Under review as a conference paper at ICLR 2026

ARCMEMO: ABSTRACT REASONING
COMPOSITION WITH LIFELONG LLLM MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

While inference-time scaling enables LLMs to carry out increasingly long and
capable reasoning traces, the patterns and insights uncovered during these traces are
immediately discarded once the context window is reset for a new query. External
memory is a natural way to persist these discoveries, and recent work has shown
clear benefits for reasoning-intensive tasks. We see an opportunity to make such
memories more broadly reusable and scalable by moving beyond instance-based
memory entries (e.g. exact query/response pairs, or summaries tightly coupled with
the original problem context) toward concept-level memory: reusable, modular
abstractions distilled from solution traces and stored in natural language. For future
queries, relevant concepts are selectively retrieved and integrated into the prompt,
enabling test-time continual learning without weight updates. Our design introduces
new strategies for abstracting takeaways from rollouts and retrieving entries for
new queries, promoting reuse and allowing memory to expand with additional
experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional
generalization and abstract reasoning, making it a natural fit for concept memory.
Our method yields a 7.5% relative gain over a strong no-memory baseline, with
performance continuing to scale with inference compute. We find abstract concepts
to be the most consistent memory design, outscoring the baseline at all tested
inference compute scales. Moreover, dynamically updating memory during test-
time outperforms fixed settings, supporting the hypothesis that accumulating and
abstracting patterns enables further solutions in a form of self-improvement.

1 INTRODUCTION

Large language models (LLMs) have made substantial strides in reasoning-intensive tasks with
long-form reasoning. However, a notable opportunity lies in the fact that LLM systems are fixed after
deployment: new patterns and strategies uncovered during deep reasoning are not yet carried forward
once the context is cleared. This contrasts with human approaches to solving complex, compositional
reasoning problems, which involve building on prior insights, abstracting patterns, and composing
them in new contexts. Augmenting LLMs with memory offers a natural solution to retaining and
building on their discoveries.

While external augmentation was initially designed for factuality in knowledge-intensive tasks (e.g.
Lewis et al.[(2021) with RAG, Zhang et al.| (2019) with Knowledge Graphs, inter alia), recent work
has begun developing memory approaches for reasoning-intensive tasks, storing questions, findings,
and mistakes in memory instead of simple facts (Yang et al.| [2024)). These memories tend to be
specific to the problem/experience it was originally derived from (we term these “instance-level”
concepts, see [Figure I)). Although effective for closely related problems, they have diminished
utility for problems superficially different from prior experiences. Other approaches, such as|Suzgun
et al.| (2025)), begin addressing the “instance-level” issue by maintaining an evolving summary of
previous experience to great effect, but the lack of structure and modularity makes scaling with more
experiences challenging. Without selective retrieval, the size of memory is limited, and the problem
solving model has the additional burden of picking out the relevant ideas from all past experiences.

We introduce an abstract concept-level memory framework to support compositional reasoning for
all subsequent queries. We emphasize (1) abstract concepts that are more general and separated
from their original context to be useful across a larger set of future problems, and (2) modular

Under review as a conference paper at ICLR 2026

Seen Puzzle 1 Seen Puzzle 2
| B [[B]

[L]]
EEEEESE —N
[]]

Solution Solution

For each partition, recolor blue Draw teal vertical lines through
pixels green if they are aligned, pink pixels adjacent to the grey

Target Puzzle
(input grid -> output grid)

and red otherwise object

Instance Level Memory Instance Level Memory

If different grid partitions are Consider drawing lines through

recolored differently, consider objects conditioned on adjacency to

conditioning on pixel alignment. another object

Abstract Concept Memory Abstract Concept Memory Solution

criteria/filter criteria/filter If blue pixels are aligned, draw connecting lines.
- (B) pixel alignment - (D) object adjacency/intersection For each intersected rectangle, recolor to blue.
actions actions

- (A) partition grid - (E) draw line
- (C) recolor object

Figure 1: Instance-Level vs. Abstract Concepts Example. Each ARC-AGI |Chollet (2019)
puzzle requires inferring the transformation rule for a set of input/output pixel grids. Here, Puzzle
1 instantiates (A A B) = C and Puzzle 2 instantiates D = FE. The target puzzle is solved by
recombining these ideas (B = E, D = (). Instance-level memory tends to store fully composed
rules, coupling A with B, C, and so on. Transferring to the target then demands both ignoring A and
disentangling/reordering B, C with D, E. Abstract memory instead stores A, B, C, D, E as separate,
modular concepts, making them easier to recognize and reassemble in new contexts.

concepts that directly promote recombination with other ideas that can be easily built on with new
experiences or curated for a target problem. We distill solution traces (both from the system itself or
from external sources) into reusable, modular abstractions stored in natural language. At inference
time, relevant concepts are selected and integrated into context, enabling test-time continual learning
without expensive weight updates. Our design encapsulates two primary operations: (i) writing to
memory: formatting concepts for abstraction and generality; and (ii) reading from memory: selecting
a subset of concepts for the current problem. We title our method ArcMemo— Abstract Reasoning
Composition Memory.

As illustrated in[Figure T] instance-level memories often capture an entire solution pattern tied closely
to its original problem (e.g., the joint use of ideas A, B, C in Seen Puzzle 1). Such overspecified
entries are less likely to recur in future problems, and even when partially relevant to the Target
Puzzle, the agent must still disentangle useful pieces like B from the original bundle. In contrast,
abstract concepts are stored individually with fewer contextual assumptions, making them easier to
recognize, adapt, and recombine across superficially different puzzles.

We evaluate on ARC-AGI, where simple pixel-grid operations compose into a vast task space, and
solving tasks requires compositional reasoning rather than memorizing individual patterns, making it
a natural testbed for ArcMemo. ARC-AGTI simultaneously remains challenging for SOTA models
and solvable by human children. Along with clean, deterministic scoring, this reasoning benchmark
simulates frontier domains not present in vast training corpora and thus serves as a perfect measure
for a continual learning system. On ARC-AGI-1, our method improves the official score from
55.17 to 59.33 (+7.5% relative gain over a strong no-memory baseline) and is the only evaluated
memory design we find to outperform the baseline at all inference scales. Our experiments confirm
that continually updating memory at evaluation time yields a score improvement that emerges with
inference scale via retries: memory updates triggered from a previous pass over the test set may
enable new solves in a subsequent pass. Finally, we observe that selecting a subset of memories
to include for a particular problem improves performance and reduces token cost, indicating the
selection operation is essential beyond allowing memory to grow continually.

2 RELATED WORK

Our approach draws on several threads of research in augmenting LLMs with memory but contrasts
in (1) target applications (reasoning-intensive vs. knowledge-intensive tasks), (2) the underlying

Under review as a conference paper at ICLR 2026

memory modality (text vs. continuous vectors/embeddings), and (3) emphasis on abstraction and
modularity for reasoning. We discuss related lines (1) and (2) as well as other related work in

and emphasize reasoning and abstraction here.

Memory for Test-Time Reasoning and Concept Abstraction. More recent work has shifted
toward reasoning-centric uses of memory, particularly test-time learning. Think-in-Memory records
intermediate reasoning steps as structured triples, storing them in a locality-sensitive hash table to
enable reuse in multi-step reasoning tasks (Liu et al.| [2023)). Buffer of Thoughts stores problem
specific reasoning templates, retrieved by embedding similarity and instantiated for new inputs (Yang
et al., 2024)). It categorizes and summarizes solution attempts into templated insights, which are
then added to memory. In contrast, Dynamic Cheatsheet maintains a unified buffer that is adapted
continuously. With each problem query, the LLM updates this memory blob by rewriting the entire
buffer (Suzgun et al.,[2025)). Rather than retrieving specific entries, the entire cheatsheet is appended
to the prompt, functioning as a persistent cache of problem-solving strategies. We emphasize that
our use of memory for long-form reasoning is cross-episodic rather than a working memory for state
tracking within a single problem (e.g. Jayalath et al.|(2025)’s PRISM).

ARC-AGI Approaches. Our work is primarily evaluated against ARC-AGI as a benchmark that
simulates complex reasoning on frontier tasks without requiring frontier-level knowledge. Various
techniques and findings have been developed against this benchmark. |Li et al.| (2024) demonstrates
the efficacy of synthetic data and the complementary approaches of (i) learning to infer the underlying
transformation via program synthesis and (ii) using test-time weight adaptation to directly learn the
transformation function in the neural net. |Akytirek et al.| (2025) further investigates the test-time
adaptation method, producing various insights, including that low rank adapters are poorly suited
to retaining practical experience across puzzles. Our program synthesis approach can be viewed
as a memory-augmented version of [Wang et al.| (2024)’s hypothesis search or|Qiu et al.| (2024)’s
hypothesis refinement with execution feedback-based retry. Other recent approaches to ARC-AGI
include brain-inspired architectural innovations such as Wang et al.|(2025)’s hierarchical reasoning
model, achieving impressive performance through a recurrent architecture that iteratively refines
its output until a halt signal is predicted, together with data augmentation techniques. Finally, the
relative ease of generating new ARC-AGI tasks compared to solving them is exploited in |Pourcel
et al.| (2025)’s self-improving system that relabels incorrect programs as the correct program for a
different puzzle and trains a model on its generations this way.

