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ABSTRACT

While inference-time scaling enables LLMs to carry out increasingly long and
capable reasoning traces, the patterns and insights uncovered during these traces are
immediately discarded once the context window is reset for a new query. External
memory is a natural way to persist these discoveries, and recent work has shown
clear benefits for reasoning-intensive tasks. We see an opportunity to make such
memories more broadly reusable and scalable by moving beyond instance-based
memory entries (e.g. exact query/response pairs, or summaries tightly coupled with
the original problem context) toward concept-level memory: reusable, modular
abstractions distilled from solution traces and stored in natural language. For future
queries, relevant concepts are selectively retrieved and integrated into the prompt,
enabling test-time continual learning without weight updates. Our design introduces
new strategies for abstracting takeaways from rollouts and retrieving entries for
new queries, promoting reuse and allowing memory to expand with additional
experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional
generalization and abstract reasoning, making it a natural fit for concept memory.
Our method yields a 7.5% relative gain over a strong no-memory baseline, with
performance continuing to scale with inference compute. We find abstract concepts
to be the most consistent memory design, outscoring the baseline at all tested
inference compute scales. Moreover, dynamically updating memory during test-
time outperforms fixed settings, supporting the hypothesis that accumulating and
abstracting patterns enables further solutions in a form of self-improvement.

1 INTRODUCTION

Large language models (LLMs) have made substantial strides in reasoning-intensive tasks with
long-form reasoning. However, a notable opportunity lies in the fact that LLM systems are fixed after
deployment: new patterns and strategies uncovered during deep reasoning are not yet carried forward
once the context is cleared. This contrasts with human approaches to solving complex, compositional
reasoning problems, which involve building on prior insights, abstracting patterns, and composing
them in new contexts. Augmenting LLMs with memory offers a natural solution to retaining and
building on their discoveries.

While external augmentation was initially designed for factuality in knowledge-intensive tasks (e.g.
Lewis et al. (2021) with RAG, Zhang et al. (2019) with Knowledge Graphs, inter alia), recent work
has begun developing memory approaches for reasoning-intensive tasks, storing questions, findings,
and mistakes in memory instead of simple facts (Yang et al., 2024). These memories tend to be
specific to the problem/experience it was originally derived from (we term these “instance-level”
concepts, see Figure 1). Although effective for closely related problems, they have diminished
utility for problems superficially different from prior experiences. Other approaches, such as Suzgun
et al. (2025), begin addressing the “instance-level” issue by maintaining an evolving summary of
previous experience to great effect, but the lack of structure and modularity makes scaling with more
experiences challenging. Without selective retrieval, the size of memory is limited, and the problem
solving model has the additional burden of picking out the relevant ideas from all past experiences.

We introduce an abstract concept-level memory framework to support compositional reasoning for
all subsequent queries. We emphasize (1) abstract concepts that are more general and separated
from their original context to be useful across a larger set of future problems, and (2) modular
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Figure 1: Instance-Level vs. Abstract Concepts Example. Each ARC-AGI Chollet (2019)
puzzle requires inferring the transformation rule for a set of input/output pixel grids. Here, Puzzle
1 instantiates (A ∧ B) ⇒ C and Puzzle 2 instantiates D ⇒ E. The target puzzle is solved by
recombining these ideas (B ⇒ E,D ⇒ C). Instance-level memory tends to store fully composed
rules, coupling A with B,C, and so on. Transferring to the target then demands both ignoring A and
disentangling/reordering B,C with D,E. Abstract memory instead stores A,B,C,D,E as separate,
modular concepts, making them easier to recognize and reassemble in new contexts.

concepts that directly promote recombination with other ideas that can be easily built on with new
experiences or curated for a target problem. We distill solution traces (both from the system itself or
from external sources) into reusable, modular abstractions stored in natural language. At inference
time, relevant concepts are selected and integrated into context, enabling test-time continual learning
without expensive weight updates. Our design encapsulates two primary operations: (i) writing to
memory: formatting concepts for abstraction and generality; and (ii) reading from memory: selecting
a subset of concepts for the current problem. We title our method ArcMemo— Abstract Reasoning
Composition Memory.

As illustrated in Figure 1, instance-level memories often capture an entire solution pattern tied closely
to its original problem (e.g., the joint use of ideas A,B,C in Seen Puzzle 1). Such overspecified
entries are less likely to recur in future problems, and even when partially relevant to the Target
Puzzle, the agent must still disentangle useful pieces like B from the original bundle. In contrast,
abstract concepts are stored individually with fewer contextual assumptions, making them easier to
recognize, adapt, and recombine across superficially different puzzles.

We evaluate on ARC-AGI, where simple pixel-grid operations compose into a vast task space, and
solving tasks requires compositional reasoning rather than memorizing individual patterns, making it
a natural testbed for ArcMemo. ARC-AGI simultaneously remains challenging for SOTA models
and solvable by human children. Along with clean, deterministic scoring, this reasoning benchmark
simulates frontier domains not present in vast training corpora and thus serves as a perfect measure
for a continual learning system. On ARC-AGI-1, our method improves the official score from
55.17 to 59.33 (+7.5% relative gain over a strong no-memory baseline) and is the only evaluated
memory design we find to outperform the baseline at all inference scales. Our experiments confirm
that continually updating memory at evaluation time yields a score improvement that emerges with
inference scale via retries: memory updates triggered from a previous pass over the test set may
enable new solves in a subsequent pass. Finally, we observe that selecting a subset of memories
to include for a particular problem improves performance and reduces token cost, indicating the
selection operation is essential beyond allowing memory to grow continually.

2 RELATED WORK

Our approach draws on several threads of research in augmenting LLMs with memory but contrasts
in (1) target applications (reasoning-intensive vs. knowledge-intensive tasks), (2) the underlying
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memory modality (text vs. continuous vectors/embeddings), and (3) emphasis on abstraction and
modularity for reasoning. We discuss related lines (1) and (2) as well as other related work in
Appendix E and emphasize reasoning and abstraction here.

Memory for Test-Time Reasoning and Concept Abstraction. More recent work has shifted
toward reasoning-centric uses of memory, particularly test-time learning. Think-in-Memory records
intermediate reasoning steps as structured triples, storing them in a locality-sensitive hash table to
enable reuse in multi-step reasoning tasks (Liu et al., 2023). Buffer of Thoughts stores problem
specific reasoning templates, retrieved by embedding similarity and instantiated for new inputs (Yang
et al., 2024). It categorizes and summarizes solution attempts into templated insights, which are
then added to memory. In contrast, Dynamic Cheatsheet maintains a unified buffer that is adapted
continuously. With each problem query, the LLM updates this memory blob by rewriting the entire
buffer (Suzgun et al., 2025). Rather than retrieving specific entries, the entire cheatsheet is appended
to the prompt, functioning as a persistent cache of problem-solving strategies. We emphasize that
our use of memory for long-form reasoning is cross-episodic rather than a working memory for state
tracking within a single problem (e.g. Jayalath et al. (2025)’s PRISM).

ARC-AGI Approaches. Our work is primarily evaluated against ARC-AGI as a benchmark that
simulates complex reasoning on frontier tasks without requiring frontier-level knowledge. Various
techniques and findings have been developed against this benchmark. Li et al. (2024) demonstrates
the efficacy of synthetic data and the complementary approaches of (i) learning to infer the underlying
transformation via program synthesis and (ii) using test-time weight adaptation to directly learn the
transformation function in the neural net. Akyürek et al. (2025) further investigates the test-time
adaptation method, producing various insights, including that low rank adapters are poorly suited
to retaining practical experience across puzzles. Our program synthesis approach can be viewed
as a memory-augmented version of Wang et al. (2024)’s hypothesis search or Qiu et al. (2024)’s
hypothesis refinement with execution feedback-based retry. Other recent approaches to ARC-AGI
include brain-inspired architectural innovations such as Wang et al. (2025)’s hierarchical reasoning
model, achieving impressive performance through a recurrent architecture that iteratively refines
its output until a halt signal is predicted, together with data augmentation techniques. Finally, the
relative ease of generating new ARC-AGI tasks compared to solving them is exploited in Pourcel
et al. (2025)’s self-improving system that relabels incorrect programs as the correct program for a
different puzzle and trains a model on its generations this way.

