

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARCMEMO: ABSTRACT REASONING COMPOSITION WITH LIFELONG LLM MEMORY

Anonymous authors

Paper under double-blind review

ABSTRACT

While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward **concept-level memory**: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a **7.5%** relative gain over a strong no-memory baseline, with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement.

1 INTRODUCTION

Large language models (LLMs) have made substantial strides in reasoning-intensive tasks with long-form reasoning. However, a notable opportunity lies in the fact that LLM systems are fixed after deployment: new patterns and strategies uncovered during deep reasoning are not yet carried forward once the context is cleared. This contrasts with human approaches to solving complex, compositional reasoning problems, which involve building on prior insights, abstracting patterns, and composing them in new contexts. Augmenting LLMs with memory offers a natural solution to retaining and building on their discoveries.

While external augmentation was initially designed for factuality in knowledge-intensive tasks (e.g. Lewis et al. (2021) with RAG, Zhang et al. (2019) with Knowledge Graphs, *inter alia*), recent work has begun developing memory approaches for reasoning-intensive tasks, storing questions, findings, and mistakes in memory instead of simple facts (Yang et al., 2024). These memories tend to be specific to the problem/experience it was originally derived from (we term these “instance-level” concepts, see Figure 1). Although effective for closely related problems, they have diminished utility for problems superficially different from prior experiences. Other approaches, such as Suzgun et al. (2025), begin addressing the “instance-level” issue by maintaining an evolving summary of previous experience to great effect, but the lack of structure and modularity makes scaling with more experiences challenging. Without selective retrieval, the size of memory is limited, and the problem solving model has the additional burden of picking out the relevant ideas from all past experiences.

We introduce an *abstract concept-level memory* framework to support compositional reasoning for all subsequent queries. We emphasize (1) **abstract concepts** that are more general and separated from their original context to be useful across a larger set of future problems, and (2) **modular**

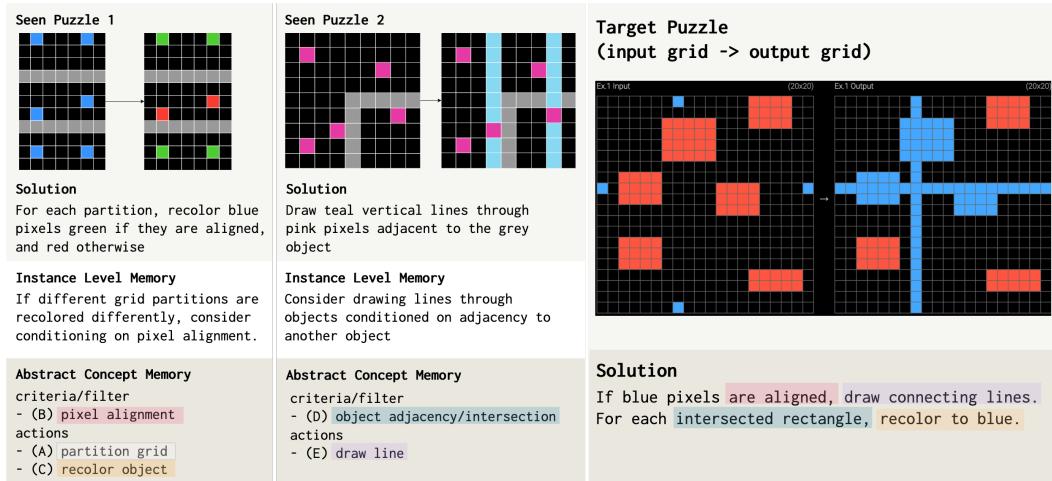


Figure 1: **Instance-Level vs. Abstract Concepts Example.** Each ARC-AGI Chollet (2019) puzzle requires inferring the transformation rule for a set of input/output pixel grids. Here, Puzzle 1 instantiates $(A \wedge B) \Rightarrow C$ and Puzzle 2 instantiates $D \Rightarrow E$. The target puzzle is solved by recombining these ideas $(B \Rightarrow E, D \Rightarrow C)$. Instance-level memory tends to store fully composed rules, coupling A with B, C , and so on. Transferring to the target then demands both ignoring A and disentangling/reordering B, C with D, E . Abstract memory instead stores A, B, C, D, E as separate, modular concepts, making them easier to recognize and reassemble in new contexts.

concepts that directly promote recombination with other ideas that can be easily built on with new experiences or curated for a target problem. We distill solution traces (both from the system itself or from external sources) into reusable, modular abstractions stored in natural language. At inference time, relevant concepts are selected and integrated into context, enabling test-time continual learning without expensive weight updates. Our design encapsulates two primary operations: (i) writing to memory: formulating concepts for abstraction and generality; and (ii) reading from memory: selecting a subset of concepts for the current problem. We title our method **ArcMemo**—Abstract Reasoning Composition Memory.

As illustrated in Figure 1, instance-level memories often capture an entire solution pattern tied closely to its original problem (e.g., the joint use of ideas A, B, C in Seen Puzzle 1). Such overspecified entries are less likely to recur in future problems, and even when partially relevant to the Target Puzzle, the agent must still disentangle useful pieces like B from the original bundle. In contrast, abstract concepts are stored individually with fewer contextual assumptions, making them easier to recognize, adapt, and recombine across superficially different puzzles.

We evaluate on ARC-AGI, where simple pixel-grid operations compose into a vast task space, and solving tasks requires compositional reasoning rather than memorizing individual patterns, making it a natural testbed for ArcMemo. ARC-AGI simultaneously remains challenging for SOTA models and solvable by human children. Along with clean, deterministic scoring, this reasoning benchmark simulates frontier domains not present in vast training corpora and thus serves as a perfect measure for a continual learning system. On ARC-AGI-1, our method improves the official score from 55.17 to 59.33 (+7.5% relative gain over a strong no-memory baseline) and is the only evaluated memory design we find to outperform the baseline at all inference scales. Our experiments confirm that continually updating memory at evaluation time yields a score improvement that emerges with inference scale via retries: memory updates triggered from a previous pass over the test set may enable new solves in a subsequent pass. Finally, we observe that selecting a subset of memories to include for a particular problem improves performance and reduces token cost, indicating the selection operation is essential beyond allowing memory to grow continually.

2 RELATED WORK

Our approach draws on several threads of research in augmenting LLMs with memory but contrasts in (1) target applications (reasoning-intensive vs. knowledge-intensive tasks), (2) the underlying

108 memory modality (text vs. continuous vectors/embeddings), and (3) emphasis on abstraction and
109 modularity for reasoning. We discuss related lines (1) and (2) as well as other related work in
110 Appendix E and emphasize reasoning and abstraction here.

Memory for Test-Time Reasoning and Concept Abstraction. More recent work has shifted toward reasoning-centric uses of memory, particularly test-time learning. Think-in-Memory records intermediate reasoning steps as structured triples, storing them in a locality-sensitive hash table to enable reuse in multi-step reasoning tasks (Liu et al., 2023). Buffer of Thoughts stores problem specific reasoning templates, retrieved by embedding similarity and instantiated for new inputs (Yang et al., 2024). It categorizes and summarizes solution attempts into templated insights, which are then added to memory. In contrast, Dynamic Cheatsheet maintains a unified buffer that is adapted continuously. With each problem query, the LLM updates this memory blob by rewriting the entire buffer (Suzgun et al., 2025). Rather than retrieving specific entries, the entire cheatsheet is appended to the prompt, functioning as a persistent cache of problem-solving strategies. We emphasize that our use of memory for long-form reasoning is cross-episodic rather than a working memory for state tracking within a single problem (e.g. Jayalath et al. (2025)'s PRISM).

ARC-AGI Approaches. Our work is primarily evaluated against ARC-AGI as a benchmark that simulates complex reasoning on frontier tasks without requiring frontier-level knowledge. Various techniques and findings have been developed against this benchmark. Li et al. (2024) demonstrates the efficacy of synthetic data and the complementary approaches of (i) learning to infer the underlying transformation via program synthesis and (ii) using test-time weight adaptation to directly learn the transformation function in the neural net. Akyürek et al. (2025) further investigates the test-time adaptation method, producing various insights, including that low rank adapters are poorly suited to retaining practical experience across puzzles. Our program synthesis approach can be viewed as a memory-augmented version of Wang et al. (2024)’s hypothesis search or Qiu et al. (2024)’s hypothesis refinement with execution feedback-based retry. Other recent approaches to ARC-AGI include brain-inspired architectural innovations such as Wang et al. (2025)’s hierarchical reasoning model, achieving impressive performance through a recurrent architecture that iteratively refines its output until a halt signal is predicted, together with data augmentation techniques. Finally, the relative ease of generating new ARC-AGI tasks compared to solving them is exploited in Pourcel et al. (2025)’s self-improving system that relabels incorrect programs as the correct program for a different puzzle and trains a model on its generations this way.

3 METHODS

3.1 PROBLEM STATEMENT

Algorithm 1: Inference with Continually Updating External Memory

Input: Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ (labels y_i optional), External memory M , Operations `MEMREAD`, `MEMWRITE`, `GETFEEDBACK`, Update interval k .

Output: Predictions $\{\hat{y}_i\}$

for $i \leftarrow 1$ **to** n **do**

```

 $(x_i, y_i) \leftarrow \text{GETITEM}(\mathcal{D}, i);$  // Label  $y_i$  may be absent at inference
 $s_i \leftarrow \text{MEMREAD}(M, x_i);$  // Retrieve relevant memory entries
 $\hat{y}_i \leftarrow \text{LLM\_GENERATE}(x_i, s_i);$  // Predict using LLM + selected memory
if  $i \bmod k = 0$  then
     $f_i \leftarrow \text{GETFEEDBACK}(\hat{y}_i, y_i);$  // test verification, reflection, etc.
     $\text{MEMWRITE}(M, x_i, \hat{y}_i, f_i);$  // Incorporate feedback into memory

```

We formulate a memory system as a collection of memory entries associated with read and write operations. Problem solving with memory augmented LLMs thus requires designing three components as seen in algorithm 1:

1. **Memory Format** (3.2): What is stored in individual entries?
2. **Memory Write** (3.3): How is memory updated from a reasoning trace?
3. **Memory Read** (3.4): How is memory used for tackling new problems?

