definition of MDP, ω(x, a, x′) = ω(x, a) since the transition probability in the
ratio can be canceled. Eq. 3 minimizes the maximum model loss under all counterfactual data
distributions ρβM∗(x, a, x′), β ∈ Π to guarantee the generalization ability for counterfactual data
queried by policies in Π.

4.2 TRACTABLE AWRM SOLUTION

In this section, we propose a tractable solution to optimize Eq. 3. The full derivations can be found in
the Appx. A. We choose ℓM to be the negative log-likelihood loss and derive the solution to Eq. 3:

L(ρβM∗ ,M) = Ex,a∼ρµ
M∗

[
ω(x, a|ρβM∗)EM∗ (− logM(x′|x, a))

]
,

where EM∗ [·] denotes Ex′∼M∗(x′|x,a) [·]. The core problem is how to construct the data distribution
ρβ

∗

M∗ of the best-response policy β∗ in M∗ as it is costly to get extra data from M∗ in real-world
applications. Instead of deriving the optimal β∗, our solution is to offline estimate the optimal
adversarial distribution ρβ

∗

M∗ with respect to M , then we can construct a surrogate objective to
optimize M without directly querying the real environment M∗.
4.2.1 OPTIMAL ADVERSARIAL DATA DISTRIBUTION APPROXIMATION

Ideally, given any M , it is obvious that the optimal β is the one that makes ρβM∗(x, a) assign all
densities to the point that has the largest negative log-likelihood. However, searching for the maximum
is impractical, especially in continuous space. To give a relaxed but tractable solution, we add an L2

regularizer to the original objective Eq. 3:

min
M∈M

max
β∈Π

L̄(ρβM∗ ,M) = min
M∈M

max
β∈Π

Ex,a∼ρµ
M∗

[
ω(x, a)EM∗ [− logM(x′|x, a)]

]
− α

2
∥ρβM∗(·, ·)∥22,

(4)

where α denotes the regularization coefficient of ρβM∗ and ∥ρβM∗(·, ·)∥22 =
∫
X ,A(ρ

β
M∗(x, a))2dadx.

Then we can approximate the optimal distribution ρβ̄
∗

M∗ via Lemma. 4.3.

Lemma 4.3. Given any M in L̄(ρβM∗ ,M), the distribution of the ideal best-response policy β̄∗

satisfies:
ρβ̄

∗

M∗(x, a) =
1

αM
(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)), (5)

where DKL(M
∗(·|x, a),M(·|x, a)) is the Kullback-Leibler (KL) divergence between M∗(·|x, a)

and M(·|x, a), HM∗(x, a) denotes the entropy of M∗(·|x, a), and αM is the regularization coefficient
α in Eq. 4 and also as a normalizer of Eq. 5.
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Intuitively, ρβ̄
∗

M∗ has larger densities on the data where the divergence between the approximation
model and the real model (i.e., DKL(M

∗(·|x, a),M(·|x, a))) is larger or the stochasticity of the real
model (i.e., HM∗ ) is larger. However, the integral process of DKL in Eq. 5 is intractable in the offline
setting as it explicitly requires the conditional probability function of M∗. Our solution to solve
the problem is utilizing the offline dataset Dreal as the empirical joint distribution ρµM∗(x, a, x′) and
adopting practical techniques for distance estimation on two joint distributions, like GAN (Goodfellow
et al., 2014; Nowozin et al., 2016), to approximate Eq. 5. To adopt that solution, we should first
transform Eq. 5 into a form under joint distributions. Without loss of generality, we introduce an
intermediary policy κ, of which µ can be regarded as a specific instance. Then we have M(x′|x, a) = to Reviewer bcJS
ρκM (x, a, x′)/ρκM (x, a) for any M if ρκM (x, a) > 0. Assuming ∀x ∈ X ,∀a ∈ A, ρκM∗(x, a) > 0 if
ρβ̄

∗

M∗(x, a) > 0, which will hold when κ overlaps with µ, then Eq. 5 can transform to:

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′ − ρκM∗(x, a)

(
log

ρκM∗(x, a)

ρκM (x, a)
−HM∗(x, a)

))
,

where α0(x, a) = αMρκM∗(x, a). We notice that the form ρκM∗ log
ρκ
M∗
ρκ
M

is the integrated function
in reverse KL divergence, which is an instance of f function in f -divergence (Ali & Silvey, 1966).
Replacing that form with f function, we obtain a generalized representation of ρβ̄

∗

M∗ :

ρ̄β̄
∗

M∗ :=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκM (x, a, x′)

ρκM∗(x, a, x′)

)
dx′ − ρκM∗(x, a)

(
f

(
ρκM (x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

))
,

(6)

where f : R+ → R is a convex and lower semi-continuous (l.s.c.) function. ρ̄β̄
∗

M∗ gives a generalized
representation of the optimal adversarial data distribution to maximize the error of the model. Based
on Eq. 6, we have a surrogate objective of AWRM which can avoid querying M∗ to construct ρβ

∗

M∗ :

Theorem 4.4. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. 4 under model
Mθ parameterized by θ, then we can find the optimal θ∗ of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. 4)
via iteratively optimizing the objective θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated via
the last-iteration model Mθt . Based on Corollary A.7, we derive an upper bound objective for
minθ L̄(ρ̄

β̄∗

M∗ ,Mθ):

θt+1 = min
θ

Eρκ
M∗

[
−1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
︸ ︷︷ ︸

W (x,a,x′)

]
,

where Eρκ
M∗ [·] denotes Ex,a,x′∼ρκ

M∗ [·], f is a l.s.c function satisfying f ′(x) ≤ 0,∀x ∈ X , and
α0(x, a) = αMθt

ρκM∗(x, a).

Thm. 4.4 approximately achieve AWRM by using κ and a pseudo-reweighting module W . W assigns
learning propensities for data points with larger differences between distributions ρκMθt

and ρκM∗ . By
adjusting the weights, the learning process will exploit subtle errors in any data point, whatever how
many proportions it contributes, to correct potential generalization errors on counterfactual data.

4.2.2 TRACTABLE SOLUTION TO THM. 4.4

In Thm. 4.4, the term f(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′) )− f(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

) is still intractable. To solve the problem, first,
we resort to the first-order approximation of f . Given some u ∈ (1− ξ, 1 + ξ), ξ > 0, we have

f(u) ≈ f(1) + f ′(u)(u− 1), (7)

where f ′ is the first-order derivative of f . By Taylor’s formula and the fact that f ′(u) of the generator
function f is bounded in (1 − ξ, 1 + ξ), the approximation error is no more than O(ξ2). Let
u = p(x)

q(x) in Eq. 7, the pattern f(p(x)q(x) ) in Thm. 4.4 can be converted to f ′(p(x)q(x) )(
p(x)
q(x) − 1) + f(1).

p(x)
q(x) can be approximated by sampling from datasets and f ′(p(x)q(x) ) can be approximated by the
corresponding variational representation Tφ∗ according to Lemma A.9 (Nowozin et al., 2016) (see
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Appendix for details). Based on any specific f -function, we can represent Tφ with a discriminator
Dφ. However, Thm. 4.4 holds only when ∀x ∈ X , f ′(x) ≤ 0. It can be verified that the instance
f(u) = u log u − (u + 1) log(u + 1), Tφ(u) = logDφ(u) satisfy this condition (see Tab. 2 in the
Appendix). We select that instance for the tractable solution. In summary, by computing f(·) with
first-order approximation (Eq. 7) and leveraging the variational representation Tφ∗ = logDφ∗ to

approximate f ′(
ρκ
Mθt

ρκ
M∗

), we can optimize the surrogate objective in Thm. 4.4 via:

θt+1 =max
θ

Eρκ
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρκ

M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
]

s.t. φ∗
0 = argmax

φ0

Eρκ
M∗

[
logDφ0(x, a, x

′)
]
+ Eρκ

Mθt

[
log(1−Dφ0(x, a, x

′))
]

(8)

φ∗
1 = argmax

φ1

Eρκ
M∗ [logDφ1(x, a)] + Eρκ

Mθt

[log(1−Dφ1(x, a))] ,

where Aφ∗
0 ,φ

∗
1
(x, a, x′) = logDφ∗

0
(x, a, x′) − logDφ∗

1
(x, a), Eρκ

M
[·] is a simplification of

Ex,a,x′∼ρκ
M
[·] and φ0 and φ1 are the parameters of Tφ0 and Tφ1 . Based on Lemma A.9, we have

f ′(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′) ) ≈ logDφ∗

0
(x, a, x′) and f ′(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

) ≈ logDφ∗
1
(x, a). Note that in the process,

we ignore the term α0(x, a) for simplifying the objective. The discussion on the impacts of removing
α0(x, a) is left in App. B. In Eq. 8, the pseudo-reweighting module W in Thm. 4.4 is split into
two terms in the RHS of the equation. The first term is a generative adversarial training objective
regarding Mθ as the generator, while the second term is WERM through HM∗ −Aφ∗

0 ,φ
∗
1
.

4.3 PRACTICAL IMPLEMENTATION

To give a practical implementation of the solution, extra two assumptions introduced in the process
of modeling should be handled:
First, the approximation of Eq. 7 holds only when p(x)

q(x) is close to 1, which might not be satisfied. To
handle the problem, we inject a naive supervised learning loss and replace the second term of the
objective Eq. 8 when the expectation of Dφ0 in ρκMθt

is far away from 0.5 (f ′(1) = log 0.5);
Second, the overlap assumption of κ. In practice, we need to use the real-world data to construct
the distribution ρκM∗ and the generative data to construct ρκMθt

. In the offline model-learning setting,
we only have a real-world dataset D collected by the behavior policy µ. We can learn a policy
µ̂ ≈ µ via behavior cloning based on D (Pomerleau, 1991; Ho & Ermon, 2016) and let µ̂ be the
policy κ. Then we can regard D as the empirical data distribution of ρκM∗ and the trajectories to Reviewer bcJS
collected by µ̂ in the model Mθt as the empirical data distribution of ρκMθt

. But the assumption
∀x ∈ X ,∀a ∈ A, µ(a|x) > 0 might not be satisfied. To handle the problem, in behavior cloning,
we model µ̂ with a Gaussian distribution and constrain the lower bound of the variance with a small
value ϵµ > 0 to keep the assumption holding. Besides, we add small Gaussian noises N (0, ϵD) to
the inputs of Dφ to handle the mismatch between ρµM∗ and ρµ̂M∗ due to ϵµ.

In Eq. 8, HM∗ is unknown in advance. In practice, we use HMθ
to estimate it. More specifically, the

neural network of Mθ can be modeled with a Gaussian distribution. The variance of the Gaussian
distribution is modeled with global variables Σ for each dimension of output. We estimate HM∗ with
the closed-form solution of Gaussian entropy through Σ. to Reviewer bcJS

Based on the above techniques, we propose Generative Adversarial offLIne counterfactuaL
Environment mOdel learning (GALILEO) for environment model learning. GALILEO can be
adopted in both single-step and sequential environment model learning. The detailed implementation
and comparison to previous adversarial methods are in Appx. E.