3 METHODS

3.1 PROBLEM STATEMENT

Algorithm 1: Inference with Continually Updating External Memory
Input: Dataset D = {xi, yi}ni=1 (labels yi optional), External memory M , Operations MEMREAD,

MEMWRITE, GETFEEDBACK, Update interval k,
Output: Predictions {ŷi}
for i← 1 to n do

(xi, yi)← GETITEM(D, i) ; // Label yi may be absent at inference
si ← MEMREAD(M,xi) ; // Retrieve relevant memory entries
ŷi ← LLM_GENERATE(xi, si) ; // Predict using LLM + selected memory
if i mod k = 0 then

fi ← GETFEEDBACK(ŷi, yi) ; // test verification, reflection, etc.
MEMWRITE(M,xi, ŷi, fi) ; // Incorporate feedback into memory

We formulate a memory system as a collection of memory entries associated with read and write op-
erations. Problem solving with memory augmented LLMs thus requires designing three components
as seen in algorithm 1:

1. Memory Format (3.2): What is stored in individual entries?
2. Memory Write (3.3): How is memory updated from a reasoning trace?
3. Memory Read (3.4): How is memory used for tackling new problems?

3
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Figure 2: Method Diagram. Implementing a memory system requires defining (1) what is stored,
(2) how memory is updated, and (3) how memory is used for new queries. The key novelty in
this work is emphasizing abstraction and modularity, and the corresponding design changes. In
particular, we highlight that parameterization (with higher-order functions allowed and encouraged)
promotes abstraction, and typed interface definitions support modularity by showing which concepts
can be combined. Since these memory entries are more abstract, they also require more inference
to map against new, concrete situations–whether by aligning input against the memory format in a
preprocessing query, or leveraging reasoning models to explore in a directed manner.

These are generic design considerations for any memory. Our method’s novelty lies in the choices
made to target (1) abstracting a memory to be less specific to the problem it was derived from (2)
enabling memory selection, since greater abstraction makes standard retrieval approaches (embedding
similarity thresholding) less effective. We present two such implementations: (1) an open-ended (OE)
format that imposes minimal constraints on entry format and uses a simple problem preprocessing
step for memory selection, and (2) a program-synthesis (PS) inspired format that categorizes and
parameterizes concepts and uses reasoning model exploration to select relevant items.

Problem Assumptions. The main requirement for our memory system is that some feedback is
available at test-time (e.g. via test cases or self-reflection). This condition is necessary as retaining
patterns from an incorrect or otherwise flawed trace would serve to carry mistakes forward. In other
words, some signal is needed to discriminate correct from incorrect traces to ensure only productive
ideas and patterns are added to memory. Incorrect traces still likely contain vital signal, but error
identification/credit assignment remains an open challenge that we leave to future efforts. Various
real-world tasks may satisfy this requirement, as tasks are often specified with either examples
showing desired behavior or evaluation criteria defining what outcomes are positive and negative.
To give some examples, code completion tools have criteria like compilation success and test pass
rate, and medical diagnosis tools have evaluation criteria defined as patient outcomes (e.g., survival
rates). In the case of our evaluation benchmark ARC-AGI, puzzles are explicitly presented as a set of
input-output examples, which, for our purposes, can serve as automatically verifiable test cases.

3.2 MEMORY FORMAT AND ORGANIZATION

Specifying an individual memory entry’s format involves selecting fields useful for retrieval and
downstream problem-solving. The organization of memory entries on a collective level is another
design surface we leave for future exploration; we use a flat collection of entries for simplicity.
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Figure 3: Open-Ended (OE) vs. Program Synthesis (PS) Concept Examples. An example of
concepts from puzzle 9af7a82c abstracted into each concept format. OE defers to the model, while
PS imposes structure to encourage abstraction/modularity. Higher order behavior is demonstrated
with the “sort objects” concept taking a Callable parameter that specifies specific variations.

Open-Ended (OE) Formulation. We first consider an open-ended approach that imposes minimal
structure and defers formatting individual memories to the model. Following the basic lesson
format of “under situation X, do action Y”, the only formatting constraint we impose is having
distinct situation (X) and suggestion (Y) fields. This separation is designed for abstraction
(disentangles the core idea from the original context) and modular reuse (situation explicitly
describes the conditions where this idea can be reused).

Program Synthesis (PS) Formulation. In early iterations of automatic concept summarization
from solution traces, we observed outputs to occasionally be overly specific. Consider Figure 3’s
OE example that bundles ideas of counting, drawing columns, and sorting into a single entry. This
overspecification inherits the same limitations as instance-level concepts: friction when matching a
composite idea to new scenarios and redundancy from composite ideas sharing components.

We designed a more structured alternative to the OE format to address these issues and more strongly
enforce the ideals of abstraction and modularity. In particular, we took inspiration from software
engineering and functional programming, which respectively have existing solutions in modular
design for code reuse and higher-level functions for composition. From this analogy, our Program
Synthesis (PS) format frames concepts as types, structures, and routines. The primary feature
is that each of these concepts is parameterized. Parameterization allows similar concepts to be
represented compactly with variations abstracted into parameters. Moreover, type annotations for
inputs (parameters) and outputs (return types) encourage modularity and composition: the typed
interfaces suggest what ideas fit together and how. Finally, by allowing parameters to be routines
themselves (introducing higher-order functions), we encourage further generalization by enabling
abstraction over specialized logic and routines rather than just values. Higher-level patterns can be
recognized across instances and stored with routine arguments defining the different lower-level logic.
A subtle benefit of this more structured formulation is that memory representation can be easily
compressed by omitting certain fields (see subsection A.1 for a complete list of PS concept fields).

3.3 MEMORY WRITE: CONCEPT ABSTRACTION

Memory’s primary purpose is to persist discoveries and reflections from prior experiences. Converting
experiences to memory updates is then the most crucial operation for achieving persistence.

OE Abstraction. Abstracting suggestions from a solution trace is straightforward–simply query
a model to reflect on the solution trace and summarize specific general ideas that may be reused
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for future puzzles. To synthesize specific conditions or situational cues to pair with suggestions,
ideally, we can directly refer to the original problem-solving process as a series of deductions that
derive new facts or explore ideas from existing facts, and link each suggestion (idea) with the prior
observations that inferred this suggestion. However, intermediate inferences may be implicit or
difficult to extract from a trace, or, in the case of specific commercial models, completely hidden. To
address this challenge, we generate a post-hoc derivation: an interleaved sequence of observations and
thoughts/reasoning steps constructed from the input-output of the final solution. These reconstructed
traces are then used to extract situation-suggestion pairs, forming structured memory entries for
guiding future analyses. This minimal formulation does not consider the existing contents of memory
while adding new entries for simplicity and scaling reasons. It defers handling redundancy and
consolidating ideas to the concept selection and problem-solving phases, respectively.

PS Abstraction. We find that directly converting solutions into routines often leads to minor
implementation details being recorded as memories, as opposed to our intended abstract concepts.
We mitigate this by preprocessing solutions into pseudocode to prioritize higher-level operations
over low-level implementation details. The main abstraction phase proceeds from the generated
pseudocode, recording new concepts and revising existing concepts along with their various fields.