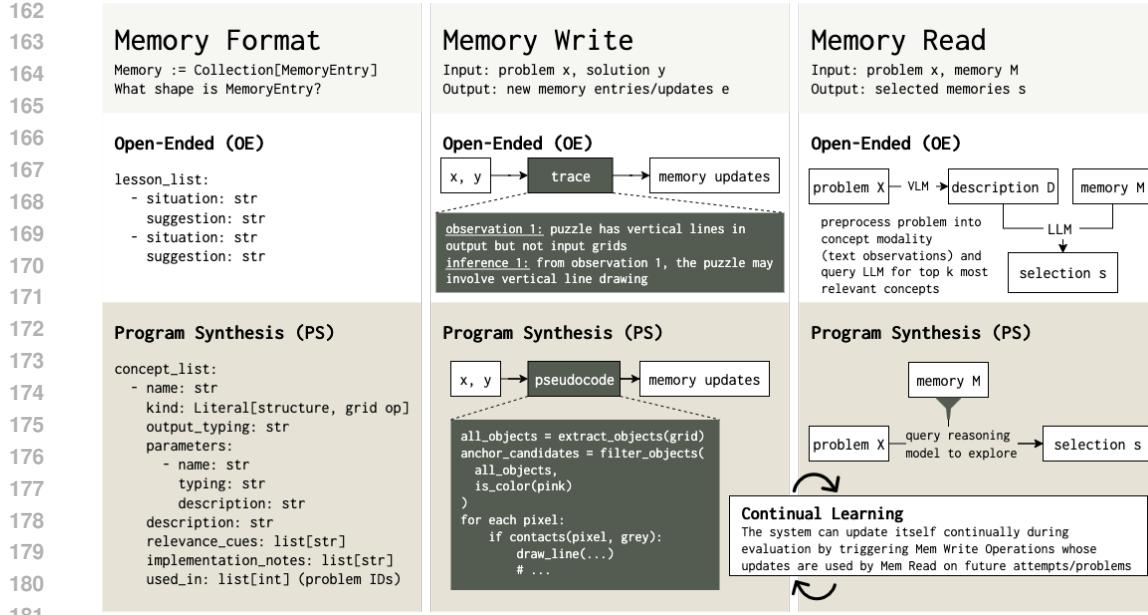


Figure 2: **Method Diagram.** Implementing a memory system requires defining (1) what is stored, (2) how memory is updated, and (3) how memory is used for new queries. The key novelty in this work is emphasizing abstraction and modularity, and the corresponding design changes. In particular, we highlight that parameterization (with higher-order functions allowed and encouraged) promotes abstraction, and typed interface definitions support modularity by showing which concepts can be combined. Since these memory entries are more abstract, they also require more inference to map against new, concrete situations—whether by aligning input against the memory format in a preprocessing query, or leveraging reasoning models to explore in a directed manner.

These are generic design considerations for any memory. Our method’s novelty lies in the choices made to target (1) abstracting a memory to be less specific to the problem it was derived from (2) enabling memory selection, since greater abstraction makes standard retrieval approaches (embedding similarity thresholding) less effective. We present two such implementations: (1) an open-ended (OE) format that imposes minimal constraints on entry format and uses a simple problem preprocessing step for memory selection, and (2) a program-synthesis (PS) inspired format that categorizes and parameterizes concepts and uses reasoning model exploration to select relevant items.

Problem Assumptions. The main requirement for our memory system is that some feedback is available at test-time (e.g. via test cases or self-reflection). This condition is necessary as retaining patterns from an incorrect or otherwise flawed trace would serve to carry mistakes forward. In other words, some signal is needed to discriminate correct from incorrect traces to ensure only productive ideas and patterns are added to memory. Incorrect traces still likely contain vital signal, but error identification/credit assignment remains an open challenge that we leave to future efforts. Various real-world tasks may satisfy this requirement, as tasks are often specified with either examples showing desired behavior or evaluation criteria defining what outcomes are positive and negative. To give some examples, code completion tools have criteria like compilation success and test pass rate, and medical diagnosis tools have evaluation criteria defined as patient outcomes (e.g., survival rates). In the case of our evaluation benchmark ARC-AGI, puzzles are explicitly presented as a set of input-output examples, which, for our purposes, can serve as automatically verifiable test cases.

3.2 MEMORY FORMAT AND ORGANIZATION

Specifying an individual memory entry’s format involves selecting fields useful for retrieval and downstream problem-solving. The organization of memory entries on a collective level is another design surface we leave for future exploration; we use a flat collection of entries for simplicity.

216	Example Puzzle	Open Ended (OE)	Program Synthesis (PS)
217	<p>Input 1</p> <p>Output 1</p>	<p>situation: When the input grid contains only a few distinct nonzero colors and the counts of these colors vary, with the output grid dimensions seeming to relate to those counts.</p> <p>suggestion: Count the occurrences of each nonzero color. Use these counts to infer the output grid's dimensions (for example, the maximum frequency may define the number of rows, and the number of distinct colors defines the number of columns). Try ordering the colors (such as from highest to lowest frequency) and filling each output column with the corresponding color repeated according to its count, using the background value for any remaining cells.</p>	<ul style="list-style-type: none"> - concept: unique colors {...} - concept: count pixels {...} - concept: sort objects <p>parameters:</p> <ul style="list-style-type: none"> - objects: list[object] - key: Callable[[object], Any] <p>relevance cues:</p> <ul style="list-style-type: none"> - if output colors or properties are assigned based on object ranking (e.g., tallest, smallest) - if objects need to be processed in a specific spatial order (e.g., left-to-right) <p>implementation notes:</p> <ul style="list-style-type: none"> - use Python's sorted() with a lambda extracting x or y coords

Figure 3: **Open-Ended (OE) vs. Program Synthesis (PS) Concept Examples.** An example of concepts from puzzle 9af7a82c abstracted into each concept format. OE defers to the model, while PS imposes structure to encourage abstraction/modularity. Higher order behavior is demonstrated with the “sort objects” concept taking a Callable parameter that specifies specific variations.

Open-Ended (OE) Formulation. We first consider an open-ended approach that imposes minimal structure and defers formatting individual memories to the model. Following the basic lesson format of “under situation X, do action Y”, the only formatting constraint we impose is having distinct **situation** (X) and **suggestion** (Y) fields. This separation is designed for abstraction (disentangles the core idea from the original context) and modular reuse (**situation** explicitly describes the conditions where this idea can be reused).

Program Synthesis (PS) Formulation. In early iterations of automatic concept summarization from solution traces, we observed outputs to occasionally be overly specific. Consider Figure 3’s OE example that bundles ideas of counting, drawing columns, and sorting into a single entry. This overspecification inherits the same limitations as instance-level concepts: friction when matching a composite idea to new scenarios and redundancy from composite ideas sharing components.

We designed a more structured alternative to the OE format to address these issues and more strongly enforce the ideals of abstraction and modularity. In particular, we took inspiration from software engineering and functional programming, which respectively have existing solutions in modular design for code reuse and higher-level functions for composition. From this analogy, our Program Synthesis (PS) format frames concepts as types, structures, and routines. The primary feature is that each of these concepts is parameterized. Parameterization allows similar concepts to be represented compactly with variations abstracted into parameters. Moreover, type annotations for inputs (parameters) and outputs (return types) encourage modularity and composition: the typed interfaces suggest what ideas fit together and how. Finally, by allowing parameters to be routines themselves (introducing higher-order functions), we encourage further generalization by enabling abstraction over specialized logic and routines rather than just values. Higher-level patterns can be recognized across instances and stored with routine arguments defining the different lower-level logic. A subtle benefit of this more structured formulation is that memory representation can be easily compressed by omitting certain fields (see subsection A.1 for a complete list of PS concept fields).

3.3 MEMORY WRITE: CONCEPT ABSTRACTION

Memory’s primary purpose is to persist discoveries and reflections from prior experiences. Converting experiences to memory updates is then the most crucial operation for achieving persistence.

OE Abstraction. Abstracting suggestions from a solution trace is straightforward—simply query a model to reflect on the solution trace and summarize specific general ideas that may be reused

270 for future puzzles. To synthesize specific conditions or situational cues to pair with suggestions,
 271 ideally, we can directly refer to the original problem-solving process as a series of deductions that
 272 derive new facts or explore ideas from existing facts, and link each suggestion (idea) with the prior
 273 observations that inferred this suggestion. However, intermediate inferences may be implicit or
 274 difficult to extract from a trace, or, in the case of specific commercial models, completely hidden. To
 275 address this challenge, we generate a post-hoc derivation: an interleaved sequence of observations and
 276 thoughts/reasoning steps constructed from the input-output of the final solution. These reconstructed
 277 traces are then used to extract situation-suggestion pairs, forming structured memory entries for
 278 guiding future analyses. This minimal formulation does not consider the existing contents of memory
 279 while adding new entries for simplicity and scaling reasons. It defers handling redundancy and
 280 consolidating ideas to the concept selection and problem-solving phases, respectively.

281 **PS Abstraction.** We find that directly converting solutions into routines often leads to minor
 282 implementation details being recorded as memories, as opposed to our intended abstract concepts.
 283 We mitigate this by preprocessing solutions into pseudocode to prioritize higher-level operations
 284 over low-level implementation details. The main abstraction phase proceeds from the generated
 285 pseudocode, recording new concepts and revising existing concepts along with their various fields.