3 METHODS

3.1 PROBLEM STATEMENT

Algorithm 1: Inference with Continually Updating External Memory

Input: Dataset D = {x;,y: };—1 (labels y; optional), External memory M, Operations MEMREAD,
MEMWRITE, GETFEEDBACK, Update interval &,

Output: Predictions {g; }

for i < 1ton do

(zi,y:) + GETITEM(D, 1) ; // Label y;, may be absent at inference
s; < MEMREAD(M, ;) ; // Retrieve relevant memory entries
Ui < LLM_GENERATE(x;, $;) ; // Predict using LLM + selected memory
if i mod k£ = 0 then

fi < GETFEEDBACK (U5, Vs) ; // test verification, reflection, etc.
L MEMWRITE(M, x;, i, fi) ; // Incorporate feedback into memory

We formulate a memory system as a collection of memory entries associated with read and write op-
erations. Problem solving with memory augmented LLMs thus requires designing three components

as seen in
1. Memory Format (3.2): What is stored in individual entries?
2. Memory Write (3.3): How is memory updated from a reasoning trace?
3. Memory Read (3.4): How is memory used for tackling new problems?

Under review as a conference paper at ICLR 2026

Memory Format Memory Write Memory Read
Memory := Collection[MemoryEntry] Input: problem x, solution y Input: problem x, memory M
what shape is MemeryEntry? Qutput: new memory entries/updates e Output: selected memories s
Open-Ended (OE) Open-Ended (OE) Open-Ended (OE)

i B X trace memory updates
lesson_list: Y |prob1em X% VLM %description D‘ | memory M ‘

- situation: str

_ i?%ﬁgii;znsiﬁr observation 1: puzzle has vertical lines in preprocess p;{,’blgm into |— LLM J
o output but not input grids concept moda 11_:y
suggestlon: str inference 1: from observation 1, the puzzle may (text observations) and .
involve vertical line drawing query LLM for top k most selection s
relevant concepts

Program Synthesis (PS) Program Synthesis (PS) Program Synthesis (PS)

concept_list: docod "
- name: str X, ¥ pseudocode - memory updates memory M

kind: Literal[structure, grid op] =T —
output_typing: str

5 . all_objects = extract_objects(grid) roblem X query reasoning selection s
[FELE LR anchor_candidates = filter_objects(P model to explore

- name: str all_objects,
typing: str is_color(pink) m
description: str b . .
BRI S TR G T [6 f:en::;l‘::ltakeuzﬂr?tt\n?tself continually during
- 1i if contacts(pixel, grey):
relevance*c'j'es' IISI[Sr’r] draw_line(...) evaluation by triggering Mem Write Operations whose
implementation_notes: list[str] P updates are used by Mem Read on future attempts/problems

used_in: list[int] (problem IDs)

N

Figure 2: Method Diagram. Implementing a memory system requires defining (1) what is stored,
(2) how memory is updated, and (3) how memory is used for new queries. The key novelty in
this work is emphasizing abstraction and modularity, and the corresponding design changes. In
particular, we highlight that parameterization (with higher-order functions allowed and encouraged)
promotes abstraction, and typed interface definitions support modularity by showing which concepts
can be combined. Since these memory entries are more abstract, they also require more inference
to map against new, concrete situations—whether by aligning input against the memory format in a
preprocessing query, or leveraging reasoning models to explore in a directed manner.

These are generic design considerations for any memory. Our method’s novelty lies in the choices
made to target (1) abstracting a memory to be less specific to the problem it was derived from (2)
enabling memory selection, since greater abstraction makes standard retrieval approaches (embedding
similarity thresholding) less effective. We present two such implementations: (1) an open-ended (OE)
format that imposes minimal constraints on entry format and uses a simple problem preprocessing
step for memory selection, and (2) a program-synthesis (PS) inspired format that categorizes and
parameterizes concepts and uses reasoning model exploration to select relevant items.

Problem Assumptions. The main requirement for our memory system is that some feedback is
available at test-time (e.g. via test cases or self-reflection). This condition is necessary as retaining
patterns from an incorrect or otherwise flawed trace would serve to carry mistakes forward. In other
words, some signal is needed to discriminate correct from incorrect traces to ensure only productive
ideas and patterns are added to memory. Incorrect traces still likely contain vital signal, but error
identification/credit assignment remains an open challenge that we leave to future efforts. Various
real-world tasks may satisfy this requirement, as tasks are often specified with either examples
showing desired behavior or evaluation criteria defining what outcomes are positive and negative.
To give some examples, code completion tools have criteria like compilation success and test pass
rate, and medical diagnosis tools have evaluation criteria defined as patient outcomes (e.g., survival
rates). In the case of our evaluation benchmark ARC-AGI, puzzles are explicitly presented as a set of
input-output examples, which, for our purposes, can serve as automatically verifiable test cases.

3.2 MEMORY FORMAT AND ORGANIZATION

Specifying an individual memory entry’s format involves selecting fields useful for retrieval and
downstream problem-solving. The organization of memory entries on a collective level is another
design surface we leave for future exploration; we use a flat collection of entries for simplicity.

Under review as a conference paper at ICLR 2026

Example Puzzle

Input 1

Output 1

Open Ended (OE)

situation:

When the input grid contains only a few
distinct nonzero colors and the counts
of these colors vary, with the output
grid dimensions seeming to relate to
those counts.

suggestion:

Count the occurrences of each nonzero
color. Use these counts to infer the
output grid’s dimensions (for example,
the maximum frequency may define the
number of rows, and the number of
distinct colors defines the number of
columns). Try ordering the colors (such
as from highest to lowest frequency) and

Program Synthesis (PS)

- concept: unique colors {...}

- concept: count pixels {...}

- concept: sort objects
parameters:

- objects: list[object]

- key: Callable[[object], Any]

relevance cues:

- if output colors or properties
are assigned based on object
ranking (e.g., tallest, smallest)

- if objects need to be processed
in a specific spatial order
(e.g., left-to-right)

implementation notes:

- use Python's sorted() with a
lambda extracting x or y coords

filling each output column with the
corresponding color repeated according
to its count, using the background value
for any remaining cells.

Figure 3: Open-Ended (OE) vs. Program Synthesis (PS) Concept Examples. An example of
concepts from puzzle 9af7a82c abstracted into each concept format. OE defers to the model, while
PS imposes structure to encourage abstraction/modularity. Higher order behavior is demonstrated
with the “sort objects” concept taking a Callable parameter that specifies specific variations.

Open-Ended (OE) Formulation. We first consider an open-ended approach that imposes minimal
structure and defers formatting individual memories to the model. Following the basic lesson
format of “under situation X, do action Y”, the only formatting constraint we impose is having
distinct situation (X) and suggestion (Y) fields. This separation is designed for abstraction
(disentangles the core idea from the original context) and modular reuse (situation explicitly
describes the conditions where this idea can be reused).

Program Synthesis (PS) Formulation. In early iterations of automatic concept summarization
from solution traces, we observed outputs to occasionally be overly specific. Consider [Figure 3]s
OE example that bundles ideas of counting, drawing columns, and sorting into a single entry. This
overspecification inherits the same limitations as instance-level concepts: friction when matching a
composite idea to new scenarios and redundancy from composite ideas sharing components.

We designed a more structured alternative to the OE format to address these issues and more strongly
enforce the ideals of abstraction and modularity. In particular, we took inspiration from software
engineering and functional programming, which respectively have existing solutions in modular
design for code reuse and higher-level functions for composition. From this analogy, our Program
Synthesis (PS) format frames concepts as types, structures, and routines. The primary feature
is that each of these concepts is parameterized. Parameterization allows similar concepts to be
represented compactly with variations abstracted into parameters. Moreover, type annotations for
inputs (parameters) and outputs (return types) encourage modularity and composition: the typed
interfaces suggest what ideas fit together and how. Finally, by allowing parameters to be routines
themselves (introducing higher-order functions), we encourage further generalization by enabling
abstraction over specialized logic and routines rather than just values. Higher-level patterns can be
recognized across instances and stored with routine arguments defining the different lower-level logic.
A subtle benefit of this more structured formulation is that memory representation can be easily
compressed by omitting certain fields (see [subsection A.T|for a complete list of PS concept fields).

3.3 MEMORY WRITE: CONCEPT ABSTRACTION

Memory’s primary purpose is to persist discoveries and reflections from prior experiences. Converting
experiences to memory updates is then the most crucial operation for achieving persistence.