In the spirit of designing for abstraction, promoting reusability, and minimizing total concept memory
length, this operation is aware of existing concepts with a compressed form of memory included
in context. We encourage the model to reuse and revise existing concepts by updating concept
descriptions, parameter lists, relevance cues, and implementation notes. Importantly, we encourage
higher-order functions with routines as arguments in instructions and few-shot demonstrations.

All concept abstraction/memory writing operations are scaffolded with few-shot demonstrations,
example-rich templates, and comprehensive instructions.

3.4 MEMORY READ: CONCEPT SELECTION

Although state-of-the-art models support longer context windows, their maximum length still limits
how much information or how many memory entries can be included in a single query. Even without
this hard limit, including all available memories in context is still undesirable: it can distract the
model with irrelevant details and flood it with too many unlikely hypotheses to consider. A more
effective strategy is to introduce a selection mechanism only to include the most relevant subset of
memory entries at problem-solving time. This allows the memory store to grow continually without
overwhelming the model’s context window.

OE Selection. OE-format memory entries were explicitly designed to support memory-based
selection. The situation clause acts as a semantic hook to identify relevance. The key idea for
OE Selection is a preprocessing step that leverages model reasoning capability to parse the abstract
domain input into problem descriptions at different levels of abstraction to facilitate matching against
our abstract concepts. Since ARC-AGI deals with spatial reasoning, we leverage a vision language
model for this preprocessing step. We caption each puzzle using a structured prompt that separates
concrete observations from speculative transformations. This converts spatially rich input into a
natural language format suitable for matching against stored situations. We then query a model for the
top-k most relevant entries using the generated description. We explored scoring, thresholding, and
cumulative similarity approaches (as in top-p sampling). Observing comparable results, we selected
top-k cutoff for simplicity. We consider this a light-weight approach to converting abstract domain
inputs into more understandable and memory-aligned representations.

PS Selection. Standard embedding approaches use a single forward pass per embedding, represent-
ing a System 1-style fast thinking/intuition-driven understanding from the model. Intuitions may not
be sufficient for difficult/frontier tasks and domains. Moreover, the connection between a higher-level
concept and a specific problem instance may not be immediately clear because of the abstraction.

To address these challenges, we propose reasoning-based selection–using System 2-style thinking
to deliberately think and explore. In contrast to the more straightforward playbooks curated in the
OE memory format, the explicitly abstract PS concepts are a set of puzzle pieces with notes on
identifying if a piece is relevant (relevance cues) and on how various pieces fit together (type annota-
tions). To select from this memory, we propose leveraging model-driven exploration instantiated by
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recent models’ long-form reasoning with backtracking. PS Selection instructs a reasoning model to
systematically explore the problem: first identify initial concepts using relevance cue annotations,
then attempt to “fill in the details” by determining values or routines to populate these initial concepts’
parameters using type annotations to identify which other concepts should be investigated.

3.5 CONTINUAL CONCEPT LEARNING

A long-held goal in machine learning is to develop lifelong learning systems that continually self-
improve without manual intervention. A memory system that can leverage the learning signal present
at test-time via continual updates is one approach to achieve this ambition. Our memory write
operations are lightweight queries that can ingest solution traces derived from both the system and
external sources, making continual updates practical at scale.

However, continual updates also introduce dependencies on evaluation order. If solving problem i
induces a memory update that enables problem j to be solved, then performance differs between
(..., xi, ..., xj , ...) and (..., xj ..., xi, ...). Inference batching further complicates this: even if xi

precedes xj , they may appear in the same batch, so the model attempts xj before xi has updated
memory. This introduces an accuracy–throughput trade-off. In all settings, we initialize our external
memory with seed data (problems and solutions). We explicitly evaluate continual updates in
subsection 5.3’s experiments, confirming their efficacy. In other experiments, we used fixed memory
to prioritize throughput and avoid the potentially confounding effect of order dependencies.

4 EXPERIMENTS

Benchmark Selection. We evaluate our proposed framework on ARC-AGI-1 (Chollet, 2019), a
benchmark explicitly designed to evaluate intelligence as “efficient acquisition of new skills” instead
of “fixed possession/memorization of skills.” Each ARC puzzle encodes a transformation rule that
maps input to output pixel grids. The objective of each puzzle is to infer its rule given several
examples of input-output grid pairs, and produce the corresponding output grid for several input test
cases. We find that the abstract domain of pixel grid transforms provides a meaningfully challenging
testbed to simulate frontier domains without requiring expert knowledge to evaluate trajectories–a
confluence of desirable properties for evaluating a continual concept learning system.

ARC-AGI-1 contains a public validation split containing 400 puzzles with a difficulty distribution
matching that of the private evaluation. Following Akyürek et al. (2025), we evaluate a randomly
selected 100-puzzle subset of the public val split. This makes repeated runs for more stable estimates
feasible given cost and the sampling variance we observed. Li et al. (2024) manually authored Python
solutions for 160 puzzles from the public train split to act as “seeds” to recombine into their synthetic
dataset. We reuse these solutions to seed our memory rather than training data.

Models. To build on frontier models, we experiment primarily with OpenAI’s o4-mini. At the
time of writing, o4-mini is second only to Grok 4, but o4-mini’s lower price puts it on the Pareto
frontier of cost and performance ARC-Prize (2025). For auxiliary tasks such as concept abstraction
and non-reasoning selection, we use OpenAI’s GPT-4.1 to conserve token usage. Early experiments
also evaluated the open-weight DeepSeek R1, which has the benefit of visible thinking traces, but its
8000 output token limit consistently yielded unfinished solutions in initial testing.

Evaluation. While the official evaluation harness queries models to directly predict output grids for
test cases, we instead use a program synthesis approach that queries for a transformation function to
convert input to output grids. The code artifact provides more signal for reflection and also allows
us to test proposed logic against reference pairs for feedback. We evaluate performance under 0,
1, and 2 retries with this execution feedback (we observed diminishing returns with further retry,
and choose this threshold to conserve cost). We follow official ARC-AGI scoring (two attempts per
puzzle), and account for sampling variance by averaging over extra runs (see details in Appendix B).
The primary memory baseline we compare against is a re-implementation of Suzgun et al. (2025)’s
DC-Cu (labeled “cheatsheet”) that uses a frozen memory to match other settings.
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5 RESULTS

5.1 MAIN RESULTS

Setting Oracle@1 Oracle@2 (Official)

qwen3-235b-a22b-instruct 11.00 (1.00) 16.67 (0.57)
deepseek r1 19.50 (7.05) 26.33 (4.02)
claude sonnet 4 (thinking 16k) 45.50 (1.00) 54.17 (0.58)
gemini 2.5 flash (thinking 16k) 9.67 (4.86) 13.83 (4.73)
o4-mini (medium) 46.33 (1.04) 55.17 (3.18)
cheatsheet (o4-mini (medium)) 47.50 (2.78) 57.67 (2.52)

ArcMemo-OE (ours, o4-mini (medium)) 48.00 (1.00) 56.67 (1.53)
ArcMemo-PS (ours, o4-mini (medium)) 49.33 (0.29) 59.33 (0.29)

+ one retry 58.00 (2.29) 67.33 (1.61)
+ two retries 61.67 (3.88) 70.83 (3.06)

Table 1: Main Results. ArcMemo-PS yields the best results and scales with additional compute.
Bracketed values represent standard deviation. See additional score details in Table 4.

As seen in Table 1, ArcMemo-PS achieves the best official score with standard compute 1 and
still benefits from additional scaling in both parallel samples and sequential retries. Table 4 shows
complete details on all settings at all scales, where ArcMemo-PS is the only setting that consistently
outperforms the baseline in all inference compute scales. Other memory formulations (Cheatsheet,
ArcMemo-OE) situationally improve over the baseline but still underperform it in some regimes.