286 In the spirit of designing for abstraction, promoting reusability, and minimizing total concept memory
 287 length, this operation *is* aware of existing concepts with a compressed form of memory included
 288 in context. We encourage the model to reuse and revise existing concepts by updating concept
 289 descriptions, parameter lists, relevance cues, and implementation notes. Importantly, we encourage
 290 higher-order functions with routines as arguments in instructions and few-shot demonstrations.

291 All concept abstraction/memory writing operations are scaffolded with few-shot demonstrations,
 292 example-rich templates, and comprehensive instructions.

294 3.4 MEMORY READ: CONCEPT SELECTION

295 Although state-of-the-art models support longer context windows, their maximum length still limits
 296 how much information or how many memory entries can be included in a single query. Even without
 297 this hard limit, including all available memories in context is still undesirable: it can distract the
 298 model with irrelevant details and flood it with too many unlikely hypotheses to consider. A more
 299 effective strategy is to introduce a selection mechanism only to include the most relevant subset of
 300 memory entries at problem-solving time. This allows the memory store to grow continually without
 301 overwhelming the model’s context window.

302 **OE Selection.** OE-format memory entries were explicitly designed to support memory-based
 303 selection. The situation clause acts as a semantic hook to identify relevance. The key idea for
 304 OE Selection is a preprocessing step that leverages model reasoning capability to parse the abstract
 305 domain input into problem descriptions at different levels of abstraction to facilitate matching against
 306 our abstract concepts. Since ARC-AGI deals with spatial reasoning, we leverage a vision language
 307 model for this preprocessing step. We caption each puzzle using a structured prompt that separates
 308 concrete observations from speculative transformations. This converts spatially rich input into a
 309 natural language format suitable for matching against stored situations. We then query a model for the
 310 top- k most relevant entries using the generated description. We explored scoring, thresholding, and
 311 cumulative similarity approaches (as in top- p sampling). Observing comparable results, we selected
 312 top- k cutoff for simplicity. We consider this a light-weight approach to converting abstract domain
 313 inputs into more understandable and memory-aligned representations.

314 **PS Selection.** Standard embedding approaches use a single forward pass per embedding, representing
 315 a System 1-style fast thinking/intuition-driven understanding from the model. Intuitions may not
 316 be sufficient for difficult/frontier tasks and domains. Moreover, the connection between a higher-level
 317 concept and a specific problem instance may not be immediately clear because of the abstraction.

318 To address these challenges, we propose **reasoning-based selection**—using System 2-style thinking
 319 to deliberately think and explore. In contrast to the more straightforward playbooks curated in the
 320 OE memory format, the explicitly abstract PS concepts are a set of puzzle pieces with notes on
 321 identifying if a piece is relevant (relevance cues) and on how various pieces fit together (type annotations).
 322 To select from this memory, we propose leveraging model-driven exploration instantiated by

324 recent models’ long-form reasoning with backtracking. PS Selection instructs a reasoning model to
 325 systematically explore the problem: first identify initial concepts using relevance cue annotations,
 326 then attempt to “fill in the details” by determining values or routines to populate these initial concepts’
 327 parameters using type annotations to identify which other concepts should be investigated.
 328

329 **3.5 CONTINUAL CONCEPT LEARNING**

330 A long-held goal in machine learning is to develop lifelong learning systems that continually self-
 331 improve without manual intervention. A memory system that can leverage the learning signal present
 332 at test-time via continual updates is one approach to achieve this ambition. Our memory write
 333 operations are lightweight queries that can ingest solution traces derived from both the system and
 334 external sources, making continual updates practical at scale.
 335

336 However, continual updates also introduce dependencies on evaluation order. If solving problem i
 337 induces a memory update that enables problem j to be solved, then performance differs between
 338 $(..., x_i, ..., x_j, ...)$ and $(..., x_j, ..., x_i, ...)$. Inference batching further complicates this: even if x_i
 339 precedes x_j , they may appear in the same batch, so the model attempts x_j before x_i has updated
 340 memory. This introduces an accuracy–throughput trade-off. In all settings, we initialize our external
 341 memory with seed data (problems and solutions). We explicitly evaluate continual updates in
 342 subsection 5.3’s experiments, confirming their efficacy. In other experiments, we used fixed memory
 343 to prioritize throughput and avoid the potentially confounding effect of order dependencies.
 344

345 **4 EXPERIMENTS**

346 **Benchmark Selection.** We evaluate our proposed framework on ARC-AGI-1 (Chollet, 2019), a
 347 benchmark explicitly designed to evaluate intelligence as “efficient acquisition of new skills” instead
 348 of “fixed possession/memorization of skills.” Each ARC puzzle encodes a transformation rule that
 349 maps input to output pixel grids. The objective of each puzzle is to infer its rule given several
 350 examples of input-output grid pairs, and produce the corresponding output grid for several input test
 351 cases. We find that the abstract domain of pixel grid transforms provides a meaningfully challenging
 352 testbed to simulate frontier domains without requiring expert knowledge to evaluate trajectories—a
 353 confluence of desirable properties for evaluating a continual concept learning system.
 354

355 ARC-AGI-1 contains a public validation split containing 400 puzzles with a difficulty distribution
 356 matching that of the private evaluation. Following Akyürek et al. (2025), we evaluate a randomly
 357 selected 100-puzzle subset of the public val split. This makes repeated runs for more stable estimates
 358 feasible given cost and the sampling variance we observed. Li et al. (2024) manually authored Python
 359 solutions for 160 puzzles from the public train split to act as “seeds” to recombine into their synthetic
 360 dataset. We reuse these solutions to seed our memory rather than training data.
 361

362 **Models.** To build on frontier models, we experiment primarily with OpenAI’s o4-mini. At the
 363 time of writing, o4-mini is second only to Grok 4, but o4-mini’s lower price puts it on the Pareto
 364 frontier of cost and performance ARC-Prize (2025). For auxiliary tasks such as concept abstraction
 365 and non-reasoning selection, we use OpenAI’s GPT-4.1 to conserve token usage. Early experiments
 366 also evaluated the open-weight DeepSeek R1, which has the benefit of visible thinking traces, but its
 367 8000 output token limit consistently yielded unfinished solutions in initial testing.
 368

369 **Evaluation.** While the official evaluation harness queries models to directly predict output grids for
 370 test cases, we instead use a program synthesis approach that queries for a transformation function to
 371 convert input to output grids. The code artifact provides more signal for reflection and also allows
 372 us to test proposed logic against reference pairs for feedback. We evaluate performance under 0,
 373 1, and 2 retries with this execution feedback (we observed diminishing returns with further retry,
 374 and choose this threshold to conserve cost). We follow official ARC-AGI scoring (two attempts per
 375 puzzle), and account for sampling variance by averaging over extra runs (see details in Appendix B).
 376 The primary memory baseline we compare against is a re-implementation of Suzgun et al. (2025)’s
 377 DC-Cu (labeled “cheatsheet”) that uses a frozen memory to match other settings.
 378

378

5 RESULTS

380

5.1 MAIN RESULTS

383 Setting	384 Oracle@1	385 Oracle@2 (Official)
386 qwen3-235b-a22b-instruct	387 11.00 (1.00)	388 16.67 (0.57)
389 deepseek r1	390 19.50 (7.05)	391 26.33 (4.02)
392 claude sonnet 4 (thinking 16k)	393 45.50 (1.00)	394 54.17 (0.58)
395 gemini 2.5 flash (thinking 16k)	396 9.67 (4.86)	397 13.83 (4.73)
398 o4-mini (medium)	399 46.33 (1.04)	400 55.17 (3.18)
401 cheatsheet (o4-mini (medium))	402 47.50 (2.78)	403 57.67 (2.52)
<hr/>		
ArcMemo-OE (ours, o4-mini (medium))		
ArcMemo-PS (ours, o4-mini (medium))		
+ one retry		
+ two retries		

394 **Table 1: Main Results.** ArcMemo-PS yields the best results and scales with additional compute.
395 Bracketed values represent standard deviation. See additional score details in Table 4.396 As seen in Table 1, ArcMemo-PS achieves the best official score with standard compute ¹ and
397 still benefits from additional scaling in both parallel samples and sequential retries. Table 4 shows
398 complete details on all settings at all scales, where ArcMemo-PS is the only setting that consistently
399 outperforms the baseline in all inference compute scales. Other memory formulations (Cheatsheet,
400 ArcMemo-OE) situationally improve over the baseline but still underperform it in some regimes.401 We observe that ArcMemo-PS’s advantage is most prominent with lower compute regimes. This is
402 consistent with the stated goal “memory for reasoning”: persisting previous experience aims to reduce
403 redundancy from rediscovering ideas found in previous rollouts. The marginal impact of memory is
404 reduced with more inference compute as the model can rediscover ideas through exploration.405 Compared to our memory baseline (Cheatsheet), ArcMemo methods are highly competitive, per-
406 forming favorably in most regimes. The quantitative improvement shown by ArcMemo is supported
407 by qualitative analysis that demonstrates ArcMemo memories are more modular. This qualitative
408 analysis (described more in subsection 5.2) observes that these abstract memories improve concept
409 coverage—more target puzzle ideas are reflected in memory. This difference may be explained by
410 ArcMemo’s modular design being more conducive to maintaining a growing library.413

5.2 SELECTION ABLATION AND QUALITATIVE RELEVANCE ANALYSIS

		Oracle@k Scores		
415 retry	416 setting	417 k=1	418 k=2 (Official)	419 k=3
		420 0 ArcMemo-PS	49.33 (0.29)	59.33 (0.29)
421 1	ArcMemo-PS	46.83 (5.25)	55.17 (2.02)	60.00
		- selection	57.67 (3.79)	72.50
423 2	ArcMemo-PS	58.00 (2.29)	67.33 (1.61)	73.00
		- selection	61.33 (3.21)	75.50
425		61.67 (3.88)	70.83 (3.06)	76.00
		- selection	70.00 (2.65)	

426 **Table 2: Selection Ablation.** Ablating the reasoning-based selection mechanism from ArcMemo-PS
427 reduces overall performance, showing selection is useful for downstream performance.428 We perform an ablation experiment removing the selection mechanism from ArcMemo-PS to examine
429 its impact and to compare more directly to the selection-free Cheatsheet methodology. The generally
430431 ¹Matching the official evaluation scheme with 2 parallel attempts and 0 retries.

better performance of the with-selection setting (as seen in Table 2) suggests that, in addition to allowing memory to grow without overwhelming context in both the abstraction and inference phases, it also helps downstream problem-solving performance. Moreover, from the token usage plot in Figure 4, we see that concept selection’s performance improvement also comes at higher efficiency—the selection-ablated setting uses far more tokens. However, there still exist certain scale regimes where the no-selection setting has a better score. We attribute this to variance from imperfect selection and note that this indicates headroom for selection/retrieval.