OE Abstraction. Abstracting suggestions from a solution trace is straightforward—simply query
a model to reflect on the solution trace and summarize specific general ideas that may be reused

Under review as a conference paper at ICLR 2026

for future puzzles. To synthesize specific conditions or situational cues to pair with suggestions,
ideally, we can directly refer to the original problem-solving process as a series of deductions that
derive new facts or explore ideas from existing facts, and link each suggestion (idea) with the prior
observations that inferred this suggestion. However, intermediate inferences may be implicit or
difficult to extract from a trace, or, in the case of specific commercial models, completely hidden. To
address this challenge, we generate a post-hoc derivation: an interleaved sequence of observations and
thoughts/reasoning steps constructed from the input-output of the final solution. These reconstructed
traces are then used to extract situation-suggestion pairs, forming structured memory entries for
guiding future analyses. This minimal formulation does not consider the existing contents of memory
while adding new entries for simplicity and scaling reasons. It defers handling redundancy and
consolidating ideas to the concept selection and problem-solving phases, respectively.

PS Abstraction. We find that directly converting solutions into routines often leads to minor
implementation details being recorded as memories, as opposed to our intended abstract concepts.
We mitigate this by preprocessing solutions into pseudocode to prioritize higher-level operations
over low-level implementation details. The main abstraction phase proceeds from the generated
pseudocode, recording new concepts and revising existing concepts along with their various fields.

In the spirit of designing for abstraction, promoting reusability, and minimizing total concept memory
length, this operation is aware of existing concepts with a compressed form of memory included
in context. We encourage the model to reuse and revise existing concepts by updating concept
descriptions, parameter lists, relevance cues, and implementation notes. Importantly, we encourage
higher-order functions with routines as arguments in instructions and few-shot demonstrations.

All concept abstraction/memory writing operations are scaffolded with few-shot demonstrations,
example-rich templates, and comprehensive instructions.

3.4 MEMORY READ: CONCEPT SELECTION

Although state-of-the-art models support longer context windows, their maximum length still limits
how much information or how many memory entries can be included in a single query. Even without
this hard limit, including all available memories in context is still undesirable: it can distract the
model with irrelevant details and flood it with too many unlikely hypotheses to consider. A more
effective strategy is to introduce a selection mechanism only to include the most relevant subset of
memory entries at problem-solving time. This allows the memory store to grow continually without
overwhelming the model’s context window.

OE Selection. OE-format memory entries were explicitly designed to support memory-based
selection. The situation clause acts as a semantic hook to identify relevance. The key idea for
OE Selection is a preprocessing step that leverages model reasoning capability to parse the abstract
domain input into problem descriptions at different levels of abstraction to facilitate matching against
our abstract concepts. Since ARC-AGI deals with spatial reasoning, we leverage a vision language
model for this preprocessing step. We caption each puzzle using a structured prompt that separates
concrete observations from speculative transformations. This converts spatially rich input into a
natural language format suitable for matching against stored situations. We then query a model for the
top-k most relevant entries using the generated description. We explored scoring, thresholding, and
cumulative similarity approaches (as in top-p sampling). Observing comparable results, we selected
top-k cutoff for simplicity. We consider this a light-weight approach to converting abstract domain
inputs into more understandable and memory-aligned representations.

PS Selection. Standard embedding approaches use a single forward pass per embedding, represent-
ing a System 1-style fast thinking/intuition-driven understanding from the model. Intuitions may not
be sufficient for difficult/frontier tasks and domains. Moreover, the connection between a higher-level
concept and a specific problem instance may not be immediately clear because of the abstraction.

To address these challenges, we propose reasoning-based selection—using System 2-style thinking
to deliberately think and explore. In contrast to the more straightforward playbooks curated in the
OE memory format, the explicitly abstract PS concepts are a set of puzzle pieces with notes on
identifying if a piece is relevant (relevance cues) and on how various pieces fit together (type annota-
tions). To select from this memory, we propose leveraging model-driven exploration instantiated by

Under review as a conference paper at ICLR 2026

recent models’ long-form reasoning with backtracking. PS Selection instructs a reasoning model to
systematically explore the problem: first identify initial concepts using relevance cue annotations,
then attempt to “fill in the details” by determining values or routines to populate these initial concepts’
parameters using type annotations to identify which other concepts should be investigated.

3.5 CONTINUAL CONCEPT LEARNING

A long-held goal in machine learning is to develop lifelong learning systems that continually self-
improve without manual intervention. A memory system that can leverage the learning signal present
at test-time via continual updates is one approach to achieve this ambition. Our memory write
operations are lightweight queries that can ingest solution traces derived from both the system and
external sources, making continual updates practical at scale.

However, continual updates also introduce dependencies on evaluation order. If solving problem ¢
induces a memory update that enables problem j to be solved, then performance differs between
(-0 @iy ooy, ...) and (..., ..., 24, ...). Inference batching further complicates this: even if z;
precedes x;, they may appear in the same batch, so the model attempts x; before x; has updated
memory. This introduces an accuracy—throughput trade-off. In all settings, we initialize our external
memory with seed data (problems and solutions). We explicitly evaluate continual updates in
[subsection 5.3]s experiments, confirming their efficacy. In other experiments, we used fixed memory
to prioritize throughput and avoid the potentially confounding effect of order dependencies.

4 EXPERIMENTS

Benchmark Selection. We evaluate our proposed framework on ARC-AGI-1 (Chollet, 2019), a
benchmark explicitly designed to evaluate intelligence as “efficient acquisition of new skills” instead
of “fixed possession/memorization of skills.” Each ARC puzzle encodes a transformation rule that
maps input to output pixel grids. The objective of each puzzle is to infer its rule given several
examples of input-output grid pairs, and produce the corresponding output grid for several input test
cases. We find that the abstract domain of pixel grid transforms provides a meaningfully challenging
testbed to simulate frontier domains without requiring expert knowledge to evaluate trajectories—a
confluence of desirable properties for evaluating a continual concept learning system.

ARC-AGI-1 contains a public validation split containing 400 puzzles with a difficulty distribution
matching that of the private evaluation. Following |Akyiirek et al.|(2025), we evaluate a randomly
selected 100-puzzle subset of the public val split. This makes repeated runs for more stable estimates
feasible given cost and the sampling variance we observed. [Li et al.|(2024) manually authored Python
solutions for 160 puzzles from the public train split to act as “seeds” to recombine into their synthetic
dataset. We reuse these solutions to seed our memory rather than training data.

Models. To build on frontier models, we experiment primarily with OpenAI’s 04-mini. At the
time of writing, o4-mini is second only to Grok 4, but 04-mini’s lower price puts it on the Pareto
frontier of cost and performance |ARC-Prize| (2025)). For auxiliary tasks such as concept abstraction
and non-reasoning selection, we use OpenAl’'s GPT-4.1 to conserve token usage. Early experiments
also evaluated the open-weight DeepSeek R1, which has the benefit of visible thinking traces, but its
8000 output token limit consistently yielded unfinished solutions in initial testing.

Evaluation. While the official evaluation harness queries models to directly predict output grids for
test cases, we instead use a program synthesis approach that queries for a transformation function to
convert input to output grids. The code artifact provides more signal for reflection and also allows
us to test proposed logic against reference pairs for feedback. We evaluate performance under 0,
1, and 2 retries with this execution feedback (we observed diminishing returns with further retry,
and choose this threshold to conserve cost). We follow official ARC-AGI scoring (two attempts per
puzzle), and account for sampling variance by averaging over extra runs (see details in[Appendix B).
The primary memory baseline we compare against is a re-implementation of Suzgun et al.| (2025))’s
DC-Cu (labeled “cheatsheet”) that uses a frozen memory to match other settings.

Under review as a conference paper at ICLR 2026

5 RESULTS

5.1 MAIN RESULTS

Setting Oracle@1 Oracle@2 (Official)
gwen3-235b-a22b-instruct 11.00 (1.00) 16.67 (0.57)
deepseek rl 19.50 (7.05) 26.33 (4.02)
claude sonnet 4 (thinking 16k) 45.50 (1.00) 54.17 (0.58)
gemini 2.5 flash (thinking 16k) 9.67 (4.86) 13.83(4.73)
04-mini (medium) 46.33 (1.04) 55.17 (3.18)
cheatsheet (04-mini (medium)) 47.50 (2.78) 57.67 (2.52)

ArcMemo-OE (ours, o4-mini (medium)) 48.00 (1.00) 56.67 (1.53)
ArcMemo-PS (ours, 04-mini (medium)) 49.33 (0.29) 59.33 (0.29)
+ one retry 58.00 (2.29) 67.33(1.61)
+ two retries 61.67 (3.88) 70.83 (3.06)

Table 1: Main Results. ArcMemo-PS yields the best results and scales with additional compute.
Bracketed values represent standard deviation. See additional score details in[Table 4]

As seen in [Table 1] ArcMemo-PS achieves the best official score with standard compute [[] and
still benefits from additional scaling in both parallel samples and sequential retries. shows
complete details on all settings at all scales, where ArcMemo-PS is the only setting that consistently
outperforms the baseline in all inference compute scales. Other memory formulations (Cheatsheet,
ArcMemo-OE) situationally improve over the baseline but still underperform it in some regimes.

We observe that ArcMemo-PS’s advantage is most prominent with lower compute regimes. This is
consistent with the stated goal “memory for reasoning”: persisting previous experience aims to reduce
redundancy from rediscovering ideas found in previous rollouts. The marginal impact of memory is
reduced with more inference compute as the model can rediscover ideas through exploration.