We observe that ArcMemo-PS’s advantage is most prominent with lower compute regimes. This is
consistent with the stated goal “memory for reasoning”: persisting previous experience aims to reduce
redundancy from rediscovering ideas found in previous rollouts. The marginal impact of memory is
reduced with more inference compute as the model can rediscover ideas through exploration.

Compared to our memory baseline (Cheatsheet), ArcMemo methods are highly competitive, per-
forming favorably in most regimes. The quantitative improvement shown by ArcMemo is supported
by qualitative analysis that demonstrates ArcMemo memories are more modular. This qualitative
analysis (described more in subsection 5.2) observes that these abstract memories improve concept
coverage–more target puzzle ideas are reflected in memory. This difference may be explained by
ArcMemo’s modular design being more conducive to maintaining a growing library.

5.2 SELECTION ABLATION AND QUALITATIVE RELEVANCE ANALYSIS

Oracle@k Scores

k=1 k=2 (Official) k=3
retry setting

0 ArcMemo-PS 49.33 (0.29) 59.33 (0.29) 63.50
- selection 46.83 (5.25) 55.17 (2.02) 60.00

1 ArcMemo-PS 58.00 (2.29) 67.33 (1.61) 72.50
- selection 57.67 (3.79) 66.00 (3.00) 73.00

2 ArcMemo-PS 61.67 (3.88) 70.83 (3.06) 75.50
- selection 61.33 (3.21) 70.00 (2.65) 76.00

Table 2: Selection Ablation. Ablating the reasoning-based selection mechanism from ArcMemo-PS
reduces overall performance, showing selection is useful for downstream performance.

We perform an ablation experiment removing the selection mechanism from ArcMemo-PS to examine
its impact and to compare more directly to the selection-free Cheatsheet methodology. The generally

1Matching the official evaluation scheme with 2 parallel attempts and 0 retries.
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better performance of the with-selection setting (as seen in Table 2) suggests that, in addition to
allowing memory to grow without overwhelming context in both the abstraction and inference
phases, it also helps downstream problem-solving performance. Moreover, from the token usage
plot in Figure 4, we see that concept selection’s performance improvement also comes at higher
efficiency–the selection-ablated setting uses far more tokens. However, there still exist certain scale
regimes where the no-selection setting has a better score. We attribute this to variance from imperfect
selection and note that this indicates headroom for selection/retrieval.

ArcMemo-PS (-selection) is most comparable to Dynamic Cheatsheet’s “cumulative” setting (DC-Cu)
as all stored memory is included with each query. While both ultimately solve the same number of
puzzles across all runs, we find that the settings differ in 10 puzzles (that is, each system solves 5
puzzles the other does not). We manually analyzed these puzzles and found that only 40% of new
solves in the cheatsheet setting were related to memory elements actually in the generated cheatsheet.
That is, we were unable to find relevant notes in the cheatsheet to explain 60% of its new solves.
In contrast, all new solves from ArcMemo-PS (-selection) we examined can be linked to concept
memory contents. While we cannot definitively conclude ArcMemo changes directly induced each
of the new solves (given the state of LLM interpretability), this seems to suggest new solves in the
ArcMemo settings are potentially more attributable to the memory component compared to sampling
variance.

Manual inspection of a subset of reasoning-based selection results used for ArcMemo-PS finds that
while some irrelevant concepts still appear within the selection, the key idea of the target is often
included in the selection. The presence of a few distractor concepts appears to be manageable, as the
reasoning model itself is capable of exploring with backtracking.

While concept retrieval generally improves performance, we observe several failure modes. In some
cases, the retrieved concepts are irrelevant or overly abstract, lacking the specificity needed for
the puzzle. Other times, retrieval succeeds, but the puzzle remains unsolved due to its intrinsic
difficulty or because the puzzle requires an entirely unseen or highly detached operation or structure
(such as extending Draw lines in a spiral form from the retrieved Draw line). No-
tably, there are instances where relevant concepts (e.g., hole counting) exist in memory but are not
selected—suggesting possible perception or alignment gaps. These cases highlight headroom for
improving both the selection model and downstream reasoning robustness.

5.3 CONTINUAL LEARNING

Oracle@k Scores

k=1 k=2 (Official) k=3
retry setting

0 ArcMemo-OE 48.00 (1.00) 56.67 (1.53) 61.00
+ continual memory update 46.33 (1.53) 56.00 (0.00) 61.00

1 ArcMemo-OE 56.67 (2.08) 65.67 (1.53) 70.00
+ continual memory update 57.17 (3.69) 65.00 (0.00) 67.00

2 ArcMemo-OE 60.67 (1.53) 67.67 (2.52) 71.00
+ continual memory update 62.33 (3.51) 70.00 (1.73) 72.00

Table 3: Continual Memory Learning. Comparing otherwise identical memory systems, we find
that with sequential inference compute scale (at high retry depth), continually updating memory with
new self-generated solutions leads to improved puzzle-solving performance.

Results from our experiment comparing ArcMemo-OE with a version that updates during evaluation
(every 10 problems; Table 3) show that our memory system’s performance improves with continual
updates–a key requirement for meaningful lifelong learning. In particular, we find that the perfor-
mance improvement emerges at later iterations in sequential inference scaling. We hypothesize this is
because, after more iterations and puzzle-solving passes, new solutions are found, new memories are
abstracted, and these new memories help solve other puzzles.
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5.4 ADDITIONAL RESULTS

Expanded Scale. Evaluating ARC-AGI methods is costly due to the long reasoning traces and
high sampling variance required for reliable estimates. Following prior work, our main experiments
therefore use a representative subset of the validation set. For completeness, we additionally evaluate
our ArcMemo-PS configuration on the full public validation split. As shown in Table 6, ArcMemo-PS
outperforms the baseline at every retry level and contributes improvements on 21 puzzles overall.

We also expand the set of tested models to DeepSeek R1, Sonnet 4, and Kimi K2 Thinking (Table 7).
Using the same GPT-4.1-derived memory, R1 improves from 26.33 to 30.67 (+16%), and K2 from
37.33 to 40. With Sonnet 4 as the base model, ArcMemo still improves on 7 puzzles over the
baseline. These results indicate meaningful cross-model transfer, and suggest that concept memories
distilled from stronger generators (e.g., GPT-4.1) provide useful signal even for models with different
architectures. The mixed result on Sonnet 4 further suggests that strong models may benefit less from
concepts abstracted from weaker models.

Other Domains and Intrinsic Self-Improvement. Although ARC-AGI is a natural setting for
continual learning, its tasks are synthetic by design. To test generality, we evaluate on math rea-
soning using the more portable OE configuration. On the 60 problems from AIME ’24 and ’25,
concept memory improves Gemini-2.5-Flash-Lite-Thinking from 43 to 48 solved problems (+11.6%),
demonstrating transfer beyond the ARC domain. ARC intrinsically enables correctness estimation
via reference input-output grids as test cases, allowing our method to abstract concepts from “correct”
traces, however various task settings provide less signal or feedback. Preliminary AIME results using
self-reflection to abstract from all traces rather than only “correct” traces yields 47 solves (+9.3%),
suggesting ArcMemo may be effective even in sparse-feedback regimes.

External Solution Ablation. Our main experiments initialize the memory with human-written
BARC solutions to reduce inference cost. To evaluate a more realistic “pure self-improvement”
regime, we instead initialize memory using fully self-generated trajectories. This variant slightly
outperforms the original setup (60.67 vs. 59.33). We hypothesize that this on-policy memory
abstraction produces concepts that align more closely with the model’s inductive biases.

Pseudocode Preprocessing Ablation. Our pipeline includes a trajectory-preprocessing step that
converts solutions into pseudocode before abstraction. Early tests suggested this step improves
generality; we confirm this with a direct ablation. Removing pseudocode preprocessing reduces the
ArcMemo-PS score from 59.33 to 55.67—only marginally above the baseline. Since this step is
inexpensive (no deep reasoning required) yet materially improves abstraction quality, we retain it in
the full system.