ArcMemo-PS (-selection) is most comparable to Dynamic Cheatsheet’s “cumulative” setting (DC-Cu) as all stored memory is included with each query. While both ultimately solve the same number of puzzles across all runs, we find that the settings differ in 10 puzzles (that is, each system solves 5 puzzles the other does not). We manually analyzed these puzzles and found that only 40% of new solves in the cheatsheet setting were related to memory elements actually in the generated cheatsheet. That is, we were unable to find relevant notes in the cheatsheet to explain 60% of its new solves. In contrast, all new solves from ArcMemo-PS (-selection) we examined can be linked to concept memory contents. While we cannot definitively conclude ArcMemo changes directly induced each of the new solves (given the state of LLM interpretability), this seems to suggest new solves in the ArcMemo settings are potentially more attributable to the memory component compared to sampling variance.

Manual inspection of a subset of reasoning-based selection results used for ArcMemo-PS finds that while some irrelevant concepts still appear within the selection, the key idea of the target is often included in the selection. The presence of a few distractor concepts appears to be manageable, as the reasoning model itself is capable of exploring with backtracking.

While concept retrieval generally improves performance, we observe several failure modes. In some cases, the retrieved concepts are irrelevant or overly abstract, lacking the specificity needed for the puzzle. Other times, retrieval succeeds, but the puzzle remains unsolved due to its intrinsic difficulty or because the puzzle requires an entirely unseen or highly detached operation or structure (such as extending Draw lines in a spiral form from the retrieved Draw line). Notably, there are instances where relevant concepts (e.g., hole counting) exist in memory but are not selected—suggesting possible perception or alignment gaps. These cases highlight headroom for improving both the selection model and downstream reasoning robustness.

5.3 CONTINUAL LEARNING

		Oracle@k Scores		
retry	setting	k=1	k=2 (Official)	k=3
0	ArcMemo-OE	48.00 (1.00)	56.67 (1.53)	61.00
	+ continual memory update	46.33 (1.53)	56.00 (0.00)	61.00
1	ArcMemo-OE	56.67 (2.08)	65.67 (1.53)	70.00
	+ continual memory update	57.17 (3.69)	65.00 (0.00)	67.00
2	ArcMemo-OE	60.67 (1.53)	67.67 (2.52)	71.00
	+ continual memory update	62.33 (3.51)	70.00 (1.73)	72.00

Table 3: **Continual Memory Learning.** Comparing otherwise identical memory systems, we find that with sequential inference compute scale (at high retry depth), continually updating memory with new self-generated solutions leads to improved puzzle-solving performance.

Results from our experiment comparing ArcMemo-OE with a version that updates *during* evaluation (every 10 problems; Table 3) show that our memory system’s performance improves with continual updates—a key requirement for meaningful lifelong learning. In particular, we find that the performance improvement emerges at later iterations in sequential inference scaling. We hypothesize this is because, after more iterations and puzzle-solving passes, new solutions are found, new memories are abstracted, and these new memories help solve other puzzles.

486 5.4 ADDITIONAL RESULTS
487488 **Expanded Scale.** Evaluating ARC-AGI methods is costly due to the long reasoning traces and
489 high sampling variance required for reliable estimates. Following prior work, our main experiments
490 therefore use a representative subset of the validation set. For completeness, we additionally evaluate
491 our ArcMemo-PS configuration on the full public validation split. As shown in Table 6, ArcMemo-PS
492 outperforms the baseline at every retry level and contributes improvements on 21 puzzles overall.493 We also expand the set of tested models to DeepSeek R1, Sonnet 4, and Kimi K2 Thinking (Table 7).
494 Using the same GPT-4.1-derived memory, R1 improves from 26.33 to 30.67 (+16%), and K2 from
495 37.33 to 40. With Sonnet 4 as the base model, ArcMemo still improves on 7 puzzles over the
496 baseline. These results indicate meaningful cross-model transfer, and suggest that concept memories
497 distilled from stronger generators (e.g., GPT-4.1) provide useful signal even for models with different
498 architectures. The mixed result on Sonnet 4 further suggests that strong models may benefit less from
499 concepts abstracted from weaker models.500
501 **Other Domains and Intrinsic Self-Improvement.** Although ARC-AGI is a natural setting for
502 continual learning, its tasks are synthetic by design. To test generality, we evaluate on math rea-
503 soning using the more portable OE configuration. On the 60 problems from AIME ’24 and ’25,
504 concept memory improves Gemini-2.5-Flash-Lite-Thinking from 43 to 48 solved problems (+11.6%),
505 demonstrating transfer beyond the ARC domain. ARC intrinsically enables correctness estimation
506 via reference input-output grids as test cases, allowing our method to abstract concepts from “correct”
507 traces, however various task settings provide less signal or feedback. Preliminary AIME results using
508 self-reflection to abstract from all traces rather than only “correct” traces yields 47 solves (+9.3%),
509 suggesting ArcMemo may be effective even in sparse-feedback regimes.510
511 **External Solution Ablation.** Our main experiments initialize the memory with human-written
512 BARC solutions to reduce inference cost. To evaluate a more realistic “pure self-improvement”
513 regime, we instead initialize memory using fully self-generated trajectories. This variant slightly
514 outperforms the original setup (60.67 vs. 59.33). We hypothesize that this on-policy memory
515 abstraction produces concepts that align more closely with the model’s inductive biases.516
517 **Pseudocode Preprocessing Ablation.** Our pipeline includes a trajectory-preprocessing step that
518 converts solutions into pseudocode before abstraction. Early tests suggested this step improves
519 generality; we confirm this with a direct ablation. Removing pseudocode preprocessing reduces the
520 ArcMemo-PS score from 59.33 to 55.67—only marginally above the baseline. Since this step is
521 inexpensive (no deep reasoning required) yet materially improves abstraction quality, we retain it in
522 the full system.523 We further discuss token efficiency, concept specificity, and embedding retrieval in Appendix C, and
524 limitations and future work discussion in Appendix D.525 526 6 CONCLUSION
527528 In this work, we introduce ArcMemo, a framework designed to support lightweight, lifelong learning
529 on compositional reasoning tasks by emphasizing a higher level of abstraction and modularity. We
530 explore two implementations of memory modules against ARC-AGI, a benchmark specifically de-
531 signed to resist memorization and to evaluate fluid intelligence instead. Our main findings confirm the
532 efficacy of our approach: ArcMemo-PS outperforms comparable methods under the official evalua-
533 tion protocol and continues to benefit from additional inference compute scale. Moreover, we observe that
534 continual updates benefit memory augmentation over multiple attempts and that selecting a subset of
535 memory for each problem is a crucial component to enable a memory to continually grow without
536 overwhelming the LLM context. This paper’s work represents early attempts toward the main tenets
537 of higher-level abstraction and modularity. Promising future directions include hierarchical designs
538 and consolidation mechanisms that restructure memory. To encourage further investigation, we also
539 release a concept-annotation dataset and configurable puzzle synthesis pipeline, providing resources
for evaluating concept representations and advancing abstraction-based memory methods.

540 REFERENCES
541

542 Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
543 Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025. URL
544 <https://arxiv.org/abs/2411.07279>.

545 ARC-Prize, 2025. URL <https://arcprize.org/leaderboard>.

546

547 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning
548 to retrieve, generate, and critique through self-reflection, 2023. URL <https://arxiv.org/abs/2310.11511>.

549

550 Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent: Iterative re-
551 search idea generation over scientific literature with large language models. *ArXiv*, abs/2404.07738,
552 2024. URL <https://api.semanticscholar.org/CorpusID:269042844>.

553

554 Léon Bottou and Yann LeCun. Large scale online learning. *Advances in neural information processing
555 systems*, 16, 2003.

556

557 Léon Bottou and Yann LeCun. On-line learning for very large data sets. *Applied stochastic models in
558 business and industry*, 21(2):137–151, 2005.

559

560 Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022. URL
561 <https://arxiv.org/abs/2207.06881>.

562

563 Justin Chih-Yao Chen, Becky Xiangyu Peng, Prafulla Kumar Choube, Kung-Hsiang Huang, Jiaxin
564 Zhang, Mohit Bansal, and Chien-Sheng Wu. Nudging the boundaries of llm reasoning, 2025. URL
565 <https://arxiv.org/abs/2509.25666>.

566

567 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
568 production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*,
569 2025.

570

571 François Chollet. On the measure of intelligence, 2019. URL <https://arxiv.org/abs/1911.01547>.

572

573 Aniket Didolkar, Nicolas Ballas, Sanjeev Arora, and Anirudh Goyal. Metacognitive reuse: Turning
574 recurring llm reasoning into concise behaviors, 2025. URL <https://arxiv.org/abs/2509.13237>.

575

576 Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
577 Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory, 2025. Work in
578 progress.

579

580 Huanang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
581 Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
582 Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
583 Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
584 survey of self-evolving agents: On path to artificial super intelligence, 2025. URL <https://arxiv.org/abs/2507.21046>.

585

586 Pengfei He, Zitao Li, Yue Xing, Yaling Li, Jiliang Tang, and Bolin Ding. Make llms better zero-shot
587 reasoners: Structure-orientated autonomous reasoning. *ArXiv*, abs/2410.19000, 2024a. URL
588 <https://api.semanticscholar.org/CorpusID:273638104>.