Compared to our memory baseline (Cheatsheet), ArcMemo methods are highly competitive, per-
forming favorably in most regimes. The quantitative improvement shown by ArcMemo is supported
by qualitative analysis that demonstrates ArcMemo memories are more modular. This qualitative
analysis (described more in[subsection 5.2)) observes that these abstract memories improve concept
coverage—more target puzzle ideas are reflected in memory. This difference may be explained by
ArcMemo’s modular design being more conducive to maintaining a growing library.

5.2 SELECTION ABLATION AND QUALITATIVE RELEVANCE ANALYSIS

Oracle @k Scores
k=1 k=2 (Official) k=3

retry setting

0 ArcMemo-PS 49.33 (0.29) 59.33(0.29) 63.50
- selection 46.83(5.25) 55.17(2.02) 60.00

1 ArcMemo-PS 58.00 (2.29) 67.33 (1.61) 72.50
_selection 57.67(3.79) 66.00 (3.00) 73.00

2 ArcMemo-PS 61.67 (3.88) 70.83 (3.06) 75.50
-selection 61.33 (3.21) 70.00 (2.65) 76.00

Table 2: Selection Ablation. Ablating the reasoning-based selection mechanism from ArcMemo-PS
reduces overall performance, showing selection is useful for downstream performance.

We perform an ablation experiment removing the selection mechanism from ArcMemo-PS to examine
its impact and to compare more directly to the selection-free Cheatsheet methodology. The generally

"Matching the official evaluation scheme with 2 parallel attempts and O retries.

Under review as a conference paper at ICLR 2026

better performance of the with-selection setting (as seen in suggests that, in addition to
allowing memory to grow without overwhelming context in both the abstraction and inference
phases, it also helps downstream problem-solving performance. Moreover, from the token usage
plot in we see that concept selection’s performance improvement also comes at higher
efficiency—the selection-ablated setting uses far more tokens. However, there still exist certain scale
regimes where the no-selection setting has a better score. We attribute this to variance from imperfect
selection and note that this indicates headroom for selection/retrieval.

13

ArcMemo-PS (-selection) is most comparable to Dynamic Cheatsheet’s “cumulative” setting (DC-Cu)
as all stored memory is included with each query. While both ultimately solve the same number of
puzzles across all runs, we find that the settings differ in 10 puzzles (that is, each system solves 5
puzzles the other does not). We manually analyzed these puzzles and found that only 40% of new
solves in the cheatsheet setting were related to memory elements actually in the generated cheatsheet.
That is, we were unable to find relevant notes in the cheatsheet to explain 60% of its new solves.
In contrast, all new solves from ArcMemo-PS (-selection) we examined can be linked to concept
memory contents. While we cannot definitively conclude ArcMemo changes directly induced each
of the new solves (given the state of LLM interpretability), this seems to suggest new solves in the
ArcMemo settings are potentially more attributable to the memory component compared to sampling
variance.

Manual inspection of a subset of reasoning-based selection results used for ArcMemo-PS finds that
while some irrelevant concepts still appear within the selection, the key idea of the target is often
included in the selection. The presence of a few distractor concepts appears to be manageable, as the
reasoning model itself is capable of exploring with backtracking.

While concept retrieval generally improves performance, we observe several failure modes. In some
cases, the retrieved concepts are irrelevant or overly abstract, lacking the specificity needed for
the puzzle. Other times, retrieval succeeds, but the puzzle remains unsolved due to its intrinsic
difficulty or because the puzzle requires an entirely unseen or highly detached operation or structure
(such as extending Draw lines in a spiral form from the retrieved Draw line). No-
tably, there are instances where relevant concepts (e.g., hole counting) exist in memory but are not
selected—suggesting possible perception or alignment gaps. These cases highlight headroom for
improving both the selection model and downstream reasoning robustness.

5.3 CONTINUAL LEARNING

Oracle @k Scores

k=1 k=2 (Official) k=3

retry setting
0 ArcMemo-OE 48.00 (1.00) 56.67 (1.53) 61.00
+ continual memory update 46.33 (1.53) 56.00 (0.00) 61.00
1 ArcMemo-OE 56.67 (2.08) 65.67 (1.53) 70.00
+ continual memory update 57.17 (3.69) 65.00 (0.00) 67.00
2 ArcMemo-OE 60.67 (1.53) 67.67 (2.52) 71.00

+ continual memory update 62.33 (3.51) 70.00 (1.73) 72.00

Table 3: Continual Memory Learning. Comparing otherwise identical memory systems, we find
that with sequential inference compute scale (at high retry depth), continually updating memory with
new self-generated solutions leads to improved puzzle-solving performance.

Results from our experiment comparing ArcMemo-OE with a version that updates during evaluation
(every 10 problems; show that our memory system’s performance improves with continual
updates—a key requirement for meaningful lifelong learning. In particular, we find that the perfor-
mance improvement emerges at later iterations in sequential inference scaling. We hypothesize this is
because, after more iterations and puzzle-solving passes, new solutions are found, new memories are
abstracted, and these new memories help solve other puzzles.

Under review as a conference paper at ICLR 2026

5.4 ADDITIONAL RESULTS

Expanded Scale. Evaluating ARC-AGI methods is costly due to the long reasoning traces and
high sampling variance required for reliable estimates. Following prior work, our main experiments
therefore use a representative subset of the validation set. For completeness, we additionally evaluate
our ArcMemo-PS configuration on the full public validation split. As shown in[Table 6| ArcMemo-PS
outperforms the baseline at every retry level and contributes improvements on 21 puzzles overall.

We also expand the set of tested models to DeepSeek R1, Sonnet 4, and Kimi K2 Thinking (Table 7).
Using the same GPT-4.1-derived memory, R1 improves from 26.33 to 30.67 (+16%), and K2 from
37.33 to 40. With Sonnet 4 as the base model, ArcMemo still improves on 7 puzzles over the
baseline. These results indicate meaningful cross-model transfer, and suggest that concept memories
distilled from stronger generators (e.g., GPT-4.1) provide useful signal even for models with different
architectures. The mixed result on Sonnet 4 further suggests that strong models may benefit less from
concepts abstracted from weaker models.

Other Domains and Intrinsic Self-Improvement. Although ARC-AGI is a natural setting for
continual learning, its tasks are synthetic by design. To test generality, we evaluate on math rea-
soning using the more portable OE configuration. On the 60 problems from AIME ’24 and 25,
concept memory improves Gemini-2.5-Flash-Lite-Thinking from 43 to 48 solved problems (+11.6%),
demonstrating transfer beyond the ARC domain. ARC intrinsically enables correctness estimation
via reference input-output grids as test cases, allowing our method to abstract concepts from “correct”
traces, however various task settings provide less signal or feedback. Preliminary AIME results using
self-reflection to abstract from all traces rather than only “correct” traces yields 47 solves (+9.3%),
suggesting ArcMemo may be effective even in sparse-feedback regimes.

External Solution Ablation. Our main experiments initialize the memory with human-written
BARC solutions to reduce inference cost. To evaluate a more realistic “pure self-improvement”
regime, we instead initialize memory using fully self-generated trajectories. This variant slightly
outperforms the original setup (60.67 vs. 59.33). We hypothesize that this on-policy memory
abstraction produces concepts that align more closely with the model’s inductive biases.

Pseudocode Preprocessing Ablation. Our pipeline includes a trajectory-preprocessing step that
converts solutions into pseudocode before abstraction. Early tests suggested this step improves
generality; we confirm this with a direct ablation. Removing pseudocode preprocessing reduces the
ArcMemo-PS score from 59.33 to 55.67—only marginally above the baseline. Since this step is
inexpensive (no deep reasoning required) yet materially improves abstraction quality, we retain it in
the full system.

We further discuss token efficiency, concept specificity, and embedding retrieval in and
limitations and future work discussion in

6 CONCLUSION

In this work, we introduce ArcMemo, a framework designed to support lightweight, lifelong learning
on compositional reasoning tasks by emphasizing a higher level of abstraction and modularity. We
explore two implementations of memory modules against ARC-AGI, a benchmark specifically de-
signed to resist memorization and to evaluate fluid intelligence instead. Our main findings confirm the
efficacy of our approach: ArcMemo-PS outscores comparable methods under the official evaluation
protocol and continues to benefit from additional inference compute scale. Moreover, we observe that
continual updates benefit memory augmentation over multiple attempts and that selecting a subset of
memory for each problem is a crucial component to enable a memory to continually grow without
overwhelming the LLM context. This paper’s work represents early attempts toward the main tenets
of higher-level abstraction and modularity. Promising future directions include hierarchical designs
and consolidation mechanisms that restructure memory. To encourage further investigation, we also
release a concept-annotation dataset and configurable puzzle synthesis pipeline, providing resources
for evaluating concept representations and advancing abstraction-based memory methods.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyiirek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025. URL
https://arxiv.org/abs/2411.07279.