We further discuss token efficiency, concept specificity, and embedding retrieval in Appendix C, and
limitations and future work discussion in Appendix D.

6 CONCLUSION

In this work, we introduce ArcMemo, a framework designed to support lightweight, lifelong learning
on compositional reasoning tasks by emphasizing a higher level of abstraction and modularity. We
explore two implementations of memory modules against ARC-AGI, a benchmark specifically de-
signed to resist memorization and to evaluate fluid intelligence instead. Our main findings confirm the
efficacy of our approach: ArcMemo-PS outscores comparable methods under the official evaluation
protocol and continues to benefit from additional inference compute scale. Moreover, we observe that
continual updates benefit memory augmentation over multiple attempts and that selecting a subset of
memory for each problem is a crucial component to enable a memory to continually grow without
overwhelming the LLM context. This paper’s work represents early attempts toward the main tenets
of higher-level abstraction and modularity. Promising future directions include hierarchical designs
and consolidation mechanisms that restructure memory. To encourage further investigation, we also
release a concept-annotation dataset and configurable puzzle synthesis pipeline, providing resources
for evaluating concept representations and advancing abstraction-based memory methods.
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A IMPLEMENTATION DETAILS

A.1 PS MEMORY FORMAT

Each PS format memory entry contains:

• Title: a succinct label for the underlying idea.

• Description: elaboration on behavior and role.

• Kind: whether this concept encodes a type/structure/routine.

• Parameters: a list of fields that parametrize this concept.

• Output Typing: specifies what the output for this routine is, to suggest how various routines
can plug into other routines.

• Relevance Cues: much like the situation field in the OE concepts, we consider the
context in which this concept is relevant.

• Implementation Notes: suggestions on how to implement the concept in actual code.

A.2 EXPERIMENT PARAMETERS

To build on frontier models, we experiment primarily with OpenAI’s o4-mini (max tokens=32000,
reasoning_effort=medium). For auxiliary tasks such as concept abstraction and non-reasoning
selection, we use OpenAI’s GPT-4.1 (temperature=0.3, max tokens=1000) to reduce token usage. We
looked into evaluating the open-source DeepSeek R1, which also has a transparent thinking process,
but the output 8000 token limit consistently yielded unfinished solutions.
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B EVALUATION DETAILS

We use ARC-AGI’s official scoring metric, which we term oracle@k (each test case is scored
separately, and if any of k candidates pass, full credit is given for that test case). The ARC-AGI
official evaluation has k = 2, but to mitigate sampling variance, we sample 3 runs for each setting
and report the average single run score, average oracle@2 score, and their standard deviation. We
investigate several alternate scoring protocols (requiring a single program to solve all test cases,
accumulating test case solve rates, and requiring references also to be solved) and include the results
in Table 5.

Here is a precise definition of our scoring procedure for a single problem P . Let...

• X be the size n set of attempts on problem P

• T be the set of test cases for problem P

• C represent a particular k-subset of X , in notation: C ∈ [X]k

score =
1

|[X]k|
∑

C∈[X]k

z(C)

where z is the problem score by a k-attempt ensemble

z(C) =
1

|T |
∑
ti∈T

1{∃c ∈ C Verify(c, ti)}

where

• c is a single program attempt in the k-attempt ensemble,
• t is a test case,
• and Verify returns true if the program successfully passes the test case.

Individual Run Scores Oracle@k Scores

run0 run1 run2 k=1 k=2 (Official Score) k=3
iteration setting

0 baseline 46.00 45.50 47.50 46.33 (1.04) 55.17 (3.18) 59.50
cheatsheet 48.00 44.50 50.00 47.50 (2.78) 57.67 (2.52) 64.00
ArcMemo-OE (ours) 49.00 47.00 48.00 48.00 (1.00) 56.67 (1.53) 61.00
ArcMemo-PS (ours) 49.50 49.00 49.50 49.33 (0.29) 59.33 (0.29) 63.50

1 baseline 57.00 55.50 61.00 57.83 (2.84) 66.67 (3.82) 71.50
cheatsheet 56.00 56.50 57.50 56.67 (0.76) 65.67 (1.44) 70.50
ArcMemo-OE (ours) 59.00 55.00 56.00 56.67 (2.08) 65.67 (1.53) 70.00
ArcMemo-PS (ours) 58.50 60.00 55.50 58.00 (2.29) 67.33 (1.61) 72.50

2 baseline 59.50 59.00 65.00 61.17 (3.33) 69.00 (2.65) 73.00
cheatsheet 65.00 61.00 61.00 62.33 (2.31) 71.33 (1.53) 76.00
ArcMemo-OE (ours) 62.00 59.00 61.00 60.67 (1.53) 67.67 (2.52) 71.00
ArcMemo-PS (ours) 60.50 66.00 58.50 61.67 (3.88) 70.83 (3.06) 75.50

Table 4: Full o4-mini Results. The right partition of the table containing aggregate scores shows
the inference scaling: going down represents sequential retry, going right represents adding parallel
samples. ArcMemo-PS is the only evaluated setting that outperforms the baseline consistently at
every tested scale.

C FURTHER DISCUSSION

Token Efficiency We find that our system’s token efficiency is similar to the baseline. We observe
that memory-augmented runs tend to increase output token usage. While this seems to counter the
intuition that retrieving rather than regenerating certain ideas would save tokens, we hypothesize
that introducing memory leads the model to explore more hypotheses. In other words, selection
inaccuracies (false positives) seem to be manageable by the reasoning models, but at the cost of
increased token usage. Full results are plotted in Figure 4.
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run0 run1 run2 k=1 k=2 k=3
iteration setting

0 baseline 46.00 45.00 47.00 46.00 (1.00) 54.67 (3.21) 59.00
cheatsheet 48.00 44.00 50.00 47.33 (3.06) 57.67 (2.52) 64.00
ArcMemo-OE 49.00 47.00 48.00 48.00 (1.00) 56.67 (1.53) 61.00
ArcMemo-PS 49.00 49.00 49.00 49.00 (0.00) 59.00 (0.00) 63.00

1 baseline 57.00 55.00 61.00 57.67 (3.06) 66.33 (4.04) 71.00
cheatsheet 56.00 56.00 57.00 56.33 (0.58) 65.33 (1.15) 70.00
ArcMemo-OE 59.00 55.00 56.00 56.67 (2.08) 65.67 (1.53) 70.00
ArcMemo-PS 58.00 60.00 55.00 57.67 (2.52) 67.00 (1.73) 72.00

2 baseline 59.00 59.00 65.00 61.00 (3.46) 69.00 (2.65) 73.00
cheatsheet 65.00 61.00 61.00 62.33 (2.31) 71.33 (1.53) 76.00
ArcMemo-OE 62.00 59.00 61.00 60.67 (1.53) 67.67 (2.52) 71.00
ArcMemo-PS 60.00 66.00 58.00 61.33 (4.16) 70.33 (3.06) 75.00

Table 5: Strict Scoring. While the official evaluation scheme allows different test cases solved
by different attempts to be ensembled, in contrast, the strict scoring regime only marks a puzzle as
solved if a single attempt (generated program) solves all test cases.

Individual Run Scores Oracle@k Scores
Puzzles

Improved

Iteration run0 run1 run2 k=1 k=2 (Official Score) k=3

0 171.50 185.00 184.50 180.33 (7.65) 219.50 (1.80) 237.00
+ ArcMemo-PS 186.00 185.50 182.00 184.50 (2.18) 225.83 (2.57) 246.50 36

1 222.00 221.50 231.00 224.83 (5.35) 259.00 (5.68) 274.50
+ ArcMemo-PS 228.00 225.50 218.00 223.83 (5.20) 262.00 (5.29) 279.50 22

2 238.50 242.00 250.00 243.50 (5.89) 274.33 (5.03) 287.00
+ ArcMemo-PS 246.00 251.00 236.00 244.33 (7.64) 277.67 (7.01) 292.50 21

Table 6: Full Evaluation Split Results (400 puzzles, base model: o4-mini). “Puzzles Improved”
refers to the number of puzzles where the ArcMemo setting outscores the Baseline.