5 EXPERIMENTS

In this section, we first conduct experiments in synthetic environments (Bica et al., 2020)
to verify GALILEO on counterfactual queries 1 and the compatibility of GALILEO in se-
quential and single-step environments. We select Mean Integrated Square Error MISE =

E
[∫

A (M∗(y|x, a)−M(y|x, a))2 da
]

as the metric, which is a commonly used metric to mea-
sure the accuracy in counterfactual queries by considering the prediction errors in the whole action
space. Then we analyze the benefits of the implementation techniques described in Sec. 4.3 and

1the code will be released after the paper is published.
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Figure 3: Illustration of the performance in GNFC and TCGA. The grey bar denotes the standard
error (×0.3 for brevity) of 3 random seeds.

the problems without them. Finally, we deploy GALILEO in two complex environments: MuJoCo
in Gym (Todorov et al., 2012) and a real-world food-delivery platform to test the performance of
GALILEO in difficult tasks. The algorithms compared are: (1) Supervised Learning (SL): us-
ing standard empirical risk minimization for model learning; (2) Inverse Propensity Weighting
(IPW) (Spirtes, 2010): a standard implementation of WERM based IPS; (3) eStimating the effects
of Continuous Interventions using GANs (SCIGAN) (Bica et al., 2020): an adversarial algorithms
for model learning used for causal effect estimation, which can be roughly regarded as a partial
implementation of GALILEO (Refer to Appx. E.2). We give a detailed description in Appx. G.2. to Reviewer rQ79

5.1 TEST IN SYNTHETIC ENVIRONMENTS

Test in sequential environments Since there does not exist a task specifically designed for se-
quential environment model learning with selection bias, we construct a task, General Negative
Feedback Control (GNFC), which can represent a classic type of task with policies having selection
bias. Fig. 1(a) is also an example of GNFC. We give detailed motivation, the effect of selection
bias, and other details in Appx. G.1.1. We construct tasks on GNFC by adding behavior policies
µ with different scales of uniform noise U(−e, e) with different probabilities p. In particular, with
e ∈ {1.0, 0.2, 0.05} and p ∈ {1.0, 0.2, 0.05}, we construct 9 tasks and name them with the format of
“e*_p*”. For example, e1_p0.2 is the task with behavior policy injecting with U(−1, 1) with 0.2
probability. The results of GNFC tasks are summarized in Fig. 3(a) and the detailed results can be
found in Tab. 8. The results show that the property of the behavior policy (i.e., e and p) dominates
the generalization ability of the baseline algorithms. When e = 0.05, almost all of the baselines fail
and give a completely opposite response curve (see Fig. 4(a) and Appx. H.2). IPW still perform well
when 0.2 ≤ e ≤ 1.0 but fails when e = 0.05, p <= 0.2. We also found that SCIGAN can reach
a better performance than other baselines when e = 0.05, p <= 0.2, but the results in other tasks
are unstable. GALILEO is the only algorithm that is robust to the selection bias and outputs correct
response curves in all of the tasks. Based on the experiment, we also indicate that the commonly used
overlap assumption is unreasonable to a certain extent especially in real-world applications since it is
impractical to inject noises into the whole action space. The problem of overlap assumption being
violated should be taken into consideration otherwise the algorithm will be hard to use in practice if
it is sensitive to the noise range.
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Figure 4: Illustration of the averaged re-
sponse curves.

Test in single-step environments Previous experiments
on counterfactual environment model learning are based
on single-step semi-synthetic data simulation (Bica et al.,
2020). Since GALILEO is compatible with single-step en-
vironment model learning, we select the same task named
TCGA in Bica et al. (2020) to test GALILEO. Based on
three synthetic response functions in TCGA, we construct
9 tasks by choosing different parameters of selection bias
on µ which is constructed with beta distribution, and de-
sign a coefficient c to control the selection bias of the
beta distribution. We name the tasks with the format of
“t?_bias?”. For example, t1_bias2 is the task with the first response functions and c = 2. The
detail of TCGA is in Appx. G.1.2. The results of TCGA tasks are summarized in Fig. 3(b) and the
detailed results can be found in Tab. 9 in Appendix. We found the phenomenon in this experiment
is similar to the one in GNFC, which demonstrates the compatibility of GALILEO to single-step
environments. We also found that the results of IPW are unstable in this experiment. It might be
because the behavior policy is modeled with beta distribution while the propensity score µ̂ is modeled
with Gaussian distribution. Since IPW directly reweight loss function with 1

µ̂ , the results are sensitive
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Table 1: Results of policy performance directly optimized through standard SAC (Haarnoja et al.,
2018) using the learned dynamics models and deployed in MuJoCo environments. MAX-RETURN
is the policy performance of SAC in the MuJoCo environments, and “avg. norm.” is the averaged
normalized return of the policies in the 9 tasks, where the returns are normalized to lie between 0 and
100, where a score of 0 corresponds to the worst policy, and 100 corresponds to MAX-RETURN.

Task Hopper Walker2d HalfCheetah avg. norm.

Horizon H=10 H=20 H=40 H=10 H=20 H=40 H=10 H=20 H=40 /

GALILEO 13.0 ± 0.1 33.2 ± 0.1 53.5 ± 1.2 11.7 ± 0.2 29.9 ± 0.3 61.2 ± 3.4 0.7 ± 0.2 -1.1 ± 0.2 -14.2 ± 1.4 51.1
SL 4.8 ± 0.5 3.0 ± 0.2 4.6 ± 0.2 10.7 ± 0.2 20.1 ± 0.8 37.5 ± 6.7 0.4 ± 0.5 -1.1 ± 0.6 -13.2 ± 0.3 21.1
IPW 5.9 ± 0.7 4.1 ± 0.6 5.9 ± 0.2 4.7 ± 1.1 2.8 ± 3.9 14.5 ± 1.4 1.6 ± 0.2 0.5 ± 0.8 -11.3 ± 0.9 19.7
SCIGAN 12.7 ± 0.1 29.2 ± 0.6 46.2 ± 5.2 8.4 ± 0.5 9.1 ± 1.7 1.0 ± 5.8 1.2 ± 0.3 -0.3 ± 1.0 -11.4 ± 0.3 41.8

MAX-RETURN 13.2 ± 0.0 33.3 ± 0.2 71.0 ± 0.5 14.9 ± 1.3 60.7 ± 11.1 221.1 ± 8.9 2.6 ± 0.1 13.3 ± 1.1 49.1 ± 2.3 100.0

to the error on µ̂. GALILEO also models µ̂ with Gaussian distribution but the results are more stable
since GALILEO does not re-weight through µ̂ explicitly.

Response curve visualization We plot the averaged response curves which are constructed by
equidistantly sampling action from the action space and averaging the feedback of the states in the
dataset as the averaged response. Parts of the results in Fig. 4 (all curves can be seen in Appx. H.2).
For those tasks where baselines fail in reconstructing response curves, GALILEO not only reaches a
better MISE score but reconstructs almost exact responses.

Ablation studies In Sec. 4.3, we introduce several techniques to develop a practical GALILEO
algorithm. Based on task e0.2_p0.05 of GNFC, we give the ablation studies to investigate the
effects of these techniques. As the main-body space is limited, we leave the results in Appx. H.3.

5.2 TEST IN COMPLEX ENVIRONMENTS

In MuJoCo tasks MuJoCo is a benchmark task in Gym (Todorov et al., 2012; Brockman et al.,
2016) where we need to control a robot with specific dynamics to complete some tasks (e.g., standing
or running). We select 3 environment from D4RL (Fu et al., 2020) to construct our model learning
tasks. We compare it with a standard transition model learning algorithm used in the previous
offline model-based RL algorithms (Yu et al., 2020; Kidambi et al., 2020), which is a variant of
supervised learning. We name the method OFF-SL. Besides, we also implement IPW and SCIGAN
as the baselines. In D4RL benchmark, only the “medium” tasks is collected with a fixed policy, i.e.,
the behavior policy is with 1/3 performance to the expert policy), which is most matching to our
proposed problem. So we train models in datasets HalfCheetah-medium, Walker2d-medium, and
Hopper-medium. We trained the models with the same gradient steps and saved the models. to Reviewer bcJS,

j5p5, and rQ79We first verify the generalization ability of the models by adopting them into offline model-based
RL. Instead of designing sophisticated tricks to suppress policy exploration and learning in risky
regions as current offline model-based RL algorithms (Yu et al., 2020; Kidambi et al., 2020) do, we
just use the standard SAC algorithm Haarnoja et al. (2018) to exploit the models for policy learning
to strictly verify the ability of the models. Unfortunately, we found that the compounding error will
still be inevitably large in the 1,000-step rollout, which is the standard horizon in MuJoCo tasks,
leading all models to fail to derive a reasonable policy. To better verify the effects of models on policy
optimization, we learn and evaluate the policies with three smaller horizons: H ∈ {10, 20, 40}.
The results are listed in Tab. 1. We first averaged the normalized return (refer to “avg. norm.”)
under each task, and we can see that the policy obtained by GALILEO is significantly higher than
other models (the improvements are 24% to 161%). At the same time, we found that SCIGAN
performed better in policy learning, while IPW performed similarly to SL. This is in line with
our expectations, since IPW only considers the uniform policy as the target policy for debiasing,
while policy optimization requires querying a wide variety of policies. Minimizing the prediction
risks only under a uniform policy cannot yield a good environment model for policy optimization.
Besides, in IPW, the cumulative effects of policy on the state distribution are ignored. On the
other hand, SCIGAN, as a partial implementation of GALILEO (refer to Appx. E.2), also roughly
achieves AWRM and considers the cumulative effects of policy on the state distribution, so its overall
performance is better; In addition, we find that GALILEO achieves significant improvement in 6 of
the 9 tasks. But in HalfCheetah, IPW works slightly better. However, compared with MAX-RETURN,
it can be found that all methods fail to derive reasonable policies because their policies’ performances
are far away from the optimal policy. By further visualizing the trajectories, we found that all the
learned policies just keep the cheetah standing in the same place or even going backward. This
phenomenon is also similar to the results in MOPO (Yu et al., 2020). In MOPO’s experiment in
the medium datasets, the truncated-rollout horizon used in Walker and Hopper for policy training
is set to 5, while HalfCheetah has to be set to the minimal value: 1. These phenomena indicate
that HalfCheetah may still have unknown problems, resulting in the generalization bottleneck of
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Figure 5: An illustration of the performance in BAT tasks. In Fig. 5(a) demonstrate the averaged
response curves of the SL and GALILEO model in City A. It is expected to be monotonically
increasing through our prior knowledge. In Fig. 5(b), the model with larger areas above the “random”
line makes better predictions in randomized-controlled-trials data (Betlei et al., 2020). Fig. 5(c)
shows the daily responses in the A/B test in City A. The complete results are in Appx. H.6.

the models. Besides, we also test the prediction error of the learned model in corresponding unseen
“expert” and “medium-replay” datasets. The detailed results are in Appx. H.5.

In a real-world platform We finally deploy GALILEO in a real-world large-scale food-delivery
platform. The goal of the platform is to balance the demand from take-out food orders and the supply
of delivery clerks, i.e., helping delivery clerks fulfill more orders by giving reasonable strategies. We
focus on a Budget Allocation task to the Time period (BAT) in the platform (see Appx. G.1.3 for
details). The goal of the BAT task is to handle the imbalance problem between the demanded orders
from customers and the supply of delivery clerks in different time periods by allocating reasonable
allowances to those time periods. The core challenge of the environment model learning in BAT tasks
is similar to the challenge in Fig. 1. Specifically, the behavior policy in BAT tasks is a human-expert
policy, which tends to increase the budget of allowance in the time periods with a lower supply of
delivery clerks, otherwise tends to decrease the budget (Fig. 12 gives a real-data instance of this
phenomenon).