ARC-Prize, 2025. URL https://arcprize.orqg/leaderboard

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning
to retrieve, generate, and critique through self-reflection, 2023. URL https://arxiv.org/
abs/2310.11511!.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent: Iterative re-
search idea generation over scientific literature with large language models. ArXiv, abs/2404.07738,
2024. URL https://api.semanticscholar.org/CorpusID:269042844.

Léon Bottou and Yann LeCun. Large scale online learning. Advances in neural information processing
systems, 16, 2003.

Léon Bottou and Yann LeCun. On-line learning for very large data sets. Applied stochastic models in
business and industry, 21(2):137-151, 2005.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022. URL
https://arxiv.orqg/abs/2207.06881.

Justin Chih-Yao Chen, Becky Xiangyu Peng, Prafulla Kumar Choubey, Kung-Hsiang Huang, Jiaxin
Zhang, Mohit Bansal, and Chien-Sheng Wu. Nudging the boundaries of llm reasoning, 2025. URL
https://arxiv.org/abs/2509.25666.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413,
2025.

Francois Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Aniket Didolkar, Nicolas Ballas, Sanjeev Arora, and Anirudh Goyal. Metacognitive reuse: Turning
recurring llm reasoning into concise behaviors, 2025. URL |https://arxiv.org/abs/
2509.13237.

Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory, 2025. Work in
progress.

Huanang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
survey of self-evolving agents: On path to artificial super intelligence, 2025. URL https
//arxiv.org/abs/2507.21046.

Pengfei He, Zitao Li, Yue Xing, Yaling Li, Jiliang Tang, and Bolin Ding. Make 1lms better zero-shot
reasoners: Structure-orientated autonomous reasoning. ArXiv, abs/2410.19000, 2024a. URL
https://api.semanticscholar.org/CorpusID:273638104.

Zexue He, Leonid Karlinsky, Donghyun Kim, Julian McAuley, Dmitry Krotov, and Rogerio Feris.
Camelot: Towards large language models with training-free consolidated associative memory,
2024b. URL |https://arxiv.org/abs/2402.134409.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-

archical working memory management for solving long-horizon agent tasks with large language
model. arXiv preprint arXiv:2408.09559, 2024.

11

https://arxiv.org/abs/2411.07279
https://arcprize.org/leaderboard
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://api.semanticscholar.org/CorpusID:269042844
https://arxiv.org/abs/2207.06881
https://arxiv.org/abs/2509.25666
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2509.13237
https://arxiv.org/abs/2509.13237
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://api.semanticscholar.org/CorpusID:273638104
https://arxiv.org/abs/2402.13449

Under review as a conference paper at ICLR 2026

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798!.

Dulhan Jayalath, James Bradley Wendt, Nicholas Monath, Sandeep Tata, and Beliz Gunel. Prism:
Efficient long-range reasoning with short-context llms, 2025. URL https://arxiv.org/
abs/2412.18914.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually
correct their own mistakes? a critical survey of self-correction of 1lms, 2024. URL https:
//arxiv.org/abs/2406.01297.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen Pu, and
Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024. URL https:
//arxiv.org/abs/2411.02272.

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhigiang Zhang, Jinjie Gu, and Guannan Zhang.
Think-in-memory: Recalling and post-thinking enable 1lms with long-term memory, 2023. URL
https://arxiv.orqg/abs/2311.087109.

Yitao Liu, Chenglei Si, Karthik Narasimhan, and Shunyu Yao. Contextual experience replay for
self-improvement of language agents. arXiv preprint arXiv:2506.06698, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651!

Ali Modarressi, Abdullatif Koksal, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schiitze. Memllm:
Finetuning llms to use an explicit read-write memory. arXiv preprint arXiv:2404.11672, 2024.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https://arxiv.org/
abs/2310.08560.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for evolu-
tionary program synthesis: A case study on arc-agi, 2025. URL https://arxiv.org/abs/
2507.14172.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models with hypothesis refinement, 2024. URL
https://arxiv.org/abs/2310.08559.

Yuxiao Qu, Anikait Singh, Yoonho Lee, Amrith Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
Aviral Kumar. Rlad: Training llms to discover abstractions for solving reasoning problems, 2025.
URLhttps://arxiv.org/abs/2510.02263.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and

Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

12

https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2412.18914
https://arxiv.org/abs/2412.18914
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2311.08719
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2507.14172
https://arxiv.org/abs/2507.14172
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2510.02263
https://arxiv.org/abs/2303.11366

Under review as a conference paper at ICLR 2026

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, and James Zou. Dynamic
cheatsheet: Test-time learning with adaptive memory, 2025. URL https://arxiv.org/
abs/2504.07952.

Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
Yasin Abbasi Yadkori. Hierarchical reasoning model, 2025. URL https://arxiv.org/
abs/2506.21734.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023a.
URLhttps://arxiv.org/abs/2305.16291.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D. Goodman.
Hypothesis search: Inductive reasoning with language models, 2024. URL https://arxivl
org/abs/2309.05660.

Xintao Wang, Qian Yang, Yongting Qiu, Jiaqing Liang, Qi He, Zhouhong Gu, Yanghua Xiao, and
W. Wang. Knowledgpt: Enhancing large language models with retrieval and storage access on
knowledge bases. ArXiv, abs/2308.11761, 2023b. URL https://api.semanticscholar)
org/CorpusID:261076315.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers,
2022. URL https://arxiv.org/abs/2203.08913.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models, 2024.
URL https://arxiv.org/abs/2406.04271.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. Ernie: Enhanced
language representation with informative entities, 2019. URL https://arxiv.org/abs/
1905.071209.

A IMPLEMENTATION DETAILS

A.1 PS MEMORY FORMAT
Each PS format memory entry contains:

* Title: a succinct label for the underlying idea.

* Description: elaboration on behavior and role.

* Kind: whether this concept encodes a type/structure/routine.
* Parameters: a list of fields that parametrize this concept.

* Output Typing: specifies what the output for this routine is, to suggest how various routines
can plug into other routines.

* Relevance Cues: much like the situation field in the OE concepts, we consider the
context in which this concept is relevant.

* Implementation Notes: suggestions on how to implement the concept in actual code.

A.2 EXPERIMENT PARAMETERS

To build on frontier models, we experiment primarily with OpenAI’s o4-mini (max tokens=32000,
reasoning_effort=medium). For auxiliary tasks such as concept abstraction and non-reasoning
selection, we use OpenAI’s GPT-4.1 (temperature=0.3, max tokens=1000) to reduce token usage. We
looked into evaluating the open-source DeepSeek R1, which also has a transparent thinking process,
but the output 8000 token limit consistently yielded unfinished solutions.

13

https://arxiv.org/abs/2504.07952
https://arxiv.org/abs/2504.07952
https://arxiv.org/abs/2506.21734
https://arxiv.org/abs/2506.21734
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2309.05660
https://api.semanticscholar.org/CorpusID:261076315
https://api.semanticscholar.org/CorpusID:261076315
https://arxiv.org/abs/2203.08913
https://arxiv.org/abs/2406.04271
https://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1905.07129

Under review as a conference paper at ICLR 2026

B EVALUATION DETAILS

We use ARC-AGTI’s official scoring metric, which we term oracle@Fk (each test case is scored
separately, and if any of k candidates pass, full credit is given for that test case). The ARC-AGI
official evaluation has k£ = 2, but to mitigate sampling variance, we sample 3 runs for each setting
and report the average single run score, average oracle @2 score, and their standard deviation. We
investigate several alternate scoring protocols (requiring a single program to solve all test cases,
accumulating test case solve rates, and requiring references also to be solved) and include the results

in[Table 3

Here is a precise definition of our scoring procedure for a single problem P. Let...

* X be the size n set of attempts on problem P
* T be the set of test cases for problem P
» C represent a particular k-subset of X, in notation: C' € [X]*

score = ! Z z(C)

X 25,
where z is the problem score by a k-attempt ensemble
1
2(C) = il > 1{3c e C verify(e,ti)}
t, €T

where

* cis a single program attempt in the k-attempt ensemble,
* tis atest case,

* and Verify returns true if the program successfully passes the test case.

Individual Run Scores Oracle @k Scores
run0 runl run2 | k=1 k=2 (Official Score) k=3
iteration setting
0 baseline 46.00 45.50 47.50 | 46.33 (1.04) 55.17 (3.18) 59.50
cheatsheet 48.00 44.50 50.00 | 47.50 (2.78) 57.67 (2.52) 64.00
ArcMemo-OE (ours) 49.00 47.00 48.00 | 48.00 (1.00) 56.67 (1.53) 61.00
ArcMemo-PS (ours) 49.50 49.00 49.50 | 49.33 (0.29) 59.33 (0.29) 63.50
1 baseline 57.00 5550 61.00 | 57.83 (2.84) 66.67 (3.82) 71.50
cheatsheet 56.00 56.50 57.50 | 56.67 (0.76) 65.67 (1.44) 70.50
ArcMemo-OE (ours) 59.00 55.00 56.00 | 56.67 (2.08) 65.67 (1.53) 70.00
ArcMemo-PS (ours) 5850 60.00 55.50 | 58.00 (2.29) 67.33 (1.61) 72.50
2 baseline 59.50 59.00 65.00 | 61.17 (3.33) 69.00 (2.65) 73.00
cheatsheet 65.00 61.00 61.00 | 62.33 (2.31) 71.33 (1.53) 76.00
ArcMemo-OE (ours) 62.00 59.00 61.00 | 60.67 (1.53) 67.67 (2.52) 71.00
ArcMemo-PS (ours) 60.50 66.00 58.50 | 61.67 (3.88) 70.83 (3.06) 75.50

Table 4: Full o4-mini Results. The right partition of the table containing aggregate scores shows
the inference scaling: going down represents sequential retry, going right represents adding parallel
samples. ArcMemo-PS is the only evaluated setting that outperforms the baseline consistently at
every tested scale.