Concept Specificity Investigation As part of the development of our concept representations, we
conducted small-scale experiments using tiny (n=10) subsets of the validation split to investigate
the level of detail needed for concepts to be useful. Manually writing maximum detail situation-
suggestion style concepts and using iteratively LLM-summarized versions (for a total of 5 levels of
specificity for each concept), we found the reasonably expected result that higher levels of specificity
correspond to better solve rates. Maximum specificity solved 4/10 with a generally decreasing pattern
with lower specificity. While this result was entirely expected, the main goal of the experiment was
to determine how much we could compromise on concept detail to improve the retrieval aspect.
There is a tension between retrieval and puzzle solving in the sense that puzzle solving benefits from
more detailed suggestions, but retrieval struggles to apply them to new situations when the concept’s
relevant situation is so precisely defined.

Embedding-based Retrieval Experiments Early in testing, we investigated standard embedding-
based retrieval approaches. Following the ArcMemo-OE setting, we used a VLM-generated caption
to query a vector database of ArcMemo-OE-style concept embeddings. While computationally
cheap compared to autoregressive generation (especially so when leveraging long-form reasoning),
we saw generally poor retrieval results. Using OpenAI’s embeddings API and an o3-mini puzzle-
solving backbone proved ineffective, lowering the score from 0.26 to 0.22, marking a 15% reduction.
Qualitative analysis found that retrieved concepts were largely irrelevant to the puzzle and seemed to
over-index on lexical similarity. Moreover, a small set of broadly defined (non-specific) concepts was
found to be grossly overrepresented.
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Individual Run Scores Oracle@k Scores
Puzzles

Improved

Model Name run0 run1 run2 k=1 k=2 (Official Score) k=3

Kimi K2 Thinking 36.00 28.00 19.00 27.67 (8.50) 37.33 (3.79) 42.00
+ ArcMemo-PS 38.00 28.00 22.00 29.33 (8.08) 40.00 (4.58) 46.00 11

Sonnet-4 44.50 45.50 46.50 45.50 (1.00) 54.17 (0.58) 57.50
+ ArcMemo-PS 44.00 45.00 38.50 42.50 (3.50) 52.50 (1.80) 57.00 7

DeepSeek R1 26.00 20.50 12.00 19.50 (7.05) 26.33 (4.01) 30.50
+ ArcMemo-PS 18.50 26.00 23.50 22.67 (3.82) 30.67 (0.76) 35.00 12

Table 7: Additional Model Results (100-puzzle subset). “Puzzles Improved” refers to the number of
puzzles where the ArcMemo setting outscores the Baseline.

Figure 4: Token Efficiency Plot: Comparing various settings’ official score (oracle@2) on the public
validation subset to the tokens used by the reasoning model for strictly puzzle solving.

D LIMITATIONS AND FUTURE WORK

D.1 LIMITATIONS

Following Akyürek et al. (2025), our evaluation focuses on a 100-task subset of ARC-AGI-1, selected
to make large-scale experimentation feasible under compute and cost constraints. This choice was
further motivated by the substantial sampling variance we observed—identical prompts can yield
noticeably different scores, requiring multiple runs to obtain stable estimates. As a result, our study
concentrates on a relatively small frontier of puzzles where memory augmentation can yield new
solves, limiting the absolute magnitude of observable gains.

In addition, ARC-AGI-2 was released mid-project as a harder successor benchmark, with state-of-
the-art performance still below 30%. Re-running all baselines and experiments on ARC-AGI-2 was
infeasible within scope due to cost and time constraints, but extending memory-based approaches to
ARC-AGI-2 remains an important direction for future work.

D.2 FUTURE WORK

Several directions follow naturally from this work. One is to broaden evaluation to larger and more
challenging puzzle sets, including those unsolved by the baseline, to test both new solve potential and
consistency on borderline cases. Another is to explore order-robust update strategies and curriculum

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

designs that reduce sensitivity to problem ordering while preserving inter-problem learning benefits.
Beyond these extensions, a key avenue is hierarchical abstraction: moving from additive concept
updates toward consolidation operations that restructure the memory across multiple experiences.
Finally, our current design choices for representation and retrieval were made under cost constraints;
richer optimization may yield substantial improvements.

To facilitate further research, we release a data resource: hand-annotated concepts for difficult
puzzles, together with a configurable puzzle synthesis pipeline. This resource is intended to support
isolated evaluation of concept representations and selection mechanisms, as well as development of
methods for concept abstraction. We hope it provides a useful foundation for continued exploration
of abstract reasoning memory.

E ADDITIONAL RELATED WORK

Knowledge Base Augmented LLMs for Factuality. Early efforts to enhance language models with
external memory primarily targeted knowledge-intensive tasks. Retrieval-Augmented Generation
(RAG) introduced the idea of retrieving documents from an external store based on embedding
similarity to augment generation (Lewis et al., 2021). Follow-up work like KnowledGPT incorporated
formal knowledge bases, allowing LLMs to execute structured queries through “Program-of-Thought”
prompting for multi-hop reasoning (Wang et al., 2023b). More recently, MemLLM proposed
inline memory operations—allowing the model to read from and write to memory directly during
generation—enabling continual adaptation without re-training (Modarressi et al., 2024).

Embedding Space Memory. Another stream of work aims to overcome the limited context window
of transformers through architectural interventions that compress information from long sequences
into continuous space. Memorizing Transformers stored latent key-value vectors from past inputs and
retrieved them via a kNN mechanism to be attended to alongside the current context (Wu et al., 2022).
The Recurrent Memory Transformer extended this by incorporating a writable memory updated
over time, making memory content responsive to ongoing computation (Bulatov et al., 2022). He
et al. (2024b) blended these ideas by applying a moving average to update memory slots, allowing
for both similarity-based retrieval and continual adaptation He et al. (2024a). MemGPT introduced
a hierarchical memory system with a working (RAM-like) memory and a larger archival memory,
simulating long-term information management in a more structured fashion (Packer et al., 2024).

Parameter-Free Test-time Learning. Test-time learning (sometimes referred to as online learning)
describes methods that update predictions at inference time Bottou & LeCun (2003; 2005). However,
trends towards (1) massive model sizes and (2) black box models accessed through APIs make
continually updating parameters computationally impractical or downright impossible. In light of
this, LLM test-time learning research sought to pursue parameter-free adaptation by using LLMs’
remarkable capacity for instruction following and self-reflection. Methods such as Reflexion (Shinn
et al., 2023), Self-Refine (Madaan et al., 2023), and Self-RAG (Asai et al., 2023), inter alia attempt
to correct mistakes at test-time by way of self-reflection. Follow-up work (Huang et al., 2024; Kamoi
et al., 2024) finds that self-correction methods depend on the availability of some extrinsic feedback or
verification mechanism to reliably improve end performance and that these methods produce dubious
results absent these grounded sources of feedback. Still, self-reflection remains a key component of
self-evolving agents (Gao et al., 2025).