589

590 Zexue He, Leonid Karlinsky, Donghyun Kim, Julian McAuley, Dmitry Krotov, and Rogerio Feris.
591 Camelot: Towards large language models with training-free consolidated associative memory,
592 2024b. URL <https://arxiv.org/abs/2402.13449>.

593

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model. *arXiv preprint arXiv:2408.09559*, 2024.

594 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
 595 and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL <https://arxiv.org/abs/2310.01798>.

597 Dulhan Jayalath, James Bradley Wendt, Nicholas Monath, Sandeep Tata, and Beliz Gunel. Prism:
 598 Efficient long-range reasoning with short-context llms, 2025. URL <https://arxiv.org/abs/2412.18914>.

601 Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually
 602 correct their own mistakes? a critical survey of self-correction of llms, 2024. URL <https://arxiv.org/abs/2406.01297>.

604 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 605 Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 606 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL <https://arxiv.org/abs/2005.11401>.

609 Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
 610 Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen Pu, and
 611 Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024. URL <https://arxiv.org/abs/2411.02272>.

613 Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
 614 Think-in-memory: Recalling and post-thinking enable llms with long-term memory, 2023. URL
 615 <https://arxiv.org/abs/2311.08719>.

617 Yitao Liu, Chenglei Si, Karthik Narasimhan, and Shunyu Yao. Contextual experience replay for
 618 self-improvement of language agents. *arXiv preprint arXiv:2506.06698*, 2025.

619 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 620 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 621 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
 622 refinement with self-feedback, 2023. URL <https://arxiv.org/abs/2303.17651>.

624 Ali Modarressi, Abdullatif Köksal, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Memllm:
 625 Finetuning llms to use an explicit read-write memory. *arXiv preprint arXiv:2404.11672*, 2024.

626 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 627 Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL <https://arxiv.org/abs/2310.08560>.

630 Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
 631 Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
 632 <https://arxiv.org/abs/2304.03442>.

633 Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for evolu-
 634 tionary program synthesis: A case study on arc-agi, 2025. URL <https://arxiv.org/abs/2507.14172>.

637 Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
 638 Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. Phenomenal yet puzzling: Testing
 639 inductive reasoning capabilities of language models with hypothesis refinement, 2024. URL
 640 <https://arxiv.org/abs/2310.08559>.

642 Yuxiao Qu, Anikait Singh, Yoonho Lee, Amirth Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
 643 Aviral Kumar. Rlad: Training llms to discover abstractions for solving reasoning problems, 2025.
 644 URL <https://arxiv.org/abs/2510.02263>.

645 Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
 646 Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
 647 <https://arxiv.org/abs/2303.11366>.

648 Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, and James Zou. Dynamic
 649 cheatsheet: Test-time learning with adaptive memory, 2025. URL <https://arxiv.org/abs/2504.07952>.
 650

651 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
 652 Yasin Abbasi Yadkori. Hierarchical reasoning model, 2025. URL <https://arxiv.org/abs/2506.21734>.
 653

654 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
 655 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023a.
 656 URL <https://arxiv.org/abs/2305.16291>.
 657

658 Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D. Goodman.
 659 Hypothesis search: Inductive reasoning with language models, 2024. URL <https://arxiv.org/abs/2309.05660>.
 660

661 Xintao Wang, Qian Yang, Yongting Qiu, Jiaqing Liang, Qi He, Zhouhong Gu, Yanghua Xiao, and
 662 W. Wang. Knowledgpt: Enhancing large language models with retrieval and storage access on
 663 knowledge bases. *ArXiv*, abs/2308.11761, 2023b. URL <https://api.semanticscholar.org/CorpusID:261076315>.
 664

665 Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers,
 666 2022. URL <https://arxiv.org/abs/2203.08913>.
 667

668 Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonzalez,
 669 and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models, 2024.
 670 URL <https://arxiv.org/abs/2406.04271>.
 671

672 Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. Ernie: Enhanced
 673 language representation with informative entities, 2019. URL <https://arxiv.org/abs/1905.07129>.
 674

675

678 A IMPLEMENTATION DETAILS

680 A.1 PS MEMORY FORMAT

682 Each PS format memory entry contains:

684 • **Title:** a succinct label for the underlying idea.
 685 • **Description:** elaboration on behavior and role.
 686 • **Kind:** whether this concept encodes a type/structure/routine.
 687 • **Parameters:** a list of fields that parametrize this concept.
 688 • **Output Typing:** specifies what the output for this routine is, to suggest how various routines
 689 can plug into other routines.
 690 • **Relevance Cues:** much like the `situation` field in the OE concepts, we consider the
 691 context in which this concept is relevant.
 692 • **Implementation Notes:** suggestions on how to implement the concept in actual code.
 693

696 A.2 EXPERIMENT PARAMETERS

698 To build on frontier models, we experiment primarily with OpenAI’s o4-mini (max tokens=32000,
 699 reasoning_effort=medium). For auxiliary tasks such as concept abstraction and non-reasoning
 700 selection, we use OpenAI’s GPT-4.1 (temperature=0.3, max tokens=1000) to reduce token usage. We
 701 looked into evaluating the open-source DeepSeek R1, which also has a transparent thinking process,
 but the output 8000 token limit consistently yielded unfinished solutions.

702 B EVALUATION DETAILS

704 We use ARC-AGI’s official scoring metric, which we term oracle@ k (each test case is scored
 705 separately, and if any of k candidates pass, full credit is given for that test case). The ARC-AGI
 706 official evaluation has $k = 2$, but to mitigate sampling variance, we sample 3 runs for each setting
 707 and report the average single run score, average oracle@2 score, and their standard deviation. We
 708 investigate several alternate scoring protocols (requiring a single program to solve all test cases,
 709 accumulating test case solve rates, and requiring references also to be solved) and include the results
 710 in Table 5.

711 Here is a precise definition of our scoring procedure for a single problem P . Let...

- 713 • X be the size n set of attempts on problem P
- 714 • T be the set of test cases for problem P
- 715 • C represent a particular k -subset of X , in notation: $C \in [X]^k$

$$717 \quad score = \frac{1}{|[X]^k|} \sum_{C \in [X]^k} z(C)$$

719 where z is the problem score by a k -attempt ensemble

$$721 \quad z(C) = \frac{1}{|T|} \sum_{t_i \in T} \mathbb{1}\{\exists c \in C \text{ Verify}(c, t_i)\}$$

723 where

- 725 • c is a single program attempt in the k -attempt ensemble,
- 726 • t is a test case,
- 727 • and `Verify` returns true if the program successfully passes the test case.

731 iteration	732 setting	733 Individual Run Scores			734 Oracle@ k Scores		
		735 run0	736 run1	737 run2	738 k=1	739 k=2 (Official Score)	740 k=3
0	baseline	46.00	45.50	47.50	46.33 (1.04)	55.17 (3.18)	59.50
	cheatsheet	48.00	44.50	50.00	47.50 (2.78)	57.67 (2.52)	64.00
	ArcMemo-OE (ours)	49.00	47.00	48.00	48.00 (1.00)	56.67 (1.53)	61.00
	ArcMemo-PS (ours)	49.50	49.00	49.50	49.33 (0.29)	59.33 (0.29)	63.50
1	baseline	57.00	55.50	61.00	57.83 (2.84)	66.67 (3.82)	71.50
	cheatsheet	56.00	56.50	57.50	56.67 (0.76)	65.67 (1.44)	70.50
	ArcMemo-OE (ours)	59.00	55.00	56.00	56.67 (2.08)	65.67 (1.53)	70.00
	ArcMemo-PS (ours)	58.50	60.00	55.50	58.00 (2.29)	67.33 (1.61)	72.50
2	baseline	59.50	59.00	65.00	61.17 (3.33)	69.00 (2.65)	73.00
	cheatsheet	65.00	61.00	61.00	62.33 (2.31)	71.33 (1.53)	76.00
	ArcMemo-OE (ours)	62.00	59.00	61.00	60.67 (1.53)	67.67 (2.52)	71.00
	ArcMemo-PS (ours)	60.50	66.00	58.50	61.67 (3.88)	70.83 (3.06)	75.50

743 Table 4: **Full o4-mini Results.** The right partition of the table containing aggregate scores shows
 744 the inference scaling: going down represents sequential retry, going right represents adding parallel
 745 samples. ArcMemo-PS is the only evaluated setting that outperforms the baseline consistently at
 746 every tested scale.

748 C FURTHER DISCUSSION

751 **Token Efficiency** We find that our system’s token efficiency is similar to the baseline. We observe
 752 that memory-augmented runs tend to increase output token usage. While this seems to counter the
 753 intuition that retrieving rather than regenerating certain ideas would save tokens, we hypothesize
 754 that introducing memory leads the model to explore more hypotheses. In other words, selection
 755 inaccuracies (false positives) seem to be manageable by the reasoning models, but at the cost of
 increased token usage. Full results are plotted in Figure 4.

iteration	setting	run0	run1	run2	k=1	k=2	k=3
0	baseline	46.00	45.00	47.00	46.00 (1.00)	54.67 (3.21)	59.00
	cheatsheet	48.00	44.00	50.00	47.33 (3.06)	57.67 (2.52)	64.00
	ArcMemo-OE	49.00	47.00	48.00	48.00 (1.00)	56.67 (1.53)	61.00
	ArcMemo-PS	49.00	49.00	49.00	49.00 (0.00)	59.00 (0.00)	63.00
1	baseline	57.00	55.00	61.00	57.67 (3.06)	66.33 (4.04)	71.00
	cheatsheet	56.00	56.00	57.00	56.33 (0.58)	65.33 (1.15)	70.00
	ArcMemo-OE	59.00	55.00	56.00	56.67 (2.08)	65.67 (1.53)	70.00
	ArcMemo-PS	58.00	60.00	55.00	57.67 (2.52)	67.00 (1.73)	72.00
2	baseline	59.00	59.00	65.00	61.00 (3.46)	69.00 (2.65)	73.00
	cheatsheet	65.00	61.00	61.00	62.33 (2.31)	71.33 (1.53)	76.00
	ArcMemo-OE	62.00	59.00	61.00	60.67 (1.53)	67.67 (2.52)	71.00
	ArcMemo-PS	60.00	66.00	58.00	61.33 (4.16)	70.33 (3.06)	75.00

Table 5: **Strict Scoring.** While the official evaluation scheme allows different test cases solved by different attempts to be ensembled, in contrast, the strict scoring regime only marks a puzzle as solved if a single attempt (generated program) solves all test cases.