C FURTHER DISCUSSION

Token Efficiency We find that our system’s token efficiency is similar to the baseline. We observe
that memory-augmented runs tend to increase output token usage. While this seems to counter the
intuition that retrieving rather than regenerating certain ideas would save tokens, we hypothesize
that introducing memory leads the model to explore more hypotheses. In other words, selection
inaccuracies (false positives) seem to be manageable by the reasoning models, but at the cost of
increased token usage. Full results are plotted in

14

Under review as a conference paper at ICLR 2026

run(0 runl run2 k=1 k=2 k=3

iteration setting
0 baseline 46.00 45.00 47.00 46.00(1.00) 54.67(3.21) 59.00
cheatsheet 48.00 44.00 50.00 47.33(3.06) 57.67(2.52) 64.00
ArcMemo-OE 49.00 47.00 48.00 48.00(1.00) 56.67(1.53) 61.00
ArcMemo-PS 49.00 49.00 49.00 49.00(0.00) 59.00 (0.00) 63.00
1 baseline 57.00 55.00 61.00 57.67(3.06) 66.33(4.04) 71.00
cheatsheet 56.00 56.00 57.00 56.33(0.58) 65.33(1.15) 70.00
ArcMemo-OE 59.00 55.00 56.00 56.67(2.08) 65.67(1.53) 70.00
ArcMemo-PS 58.00 60.00 55.00 57.67(2.52) 67.00(1.73) 72.00
2 baseline 59.00 59.00 65.00 61.003.46) 69.00(2.65) 73.00
cheatsheet 65.00 61.00 61.00 6233(2.31) 71.33(1.53) 76.00
ArcMemo-OE 62.00 59.00 61.00 60.67(1.53) 67.67(2.52) 71.00
ArcMemo-PS 60.00 66.00 58.00 61.33(4.16) 70.33(3.06) 75.00

Table 5: Strict Scoring. While the official evaluation scheme allows different test cases solved
by different attempts to be ensembled, in contrast, the strict scoring regime only marks a puzzle as
solved if a single attempt (generated program) solves all test cases.

Puzzles
Individual Run Scores Oracle @k Scores Improved

Tteration run0 runl run2 | k=1 k=2 (Official Score) k=3 |
0 171.50 185.00 184.50 | 180.33 (7.65) 219.50 (1.80) 237.00

+ ArcMemo-PS 186.00 185.50 182.00 | 184.50 (2.18) 225.83 (2.57) 246.50 36
1 222.00 221.50 231.00 | 224.83 (5.35) 259.00 (5.68) 274.50

+ ArcMemo-PS 228.00 225.50 218.00 | 223.83 (5.20) 262.00 (5.29) 279.50 22
2 238.50 242.00 250.00 | 243.50 (5.89) 274.33 (5.03) 287.00

+ ArcMemo-PS 246.00 251.00 236.00 | 244.33 (7.64) 277.67 (7.01) 292.50 21

Table 6: Full Evaluation Split Results (400 puzzles, base model: 04-mini). ‘“Puzzles Improved”
refers to the number of puzzles where the ArcMemo setting outscores the Baseline.

Concept Specificity Investigation As part of the development of our concept representations, we
conducted small-scale experiments using tiny (n=10) subsets of the validation split to investigate
the level of detail needed for concepts to be useful. Manually writing maximum detail situation-
suggestion style concepts and using iteratively LLM-summarized versions (for a total of 5 levels of
specificity for each concept), we found the reasonably expected result that higher levels of specificity
correspond to better solve rates. Maximum specificity solved 4/10 with a generally decreasing pattern
with lower specificity. While this result was entirely expected, the main goal of the experiment was
to determine how much we could compromise on concept detail to improve the retrieval aspect.
There is a tension between retrieval and puzzle solving in the sense that puzzle solving benefits from
more detailed suggestions, but retrieval struggles to apply them to new situations when the concept’s
relevant situation is so precisely defined.

Embedding-based Retrieval Experiments Early in testing, we investigated standard embedding-
based retrieval approaches. Following the ArcMemo-OE setting, we used a VLM-generated caption
to query a vector database of ArcMemo-OE-style concept embeddings. While computationally
cheap compared to autoregressive generation (especially so when leveraging long-form reasoning),
we saw generally poor retrieval results. Using OpenAl’s embeddings API and an 03-mini puzzle-
solving backbone proved ineffective, lowering the score from 0.26 to 0.22, marking a 15% reduction.
Qualitative analysis found that retrieved concepts were largely irrelevant to the puzzle and seemed to
over-index on lexical similarity. Moreover, a small set of broadly defined (non-specific) concepts was
found to be grossly overrepresented.

15

Under review as a conference paper at ICLR 2026

Puzzles
Individual Run Scores Oracle@k Scores Improved

Model Name run0 runl run2 | k=I k=2 (Official Score) k=3 |
Kimi K2 Thinking 36.00 28.00 19.00 | 27.67 (8.50) 37.33 (3.79) 42.00

+ ArcMemo-PS 38.00 28.00 22.00 | 29.33 (8.08) 40.00 (4.58) 46.00 11
Sonnet-4 4450 45.50 46.50 | 45.50 (1.00) 54.17 (0.58) 57.50

+ ArcMemo-PS 44.00 45.00 38.50 | 42.50 (3.50) 52.50 (1.80) 57.00 7
DeepSeek R1 26.00 20.50 12.00 | 19.50(7.05) 26.33 (4.01) 30.50

+ ArcMemo-PS 18.50 26.00 23.50 | 22.67 (3.82) 30.67 (0.76) 35.00 12

Table 7: Additional Model Results (100-puzzle subset). “Puzzles Improved” refers to the number of
puzzles where the ArcMemo setting outscores the Baseline.

ARC-AGI Performance Efficiency

70 4

Setting

—®— ArcMemo-OE
ArcMemo-OE (continual)
ArcMemo-PS

oracle@2 score

60

55 1 —@— ArcMemo-PS (no selection)
—@— Baseline
—@— Cheatsheet
50 T T T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 1.0
puzzle solving tokens x107

Figure 4: Token Efficiency Plot: Comparing various settings’ official score (oracle@2) on the public
validation subset to the tokens used by the reasoning model for strictly puzzle solving.

D LIMITATIONS AND FUTURE WORK

D.1 LIMITATIONS

Following |Akyiirek et al.| (2025), our evaluation focuses on a 100-task subset of ARC-AGI-1, selected
to make large-scale experimentation feasible under compute and cost constraints. This choice was
further motivated by the substantial sampling variance we observed—identical prompts can yield
noticeably different scores, requiring multiple runs to obtain stable estimates. As a result, our study
concentrates on a relatively small frontier of puzzles where memory augmentation can yield new
solves, limiting the absolute magnitude of observable gains.

In addition, ARC-AGI-2 was released mid-project as a harder successor benchmark, with state-of-
the-art performance still below 30%. Re-running all baselines and experiments on ARC-AGI-2 was
infeasible within scope due to cost and time constraints, but extending memory-based approaches to
ARC-AGI-2 remains an important direction for future work.

D.2 FUTURE WORK
Several directions follow naturally from this work. One is to broaden evaluation to larger and more

challenging puzzle sets, including those unsolved by the baseline, to test both new solve potential and
consistency on borderline cases. Another is to explore order-robust update strategies and curriculum

16

Under review as a conference paper at ICLR 2026

designs that reduce sensitivity to problem ordering while preserving inter-problem learning benefits.
Beyond these extensions, a key avenue is hierarchical abstraction: moving from additive concept
updates toward consolidation operations that restructure the memory across multiple experiences.
Finally, our current design choices for representation and retrieval were made under cost constraints;
richer optimization may yield substantial improvements.

To facilitate further research, we release a data resource: hand-annotated concepts for difficult
puzzles, together with a configurable puzzle synthesis pipeline. This resource is intended to support
isolated evaluation of concept representations and selection mechanisms, as well as development of
methods for concept abstraction. We hope it provides a useful foundation for continued exploration
of abstract reasoning memory.

E ADDITIONAL RELATED WORK

Knowledge Base Augmented LLMs for Factuality. Early efforts to enhance language models with
external memory primarily targeted knowledge-intensive tasks. Retrieval-Augmented Generation
(RAG) introduced the idea of retrieving documents from an external store based on embedding
similarity to augment generation (Lewis et al.,|2021)). Follow-up work like KnowledGPT incorporated
formal knowledge bases, allowing LLMs to execute structured queries through “Program-of-Thought”
prompting for multi-hop reasoning (Wang et al., 2023b). More recently, MemLLM proposed
inline memory operations—allowing the model to read from and write to memory directly during
generation—enabling continual adaptation without re-training (Modarressi et al., [2024).