Memory for Agentic Skill Acquisition. Memory also plays a crucial role in LLM-based agents.
Park et al. (2023) structured memory as a stream of episodic observations and distilled high-level
summaries from them to guide decision-making. Contextual Experience Replay discretizes trajecto-
ries into “experiences” (containing environment dynamics from a trajectory and skills storing actions
from said trajectory) and retrieves relevant blocks to guide new episodes (Liu et al., 2025). HiAgent
organizes working memory (within a single query) hierarchically by subgoals, summarizing and
replacing traces to improve long-horizon efficiency (Hu et al., 2024). External-memory systems
such as Mem0 and MemP manage a persistent store with explicit add–update–prune operations
(MemP casts control as an MDP), yielding gains on dialogue and tool-use/planning tasks (Chhikara
et al., 2025; Fang et al., 2025). MemP in particular is a concurrent work that also demonstrates the
efficacy of abstraction, although it targets rewriting action sequences as step sequences in explicitly

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

agentic settings, contrasting with ArcMemo’s general problem-solving focus. Voyager uses LLMs to
autonomously acquire and store skills while exploring Minecraft, with a growing library of reusable
code snippets written by the agent itself Wang et al. (2023a). Other systems, like the ResearchAgent,
use memory initialized from domain-specific corpora, such as scientific papers, to ground query
responses in high-utility prior knowledge (Baek et al., 2024).

Abstractions from Reflection. Other recent and concurrent works incorporate the related idea of
using reflections from solution traces towards different goals and mechanisms. RLAD (Qu et al., 2025)
jointly trains an abstractor model to generate new abstractions per problem for a solver model. NuRL
(Chen et al., 2025) generates problem-specific hints (hi) from ground truth question-answer pairs
(qi, ai) to augment a dataset. Didolkar et al. (2025) summarizes behaviours for math reasoning, using
embedding-based retrieval, and adding a fine-tuning stage on resulting traces. In contrast, ArcMemo
builds an explicit store of concepts. Our mechanism is model agnostic, gradient-free, and lightweight.
We especially emphasize abstraction and modularity to promote reuse, and selection-aware design to
better handle unfamiliar domains appropriate for the continual learning setting.

F PROMPTS

F.1 PSEUDOCODE PREPROCESSING

# Introduction
Consider a class of "ARC" puzzles where each puzzle has a hidden

transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and the task is to predict the transformation rule. Grids are 2D
numpy integer arrays with integers representing colors. 0 represents
black and usually serves as the background.

↪→
↪→
↪→
↪→
↪→

We are trying to learn from previous puzzle solutions to improve our
puzzle solving capabilities. Your task is to analyze a puzzle
solution, rewrite it as pseudocode that can more easily be abstracted
into concepts, and finally write a one-liner summary of the
transformation rule. Here, a concept can encode any of:

↪→
↪→
↪→
↪→
(a) grid manipulation: an operation that directly impacts the output grid
(b) helper routine: specialized logic for parameterizing more abstract

operations↪→
(c) criteria: checked properties/overall logic for conditional operations
(d) structure: shapes to look for in the pixel grids

# Instructions
Pseudocode:
- write the pseudocode translation inside <pseudocode> and </pseudocode>

tags↪→
- be concise without compromising correctness
- reuse function names/operations from the examples
- focus on broader ideas compared to implementation details
- the full solution might use `find_connected_components` to pick out

objects, the output of these are numpy grids containing only the
object-- implicitly storing attributes, we prefer your pseudocode to
instead use a grid object type with explicit attributes like
.color/.colors/.shape (returns a binary
mask)/.height/.width/.size/.position/etc.

↪→
↪→
↪→
↪→
↪→

Summary:
- write a one-liner summary of the transformation rule inside <summary>

and </summary> tags↪→

# Examples
{examples}

# Concepts Examples
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Here are concepts that were extracted from the examples. Bear in mind
that your generated pseudocode should enable abstracting concepts
such as the following:

↪→
↪→
{concepts}

# Your Puzzle Soution
Analyze, abstract into pseudocode, and summarize the following puzzle

solution:↪→
```python
{solution}
```

F.2 CONCEPT ABSTRACTION

# Introduction
Consider a class of "ARC" puzzles where each puzzle has a hidden

transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and the task is to predict the transformation rule. Grids are 2D
numpy integer arrays with integers representing colors. 0 represents
black and usually serves as the background.

↪→
↪→
↪→
↪→
↪→

We are trying to learn from previously solved puzzles to help solve more
puzzles in the future. Your task is to analyze a puzzle solution's
pseudocode and abstract reusable concepts. Here, a concept can encode
one of the following:

↪→
↪→
↪→
1. routine: routines from the solution program, which can either directly

output a grid, or prepare handle some intermediate processing↪→
2. structure: a class of visual entities (not program data structures)

that can be seen in an individual pixel grid. The visual entity
should be general, perhaps by being defined by their function or in
relation to an operation.

↪→
↪→
↪→

Following a functional programming philosophy, we promote reusability
through composition by parameterizing routines:↪→

- We also encourage passing specialized logic (other routines) as
parameters to higher order routines↪→

- Each routine is typed-- it specifies output typing in addition to a
list of parameter specifications↪→

- We allow custom types to be defined with the format "name :=
definition"↪→

- Often custom types are `Callable` that specify some pluggable
operations↪→

The overarching goal is to help future puzzle solving which boils down to
2 problems:↪→

1. determining what the transformation is (by examining input/output
examples)↪→

2. implementing the transformation in code

- These concepts are meant to compactly encode ideas from solved puzzles
and help puzzle solving by remembering what operations could be
involved and how they might interact with each other via typing.

↪→
↪→
- Parameterization and composition via higher order routines/pluggable

operations helps ensure concepts are reusable and not overly specific
to one puzzle

↪→
↪→
- But to specifically address the 2 main problems, we also annotate

concepts with:↪→
1. relevance cues: suggestion of what to look for at puzzle solving

time that would indicate this concept is potentially relevant.↪→
- can either describe (1) things to look for in the puzzle grids

or (2) related concepts that might implicate this one↪→
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- we primarily care about annotating cues for grid manipulation
routines and structures where there are concrete things to
look for in the reference grids.

↪→
↪→

2. implementation notes: suggestions on how to implement the idea
programmatically.↪→

# Examples
{examples}

# Concept Repository
Here is the current concept repository that you should check for reuse:
{concept_list}

# Your Puzzle Solution
Abstract the following solution into a concept list:
```
{summary}
{pseudocode}
```

# Instructions
- Format your final concept list inside a fenced yaml markdown block

(have first line = "```yaml" and last line = "```")↪→
- Feel free to think before writing your final response
- Each concept entry can have the following fields

concept: routine or structure name
kind: routine | structure
routine_subtype: string specifying either "grid manipulation",

"intermediate", or the name of a Callable custom type.↪→
output_typing: the output type
parameters: a list of parameter specifications (dictionary with

fields: name, typing, description)↪→
description: string elaborating on the concept if not completely self

evident from the name↪→
implementation: a list of notes that provide suggestions on how to

implement this concept programmatically↪→
cues: a list of notes suggesting what to look for at puzzle solving

time that would suggest this concept is relevant (e.g. what to
look for in example input/output grids, or other concepts being
considered that may also implicate this concept)

↪→
↪→
↪→

- Typing fields should be similar to python type annotations but may
include ARC puzzle specific terminology (e.g. `list[object]`, or
`Callable[[object], color]`). New custom types may be defined by
filling out a typing field with `name := definition`

↪→
↪→
↪→
- IMPORTANT: Reuse concepts and parameter names/types whenever possible

- reusing a concept or parameter means reusing its exact name
- check existing concepts/parameter names in the `Concept Repository`

section below↪→
- when reusing a concept:

- it need not be redefined-- a list entry of `concept: name` is
sufficient↪→

- however you may also choose to extend it (introduce new list
entries for the parameter list, the implementation notes, or
the relevance cues which are merged with the existing
entries). This involves specifying the same concept name as
the existing one to be extended.