We first learn a model to predict the supply of delivery clerks (measured by fulfilled order amount)
on given allowances. Although the SL model can efficiently fit the offline data, the tendency of the
response curve is easily to be incorrect. As can be seen in Fig. 5(a), with a larger budget of allowance,
the prediction of the supply is decreased in SL, which obviously goes against our prior knowledge.
This is because, in the offline dataset, the corresponding supply will be smaller when the allowance
is larger. It is conceivable that if we learn a policy through the model of SL, the optimal solution
is canceling all of the allowances, which is obviously incorrect in practice. On the other hand, the
tendency of GALILEO’s response is correct. Fig. 13 plots all the results in 6 cities. to Reviewer rQ79

and j5p5Second, we conduct randomized controlled trials (RCT) in one of the testing cities. Using the RCT
samples, we can evaluate the generalization ability of the model predictions via Area Under the Uplift
Curve (AUUC) (Betlei et al., 2020), which measure the correctness of the sort order of the model
prediction in RCT samples. The AUUC further show that GALILEO gives a reasonable sort order on
the supply prediction (see Fig. 5(b)) while the standard SL technique fails to complete this task.

Finally, we search for the optimal policy via the cross-entropy method planner (Hafner et al., 2019)
based on the learned model and deploy the policy in a real-world platform. The results of A/B test in
City A is shown in Fig. 5(c). It can be seen that after the day of the A/B test, the treatment group
(deploying our policy) significant improve the five-minute order-taken rate than the baseline policy
(the same as the behavior policy). In summary, the policy improves the supply from 0.14 to 1.63
percentage points to the behavior policies in the 6 cities. The details of these results are in Appx. H.6.

6 DISCUSSION AND FUTURE WORK

In this work, we propose AWRM which handles the generalization challenges of the counterfactual
environment model learning. By theoretical modeling, we give a tractable solution to handle AWRM
and propose GALILEO. GALILEO is verified in synthetic environments, complex robot control tasks,
and a real-world platform, and shows great generalization ability on counterfactual queries.

Giving correct answers to counterfactual queries is important for policy learning. We hope the work
can inspire researchers to develop more powerful tools for counterfactual environment model learning.
The current limitation lies in: There are several simplifications in the theoretical modeling process
(further discussion is in Appx. B), which can be modeled more elaborately . Besides, experiments on
MuJoCo indicate that these tasks are still challenging to give correct predictions on counterfactual
data. These should also be further investigated in future work.
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A PROOF OF THEORETICAL RESULTS

The overall pipeline to model the tractable solution to AWRM is given in Fig. 6.

In the proof section, we replace the notation of E with an integral for brevity. Now we rewrite the
original objective L̄(ρβM∗ ,M) as:

min
M∈M

max
β∈Π

∫
X ,A

ρµM∗(x, a)ω(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′dadx− α

2
∥ρβM∗(·, ·)∥22,

(9)

where ω(x, a) = ρβ
M∗ (x,a)

ρµ
M∗ (x,a)

and ∥ρβM∗(·, ·)∥22 =
∫
X ,A ρβM∗(x, a)2dadx, which is the squared l2-norm.

In an MDP, given any policy π, ρπM∗(x, a, x′) = ρπM∗(x)π(a|x)M∗(x′|x, a) where ρπM∗(x) denotes
the occupancy measure of x for policy π, which can be defined (Sutton & Barto, 1998; Ho & Ermon,
2016) as ρπM∗(x) := (1 − γ)Ex0∼ρ0

[
∑∞

t=0 γ
tPr(xt = x|x0,M

∗)] where Prπ [xt = x|x0,M
∗] is

the state visitation probability that π starts at state x0 in model M∗ and receive x at timestep t and
γ ∈ [0, 1] is the discount factor.

14
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minM∈M maxβ∈Π L(ρβM∗ ,M)

estimate the optimal adversarial
distribution ρβ̄

∗

M∗ given M (Sec. A.1)

derive ρ̄β̄
∗

M∗ as a generalized rep-
resentation of ρβ̄

∗

M∗ (Sec. A.2)

Let ρβ̄
∗

M∗ as the distribution of the best-response
policy argmaxβ∈Π L(ρβM∗ ,M), we have the sur-
rogate objective minM∈M L(ρ̄β̄

∗

M∗ ,M) (Sec. A.3)

tractable solution. (Sec. A.4)

intermediary policy κ generator function f

model an easy-to-
estimate distribution of
the best-response policy
β̄∗

approximate ρ̄β̄
∗

M∗ with
variational representation

Figure 6: The overall pipeline to model the tractable solution to AWRM. f is a generator function
defined by f -divergence (Nowozin et al., 2016). κ is an intermediary policy introduced in the
estimation.

A.1 PROOF OF LEMMA 4.3

For better readability, we first rewrite Lemma 4.3 as follows:

Lemma A.1. Given any M in L̄(ρβM∗ ,M), the distribution of the ideal best-response policy β̄∗

satisfies:

ρβ̄
∗

M∗(x, a) =
1

αM
(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)), (10)

where DKL(M
∗(·|x, a),M(·|x, a)) is the Kullback-Leibler (KL) divergence between M∗(·|x, a)

and M(·|x, a), HM∗(x, a) denotes the entropy of M∗(·|x, a), where DKL(M
∗(·|x, a),M(·|x, a))

is the Kullback-Leibler (KL) divergence between M∗(·|x, a) and M(·|x, a), HM∗(x, a) denotes the
entropy of M∗(·|x, a), and αM is the regularization coefficient α in Eq. 9 and also as a normalizer.

Proof. Given a transition function M of an MDP, the distribution of the best-response policy β∗

satisfies:

ρβ
∗

M∗ =argmax
ρβ
M∗

∫
X ,A

ρµM∗(x, a)ω(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′dadx− α

2
∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

∫
X ,A

ρβM∗(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′︸ ︷︷ ︸

g(x,a)

dadx− α

2
∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

2

α

∫
X ,A

ρβM∗(x, a)g(x, a)dadx− ∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

2

α

∫
X ,A

ρβM∗(x, a)g(x, a)dadx− ∥ρβM∗(·, ·)∥22 −
∥g(·, ·)∥22

α2

=argmax
ρβ
M∗

−
(
−2
∫
X ,A

ρβM∗(x, a)
g(x, a)

α
dadx+ ∥ρβM∗(·, ·)∥22 +

∥g(·, ·)∥22
α2

)
=argmax

ρβ
M∗

−∥ρβM∗(·, ·)−
g(·, ·)
α
∥22.
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We know that the occupancy measure ρβM∗ is a density function with a constraint∫
X
∫
A ρβM∗(x, a)dadx = 1. Assuming the occupancy measure ρβM∗ has an upper bound c, that

is 0 ≤ ρβM∗(x, a) ≤ c,∀a ∈ A,∀x ∈ X , constructing a regularization coefficient αM =∫
X
∫
A(DKL(M

∗(·|x, a),M(·|x, a)) + HM∗(x, a))dxda as a constant value given any M , then
we have

ρβ
∗

M∗(x, a) =
g(x, a)

αM

=

∫
X M∗(x′|x, a) log M∗(x′|x,a)

M(x′|x,a) dx−
∫
X M∗(x′|x, a) logM∗(x′|x, a)dx

αM

=
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)

αM

∝
(
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)
)
,

which is the optimal density function of Eq. 9 with α = αM .

Note that in some particular M∗, we still cannot construct a β that can generate an occupancy
specified by g(x, a)/αM for any M . We can only claim the distribution of the ideal best-response
policy β̄∗ satisfies:

ρβ̄
∗

M∗(x, a) =
1

αM
(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)), (11)

where αM is a normalizer that αM =
∫
X
∫
A(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a))dxda. We
give a discussion of the rationality of the ideal best-response policy β̄∗ as a replacement of the real
best-response policy β∗ in Remark A.2.

Remark A.2. The optimal solution Eq. 11 relies on g(x, a). In some particular M∗, it is intractable
to derive a β that can generate an occupancy specified by g(x, a)/αM . Consider the following
case: a state x1 in M∗ might be harder to reach than another state x2, e.g., M∗(x1|x, a) <
M∗(x2|x, a),∀x ∈ X ,∀a ∈ A, then it is impossible to find a β that the occupancy satisfies
ρβM∗(x1, a) > ρβM∗(x2, a). In this case, Eq. 11 can be a sub-optimal solution. Since this work
focuses on task-agnostic solution derivation while the solution to the above problem should rely on
the specific description of M∗, we leave it as future work. However, we point out that Eq. 11 is a
reasonable re-weighting term even as a sub-optimum: ρβ̄

∗

M∗ gives larger densities on the data where
the distribution distance between the approximation model and the real model (i.e., DKL(M

∗,M))
is larger or the stochasticity of the real model (i.e., HM∗ ) is larger.

A.2 PROOF OF EQ. 6

The integral process of DKL in Eq. 5 is intractable in the offline setting as it explicitly requires the
conditional probability function of M∗. Our motivation for the tractable solution is utilizing the
offline datasetDreal as the empirical joint distribution ρµM∗(x, a, x′) and adopting practical techniques
for distance estimation on two joint distributions, like GAN (Goodfellow et al., 2014; Nowozin et al.,
2016), to approximate Eq. 5. To adopt that solution, we should first transform Eq. 5 into a form under
joint distributions. Without loss of generality, we introduce an intermediary policy κ, of which µ can
be regarded as a specific instance. Then we have M(x′|x, a) = ρκM (x, a, x′)/ρκM (x, a) for any M if
ρκM (x, a) > 0. Assuming ∀x ∈ X ,∀a ∈ A, ρκM∗(x, a) > 0 if ρβ̄

∗

M∗(x, a) > 0, which will hold when
κ overlaps with µ, then Eq. 5 can transform to:
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ρβ̄
∗

M∗(x, a) =
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)

αM

=
1

αM

∫
X
M∗(x′|x, a)

(
log

M∗(x′|x, a)
M(x′|x, a)

− logM∗(x′|x, a)
)
dx′

=
1

αMρκM∗(x, a)

∫
X
ρκM∗(x, a)M∗(x′|x, a)

(
log

M∗(x′|x, a)
M(x′|x, a)

− logM∗(x′|x, a)
)
dx′

(12)

=
1

αMρκM∗(x, a)

∫
X
ρκM∗(x, a, x′)

(
log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
+ log

ρκM (x, a)

ρκM∗(x, a)
− logM∗(x′|x, a)

)
dx′

=
1

αMρκM∗(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′−

ρκM∗(x, a) log
ρκM∗(x, a)

ρκM (x, a)

∫
X
M∗(x′|x, a)dx′︸ ︷︷ ︸

=1

−ρκM∗(x, a)

∫
X
M∗(x′|x, a) logM∗(x′|x, a)dx′

)

=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′ − ρκM∗(x, a) log

ρκM∗(x, a)

ρκM (x, a)
+ ρκM∗(x, a)HM∗(x, a)

)
(13)

where α0(x, a) = αMρκM∗(x, a).
Definition A.3 (f -divergence). Given two distributions P and Q, two absolutely continuous density
functions p and q with respect to a base measure dx defined on the domain X , we define the
f -divergence (Nowozin et al., 2016),

Df (P∥Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (14)

where the generator function f : R+ → R is a convex, lower-semicontinuous function.