Iteration	Individual Run Scores			Oracle@k Scores		Puzzles Improved	
	run0	run1	run2	k=1	k=2 (Official Score)	k=3	
0 + ArcMemo-PS	171.50	185.00	184.50	180.33 (7.65)	219.50 (1.80)	237.00	36
	186.00	185.50	182.00	184.50 (2.18)	225.83 (2.57)	246.50	
1 + ArcMemo-PS	222.00	221.50	231.00	224.83 (5.35)	259.00 (5.68)	274.50	22
	228.00	225.50	218.00	223.83 (5.20)	262.00 (5.29)	279.50	
2 + ArcMemo-PS	238.50	242.00	250.00	243.50 (5.89)	274.33 (5.03)	287.00	21
	246.00	251.00	236.00	244.33 (7.64)	277.67 (7.01)	292.50	

Table 6: Full Evaluation Split Results (400 puzzles, base model: o4-mini). “Puzzles Improved” refers to the number of puzzles where the ArcMemo setting outscores the Baseline.

Concept Specificity Investigation As part of the development of our concept representations, we conducted small-scale experiments using tiny ($n=10$) subsets of the validation split to investigate the level of detail needed for concepts to be useful. Manually writing maximum detail situation-suggestion style concepts and using iteratively LLM-summarized versions (for a total of 5 levels of specificity for each concept), we found the reasonably expected result that higher levels of specificity correspond to better solve rates. Maximum specificity solved 4/10 with a generally decreasing pattern with lower specificity. While this result was entirely expected, the main goal of the experiment was to determine how much we could compromise on concept detail to improve the retrieval aspect. There is a tension between retrieval and puzzle solving in the sense that puzzle solving benefits from more detailed suggestions, but retrieval struggles to apply them to new situations when the concept’s relevant situation is so precisely defined.

Embedding-based Retrieval Experiments Early in testing, we investigated standard embedding-based retrieval approaches. Following the ArcMemo-OE setting, we used a VLM-generated caption to query a vector database of ArcMemo-OE-style concept embeddings. While computationally cheap compared to autoregressive generation (especially so when leveraging long-form reasoning), we saw generally poor retrieval results. Using OpenAI’s embeddings API and an o3-mini puzzle-solving backbone proved ineffective, lowering the score from 0.26 to 0.22, marking a 15% reduction. Qualitative analysis found that retrieved concepts were largely irrelevant to the puzzle and seemed to over-index on lexical similarity. Moreover, a small set of broadly defined (non-specific) concepts was found to be grossly overrepresented.

Model Name	Individual Run Scores			Oracle@k Scores			Puzzles Improved
	run0	run1	run2	k=1	k=2 (Official Score)	k=3	
Kimi K2 Thinking + ArcMemo-PS	36.00 38.00	28.00 28.00	19.00 22.00	27.67 (8.50) 29.33 (8.08)	37.33 (3.79) 40.00 (4.58)	42.00 46.00	11
Sonnet-4 + ArcMemo-PS	44.50 44.00	45.50 45.00	46.50 38.50	45.50 (1.00) 42.50 (3.50)	54.17 (0.58) 52.50 (1.80)	57.50 57.00	7
DeepSeek R1 + ArcMemo-PS	26.00 18.50	20.50 26.00	12.00 23.50	19.50 (7.05) 22.67 (3.82)	26.33 (4.01) 30.67 (0.76)	30.50 35.00	12

Table 7: Additional Model Results (100-puzzle subset). “Puzzles Improved” refers to the number of puzzles where the ArcMemo setting outscores the Baseline.

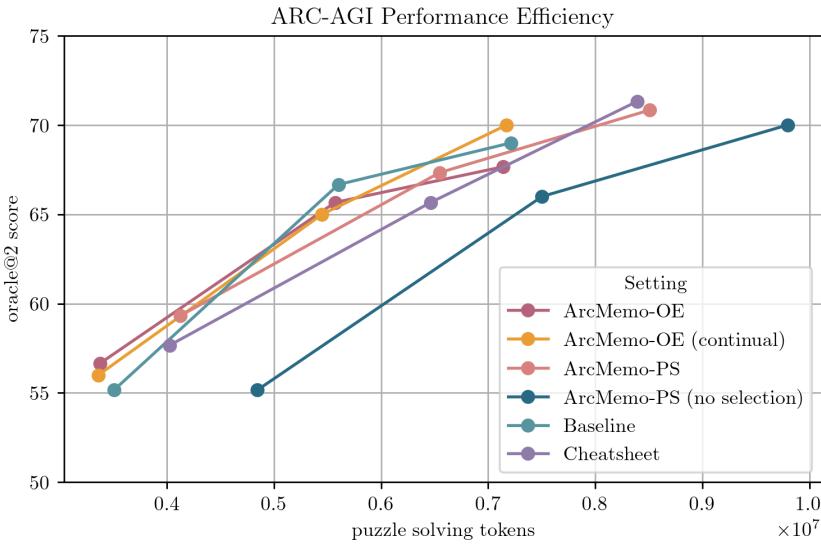


Figure 4: Token Efficiency Plot: Comparing various settings’ official score (oracle@2) on the public validation subset to the tokens used by the reasoning model for strictly puzzle solving.

D LIMITATIONS AND FUTURE WORK

D.1 LIMITATIONS

Following Akyürek et al. (2025), our evaluation focuses on a 100-task subset of ARC-AGI-1, selected to make large-scale experimentation feasible under compute and cost constraints. This choice was further motivated by the substantial sampling variance we observed—identical prompts can yield noticeably different scores, requiring multiple runs to obtain stable estimates. As a result, our study concentrates on a relatively small frontier of puzzles where memory augmentation can yield new solves, limiting the absolute magnitude of observable gains.

In addition, ARC-AGI-2 was released mid-project as a harder successor benchmark, with state-of-the-art performance still below 30%. Re-running all baselines and experiments on ARC-AGI-2 was infeasible within scope due to cost and time constraints, but extending memory-based approaches to ARC-AGI-2 remains an important direction for future work.

D.2 FUTURE WORK

Several directions follow naturally from this work. One is to broaden evaluation to larger and more challenging puzzle sets, including those unsolved by the baseline, to test both new solve potential and consistency on borderline cases. Another is to explore order-robust update strategies and curriculum

864 designs that reduce sensitivity to problem ordering while preserving inter-problem learning benefits.
 865 Beyond these extensions, a key avenue is hierarchical abstraction: moving from additive concept
 866 updates toward consolidation operations that restructure the memory across multiple experiences.
 867 Finally, our current design choices for representation and retrieval were made under cost constraints;
 868 richer optimization may yield substantial improvements.

869 To facilitate further research, **we release a data resource**: hand-annotated concepts for difficult
 870 puzzles, together with a configurable puzzle synthesis pipeline. This resource is intended to support
 871 isolated evaluation of concept representations and selection mechanisms, as well as development of
 872 methods for concept abstraction. We hope it provides a useful foundation for continued exploration
 873 of abstract reasoning memory.

875 E ADDITIONAL RELATED WORK

877 **Knowledge Base Augmented LLMs for Factuality.** Early efforts to enhance language models with
 878 external memory primarily targeted knowledge-intensive tasks. Retrieval-Augmented Generation
 879 (RAG) introduced the idea of retrieving documents from an external store based on embedding
 880 similarity to augment generation (Lewis et al., 2021). Follow-up work like KnowledGPT incorporated
 881 formal knowledge bases, allowing LLMs to execute structured queries through “Program-of-Thought”
 882 prompting for multi-hop reasoning (Wang et al., 2023b). More recently, MemLLM proposed
 883 inline memory operations—allowing the model to read from and write to memory directly during
 884 generation—enabling continual adaptation without re-training (Modarressi et al., 2024).

886 **Embedding Space Memory.** Another stream of work aims to overcome the limited context window
 887 of transformers through architectural interventions that compress information from long sequences
 888 into continuous space. Memorizing Transformers stored latent key-value vectors from past inputs and
 889 retrieved them via a kNN mechanism to be attended to alongside the current context (Wu et al., 2022).
 890 The Recurrent Memory Transformer extended this by incorporating a writable memory updated
 891 over time, making memory content responsive to ongoing computation (Bulatov et al., 2022). He
 892 et al. (2024b) blended these ideas by applying a moving average to update memory slots, allowing
 893 for both similarity-based retrieval and continual adaptation He et al. (2024a). MemGPT introduced
 894 a hierarchical memory system with a working (RAM-like) memory and a larger archival memory,
 895 simulating long-term information management in a more structured fashion (Packer et al., 2024).

896 **Parameter-Free Test-time Learning.** Test-time learning (sometimes referred to as online learning)
 897 describes methods that update predictions at inference time Bottou & LeCun (2003; 2005). However,
 898 trends towards (1) massive model sizes and (2) black box models accessed through APIs make
 899 continually updating parameters computationally impractical or downright impossible. In light of
 900 this, LLM test-time learning research sought to pursue parameter-free adaptation by using LLMs’
 901 remarkable capacity for instruction following and self-reflection. Methods such as Reflexion (Shinn
 902 et al., 2023), Self-Refine (Madaan et al., 2023), and Self-RAG (Asai et al., 2023), *inter alia* attempt
 903 to correct mistakes at test-time by way of self-reflection. Follow-up work (Huang et al., 2024; Kamoi
 904 et al., 2024) finds that self-correction methods depend on the availability of some extrinsic feedback or
 905 verification mechanism to reliably improve end performance and that these methods produce dubious
 906 results absent these grounded sources of feedback. Still, self-reflection remains a key component of
 907 self-evolving agents (Gao et al., 2025).