↪→
↪→
↪→
↪→

- Avoid coupling the concepts too closely with the exact solution
implementation.↪→
- often times, there is a broader idea that can be implemented with

roundabout methods easier to express in code↪→
- we should record the broader idea in our concept memory but record

the easier implementation in the implementation notes↪→
- Distinct concepts must have different names
- Output valid yaml

- avoid putting colons in entries where we're expecting a list[str]
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- be careful about multiline strings
- IMPORTANT: No need to encode every implementation detail from the

solution into a concept, focus on the important ideas, logic, and
structure.

↪→
↪→

- ultimately we want concepts to be reusable, so if something seems
overly specific and unlikely to reappear in other puzzles, do not
add it

↪→
↪→

F.3 CONCEPT SELECTION

# Introduction
Consider a class of "ARC" puzzles where each puzzle has a hidden

transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and solving the puzzle means predicting the transformation rule.
Grids are 2D numpy integer arrays with integers representing colors.
0 represents black and should be treated as the background.

↪→
↪→
↪→
↪→
↪→

Your task is to analyze a puzzle's reference examples, examine a set of
concepts recorded from previously solved puzzles, and determine which
concepts are relevant to this puzzle. Your selected concepts and
notes will be used for the puzzle solving phase, so emphasize problem
solving helpfulness.

↪→
↪→
↪→
↪→

# Concepts from Previously Solved Puzzles
We recorded concepts about structures and routines we observed in

previously solved puzzles. These concepts may or may not be relevant
to this puzzle, but they provide useful context to show examples of
what structures may appear in the grids, what operations may be used,
and how they might be composed. Concepts are annotated with fields
like:

↪→
↪→
↪→
↪→
↪→
- cues: (short for "relevance cues"), what to look for that might

indicate this concept is relevant in this puzzle↪→
- implementation: notes on how this concept was implemented in past

solution programs↪→
- output typing: what the output of this routine is (e.g. a grid, a list,

a number, a bool, etc.)↪→
- parameters: a list of parameters that describe ways the concept may

vary↪→
We also have some recommendations on how to approach problem solving with

these concepts in mind:↪→
- We label the grid manipulation routines separately-- these directly

affect the grids so they are easier to spot (along with structure
concepts)

↪→
↪→
- You might try to first identify which grid manipulation operations are

used, then investigate their parameters↪→
- The non-grid manipulation routines might describe ways we've seen

previous puzzles set parameters, so you can look to these for
inspiration

↪→
↪→
- There may not be exact matches to this list, so we encourage you to

think about variations, novel ways to recombine existing ideas, as
well as completely new concepts

↪→
↪→
- These concepts and this approach are only suggestions, use them as you

see fit↪→

{concepts}

# Instructions
Identify which concepts could be relevant to the given puzzle.
- We suggest first investigating more "visible" concepts first (e.g.

structures and grid manipulation routines)↪→
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- After identifying these concepts, you can investigate what
logic/criteria/intermediate routines might be useful for these
initially identified concepts

↪→
↪→
- You can also select any other concept you think might be relevant even

if it's not directly related to the grid manipulation routines↪→
- Write your final selection of concepts as a yaml formatted list of

concept names↪→
- To allow us to match your selection to the concepts we have, please use

the exact concept names as they appear in the above concept list↪→
- Write your answer inside a markdown yaml code block (i.e. be sure to

have "```yaml" in the line before your code and "```" in the line
after your list)

↪→
↪→
- Here is a formatting example:
```yaml
- line drawing
- intersection of lines
...
```

# Your Given Puzzle
Analyze the following puzzle:
{puzzle}

G EXAMPLE CONCEPTS

G.1 ARCMEMO-OE

situation: When every row in the input grid is identical or shows uniform
behavior.↪→

suggestion: Instead of looking for complex spatial rearrangements by row,
focus on per-column operations. It may indicate that the
transformation is applied column by column, such as a substitution or
mapping rule.

↪→
↪→
↪→

situation: When each column appears to transform its digits (or colors)
in a consistent but distinct way.↪→

suggestion: Consider that each column might have its own mapping rule--a
substitution cipher. Check if specific input digits in a column
always map to the same output digits, and validate this rule across
different examples.

↪→
↪→
↪→

situation: When the output grid is a uniformly scaled-up version of the
input, especially when the output dimensions are an integer multiple
of the input dimensions.

↪→
↪→
suggestion: Check if the output can be divided into equal-sized blocks

that correspond one-to-one with the cells of the input. Investigate
whether each cell in the input acts as a trigger--replicating a
specific pattern or full copy of the input into the corresponding
block--when it’s nonzero, and leaving it blank otherwise.

↪→
↪→
↪→
↪→

G.2 ARCMEMO-PS

## structure concepts
- concept: split grid

description: where the grid is split into multiple regions that are
treated as distinct↪→

cues:
- divider lines (of any color) that span the grid and partition it

into regions↪→
- visually distinct regions or objects that are processed separately,

often separated by colored or black lines, columns, or rows↪→
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- color-based regions where pixels of a certain color only appear
within specific sections of the grid↪→

- concept: rectangle object
description: an object whose shape is a rectangle, often used for bars,

highlights, or as a region to fill↪→
cues:
- if the output or solution logic depends on the number of distinct

items (e.g., colors, objects) or the frequency of a color in
regions or objects

↪→
↪→

implementation:
- use len() on the sequence

## grid manipulation routines
- concept: recolor object

description: recolor an object based on a color scheme
output_typing: grid | object
parameters:
- object (type: object): the object or pixel to recolor
- color scheme (type: dict[color, color]): mapping from original

color to new color↪→
- object | object | position - the object or pixel to recolor
- color scheme | dict[color, color] - mapping from original color to

new color↪→
- color (type: color): the color to assign to the object

cues:
- if structures or objects from the input grid appear in the output

grid with different colors↪→
- if all pixels of one color in the output grid are replaced with

another color (systematic color swap)↪→
- if regions or objects are recolored based on a property (e.g.,

size, position, or matching a specific pixel)↪→
- if the output grid contains regions filled with a new color not

present in the input↪→
- if background or other colors are systematically replaced in the

output grid↪→
- if the output grid is visually similar to the input except for a

color swap↪→
- if colored pixels or regions appear in the output grid at positions

that were black or missing in the input, especially adjacent to
colored pixels or aligned with features of input objects

↪→
↪→
- if a region or contiguous area is uniformly recolored, possibly

based on a pixel in a special position (e.g., corner, interior of
a container)

↪→
↪→
- if an input pixel or object is removed or replaced with background

color in the output grid (deletion by recoloring)↪→
- if a special color (e.g., grey or yellow) appears at a position

determined by the interaction or meeting of input objects or
paths

↪→
↪→

implementation:
- for a single pixel, set grid[position] = color
- after drawing operations that may overwrite a pixel, restore that

pixel to its intended color↪→
- for each pixel, if its color is in the color scheme, replace it

with the mapped color↪→
- for a region or object, iterate over its pixels and set each to the

target color or according to the color scheme↪→
- for a region, if a pixel is background (e.g., black), set it to the

specified color; otherwise, leave it unchanged↪→
- at special positions (e.g., meeting points or intersections), set

the pixel to a designated color (e.g., grey) instead of either
input color

↪→
↪→

- concept: repeat color sequence in rows
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description: fill each row of a grid (starting from start_row) with
colors from a sequence, cycling through the sequence as needed↪→

output_typing: grid
parameters:
- grid (type: grid): the grid whose rows to fill
- start_row (type: int): the index of the first row to fill
- color_sequence (type: list[color]): the sequence of colors to

repeat in filling rows↪→
cues:
- presence of a plus-shaped pattern formed by a row and column of the

same color in the grid↪→
- output grid is created by drawing a filled row and column

intersecting at a specific position↪→

## color selection
- concept: pick only color from region

description: select the only non-background color present in a region;
assumes the region contains exactly one color besides the
background (e.g., black)

↪→
↪→
output_typing: color
parameters:
- region (type: grid): the region grid to extract the color from
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