We notice that the terms ρκM∗(x, a, x′) log
ρκ
M∗ (x,a,x

′)
ρκ
M (x,a,x′) and ρκM∗(x, a) log

ρκ
M∗ (x,a)
ρκ
M (x,a) are the integrated

functions in reverse KL divergence, which is an instance of f function in f -divergence (See Reverse-
KL divergence of Tab.1 in (Nowozin et al., 2016) for more details). Replacing that form q log q

p with

qf(pq ), we obtain a generalized representation of ρβ̄
∗

M∗ :

ρ̄β̄
∗

M∗ :=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκM (x, a, x′)

ρκM∗(x, a, x′)

)
dx′ − ρκM∗(x, a)

(
f

(
ρκM (x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

))
,

(15)

A.3 PROOF OF THM. 4.4

We first introduce several useful lemmas for the proof.
Lemma A.4. Rearrangement inequality The rearrangement inequality states that, for two sequences
a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, the inequalities

a1b1 + a2b2 + · · ·+ anbn ≥ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≥ a1bn + a2bn−1 + · · ·+ anb1

hold, where π(1), π(2), . . . , π(n) is any permutation of 1, 2, . . . , n.
Lemma A.5. For two sequences a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, the inequalities

n∑
i=1

1

n
aibi ≥

n∑
i=1

1

n
ai
∑ 1

n
bi

hold.
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Proof. By rearrangement inequality, we have
n∑

i=1

aibi ≥ a1b1 + a2b2 + · · ·+ anbn

n∑
i=1

aibi ≥ a1b2 + a2b3 + · · ·+ anb1

n∑
i=1

aibi ≥ a1b3 + a2b4 + · · ·+ anb2

...
n∑

i=1

aibi ≥ a1bn + a2b1 + · · ·+ anbn−1

Then we have

n

n∑
i=1

aibi ≥
n∑

i=1

ai

n∑
i=1

bi

n∑
i=1

1

n
aibi ≥

n∑
i=1

1

n
ai
∑ 1

n
bi

Now we extend Lemma A.5 into the continuous integral scenario:
Lemma A.6. Given X ⊂ R, for two functions f : X → R and g : X → R that f(x) ≥ f(y) if and
only if g(x) ≥ g(y), ∀x, y ∈ X , the inequality∫

X
p(x)f(x)g(x)dx ≥

∫
X
p(x)f(x)dx

∫
X
p(x)g(x)dx

holds, where p : X → R and p(x) > 0,∀x ∈ X and
∫
X p(x)dx = 1.

Proof. Since (f(x)− f(y))(g(x)− g(y)) ≥ 0,∀x, y ∈ X , we have

∫
x∈X

∫
y∈X

p(x)p(y)(f(x)− f(y))(g(x)− g(y))dydx ≥ 0∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(x) + p(x)p(y)f(y)g(y)− p(x)p(y)f(x)g(y)− p(x)p(y)f(y)g(x)dydx ≥ 0∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(x) + p(x)p(y)f(y)g(y)dydx ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

(∫
y∈X

p(x)p(y)f(x)g(x)dy +

∫
y∈X

p(x)p(y)f(y)g(y)dy

)
dx ≥

∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

(
p(x)f(x)g(x) +

∫
y∈X

p(x)p(y)f(y)g(y)dy

)
dx ≥

∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

p(x)f(x)g(x)dx+

∫
x∈X

∫
y∈X

p(x)p(y)f(y)g(y)dydx ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

p(x)f(x)g(x)dx+

∫
y∈X

p(y)f(y)g(y)dy ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx

2

∫
x∈X

p(x)f(x)g(x)dx ≥ 2

∫
y∈X

∫
x∈X

p(x)p(y)f(x)g(y)dydx

2

∫
x∈X

p(x)f(x)g(x)dx ≥ 2

∫
x∈X

p(x)f(x)dx

∫
x∈X

p(x)g(x)dx∫
x∈X

p(x)f(x)g(x)dx ≥
∫
x∈X

p(x)f(x)dx

∫
x∈X

p(x)g(x)dx
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Corollary A.7. Let g(p(x)q(x) ) = − log p(x)
q(x) where p(x) > 0,∀x ∈ X and q(x) > 0,∀x ∈ X , for

υ > 0, the inequality∫
X
q(x)f(υ

p(x)

q(x)
)g(

p(x)

q(x)
)dx ≥

∫
X
q(x)f(υ

p(x)

q(x)
)dx

∫
X
q(x)g(

p(x)

q(x)
)dx,

holds if f ′(x) ≤ 0,∀x ∈ X . It is not always satisfied for f functions of f -divergence. We list a
comparison of f on that condition in Tab. 2.

Proof. g′(x) = − log x = − 1
x < 0,∀x ∈ X . Suppose f ′(x) ≤ 0,∀x ∈ X , we have f(x) ≥ f(y)

if and only if g(x) ≥ g(y), ∀x, y ∈ X holds. Thus f(υ p(x)
q(x) ) ≥ f(υ p(y)

q(y) ) if and only if g(p(x)q(x) ) ≥
g(p(y)q(y) ), ∀x, y ∈ X holds for all υ > 0. By defining F (x) = f(υ p(x)

q(x) )) and G(x) = g(p(x)q(x) ) and
using Lemma A.6, we have:∫

X
q(x)F (x)G(x)dx ≥

∫
X
q(x)F (x)dx

∫
X
q(x)G(x)dx.

Then we know∫
X
q(x)f(υ

p(x)

q(x)
)g(

p(x)

q(x)
)dx ≥

∫
X
q(x)f(υ

p(x)

q(x)
)dx

∫
X
q(x)g(

p(x)

q(x)
)dx

holds.

Table 2: Properties of f ′(x) ≤ 0,∀x ∈ X for f -divergences.
Name Generator function f(x) If f ′(x) ≤ 0,∀x ∈ X
Kullback-Leibler x log x False
Reverse KL − log x True
Pearson χ2 (x− 1)2 False
Squared Hellinger (

√
x− 1)2 False

Jensen-Shannon −(x+ 1) log 1+x
2 + x log x False

GAN x log x− (x+ 1) log(x+ 1) True

Now, we prove Thm. 4.4. For better readability, we first rewrite Thm. 4.4 as follows:

Theorem A.8. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. 4 under
model Mθ parameterized by θ, then we can find the optimal θ∗ of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. 4)
via iteratively optimizing the objective θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated
via the last-iteration model Mθt . Based on Corollary A.7, we have an upper bound objective for
minθ L̄(ρ̄

β̄∗

M∗ ,Mθ) and derive the following objective

θt+1 = argmax
θ

Eρκ
M∗

[
1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
︸ ︷︷ ︸

W (x,a,x′)

]
,

where α0(x, a) = αMθt
ρκM∗(x, a), Eρκ

M∗ [·] denotes Ex,a,x′∼ρκ
M∗ [·], f is the generator function in

f -divergence which satisfies f ′(x) ≤ 0,∀x ∈ X , and θ is the parameters of M . Mθt denotes a
probability function with the same parameters as the learned model (i.e., θ̄ = θ) but the parameter is
fixed and only used for sampling.

Proof. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. 4 under model Mθ

parameterized by θ, then we can find the optimal θt+1 of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. 4) via
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iteratively optimizing the objective θt+1 = minθ L̄(ρ̄
β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated via the
last-iteration model Mθt :

θt+1 = min
θ

∫
X ,A

ρ̄β̄
∗

M∗(x, a)

∫
X
M∗(x′|x, a)

(
− logMθ(x

′|x, a)
)
dx′dadx (16)

= min
θ

∫
X ,A

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
dx′
∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= min
θ

∫
X ,A

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
dx′
(∫

X
M∗(x′|x, a)(− log

Mθ(x
′|x, a)

M∗(x′|x, a) )dx
′ +HM∗(x, a)

)

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

≤ min
θ

∫
X ,A

1

α0(x, a)

(
ρκM∗(x, a)

∫
X
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
(− log

Mθ(x
′|x, a)

M∗(x′|x, a) )dx
′

︸ ︷︷ ︸
based on Corollary A.7

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= min
θ

∫
X ,A

1

α0(x, a)

(
ρκM∗(x, a)

∫
X

(
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
(− logMθ(x

′|x, a))

)
dx′

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= max
θ

∫
X ,A,X

1

α0(x, a)
ρκM∗(x, a, x′) logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
dx′dadx,

(17)

where Mθt is introduced to approximate the term ρ̄β̄
∗

M∗ and fixed when optimizing θ. In Eq. 16,
∥ρβM∗(·, ·)∥22 for Eq. 9 is eliminated as it does not contribute to the gradient of θ. Assume f ′(x) ≤

0,∀x ∈ X , let υ(x, a) :=
ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

> 0, p(x′|x, a) = Mθ(x
′|x, a), and q(x′|x, a) = M∗(x′|x, a),

the first inequality can be derived by adopting Corollary A.7 and eliminating the first HM∗ since it
does not contribute to the gradient of θ.

A.4 PROOF OF THE TRACTABLE SOLUTION

Now we are ready to prove the tractable solution:

Proof. The core challenge is that the term f(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′) )− f(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

) is still intractable. In the
following, we give a tractable solution to Thm. 4.4. First, we resort to the first-order approximation.
Given some u ∈ (1− ξ, 1 + ξ), ξ > 0, we have

f(u) ≈ f(1) + f ′(u)(u− 1), (18)

where f ′ is the first-order derivative of f . By Taylor’s formula and the fact that f ′(u) of the generator
function f is bounded in (1−ξ, 1+ξ), the approximation error is no more thanO(ξ2). Substituting u

with p(x)
q(x) in Eq. 18, the pattern f(p(x)q(x) ) in Eq. 17 can be converted to p(x)

q(x)f
′(p(x)q(x) )−f ′(p(x)q(x) )+f(1),
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then we have:

θt+1 = argmax
θ

1

α0(x, a)

∫
X ,A

(
ρκM∗(x, a)

∫
X
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
logMθ(x

′|x, a)dx′−

ρκM∗(x, a)f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)HM∗(x, a)

∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′

)
dadx

≈ argmax
θ

∫
X ,A

(
ρκMθt

(x, a)

∫
X
Mθt(x

′|x, a)f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
logMθ(x

′|x, a)dx′−

ρκM∗(x, a)

∫
X
M∗(x′|x, a)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f(1)

)
logMθ(x

′|x, a)dx′−

ρκMθt
(x, a)f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f(1)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)HM∗(x, a)

∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′

)
dadx

= argmax
θ

∫
X ,A,X

1

α0(x, a)
ρκMθt

(x, a, x)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

))
logMθ(x

′|x, a)dx′dadx+

∫
X ,A,X

1

α0(x, a)
ρκM∗(x, a, x′)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
+HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx.

Note that the part ρκM∗(x, a) in ρκM∗(x, a, x′) can be canceled because of α0(x, a) = αMθt
ρκM∗(x, a),

but we choose to keep it and ignore α0(x, a). The benefit is that we can estimate ρκM∗(x, a, x′) from
an empirical data distribution through data collected by κ in M∗ directly, rather than from a uniform
distribution which is harder to be generated. Although keeping ρκM∗(x, a) incurs extra bias in theory,
the results in our experiments show that it has not made significant negative effects in practice. We
leave this part of modeling in future work. In particular, by ignoring α0(x, a), we have:

θt+1 = argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

))
logMθ(x

′|x, a)dx′dadx+

(19)∫
X ,A,X

ρκM∗(x, a, x′)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
+HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx.

(20)

We can estimate f ′
(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

)
and f ′

(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′)

)
through Lemma A.9.

Lemma A.9 (f ′(pq ) estimation (Nguyen et al., 2010)). Given a function Tφ : X → R parameterized
by φ ∈ Φ, if f is convex and lower semi-continuous, by finding the maximum point of φ in the
following objective:

φ∗ = argmax
φ

Ex∼p(x) [Tφ(x)]− Ex∼q(x) [f
∗(Tφ(x))] ,

we have f ′(p(x)q(x) ) = Tφ∗(x). f∗ is Fenchel conjugate of f (Hiriart-Urruty & Lemaréchal, 2001).