908 **Memory for Agentic Skill Acquisition.** Memory also plays a crucial role in LLM-based agents.
 909 Park et al. (2023) structured memory as a stream of episodic observations and distilled high-level
 910 summaries from them to guide decision-making. Contextual Experience Replay discretizes trajectories
 911 into “experiences” (containing environment dynamics from a trajectory and skills storing actions
 912 from said trajectory) and retrieves relevant blocks to guide new episodes (Liu et al., 2025). HiAgent
 913 organizes working memory (within a single query) hierarchically by subgoals, summarizing and
 914 replacing traces to improve long-horizon efficiency (Hu et al., 2024). External-memory systems
 915 such as Mem0 and MemP manage a persistent store with explicit add–update–prune operations
 916 (MemP casts control as an MDP), yielding gains on dialogue and tool-use/planning tasks (Chhikara
 917 et al., 2025; Fang et al., 2025). MemP in particular is a concurrent work that also demonstrates the
 918 efficacy of abstraction, although it targets rewriting action sequences as step sequences in explicitly

918 agentic settings, contrasting with ArcMemo’s general problem-solving focus. Voyager uses LLMs to
 919 autonomously acquire and store skills while exploring Minecraft, with a growing library of reusable
 920 code snippets written by the agent itself Wang et al. (2023a). Other systems, like the ResearchAgent,
 921 use memory initialized from domain-specific corpora, such as scientific papers, to ground query
 922 responses in high-utility prior knowledge (Baek et al., 2024).

924 **Abstractions from Reflection.** Other recent and concurrent works incorporate the related idea of
 925 using reflections from solution traces towards different goals and mechanisms. RLAD (Qu et al., 2025)
 926 jointly trains an abstractor model to generate new abstractions per problem for a solver model. NuRL
 927 (Chen et al., 2025) generates problem-specific hints (h_i) from ground truth question-answer pairs
 928 (q_i, a_i) to augment a dataset. Didolkar et al. (2025) summarizes behaviours for math reasoning, using
 929 embedding-based retrieval, and adding a fine-tuning stage on resulting traces. In contrast, ArcMemo
 930 builds an explicit store of concepts. Our mechanism is model agnostic, gradient-free, and lightweight.
 931 We especially emphasize abstraction and modularity to promote reuse, and selection-aware design to
 932 better handle unfamiliar domains appropriate for the continual learning setting.

934 F PROMPTS

936 F.1 PSEUDOCODE PREPROCESSING

938 # Introduction
 939 Consider a class of "ARC" puzzles where each puzzle has a hidden
 940 \hookrightarrow transformation rule that maps input grids to output grids. Each
 941 \hookrightarrow puzzle presents several input-output grid pairs as reference examples
 942 \hookrightarrow and the task is to predict the transformation rule. Grids are 2D
 943 \hookrightarrow numpy integer arrays with integers representing colors. 0 represents
 944 \hookrightarrow black and usually serves as the background.

945 We are trying to learn from previous puzzle solutions to improve our
 946 \hookrightarrow puzzle solving capabilities. Your task is to analyze a puzzle
 947 \hookrightarrow solution, rewrite it as pseudocode that can more easily be abstracted
 948 \hookrightarrow into concepts, and finally write a one-liner summary of the
 949 \hookrightarrow transformation rule. Here, a concept can encode any of:
 950 (a) grid manipulation: an operation that directly impacts the output grid
 951 (b) helper routine: specialized logic for parameterizing more abstract
 952 \hookrightarrow operations
 953 (c) criteria: checked properties/overall logic for conditional operations
 (d) structure: shapes to look for in the pixel grids

954 # Instructions
 955 Pseudocode:
 956 - write the pseudocode translation inside <pseudocode> and </pseudocode>
 957 \hookrightarrow tags
 - be concise without compromising correctness
 - reuse function names/operations from the examples
 959 - focus on broader ideas compared to implementation details
 960 - the full solution might use `find_connected_components` to pick out
 961 \hookrightarrow objects, the output of these are numpy grids containing only the
 962 \hookrightarrow object-- implicitly storing attributes, we prefer your pseudocode to
 963 \hookrightarrow instead use a grid object type with explicit attributes like
 964 \hookrightarrow .color/.colors/.shape (returns a binary
 965 \hookrightarrow mask)/.height/.width/.size/.position/etc.

966 Summary:
 967 - write a one-liner summary of the transformation rule inside <summary>
 968 \hookrightarrow and </summary> tags

969 # Examples
 970 {examples}

971 # Concepts Examples

972 Here are concepts that were extracted from the examples. Bear in mind
 973 → that your generated pseudocode should enable abstracting concepts
 974 → such as the following:
 975 {concepts}
 976
 977 # Your Puzzle Solution
 978 Analyze, abstract into pseudocode, and summarize the following puzzle
 979 → solution:
 980 ```python
 981 {solution}
 982 ```
 983
 984
 985 **F.2 CONCEPT ABSTRACTION**
 986
 987 # Introduction
 988 Consider a class of "ARC" puzzles where each puzzle has a hidden
 989 → transformation rule that maps input grids to output grids. Each
 990 → puzzle presents several input-output grid pairs as reference examples
 991 → and the task is to predict the transformation rule. Grids are 2D
 992 → numpy integer arrays with integers representing colors. 0 represents
 993 → black and usually serves as the background.
 994
 995 We are trying to learn from previously solved puzzles to help solve more
 996 → puzzles in the future. Your task is to analyze a puzzle solution's
 997 → pseudocode and abstract reusable concepts. Here, a concept can encode
 998 → one of the following:
 999 1. routine: routines from the solution program, which can either directly
 1000 → output a grid, or prepare handle some intermediate processing
 1001 2. structure: a class of visual entities (not program data structures)
 1002 → that can be seen in an individual pixel grid. The visual entity
 1003 → should be general, perhaps by being defined by their function or in
 1004 → relation to an operation.
 1005
 1006 Following a functional programming philosophy, we promote reusability
 1007 → through composition by parameterizing routines:
 1008 - We also encourage passing specialized logic (other routines) as
 1009 → parameters to higher order routines
 1010 - Each routine is typed-- it specifies output typing in addition to a
 1011 → list of parameter specifications
 1012 - We allow custom types to be defined with the format "name :=
 1013 → definition"
 1014 - Often custom types are `Callable` that specify some pluggable
 1015 → operations
 1016
 1017 The overarching goal is to help future puzzle solving which boils down to
 1018 → 2 problems:
 1019 1. determining what the transformation is (by examining input/output
 1020 → examples)
 1021 2. implementing the transformation in code
 1022
 1023 - These concepts are meant to compactly encode ideas from solved puzzles
 1024 → and help puzzle solving by remembering what operations could be
 1025 → involved and how they might interact with each other via typing.
 1026 - Parameterization and composition via higher order routines/pluggable
 1027 → operations helps ensure concepts are reusable and not overly specific
 1028 → to one puzzle
 1029 - But to specifically address the 2 main problems, we also annotate
 1030 → concepts with:
 1031 1. relevance cues: suggestion of what to look for at puzzle solving
 1032 → time that would indicate this concept is potentially relevant.
 1033 - can either describe (1) things to look for in the puzzle grids
 1034 → or (2) related concepts that might implicate this one

```

1026      - we primarily care about annotating cues for grid manipulation
1027      ↳ routines and structures where there are concrete things to
1028      ↳ look for in the reference grids.
1029 2. implementation notes: suggestions on how to implement the idea
1030      ↳ programmatically.

1031 # Examples
1032 {examples}

1033 # Concept Repository
1034 Here is the current concept repository that you should check for reuse:
1035 {concept_list}

1036 # Your Puzzle Solution
1037 Abstract the following solution into a concept list:
1038 ``
1039 {summary}
1040 {pseudocode}
1041 ``
1042

1043 # Instructions
1044 - Format your final concept list inside a fenced yaml markdown block
1045   ↳ (have first line = ````yaml```` and last line = ````)
1046 - Feel free to think before writing your final response
1047 - Each concept entry can have the following fields
1048   concept: routine or structure name
1049   kind: routine | structure
1050   routine_subtype: string specifying either "grid manipulation",
1051     ↳ "intermediate", or the name of a Callable custom type.
1052   output_typing: the output type
1053   parameters: a list of parameter specifications (dictionary with
1054     ↳ fields: name, typing, description)
1055   description: string elaborating on the concept if not completely self
1056     ↳ evident from the name
1057   implementation: a list of notes that provide suggestions on how to
1058     ↳ implement this concept programmatically
1059   cues: a list of notes suggesting what to look for at puzzle solving
1060     ↳ time that would suggest this concept is relevant (e.g. what to
1061     ↳ look for in example input/output grids, or other concepts being
1062     ↳ considered that may also implicate this concept)
1063 - Typing fields should be similar to python type annotations but may
1064   ↳ include ARC puzzle specific terminology (e.g. `list[object]`, or
1065   ↳ `Callable[[object], color]`). New custom types may be defined by
1066   ↳ filling out a typing field with `name := definition`
1067 - IMPORTANT: Reuse concepts and parameter names/types whenever possible
1068   - reusing a concept or parameter means reusing its exact name
1069   - check existing concepts/parameter names in the `Concept Repository`
1070     ↳ section below
1071   - when reusing a concept:
1072     - it need not be redefined-- a list entry of `concept: name` is
1073       ↳ sufficient
1074     - however you may also choose to extend it (introduce new list
1075       ↳ entries for the parameter list, the implementation notes, or
1076       ↳ the relevance cues which are merged with the existing
1077       ↳ entries). This involves specifying the same concept name as
1078       ↳ the existing one to be extended.
1079 - Avoid coupling the concepts too closely with the exact solution
1080   ↳ implementation.
1081     - often times, there is a broader idea that can be implemented with
1082     ↳ roundabout methods easier to express in code
1083     - we should record the broader idea in our concept memory but record
1084     ↳ the easier implementation in the implementation notes
1085 - Distinct concepts must have different names
1086 - Output valid yaml
1087   - avoid putting colons in entries where we're expecting a list[str]