Embedding Space Memory. Another stream of work aims to overcome the limited context window
of transformers through architectural interventions that compress information from long sequences
into continuous space. Memorizing Transformers stored latent key-value vectors from past inputs and
retrieved them via a KNN mechanism to be attended to alongside the current context (Wu et al.| [2022).
The Recurrent Memory Transformer extended this by incorporating a writable memory updated
over time, making memory content responsive to ongoing computation (Bulatov et al.| [2022)). He
et al.|(2024b)) blended these ideas by applying a moving average to update memory slots, allowing
for both similarity-based retrieval and continual adaptation He et al.|(2024a). MemGPT introduced
a hierarchical memory system with a working (RAM-like) memory and a larger archival memory,
simulating long-term information management in a more structured fashion (Packer et al., 2024).

Parameter-Free Test-time Learning. Test-time learning (sometimes referred to as online learning)
describes methods that update predictions at inference time [Bottou & LeCun| (2003}, |2005). However,
trends towards (1) massive model sizes and (2) black box models accessed through APIs make
continually updating parameters computationally impractical or downright impossible. In light of
this, LLM test-time learning research sought to pursue parameter-free adaptation by using LLMs’
remarkable capacity for instruction following and self-reflection. Methods such as Reflexion (Shinn
et al.| 2023), Self-Refine (Madaan et al.||2023)), and Self-RAG (Asai et al.| 2023)), inter alia attempt
to correct mistakes at test-time by way of self-reflection. Follow-up work (Huang et al., [2024; [Kamoi
et al.;|2024) finds that self-correction methods depend on the availability of some extrinsic feedback or
verification mechanism to reliably improve end performance and that these methods produce dubious
results absent these grounded sources of feedback. Still, self-reflection remains a key component of
self-evolving agents (Gao et al.| [2025)).

Memory for Agentic Skill Acquisition. Memory also plays a crucial role in LLM-based agents.
Park et al.| (2023) structured memory as a stream of episodic observations and distilled high-level
summaries from them to guide decision-making. Contextual Experience Replay discretizes trajecto-
ries into “experiences” (containing environment dynamics from a trajectory and skills storing actions
from said trajectory) and retrieves relevant blocks to guide new episodes (Liu et al., 2025). HiAgent
organizes working memory (within a single query) hierarchically by subgoals, summarizing and
replacing traces to improve long-horizon efficiency (Hu et al., 2024). External-memory systems
such as MemO and MemP manage a persistent store with explicit add—update—prune operations
(MemP casts control as an MDP), yielding gains on dialogue and tool-use/planning tasks (Chhikara
et al.,|2025}; [Fang et al., [2025). MemP in particular is a concurrent work that also demonstrates the
efficacy of abstraction, although it targets rewriting action sequences as step sequences in explicitly

17

Under review as a conference paper at ICLR 2026

agentic settings, contrasting with ArcMemo’s general problem-solving focus. Voyager uses LLMs to
autonomously acquire and store skills while exploring Minecraft, with a growing library of reusable
code snippets written by the agent itself Wang et al.|(2023a)). Other systems, like the ResearchAgent,
use memory initialized from domain-specific corpora, such as scientific papers, to ground query
responses in high-utility prior knowledge (Baek et al.| 2024)).

Abstractions from Reflection. Other recent and concurrent works incorporate the related idea of
using reflections from solution traces towards different goals and mechanisms. RLAD (Qu et al.,[2025)
jointly trains an abstractor model to generate new abstractions per problem for a solver model. NuRL
(Chen et al., 2025)) generates problem-specific hints (h;) from ground truth question-answer pairs
(gi, a;) to augment a dataset. Didolkar et al.| (2025)) summarizes behaviours for math reasoning, using
embedding-based retrieval, and adding a fine-tuning stage on resulting traces. In contrast, ArcMemo
builds an explicit store of concepts. Our mechanism is model agnostic, gradient-free, and lightweight.
We especially emphasize abstraction and modularity to promote reuse, and selection-aware design to
better handle unfamiliar domains appropriate for the continual learning setting.

F PROMPTS

F.1 PSEUDOCODE PREPROCESSING

Introduction

Consider a class of "ARC" puzzles where each puzzle has a hidden
transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and the task is to predict the transformation rule. Grids are 2D
numpy integer arrays with integers representing colors. 0 represents
black and usually serves as the background.

FLrrd

are trying to learn from previous puzzle solutions to improve our
puzzle solving capabilities. Your task is to analyze a puzzle
solution, rewrite it as pseudocode that can more easily be abstracted
into concepts, and finally write a one-liner summary of the
transformation rule. Here, a concept can encode any of:
grid manipulation: an operation that directly impacts the output grid
helper routine: specialized logic for parameterizing more abstract
operations
criteria: checked properties/overall logic for conditional operations
structure: shapes to look for in the pixel grids

PRI

Instructions

Pseudocode:

- write the pseudocode translation inside <pseudocode> and </pseudocode>
— tags

- be concise without compromising correctness

- reuse function names/operations from the examples

- focus on broader ideas compared to implementation details

— the full solution might use “find_connected_components”™ to pick out

— objects, the output of these are numpy grids containing only the

— object-- implicitly storing attributes, we prefer your pseudocode to
— instead use a grid object type with explicit attributes like
< .color/.colors/.shape (returns a binary
— mask)/.height/.width/.size/.position/etc.

Summary:
— write a one-liner summary of the transformation rule inside <summary>

— and </summary> tags

Examples
{examples}

Concepts Examples

18

Under review as a conference paper at ICLR 2026

Here are concepts that were extracted from the examples. Bear in mind
— that your generated pseudocode should enable abstracting concepts
— such as the following:

{concepts}

Your Puzzle Soution

Analyze, abstract into pseudocode, and summarize the following puzzle
— solution:

T T Tpython

{solution}

F.2 CONCEPT ABSTRACTION

Introduction

Consider a class of "ARC" puzzles where each puzzle has a hidden
transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and the task is to predict the transformation rule. Grids are 2D
numpy integer arrays with integers representing colors. 0 represents
black and usually serves as the background.

rerritd

We are trying to learn from previously solved puzzles to help solve more
— puzzles in the future. Your task is to analyze a puzzle solution's

— pseudocode and abstract reusable concepts. Here, a concept can encode
— one of the following:

1. routine: routines from the solution program, which can either directly
— output a grid, or prepare handle some intermediate processing

2. structure: a class of visual entities (not program data structures)

— that can be seen in an individual pixel grid. The visual entity

— should be general, perhaps by being defined by their function or in
— relation to an operation.

Following a functional programming philosophy, we promote reusability
— through composition by parameterizing routines:

— We also encourage passing specialized logic (other routines) as

— parameters to higher order routines

- Each routine is typed-- it specifies output typing in addition to a
— list of parameter specifications

- We allow custom types to be defined with the format "name :=

— definition"

— Often custom types are “Callable” that specify some pluggable

— operations

The overarching goal is to help future puzzle solving which boils down to
— 2 problems:

1. determining what the transformation is (by examining input/output

— examples)

2. implementing the transformation in code

— These concepts are meant to compactly encode ideas from solved puzzles
— and help puzzle solving by remembering what operations could be
— involved and how they might interact with each other via typing.
- Parameterization and composition via higher order routines/pluggable
— operations helps ensure concepts are reusable and not overly specific
— to one puzzle
- But to specifically address the 2 main problems, we also annotate
— concepts with:
1. relevance cues: suggestion of what to look for at puzzle solving
— time that would indicate this concept is potentially relevant.
— can either describe (1) things to look for in the puzzle grids
— or (2) related concepts that might implicate this one

19

Under review as a conference paper at ICLR 2026

- we primarily care about annotating cues for grid manipulation
— routines and structures where there are concrete things to
— look for in the reference grids.
2. implementation notes: suggestions on how to implement the idea
— programmatically.