In particular,
φ∗
0 = argmax

φ0

Ex,a,x′∼ρκ
M∗ [Tφ0(x, a, x

′)]− Ex,a,x′∼ρκ
Mθt

[f∗(Tφ0(x, a, x
′))]

φ∗
1 = argmax

φ1

Ex,a∼ρκ
M∗ [Tφ1

(x, a)]− Ex,a∼ρκ
Mθt

[f∗(Tφ1
(x, a))] ,
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then we have f ′
(

ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′)

)
≈ Tφ∗

0
(x, a, x′) and f ′

(
ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

)
≈ Tφ∗

1
(x, a). Given φ∗

0 and

φ∗
1, let Aφ∗

0 ,φ
∗
1
(x, a, x′) = Tφ∗

0
(x, a, x′)− Tφ∗

1
(x, a), then we can optimize θ via:

θt+1 = argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)

(
Tφ∗

0
(x, a, x′)− Tφ∗

1
(x, a)

)
logMθ(x

′|x, a)dx′dadx+∫
X ,A,X

ρκM∗(x, a, x′)
(
Tφ∗

1
(x, a)− Tφ∗

0
(x, a, x′) +HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx

= argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)dx′dadx+∫
X ,A,X

ρκM∗(x, a, x′)(−Aφ∗
0 ,φ

∗
1
(x, a, x′) +HM∗(x, a)) logMθ(x

′|x, a)dx′dadx.

Based on the specific f -divergence, we can represent T and f∗(T ) with a discriminator Dφ. It
can be verified that f(u) = u log u − (u + 1) log(u + 1), Tφ(u) = logDφ(u), and f∗(Tφ(u)) =
− log(1−Dφ(u)) proposed in Nowozin et al. (2016) satisfies the condition f ′(x) ≤ 0,∀x ∈ X (see
Tab. 2). We select the former in the implementation and convert the tractable solution to:

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρκ

M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
]

s.t. φ∗
0 = argmax

φ0

Eρκ
M∗

[
logDφ0(x, a, x

′)
]
+ Eρκ

Mθt

[
log(1−Dφ0(x, a, x

′))
]

φ∗
1 = argmax

φ1

Eρκ
M∗ [logDφ1(x, a)] + Eρκ

Mθt

[log(1−Dφ1(x, a))] ,

(21)

where Aφ∗
0 ,φ

∗
1
(x, a, x′) = logDφ∗

0
(x, a, x′) − logDφ∗

1
(x, a), Eρκ

Mθt

[·] is a simplification of

Ex,a,x′∼ρκ
Mθt

[·].

B DISCUSSION OF THE THEORETICAL RESULTS

We summarize the limitations of current theoretical results and future work as follows:

1. As discussed in Remark A.2, the solution Eq. 11 relies on ρβM∗(x, a) ∈ [0, c],∀a ∈ A,∀x ∈
X . In some particular M∗, it is intractable to derive a β that can generate an occupancy
specified by g(x, a)/αM . If more knowledge of M∗ or β∗ is provided or some mild
assumptions can be made on the properties of M∗ or β∗, we may model ρ in a more
sophisticated approach to alleviating the above problem.

2. In the tractable solution derivation, we ignore the term α0(x, a) = αMθt
ρκM∗(x, a) (See

Eq. 20). The benefit is that ρκM∗(x, a, x′) in the tractable solution can be estimated through
offline datasets directly. Although the results in our experiments show that it does not
produce significant negative effects in these tasks, ignoring ρκM∗(x, a) indeed incurs extra
bias in theory. In future work, techniques for estimating ρκM∗(x, a) (Liu et al., 2020) can
be incorporated to correct the bias. On the other hand, αMθt

is also ignored in the process.
αMθt

can be regarded as a global rescaling term of the final objective Eq. 20. Intuitively, it
constructs an adaptive learning rate for Eq. 20, which increases the step size when the model
is better fitted and decreases the step size otherwise. It can be considered to further improve
the learning process in future work, e.g., cooperating with empirical risk minimization by
balancing the weights of the two objectives through αMθt

.

C SOCIETAL IMPACT

This work studies a method toward counterfactual environment model learning. Reconstructing an
accurate environment of the real world will promote the wide adoption of decision-making policy
optimization methods in real life, enhancing our daily experience. We are aware that decision-making
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policy in some domains like recommendation systems that interact with customers may have risks of
causing price discrimination and misleading customers if inappropriately used. A promising way to
reduce the risk is to introduce fairness into policy optimization and rules to constrain the actions (Also
see our policy design in Sec. G.1.3). We are involved in and advocating research in such directions.
We believe that business organizations would like to embrace fair systems that can ultimately bring
long-term financial benefits by providing a better user experience.

D AWRM-ORACLE PSEUDOCODE

We list the pseudocode of AWRM-oracle in Alg. 1.

Algorithm 1 AWRM with Oracle Counterfactual Datasets
Input:
Φ: policy space; N : total iterations
Process:

1: Generate counterfactual datasets {Dπϕ
} for all adversarial policies πϕ, ϕ ∈ Φ

2: Initialize an environment model Mθ

3: for i = 1:N do
4: Select Dπϕ

with worst prediction errors through Mθ from {Dπϕ
}

5: Optimize Mθ with standard supervised learning based on Dπϕ

6: end for

E IMPLEMENTATION

E.1 DETAILS OF THE GALILEO IMPLEMENTATION

The approximation of Eq. 18 holds only when p(x)
q(x) is close to 1, which might not be satisfied. To

handle the problem, we inject a standard supervised learning loss

argmax
θ

Eρκ
M∗ [logMθ(x

′|x, a)] (22)

to replace the second term of the above objective when the output probability of D is far away from
0.5 (f ′(1) = log 0.5).

In the offline model-learning setting, we only have a real-world dataset D collected by the behavior
policy µ. We learn a policy µ̂ ≈ µ via behavior cloning with D (Pomerleau, 1991; Ho & Ermon,
2016) and let µ̂ be the policy κ. We regard D as the empirical data distribution of ρκM∗ and the
trajectories collected by µ̂ in the model Mθt as the empirical data distribution of ρκMθt

. But the
assumption ∀x ∈ X ,∀a ∈ A, µ(a|x) > 0 might not be satisfied. In behavior cloning, we model µ̂
with a Gaussian distribution and constrain the lower bound of the variance with a small value ϵµ > 0
to keep the assumption holding. Besides, we add small Gaussian noises u ∼ N (0, ϵD) to the inputs
of Dφ to handle the mismatch between ρµM∗ and ρµ̂M∗ due to ϵµ. In particular, for φ0 and φ1 learning,
we have:

φ∗
0 = argmax

φ0

Eρκ
M∗ ,u

[
logDφ0(x+ ux, a+ ua, x

′ + ux′)
]
+ Eρκ

Mθt
,u
[
log(1−Dφ0(x+ ux, a+ ua, x

′ + ux′))
]

φ∗
1 = argmax

φ1

Eρκ
M∗ ,u [logDφ1(x+ ux, a+ ua)] + Eρκ

Mθt
,u [log(1−Dφ1(x+ ux, a+ ua))] ,

where Eρκ
Mθt

,u[·] is a simplification of Ex,a,x′∼ρκ
Mθt

,u∼N (0,ϵD)[·] and u = [ux, ua, ux′ ].

On the other hand, we notice that the first term in Eq. 21 is similar to the objective of
GAIL (Ho & Ermon, 2016) by regarding Mθ as the policy to learn and κ as the environ-
ment to generate data. For better capability in sequential environment model learning, here
we introduce some practical tricks inspired by GAIL for model learning (Shi et al., 2019;
Shang et al., 2019): we introduce an MDP for κ and Mθ, where the reward is defined by
the discriminator D, i.e., r(x, a, x′) = logD(x, a, x′). Mθ is learned to maximize the cu-
mulative rewards. With advanced policy gradient methods (Schulman et al., 2015; 2017), the
objective is converted to maxθ

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x, a, x

′)
]
, where A = Qκ

Mθt
− V κ

Mθt
,
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Algorithm 2 GALILEO pseudocode
Input:
Dreal: offline dataset sampled from ρµM∗ where µ is the behavior policy;
N : total iterations;
Process:

1: Approximate a behavior policy µ̂ via behavior cloning
2: Initialize an environment model Mθ1
3: for t = 1 : N do
4: Use µ̂ to generate a dataset Dgen with the model Mθt

5: Update the discriminators Dφ0 and Dφ1 via Eq. 26 and Eq. 27 respectively, where ρµ̂Mθt
is

estimated by Dgen and ρµM∗ is estimated by Dreal

6: Update Q and V via Eq. 24 and Eq. 25 through Dgen, Dφ0
, and Dφ1

7: Update the model Mθt via the first term of Eq. 23, which is implemented with a standard
policy gradient method like TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017).
Record the policy gradient gpg

8: if p0 < EDgen [Dφ0(xt, at, xt+1)] < p1 then
9: Compute the gradient of Mθt via the second term of Eq. 23 and record it as gsl

10: else
11: Compute the gradient of Mθt via Eq. 22 and record it as gsl
12: end if
13: Rescale gsl via Eq. 28
14: Update the model Mθt via the gradient gsl and obtain Mθt+1

15: end for

Qκ
Mθ̄

(x, a, x′) = E [
∑∞

t=0 γ
tr(xt, at, xt+1) | (xt, at, xt+1) = (x, a, x′), κ,Mθt ], and V κ

Mθ̄
(x, a) =

EMθ̄

[
Qκ

Mθ̄
(x, a, x′)

]
. A in Eq. 21 can also be constructed similarly. Although it looks unnecessary in

theory since the one-step optimal model Mθ is the global optimal model in this setting, the technique
is helpful in practice as it makes A more sensitive to the compounding effect of one-step prediction
errors: we would consider the cumulative effects of prediction errors induced by multi-step transitions
in environments. In particular, to consider the cumulative effects of prediction errors induced by
multi-step of transitions in environments, we overwrite function Aφ∗

0 ,φ
∗
1

as Aφ∗
0 ,φ

∗
1
= Qκ

Mθt
− V κ

Mθt
,

where Qκ
Mθt

(x, a, x′) = E
[∑∞

t γt logDφ∗
0
(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
and

V κ
Mθt

(x, a) = E
[∑∞

t γt logDφ∗
1
(xt, at)|(xt, at) = (x, a), κ,Mθt

]
. To give an algorithm for single-

step environment model learning, we can just set γ in Q and V to 0.
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to update the dynamics model

(line 7 to 14)
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Figure 7: Illustration of the workflow of the GALILEO algorithm.
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By adopting the above implementation techniques, we convert the objective into the following
formulation

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρκ

M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
]

(23)

s.t. Qκ
Mθt

(x, a, x′) = E

[
∞∑
t

γt logDφ∗
0
(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
(24)

V κ
Mθt

(x, a) = E

[
∞∑
t

γt logDφ∗
1
(xt, at)|(xt, at) = (x, a), κ,Mθt

]
(25)

φ∗
0 = argmax

φ0

Eρκ
M∗ ,u

[
logDφ0(x+ ux, a+ ua, x

′ + ux′)
]
+ Eρκ

Mθt
,u

[
log(1−Dφ0(x+ ux, a+ ua, x

′ + ux′))
]

(26)

φ∗
1 = argmax

φ1

Eρκ
M∗ ,u [logDφ1(x+ ux, a+ ua)] + Eρκ

Mθt
,u [log(1−Dφ1(x+ ux, a+ ua))] ,

(27)

where Aφ∗
0 ,φ

∗
1
(x, a, x′) = Qκ

Mθ
(x, a, x′) − V κ

Mθ
(x, a). In practice, GALILEO optimizes the first

term of Eq. 23 with conservative policy gradient algorithms (e.g., PPO (Schulman et al., 2017)
or TRPO (Schulman et al., 2015)) to avoid unreliable gradients for model improvements. Eq. 26
and Eq. 27 are optimized with supervised learning. The second term of Eq. 23 is optimized with
supervised learning with a re-weighting term −Aφ∗