```

```

1080      - be careful about multiline strings
1081  - IMPORTANT: No need to encode every implementation detail from the
1082  ↳ solution into a concept, focus on the important ideas, logic, and
1083  ↳ structure.
1084  ↳ ultimately we want concepts to be reusable, so if something seems
1085  ↳ overly specific and unlikely to reappear in other puzzles, do not
1086  ↳ add it
1087
1088
1089 F.3 CONCEPT SELECTION
1090
1091 # Introduction
1092 Consider a class of "ARC" puzzles where each puzzle has a hidden
1093 ↳ transformation rule that maps input grids to output grids. Each
1094 ↳ puzzle presents several input-output grid pairs as reference examples
1095 ↳ and solving the puzzle means predicting the transformation rule.
1096 ↳ Grids are 2D numpy integer arrays with integers representing colors.
1097 ↳ 0 represents black and should be treated as the background.
1098
1099 Your task is to analyze a puzzle's reference examples, examine a set of
1100 ↳ concepts recorded from previously solved puzzles, and determine which
1101 ↳ concepts are relevant to this puzzle. Your selected concepts and
1102 ↳ notes will be used for the puzzle solving phase, so emphasize problem
1103 ↳ solving helpfulness.
1104
1105 # Concepts from Previously Solved Puzzles
1106 We recorded concepts about structures and routines we observed in
1107 ↳ previously solved puzzles. These concepts may or may not be relevant
1108 ↳ to this puzzle, but they provide useful context to show examples of
1109 ↳ what structures may appear in the grids, what operations may be used,
1110 ↳ and how they might be composed. Concepts are annotated with fields
1111 ↳ like:
1112 - cues: (short for "relevance cues"), what to look for that might
1113 ↳ indicate this concept is relevant in this puzzle
1114 - implementation: notes on how this concept was implemented in past
1115 ↳ solution programs
1116 - output typing: what the output of this routine is (e.g. a grid, a list,
1117 ↳ a number, a bool, etc.)
1118 - parameters: a list of parameters that describe ways the concept may
1119 ↳ vary
1120 We also have some recommendations on how to approach problem solving with
1121 ↳ these concepts in mind:
1122 - We label the grid manipulation routines separately-- these directly
1123 ↳ affect the grids so they are easier to spot (along with structure
1124 ↳ concepts)
1125 - You might try to first identify which grid manipulation operations are
1126 ↳ used, then investigate their parameters
1127 - The non-grid manipulation routines might describe ways we've seen
1128 ↳ previous puzzles set parameters, so you can look to these for
1129 ↳ inspiration
1130 - There may not be exact matches to this list, so we encourage you to
1131 ↳ think about variations, novel ways to recombine existing ideas, as
1132 ↳ well as completely new concepts
1133 - These concepts and this approach are only suggestions, use them as you
1134 ↳ see fit
1135
1136 {concepts}
1137
1138 # Instructions
1139 Identify which concepts could be relevant to the given puzzle.
1140 - We suggest first investigating more "visible" concepts first (e.g.
1141 ↳ structures and grid manipulation routines)

```

```
1134 - After identifying these concepts, you can investigate what
1135   ↳ logic/criteria/intermediate routines might be useful for these
1136   ↳ initially identified concepts
1137 - You can also select any other concept you think might be relevant even
1138   ↳ if it's not directly related to the grid manipulation routines
1139 - Write your final selection of concepts as a yaml formatted list of
1140   ↳ concept names
1141 - To allow us to match your selection to the concepts we have, please use
1142   ↳ the exact concept names as they appear in the above concept list
1143 - Write your answer inside a markdown yaml code block (i.e. be sure to
1144   ↳ have "```yaml" in the line before your code and "```" in the line
1145   ↳ after your list)
1146 - Here is a formatting example:
1147   ```yaml
1148   - line drawing
1149   - intersection of lines
1150   ...
1151
1152 # Your Given Puzzle
1153 Analyze the following puzzle:
1154 {puzzle}
```

G EXAMPLE CONCEPTS

G.1 ARCMEMO-OE

1159 situation: When every row in the input grid is identical or shows uniform
1160 \hookrightarrow behavior.
1161 suggestion: Instead of looking for complex spatial rearrangements by row,
1162 \hookrightarrow focus on per-column operations. It may indicate that the
1163 \hookrightarrow transformation is applied column by column, such as a substitution or
1164 \hookrightarrow mapping rule.
1165 situation: When each column appears to transform its digits (or colors)
1166 \hookrightarrow in a consistent but distinct way.
1167 suggestion: Consider that each column might have its own mapping rule--a
1168 \hookrightarrow substitution cipher. Check if specific input digits in a column
1169 \hookrightarrow always map to the same output digits, and validate this rule across
1170 situation: When the output grid is a uniformly scaled-up version of the
1171 \hookrightarrow input, especially when the output dimensions are an integer multiple
1172 \hookrightarrow of the input dimensions.
1173 suggestion: Check if the output can be divided into equal-sized blocks
1174 \hookrightarrow that correspond one-to-one with the cells of the input. Investigate
1175 \hookrightarrow whether each cell in the input acts as a trigger--replicating a
1176 \hookrightarrow specific pattern or full copy of the input into the corresponding
1177 \hookrightarrow block--when it's nonzero, and leaving it blank otherwise.

G.2 ARCMEMO-PS

```
1181 ## structure concepts
1182 - concept: split grid
1183     description: where the grid is split into multiple regions that are
1184     ↪ treated as distinct
1185     cues:
1186         - divider lines (of any color) that span the grid and partition it
1187         ↪ into regions
1188         - visually distinct regions or objects that are processed separately,
1189         ↪ often separated by colored or black lines, columns, or rows
```

```

1188     - color-based regions where pixels of a certain color only appear
1189         ↳ within specific sections of the grid
1190
1191     - concept: rectangle object
1192     description: an object whose shape is a rectangle, often used for bars,
1193         ↳ highlights, or as a region to fill
1194     cues:
1195         - if the output or solution logic depends on the number of distinct
1196             ↳ items (e.g., colors, objects) or the frequency of a color in
1197             ↳ regions or objects
1198     implementation:
1199         - use len() on the sequence
1200
1201 ## grid manipulation routines
1202 - concept: recolor object
1203     description: recolor an object based on a color scheme
1204     output_typing: grid | object
1205     parameters:
1206         - object (type: object): the object or pixel to recolor
1207         - color scheme (type: dict[color, color]): mapping from original
1208             ↳ color to new color
1209         - object | object | position - the object or pixel to recolor
1210         - color scheme | dict[color, color] - mapping from original color to
1211             ↳ new color
1212         - color (type: color): the color to assign to the object
1213     cues:
1214         - if structures or objects from the input grid appear in the output
1215             ↳ grid with different colors
1216         - if all pixels of one color in the output grid are replaced with
1217             ↳ another color (systematic color swap)
1218         - if regions or objects are recolored based on a property (e.g.,
1219             ↳ size, position, or matching a specific pixel)
1220         - if the output grid contains regions filled with a new color not
1221             ↳ present in the input
1222         - if background or other colors are systematically replaced in the
1223             ↳ output grid
1224         - if the output grid is visually similar to the input except for a
1225             ↳ color swap
1226         - if colored pixels or regions appear in the output grid at positions
1227             ↳ that were black or missing in the input, especially adjacent to
1228             ↳ colored pixels or aligned with features of input objects
1229         - if a region or contiguous area is uniformly recolored, possibly
1230             ↳ based on a pixel in a special position (e.g., corner, interior of
1231             ↳ a container)
1232         - if an input pixel or object is removed or replaced with background
1233             ↳ color in the output grid (deletion by recoloring)
1234         - if a special color (e.g., grey or yellow) appears at a position
1235             ↳ determined by the interaction or meeting of input objects or
1236             ↳ paths
1237     implementation:
1238         - for a single pixel, set grid[position] = color
1239         - after drawing operations that may overwrite a pixel, restore that
1240             ↳ pixel to its intended color
1241         - for each pixel, if its color is in the color scheme, replace it
1242             ↳ with the mapped color
1243         - for a region or object, iterate over its pixels and set each to the
1244             ↳ target color or according to the color scheme
1245         - for a region, if a pixel is background (e.g., black), set it to the
1246             ↳ specified color; otherwise, leave it unchanged
1247         - at special positions (e.g., meeting points or intersections), set
1248             ↳ the pixel to a designated color (e.g., grey) instead of either
1249             ↳ input color
1250
1251     - concept: repeat color sequence in rows

```

```

1242
1243     description: fill each row of a grid (starting from start_row) with
1244         ↳ colors from a sequence, cycling through the sequence as needed
1244     output_typing: grid
1245     parameters:
1246         - grid (type: grid): the grid whose rows to fill
1247         - start_row (type: int): the index of the first row to fill
1248         - color_sequence (type: list[color]): the sequence of colors to
1249             ↳ repeat in filling rows
1249     cues:
1250         - presence of a plus-shaped pattern formed by a row and column of the
1251             ↳ same color in the grid
1252         - output grid is created by drawing a filled row and column
1253             ↳ intersecting at a specific position
1253
1254     ## color selection
1255     - concept: pick only color from region
1256     description: select the only non-background color present in a region;
1257         ↳ assumes the region contains exactly one color besides the
1258             ↳ background (e.g., black)
1258     output_typing: color
1259     parameters:
1260         - region (type: grid): the region grid to extract the color from
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```