0 ,φ
∗
1
+ HM∗ . Since HM∗ is unknown, we use

HMθ
to estimate it. When the mean output probability of a batch of data is larger than 0.6 or

small than 0.4, we replace the second term of Eq. 23 with a standard supervised learning in Eq. 22.
Besides, unreliable gradients also exist in the process of optimizing the second term of Eq. 23. In
our implementation, we use the scale of policy gradients to constrain the gradients of the second
term of Eq. 23. In particular, we first compute the l2-norm of the gradient of the first term of Eq. 23
via conservative policy gradient algorithms, named ||gpg||2. Then we compute the l2-norm of the
gradient of the second term of Eq. 23, name ||gsl||2. Finally, we rescale the gradients of the second
term gsl by

gsl ← gsl
||gpg||2

max{||gpg||2, ||gsl||2}
. (28)

For each iteration, Eq. 23, Eq. 26, and Eq. 27 are trained with certain steps (See Tab. 5) following
the same framework as GAIL. Based on the above techniques, we summarize the pseudocode of
GALILEO in Alg. 2, where p0 and p1 are set to 0.4 and 0.6 in all of our experiments. The overall
architecture is shown in Fig. 7. to Reviewer bcJS

E.2 CONNECTION WITH PREVIOUS ADVERSARIAL ALGORITHMS

Standard GAN (Goodfellow et al., 2014) can be regarded as a partial implementation including the
first term of Eq. 23 and Eq. 26 by degrading them into the single-step scenario. In the context of
GALILEO, the objective of GAN is

θt+1 = argmax
θ

Eρκ
Mθt

[Aφ∗(x, a, x′) logMθ(x
′|x, a)]

s.t. φ∗ = argmax
φ

Eρκ
M∗ [logDφ(x, a, x

′)] + Eρκ
Mθt

[log(1−Dφ(x, a, x
′))] ,

where Aφ∗(x, a, x′) = logDφ∗(x, a, x′). In the single-step scenario, ρκMθt
(x, a, x′) =

ρ0(x)κ(a|x)Mθt(x
′|a, x). The term Eρκ

Mθt

[Aφ∗(x, a, x′) logMθ(x
′|x, a)] can convert to

Eρκ
Mθ

[logDφ∗(x, a, x′)] by replacing the gradient of Mθt(x
′|x, a)∇θ logMθ(x

′|x, a) with
∇θMθ(x

′|x, a) (Sutton & Barto, 1998). Previous algorithms like GANITE (Yoon et al., 2018)
and SCIGAN (Bica et al., 2020) can be regarded as variants of the above training framework.

The first term of Eq. 23 and Eq. 26 are similar to the objective of GAIL by regarding Mθ as the
“policy” to imitate and µ̂ as the “environment” to collect data. In the context of GALILEO, the
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objective of GAIL is:

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗(x, a, x′) logMθ(x

′|x, a)
]

s.t. Qκ
Mθt

(x, a, x′) = E

[
∞∑
t

γt logDφ∗(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
φ∗ = argmax

φ
Eρκ

M∗

[
logDφ(x, a, x

′)
]
+ Eρκ

Mθt

[
log(1−Dφ(x, a, x

′))
]
,

where Aφ∗(x, a, x′) = Qκ
Mθ

(x, a, x′)− V κ
Mθ

(x, a) and V κ
Mθt

(x, a) = EMθt (x,a)
[Qκ(x, a, x′)].

F ADDITIONAL RELATED WORK
to Reviewer j5p5
and rQ79Our primitive objective is inspired by weighted empirical risk minimization (WERM) based on

inverse propensity score (IPS). WERM is originally proposed to solve the generalization problem of
domain adaptation in machine learning literature. For instance, we would like to train a predictor
M(y|x) in a domain with distribution Ptrain(x) to minimize the prediction risks in the domain with
distribution Ptest(x), where Ptest ̸= Ptest. To solve the problem, we can train a weighted objective
with maxM Ex∼Ptrain

[ Ptest(x)
Ptrain(x)

logM(y|x)], which is called weighted empirical risk minimization
methods (Ben-David et al., 2006; 2010; Cortes et al., 2010; Byrd & Lipton, 2019; Quinonero-Candela
et al., 2008). These results have been extended and applied to causal inference, where the predictor
is required to be generalized from the data distribution in observational studies (source domain)
to the data distribution in randomized controlled trials (target domain) (Shimodaira, 2000; Assaad
et al., 2021; Hassanpour & Greiner, 2019; Jung et al., 2020; Johansson et al., 2018). In this case,
the input features include a state x (a.k.a. covariates) and an action a (a.k.a. treatment variable)
which is sampled from a policy. We often assume the distribution of x, P (x) is consistent between
the source domain and the test domain, then we have Ptest(x)

Ptrain(x)
= P (x)β(a|x)

P (x)µ(a|x) =
β(a|x)
µ(a|x) , where µ and

β are the policies in source and target domains respectively. In Shimodaira (2000); Assaad et al.
(2021); Hassanpour & Greiner (2019), the policy in randomized controlled trials is modeled as a
uniform policy, then Ptest(x)

Ptrain(x)
= P (x)β(a|x)

P (x)µ(a|x) = β(a|x)
µ(a|x) ∝

1
µ(a|x) . 1

µ(a|x) is also known as inverse
propensity score (IPS). In Johansson et al. (2018), it assumes that the policy in the target domain is
predefined as β(a|x) before environment model learning, then it uses β

µ as the IPS. The differences
between AWRM and previous works are fallen in two aspects: (1) We consider the distribution-shift
problem in the sequential decision-making scenario. In this scenario, we not only consider the action
distribution mismatching between the behavior policy µ and the policy to evaluation β, but also the
follow-up effects of policies to the state distribution; (2) For faithful offline policy optimization, we
require the environment model to have generalization ability in numerous different policies. The
objective of AWRM is proposed to guarantee the generalization ability of M in numerous different
policies instead of a specific policy.

On a different thread, there are also studies that bring counterfactual inference techniques of causal
inference into model-based RL (Buesing et al., 2019; Pitis et al., 2020; Sontakke et al., 2021).
These works consider that the transition function is relevant to some hidden noise variables and
use Pearl-style structural causal models (SCMs), which is a directed acyclic graphs to define the
causality of nodes in an environment, to handle the problem. SCMs can help RL in different ways:
Buesing et al. (2019) approximate the posterior of the noise variables based on the observation of
data, and environment models are learned based on the inferred noises. The generalization ability is
improved if we can infer the correct value of the noise variables. Pitis et al. (2020) discover several
local causal structural models of a global environment model, then data augmentation strategies
by leveraging these local structures to generate counterfactual experiences. Sontakke et al. (2021)
proposes a representation learning technique for causal factors, which is an instance of the hidden
noise variables, in partially observable Markov decision processes (POMDPs). With the learned
representation of causal factors, the performance of policy learning and transfer in downstream
tasks will be improved. Instead of considering the hidden noise variables in the environments, our to Reviewer j5p5
study considers the environment model learning problem in the fully observed setting and focuses
on unbiased causal effect estimation in the offline dataset under behavior policies collected with
selection bias.
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In offline model-based RL, the problem is called distribution shift (Yu et al., 2020; Levine et al.,
2020; Chen et al., 2021) which has received great attentions. However, previous algorithms do not
handle the model learning challenge directly but propose techniques to suppress policy sampling and
learning in risky regions (Yu et al., 2020; Kidambi et al., 2020). Although these algorithms have made
great progress in offline policy optimization in many tasks, so far, how to learn a better environment
model in this scenario has rarely been discussed.

G EXPERIMENT DETAILS

G.1 SETTINGS

G.1.1 GENERAL NEGATIVE FEEDBACK CONTROL (GNFC)

The design of GNFC is inspired by a classic type of scenario that behavior policies µ have selection
bias and easily lead to counterfactual risks: For some internet platforms, we would like to allocate
budgets to a set of targets (e.g., customers or cities) to increase the engagement of the targets in the
platforms. Our task is to train a model to predict targets’ feedback on engagement given targets’
features and allocated budgets.

In these tasks, for better benefits, the online working policy (i.e., the behavior policy) will tend to cut
down the budgets if targets have better engagement, otherwise, the budgets might be increased. The
risk of counterfactual environment model learning in the task is that: the object with better historical
engagement will be sent to smaller budgets because of the selection bias of the behavior policies, then
the model might exploit this correlation for learning and get a conclusion that: increasing budgets
will reduce the targets’ engagement, which violates the real causality. We construct an environment
and a behavior policy to mimic the above process. In particular, the behavior policy µGNFC is

µGNFC(x) =
(62.5−mean(x))

15
+ ϵ,

where ϵ is a sample noise, which will be discussed later. The environment includes two parts:

(1) response function M1(y|x, a):

M1(y|x, a) = N (mean(x) + a, 2)

(2) mapping function M2(x
′|x, y):

M2(x
′|x, a, y) = y −mean(x) + x

The transition function M∗ is a composite of M∗(x′|x, a) = M2(x
′|x, a,M1(y|x, a)). The behavior

policies have selection bias: the actions taken are negatively correlated with the states, as illustrated
in Fig. 8(a) and Fig. 8(b). We control the difficulty of distinguishing the correct causality of x, a, and
y by designing different strategies of noise sampling on ϵ. In principle, with a larger number or more
pronounced disturbances, there are more samples violating the correlation between x and a, then
more samples can be used to find the correct causality. Therefore, we can control the difficulty of
counterfactual environment model learning by controlling the strength of disturbance. In particular,
we sample ϵ from a uniform distribution U(−e, e) with probability p. That is, ϵ = 0 with probability
1− p and ϵ ∼ U(−e, e) with probability p. Then with larger p, there are more samples in the dataset
violating the negative correlation (i.e., µGNFC), and with larger e, the difference of the feedback
will be more obvious. By selecting different e and p, we can construct different tasks to verify the
effectiveness and ability of the counterfactual environment model learning algorithm.

G.1.2 THE CANCER GENOMIC ATLAS (TCGA)

The Cancer Genomic Atlas (TCGA) is a project that has profiled and analyzed large numbers of
human tumors to discover molecular aberrations at the DNA, RNA, protein, and epigenetic levels. The
resulting rich data provide a significant opportunity to accelerate our understanding of the molecular
basis of cancer. We obtain features, x, from the TCGA dataset and consider three continuous
treatments as done in SCIGAN (Bica et al., 2020). Each treatment, a, is associated with a set of
parameters, v1, v2, v3, that are sampled randomly by sampling a vector from a standard normal
distribution and scaling it with its norm. We assign interventions by sampling a treatment, a, from
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Figure 8: Illustration of information about the collected dataset in GNFC. Each color of the line
denotes one of the collected trajectories. The X-axis denotes the timestep of a trajectory.

a beta distribution, a | x ∼ Beta (α, β). α ≥ 1 controls the sampling bias and β = α−1
a∗ + 2 − α,

where a∗ is the optimal treatment. This setting of β ensures that the mode of Beta (α, β) is a∗.

The calculation of treatment response and optimal treatment are shown in Table 3.

Table 3: Treatment response used to generate semi-synthetic outcomes for patient features x. In the
experiments, we set C = 10.

Treatment Treatment Response Optimal treatment

1 f1(x, a1) = C
((

v1
1

)T
x+ 12

(
v1
2

)T
xa1 − 12

(
v1
3

)T
xa21

)
a∗1 =

(v1
2)

T
x

2(v1
3)

T
x

2 f2(x, a2) = C
((

v2
1

)T
x+ sin

(
π
(

v2T
2 x

v2T
3 x

)
a2

))
a∗2 =

(v2
3)

T
x

2(v2
2)

T
x

3 f3(x, a3) = C
((

v3
1

)T
x+ 12a3(a3 − b)2 , where b = 0.75

(v3
2)

T
x

(v3
3)

T
x

)
3
b if b ≥ 0.75, 1 if b < 0.75

We conduct experiments on three different treatments separately and change the value of bias α to
assess the robustness of different methods to treatment bias. When the bias of treatment is large,
which means α is large, the training set contains data with a strong bias on treatment so it would be
difficult for models to appropriately predict the treatment responses out of the distribution of training
data.

G.1.3 BUDGET ALLOCATION TASK TO THE TIME PERIOD (BAT)

We deploy GALILEO in a real-world large-scale food-delivery platform. The platform contains
various food stores, and food delivery clerks. The overall workflow is as follows: the platform
presents the nearby food stores to the customers and the customers make orders, i.e., purchase
take-out foods from some stores on the platform. The food delivery clerks can select orders from
the platform to fulfill. After an order is selected to fulfill, the delivery clerks will take the ordered
take-out foods from the stores and then send the food to the customers. The platform will pay the
delivery clerks (mainly in proportion to the distance between the store and the customers’ location)
once the orders are fulfilled. An illustration of the workflow can be found in Fig. 9.

However, there is an imbalance problem between the demanded orders from customers and the supply
of delivery clerks to fulfill these orders. For example, at peak times like lunchtime, there will be
many more demanded orders than at other times, and the existed delivery clerks might not be able to
fulfill all of these orders timely. The goal of the Budget Allocation task to the Time period (BAT) is
to handle the imbalance problem in time periods by sending reasonable allowances to different time
periods. More precisely, the goal of BAT is to make all orders (i.e., the demand) sent in different time
periods can be fulfilled (i.e., the supply) timely.
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Figure 9: Illustration of the workflow of the food-delivery platform.

To handle the imbalance problem in different time periods, in the platform, the orders in different
time periods t ∈ [0, 1, 2..., 23] will be allocated with different allowances c ∈ N+. For example, at
10 A.M. (i.e., t = 10), we add 0.5$ (i.e., c = 0.5) allowances to all of the demanded orders. From
10 A.M. to 11 A.M., the delivery clerks who take orders and send food to customers will receive
extra allowances. Specifically, if the platform pays the delivery clerks 2$ for fulfilling the order, now
he/she will receive 2.5$. For each day, the budget of allowance C is fixed. We should find the best
budget allocation policy π∗(c|t) of the limited budget C to make as many orders as possible can be
taken timely.

To find the policy, we first learn a model to reconstruct the response of allowance for each delivery
clerk M̂(yt+1|st, pt, ct), where yt+1 is the taken orders of the delivery clerks in state st, ct is the
allowances, pt denotes static features of the time period t. In particular, the state st includes historical
order-taken information of the delivery clerks, current orders information, the feature of weather,
city information, and so on. Then we use a rule-based mapping function f to fill the complete next
time-period states, i.e., st+1 = f(st, pt, ct, yt+1). Here we define the composition of the above
functions M̂ and f as M̂f . Finally, we learn a budget allocation policy based on the learned model.
For each day, the policy we would like to find is:

max
π

Es0∼S

[
23∑
t=0

yt|M̂f , π

]
,

s.t.,
∑
t,s∈S

ctyt ≤ C

In our experiment, we evaluate the degree of balancing between demand and supply by computing the
averaged five-minute order-taken rate, that is the percentage of orders picked up within five minutes.
Note that the behavior policy is fixed for the long term in this application. So we directly use the data
replay with a small scale of noise (See Tab. 5) to reconstruct the behavior policy for model learning
in GALILEO.

Also note that although we model the response for each delivery clerk, for fairness, the budget
allocation policy is just determining the allowance of each time period t and keeps the allowance
to each delivery clerk s the same.

G.2 BASELINE ALGORITHMS

The algorithm we compared are: (1) Supervised Learning (SL): training a environment model
to minimize the expectation of prediction error, without considering the counterfactual risks; (2)
inverse propensity weighting (IPW) (Spirtes, 2010): a practical way to balance the selection bias
by re-weighting. It can be regarded as ω = 1

µ̂ , where µ̂ is another model learned to approximate
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the behavior policy; (3) SCIGAN: a recent proposed adversarial algorithm for model learning for
continuous-valued interventions (Bica et al., 2020). All of the baselines algorithms are implemented
with the same capacity of neural networks (See Tab. 5).

G.2.1 SUPERVISED LEARNING (SL)

As a baseline, we train a multilayer perceptron model to directly predict the response of different
treatments, without considering the counterfactual risks. We use mean square error to estimate the
performance of our model so that the loss function can be expressed as MSE = 1

n

∑n
i=1 (yi − ŷi)

2,
where n is the number of samples, y is the true value of response and ŷ is the predicted response. In
practice, we train our SL models using Adam optimizer and the initial learning rate 3e−4 on both
datasets TCGA and GNFC. The architecture of the neural networks is listed in Tab. 5.

G.2.2 INVERSE PROPENSITY WEIGHTING (IPW)

Inverse propensity weighting (Spirtes, 2010) is an approach where the treatment outcome model
uses sample weights to balance the selection bias by re-weighting. The weights are defined as the
inverse propensity of actually getting the treatment, which can be expressed as 1

µ̂(a|x) , where x stands
for the feature vectors in a dataset, a is the corresponding action and µ̂(a|x) indicates the action
taken probability of a given the features x within the dataset. µ̂ is learned with standard supervised
learning. Standard IPW leads to large weights for the points with small sampling probabilities and
finally makes the learning process unstable. We solve the problem by clipping the propensity score:
µ̂← min(µ̂, 0.05), which is common used in existing studies (Ionides, 2008). The loss function can
thus be expressed as 1

n

∑n
i=1

1
µ̂(ai|xi)

(yi − ŷi)
2. The architecture of the neural networks is listed in

Tab. 5.

G.2.3 SCIGAN

SCIGAN (Bica et al., 2020) is a model that uses generative adversarial networks to learn the
data distribution of the counterfactual outcomes and thus generate individualized response curves.
SCIGAN does not place any restrictions on the form of the treatment-does response functions
and is capable of estimating patient outcomes for multiple treatments, each with an associated
parameter. SCIGAN first trains a generator to generate response curves for each sample within
the training dataset. The learned generator can then be used to train an inference network using
standard supervised methods. For fair comparison, we increase the number of parameters for the the
open-source version of SCIGAN so that the SCIGAN model can have same order of magnitude of
network parameters as GALILEO. In addition, we also finetune the hyperparameters (Tab. 4) of the
enlarged SCIGAN to realize its full strength. We set num_dosage_samples 9 and λ = 10.

Table 4: Table of hyper-parameters for SCIGAN.
Parameter Values

Number of samples 3, 5, 7, 9, 11
λ 0.1, 1, 10, 20

G.3 HYPER-PARAMETERS

We list the hyper-parameter of GALILEO in Tab. 5.

G.4 COMPUTATION RESOURCES

We use one Tesla V100 PCIe 32GB GPU and a 32-core Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
to train all of our model.
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Table 5: Table of hyper-parameters for all of the tasks.
Parameter GNFC TAGC MuJoCo BAT

hidden layers of all neural networks 4 4 5 5
hidden units of all neural networks 256 256 512 512
collect samples for each time of model update 5000 5000 40000 96000
batch size of discriminators 5000 5000 40000 80000
horizon 50 1 100 48 (half-hours)
ϵµ (also ϵD) 0.005 0.01 0.05 (0.1 for walker2d) 0.05
times for discriminator update 2 2 1 5
times for model update 1 1 2 20
times for supervised learning update 1 1 4 20
learning rate for supervised learning 1e-5 1e-5 3e-4 1e-5
γ 0.99 0.0 0.99 0.99
clip-ratio NAN NAN NAN 0.1
max DKL 0.001 0.001 0.001 NAN
optimization algorithm (the first term of Eq. 23) TRPO TRPO TRPO PPO

H ADDITIONAL RESULTS

H.1 ALL OF THE RESULT TABLE

We give the result of CNFC in Tab. 8, TCGA in Tab. 9, BAT in Tab. 7, and MuJoCo in Tab. 6.

H.2 AVERAGED RESPONSE CURVES

We give the averaged responses for all of the tasks and the algorithms in Fig. 16 to Fig. 23. We
randomly select 20% of the states in the dataset and equidistantly sample actions from the action
space for each sampled state, and plot the averaged predicted feedback of each action. The real
response is slightly different among different figure as the randomly-selected states for testing is
different. We sample 9 points in GNFC tasks and 33 points in TAGC tasks for plotting.

H.3 ABLATION STUDIES

GALILEO
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Figure 10: Illustration of the ablation
studies. The error bars are the standard
error.

In Sec. 4.3 and Appx. E.1, we introduce several techniques
to develop a practical GALILEO algorithm. Based on task
e0.2_p0.05 in GNFC, we give the ablation studies to
investigate the effects of these techniques. We first com-
pare two variants that do not handle the assumptions viola-
tion problems: (1) NO_INJECT_NOISE: set ϵµ and ϵD
to zero, which makes the overlap assumption not satisfied;;
(2) SINGLE_SL: without replacing the second term in
Eq. 8 with standard supervised learning even when the
output probability of D is far away from 0.5. Besides,
we introduced several tricks inspired by GAIL and give
a comparison of these tricks and GAIL: (3) ONE_STEP:
use one-step reward instead of cumulative rewards (i.e.,
Q and V; see Eq. 24 and Eq. 25) for re-weighting, which
is implemented by set γ to 0; (4) SINGE_DIS: remove
Tφ∗

1
(x, a) and replace it with EMθ

[
Tφ∗

0
(x, a, x′)

]
, which

is inspired by GAIL that uses a value function as a baseline
instead of using another discriminator; (5) PURE_GAIL:
remove the second term in Eq. 8. It can be regarded as a naive adoption of GAIL and a partial
implementation of GALILEO.

We summarize the results in Fig. 10. Based on the results of NO_INJECT_NOISE and SINGLE_SL,
we can see that handling the assumption violation problems is important and will increase the ability
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Table 6: The root mean square errors on MuJoCo tasks. We bold the lowest error for each task.
“medium” dataset is used for training, while “expert” and “medium-replay” datasets are just used
for testing. ± follows the standard deviation of three seeds.

TASK HalfCheetah

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.378 ± 0.003 2.287± 0.005 1.411 ± 0.037
OFF-SL 0.404 ± 0.001 3.311 ± 0.055 2.246 ± 0.016

TASK Walker2d

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.49 ± 0.00 1.514 ± 0.002 0.968 ± 0.004
OFF-SL 0.467 ± 0.004 1.825 ± 0.061 1.239 ± 0.004

TASK Hopper

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.037 ± 0.002 0.322 ± 0.036 0.408 ± 0.003
OFF-SL 0.034 ± 0.001 0.464 ± 0.021 0.574 ± 0.008

on counterfactual queries. The results of PURE_GAIL tell us that the partial implementation of
GALILEO is not enough to give stable predictions on counterfactual data; On the other hand, the
result of ONE_STEP also demonstrates that embedding the cumulative error of one-step prediction
is helpful for GALILEO training; Finally, we also found that SINGLE_DIS nearly has almost no
effect on the results. It suggests that, empirically, we can use EMθ

[
Tφ∗

0
(x, a, x′)

]
as a replacement

for Tφ∗
1
(x, a), which can reduce the computation costs of the extra discriminator training.

H.4 WORST-CASE PREDICTION ERROR

In theory, GALILEO increases the generalization ability by focusing on the worst-case samples’
training to achieve AWRM. To demonstrate the property, we propose a new metric named Mean-Max
Square Error (MMSE): E

[
maxa∈A (M∗(x′|x, a)−M(x′|x, a))2

]
and give the results of MMSE

for GNFC in Tab. 10 and for TCGA in Tab. 11.

H.5 DETAILED RESULTS IN THE MUJOCO TASKS

We select 3 environments from D4RL (Fu et al., 2020) to construct our model learning tasks. We
compare it with a typical transition model learning algorithm used in the previous offline model-based
RL algorithms (Yu et al., 2020; Kidambi et al., 2020), which is a variant of standard supervised
learning. We name the method OFF-SL. We train models in datasets HalfCheetah-medium, Walker2d-
medium, and Hopper-medium, which are collected by a behavior policy with 1/3 performance to
the expert policy, then we test them in the corresponding expert dataset. We plot the converged
results and learning curves of GALILEO and OFF-SL in three MuJoCo tasks in Tab. 6 and Fig. 11
respectively.

In Fig. 11, we can see that both OFF-SL and GALILEO perform well in the training datasets.
OFF-SL can even reach a bit lower error in halfcheetah and walker2d. However, when we verify
the models through “expert” and “medium-replay” datasets, which are collected by other policies,
the performance of GALILEO is significantly more stable and better than OFF-SL. As the training
continues, OFF-SL even gets worse and worse. In summary, GALILEO reaches significantly better
performances in the expert dataset: the averaged declines of root MSE in three environments are
56.5%, 49.2%, and 34.8%. However, whether in GALILEO or OFF-SL, the performance for testing
is at least 2x worse than in the training dataset. The phenomenon indicates that although GALILEO
can make better performances for counterfactual queries, the risks of using the models are still large
and still challenging to be further solved.
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Figure 11: Illustration of learning curves of the MuJoCo Tasks. The X-axis record the steps of the
environment model update, and the Y-axis is the corresponding prediction error. The figures with
titles ending in “(train)” means the dataset is used for training while the titles ending in “(test)” means
the dataset is just used for testing. The solid curves are the mean reward and the shadow is the
standard error of three seeds.
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Figure 12: Illustration of relationship between user feedback and the actions of the offline dataset in
the real-world food-delivery platform.

H.6 DETAILED RESULTS IN THE BAT TASK

The core challenge of the environment model learning in BAT tasks is similar to the challenge in
Fig. 1. Specifically, the behavior policy in BAT tasks is a human-expert policy, which will tend to
increase the budget of allowance in the time periods with a lower supply of delivery clerks, otherwise
will decrease the budget (Fig. 12 gives an instance of this phenomenon in the real data).

Since there is no oracle environment model for querying, we have to describe the results with other
metrics.
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Figure 13: Illustration of the response curves in the 6 cities. Although the ground-truth curves
are unknown, through human expert knowledge, we know that it is expected to be monotonically
increasing .

First, we review whether the tendency of the response curve is consistent. In this application, with a
larger budget of allowance, the supply will not be decreased. As can be seen in Fig. 13, the tendency
of GALILEO’s response is valid in 6 cities but almost all of the models of SL give opposite directions
to the response. If we learn a policy through the model of SL, the optimal solution is canceling all of
the allowances, which is obviously incorrect in practice.

Second, we conduct randomized controlled trials (RCT) in one of the testing cities. Using the RCT
samples, we can evaluate the correctness of the sort order of the model predictions via Area Under
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Figure 14: Illustration of the AUUC result for BAT.

the Uplift Curve (AUUC) (Betlei et al., 2020). To plot AUUC, we first sort the RCT samples based
on the predicted treatment effects. Then the cumulative treatment effects are computed by scanning
the sorted sample list. If the sort order of the model predictions is better, the sample with larger
treatment effects will be computed early. Then the area of AUUC will be larger than the one via a
random sorting strategy. The result of AUUC show GALILEO gives a reasonable sorting to the RCT
samples (see Fig. 14).

Finally, we search for the optimal policy via the cross-entropy method planner (Hafner et al., 2019)
based on the learned model. We test the online supply improvement in 6 cities. The algorithm
compared is a human-expert policy, which is also the behavior policy of the offline datasets. We
conduct online A/B tests for each of the cities. For each test, we randomly split a city into two
partitions, one is for deploying the optimal policy learned from the GALILEO model, and the other is
as a control group, which keeps the human-expert policy as before. Before the intervention, we collect
10 days’ observation data and compute the averaged five-minute order-taken rates as the baselines
of the treatment and control group, named bt and bc respectively. Then we start intervention and
observe the five-minute order-taken rate in the following 14 days for the two groups. The results of the
treatment and control groups are yti and yci respectively, where i denotes the i-th day of the deployment.
The percentage points of the supply improvement are computed via difference-in-difference (DID):∑T

i (y
t
i − bt)− (yci − bc)

T
× 100,

where T is the total days of the intervention and T = 14 in our experiments.

Table 7: Results on BAT. We use City-X to denote the experiments on different cities. “pp” is an
abbreviation of percentage points on the supply improvement.

target City-A City-B City-C

supply improvement +1.63pp +0.79pp +0.27pp

target City-D City-E City-F

supply improvement +0.2pp +0.14pp +0.41pp

The results are summarized in Tab. 7. The online experiment is conducted in 14 days and the results
show that the policy learned with GALILEO can make better (the supply improvements are from 0.14
to 1.63 percentage points) budget allocation than the behavior policies in all the testing cities. We
give detailed results which record the supply difference between the treatment group and the control
group in Fig. 15.
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Figure 15: Illustration of the daily responses in the A/B test in the 6 cities.
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Table 8:
√
MISE results on GNFC. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
e1_p1 e0.2_p1 e0.05_p1

GALILEO 5.17 ± 0.06 4.73 ± 0.13 4.70 ± 0.02
SL 5.15 ± 0.23 4.73 ± 0.31 23.64 ± 4.86
IPW 5.22 ± 0.09 5.50 ± 0.01 5.02 ± 0.07
SCIGAN 7.05 ± 0.52 6.58 ± 0.58 18.55 ± 3.50

e1_p0.2 e0.2_p0.2 e0.05_p0.2

GALILEO 5.03 ± 0.09 4.72 ± 0.05 4.87 ± 0.15
SL 5.21 ± 0.63 6.74 ± 0.15 33.52 ± 1.32
IPW 5.27 ± 0.05 5.69 ± 0.00 20.23 ± 0.45
SCIGAN 16.07 ± 0.27 12.07 ± 1.93 19.27 ± 10.72

e1_p0.05 e0.2_p0.05 e0.05_p0.05

GALILEO 5.23 ± 0.41 5.01 ± 0.08 6.17 ± 0.33
SL 5.89 ± 0.88 14.25 ± 3.48 37.50 ± 2.29
IPW 5.21 ± 0.01 5.52 ± 0.44 31.95 ± 0.05
SCIGAN 11.50 ± 7.76 13.05 ± 4.19 25.74 ± 8.30

Table 9:
√
MISE results on TCGA. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
t0_bias_2.0 t0_bias_20.0 t0_bias_50.0

GALILEO 0.34 ± 0.05 0.67 ± 0.13 2.04 ± 0.12
SL 0.38 ± 0.13 1.50 ± 0.31 3.06 ± 0.65
IPW 6.57 ± 1.16 6.88 ± 0.30 5.84 ± 0.71
SCIGAN 0.74 ± 0.05 2.74 ± 0.35 3.19 ± 0.09

t1_bias_2.0 t1_bias_6.0 t1_bias_8.0

GALILEO 0.43 ± 0.05 0.25 ± 0.02 0.21 ± 0.04
SL 0.47 ± 0.05 1.33 ± 0.97 1.18 ± 0.73
IPW 3.67 ± 2.37 0.54 ± 0.13 2.69 ± 1.17
SCIGAN 0.45 ± 0.25 1.08 ± 1.04 1.01 ± 0.77

t2_bias_2.0 t2_bias_6.0 t2_bias_8.0

GALILEO 1.46 ± 0.09 0.85 ± 0.04 0.46 ± 0.01
SL 0.81 ± 0.14 3.74 ± 2.04 3.59 ± 0.14
IPW 2.94 ± 1.59 1.24 ± 0.01 0.99 ± 0.06
SCIGAN 0.73 ± 0.15 1.20 ± 0.53 2.13 ± 1.75
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Table 10:
√
MMSE results on GNFC. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
e1_p1 e0.2_p1 e0.05_p1

GALILEO 3.86 ± 0.03 3.99 ± 0.01 4.07 ± 0.03
SL 5.73 ± 0.33 5.80 ± 0.28 18.78 ± 3.13
IPW 4.02 ± 0.05 4.15 ± 0.12 22.66 ± 0.33
SCIGAN 8.84 ± 0.54 12.62 ± 2.17 24.21 ± 5.20

e1_p0.2 e0.2_p0.2 e0.05_p0.2

GALILEO 4.13 ± 0.10 4.11 ± 0.15 4.21 ± 0.15
SL 5.87 ± 0.43 7.44 ± 1.13 29.13 ± 3.44
IPW 4.12 ± 0.02 6.12 ± 0.48 30.96 ± 0.17
SCIGAN 12.87 ± 3.02 14.59 ± 2.13 24.57 ± 3.00

e1_p0.05 e0.2_p0.05 e0.05_p0.05

GALILEO 4.39 ± 0.20 4.34 ± 0.20 5.26 ± 0.29
SL 6.12 ± 0.43 14.88 ± 4.41 30.81 ± 1.69
IPW 13.60 ± 7.83 26.27 ± 2.67 32.55 ± 0.12
SCIGAN 9.19 ± 1.04 15.08 ± 1.26 17.52 ± 0.02

Table 11:
√
MMSE results on TCGA. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
t0_bias_2.0 t0_bias_20.0 t0_bias_50.0

GALILEO 1.56 ± 0.04 1.96 ± 0.53 3.16 ± 0.13
SL 1.92 ± 0.67 2.31 ± 0.19 5.11 ± 0.66
IPW 7.42 ± 0.46 5.36 ± 0.96 5.38 ± 1.24
SCIGAN 2.11 ± 0.47 5.23 ± 0.27 5.59 ± 1.02

t1_bias_2.0 t1_bias_6.0 t1_bias_8.0

GALILEO 1.43 ± 0.06 1.09 ± 0.05 1.36 ± 0.36
SL 1.12 ± 0.15 3.65 ± 1.91 3.96 ± 1.81
IPW 1.14 ± 0.11 0.90 ± 0.09 2.04 ± 0.99
SCIGAN 3.32 ± 0.88 4.74 ± 2.12 5.17 ± 2.42

t2_bias_2.0 t2_bias_6.0 t2_bias_8.0

GALILEO 3.77 ± 0.35 3.99 ± 0.40 2.08 ± 0.60
SL 2.70 ± 0.67 8.33 ± 5.05 9.70 ± 3.12
IPW 2.92 ± 0.15 3.90 ± 0.17 4.47 ± 2.16
SCIGAN 3.82 ± 2.12 1.83 ± 1.49 3.62 ± 4.9
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Figure 16: Illustration of the averaged response curves of Supervised Learning (SL) in TCGA.
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Figure 17: Illustration of the averaged response curves of Supervised Learning (SL) in GNFC.
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Figure 18: Illustration of the averaged response curves of Inverse Propensity Weighting (IPW) in
TCGA.
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Figure 19: Illustration of the averaged response curves of Inverse Propensity Weighting (IPW) in
GNFC.
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Figure 20: Illustration of the averaged response curves of SCIGAN in TCGA.
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Figure 21: Illustration of the averaged response curves of SCIGAN in GNFC.
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Figure 22: Illustration of the averaged response curves of GALILEO in TCGA.
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Figure 23: Illustration of the averaged response curves of GALILEO in GNFC.
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