Examples
{examples}

Concept Repository
Here is the current concept repository that you should check for reuse:
{concept_list}

Your Puzzle Solution

Abstract the following solution into a concept list:
{summary}

{pseudocode}

Instructions
- Format your final concept list inside a fenced yaml markdown block
— (have first line = ""““yaml" and last line = ""°°")
— Feel free to think before writing your final response
- Each concept entry can have the following fields
concept: routine or structure name
kind: routine | structure
routine_subtype: string specifying either "grid manipulation",
— "intermediate", or the name of a Callable custom type.
output_typing: the output type
parameters: a list of parameter specifications (dictionary with
— fields: name, typing, description)
description: string elaborating on the concept if not completely self
— evident from the name
implementation: a list of notes that provide suggestions on how to
— implement this concept programmatically
cues: a list of notes suggesting what to look for at puzzle solving
— time that would suggest this concept is relevant (e.g. what to
— look for in example input/output grids, or other concepts being
— considered that may also implicate this concept)
- Typing fields should be similar to python type annotations but may
— include ARC puzzle specific terminology (e.g. “list[object]”, or
— “Callable[[object], color]™). New custom types may be defined by
— filling out a typing field with “name := definition~
— IMPORTANT: Reuse concepts and parameter names/types whenever possible
- reusing a concept or parameter means reusing its exact name
— check existing concepts/parameter names in the ~“Concept Repository-
— section below
- when reusing a concept:
- it need not be redefined-- a list entry of “concept: name” is
— sufficient
- however you may also choose to extend it (introduce new list
— entries for the parameter list, the implementation notes, or
— the relevance cues which are merged with the existing
— entries). This involves specifying the same concept name as
— the existing one to be extended.
- Avoid coupling the concepts too closely with the exact solution
— implementation.
— often times, there is a broader idea that can be implemented with
— roundabout methods easier to express in code
— we should record the broader idea in our concept memory but record
— the easier implementation in the implementation notes
— Distinct concepts must have different names
- Output valid yaml
- avoid putting colons in entries where we're expecting a list[str]

20

Under review as a conference paper at ICLR 2026

- be careful about multiline strings

— IMPORTANT: No need to encode every implementation detail from the

— solution into a concept, focus on the important ideas, logic, and

— structure.
- ultimately we want concepts to be reusable, so if something seems
— overly specific and unlikely to reappear in other puzzles, do not
— add it

F.3 CONCEPT SELECTION

Introduction

Consider a class of "ARC" puzzles where each puzzle has a hidden
transformation rule that maps input grids to output grids. Each
puzzle presents several input-output grid pairs as reference examples
and solving the puzzle means predicting the transformation rule.
Grids are 2D numpy integer arrays with integers representing colors.
0 represents black and should be treated as the background.

rrrid

Your task is to analyze a puzzle's reference examples, examine a set of
concepts recorded from previously solved puzzles, and determine which
concepts are relevant to this puzzle. Your selected concepts and
notes will be used for the puzzle solving phase, so emphasize problem
solving helpfulness.

rrrd

Concepts from Previously Solved Puzzles

indicate this concept is relevant in this puzzle
implementation: notes on how this concept was implemented in past
— solution programs
- output typing: what the output of this routine is (e.g. a grid, a list,
< a number, a bool, etc.)
- parameters: a list of parameters that describe ways the concept may
— vary
We also have some recommendations on how to approach problem solving with
— these concepts in mind:
- We label the grid manipulation routines separately-- these directly
— affect the grids so they are easier to spot (along with structure
— concepts)
- You might try to first identify which grid manipulation operations are
< used, then investigate their parameters
— The non-grid manipulation routines might describe ways we've seen
< previous puzzles set parameters, so you can look to these for
— inspiration
— There may not be exact matches to this list, so we encourage you to
— think about variations, novel ways to recombine existing ideas, as
— well as completely new concepts
— These concepts and this approach are only suggestions, use them as you
— see fit

We recorded concepts about structures and routines we observed in

— previously solved puzzles. These concepts may or may not be relevant
— to this puzzle, but they provide useful context to show examples of
— what structures may appear in the grids, what operations may be used,
— and how they might be composed. Concepts are annotated with fields

— like:

- cues: (short for "relevance cues"), what to look for that might

.

{concepts}

Instructions

Identify which concepts could be relevant to the given puzzle.

— We suggest first investigating more "visible" concepts first (e.g.
— structures and grid manipulation routines)

21

Under review as a conference paper at ICLR 2026

- After identifying these concepts, you can investigate what

< logic/criteria/intermediate routines might be useful for these

— initially identified concepts

- You can also select any other concept you think might be relevant even
— 1if it's not directly related to the grid manipulation routines

- Write your final selection of concepts as a yaml formatted list of

— concept names

- To allow us to match your selection to the concepts we have, please use
— the exact concept names as they appear in the above concept list

- Write your answer inside a markdown yaml code block (i.e. be sure to
< have """“yaml" in the line before your code and ""°°" in the line

— after your list)

- Here is a formatting example:

Tt Tyaml

- line drawing

- intersection of lines

Your Given Puzzle
Analyze the following puzzle:
{puzzle}

G EXAMPLE CONCEPTS

G.1 ARCMEMO-OE

situation: When every row in the input grid is identical or shows uniform
— behavior.

suggestion: Instead of looking for complex spatial rearrangements by row,
— focus on per-column operations. It may indicate that the

— transformation is applied column by column, such as a substitution or
— mapping rule.

situation: When each column appears to transform its digits (or colors)
— 1in a consistent but distinct way.

suggestion: Consider that each column might have its own mapping rule--a
— substitution cipher. Check if specific input digits in a column

— always map to the same output digits, and validate this rule across
— different examples.

situation: When the output grid is a uniformly scaled-up version of the
— 1input, especially when the output dimensions are an integer multiple
— of the input dimensions.

suggestion: Check if the output can be divided into equal-sized blocks
— that correspond one-to-one with the cells of the input. Investigate
— whether each cell in the input acts as a trigger—--replicating a

— specific pattern or full copy of the input into the corresponding

— Dblock—--when it’s nonzero, and leaving it blank otherwise.

G.2 ARCMEMO-PS

structure concepts
- concept: split grid
description: where the grid is split into multiple regions that are
— treated as distinct
cues:
— divider lines (of any color) that span the grid and partition it
— into regions
— visually distinct regions or objects that are processed separately,
— often separated by colored or black lines, columns, or rows

22

Under review as a conference paper at ICLR 2026

— color-based regions where pixels of a certain color only appear
— within specific sections of the grid

— concept: rectangle object
description: an object whose shape is a rectangle, often used for bars,
— highlights, or as a region to fill
cues:
- if the output or solution logic depends on the number of distinct
— items (e.g., colors, objects) or the frequency of a color in
— regions or objects
implementation:
— use len() on the sequence

grid manipulation routines

— concept: recolor object
description: recolor an object based on a color scheme
output_typing: grid | object

parameters:
— object (type: object): the object or pixel to recolor
— color scheme (type: dict[color, color]): mapping from original
— color to new color
- object | object | position - the object or pixel to recolor
- color scheme | dict[color, color] - mapping from original color to

— new color
— color (type: color): the color to assign to the object
cues:
— 1if structures or objects from the input grid appear in the output
— grid with different colors
- if all pixels of one color in the output grid are replaced with
— another color (systematic color swap)
— if regions or objects are recolored based on a property (e.g.,
— size, position, or matching a specific pixel)
— 1f the output grid contains regions filled with a new color not
— present in the input
- 1if background or other colors are systematically replaced in the
— output grid
— if the output grid is visually similar to the input except for a
— color swap
— 1if colored pixels or regions appear in the output grid at positions
— that were black or missing in the input, especially adjacent to
— colored pixels or aligned with features of input objects
- if a region or contiguous area is uniformly recolored, possibly
— based on a pixel in a special position (e.g., corner, interior of
< a container)
- 1f an input pixel or object is removed or replaced with background
— color in the output grid (deletion by recoloring)
- if a special color (e.g., grey or yellow) appears at a position
— determined by the interaction or meeting of input objects or
— paths
implementation:
- for a single pixel, set grid[position] = color
- after drawing operations that may overwrite a pixel, restore that
— pixel to its intended color
— for each pixel, if its color is in the color scheme, replace it
— with the mapped color
- for a region or object, iterate over its pixels and set each to the
— target color or according to the color scheme
- for a region, if a pixel is background (e.g., black), set it to the
— specified color; otherwise, leave it unchanged
- at special positions (e.g., meeting points or intersections), set
— the pixel to a designated color (e.g., grey) instead of either
— input color

— concept: repeat color sequence in rows

23

Under review as a conference paper at ICLR 2026

description: fill each row of a grid (starting from start_row) with
— colors from a sequence, cycling through the sequence as needed
output_typing: grid
parameters:
- grid (type: grid): the grid whose rows to fill
- start_row (type: int): the index of the first row to fill
- color_sequence (type: list[color]): the sequence of colors to
— repeat in filling rows
cues:
— presence of a plus—-shaped pattern formed by a row and column of the
— same color in the grid
- output grid is created by drawing a filled row and column
— intersecting at a specific position

color selection
- concept: pick only color from region
description: select the only non-background color present in a region;
— assumes the region contains exactly one color besides the
— background (e.g., black)
output_typing: color
parameters:
- region (type: grid): the region grid to extract the color from

24

	Introduction
	Related Work
	Methods
	Problem Statement
	Memory Format and Organization
	Memory Write: Concept Abstraction
	Memory Read: Concept Selection
	Continual Concept Learning

	Experiments
	Results
	Main Results
	Selection Ablation and Qualitative Relevance Analysis
	Continual Learning
	Additional Results

	Conclusion
	Implementation Details
	PS Memory Format
	Experiment Parameters

	Evaluation Details
	Further Discussion
	Limitations and Future Work
	Limitations
	Future Work

	Additional Related Work
	Prompts
	Pseudocode Preprocessing
	Concept Abstraction
	Concept Selection

	Example Concepts
	ArcMemo-OE
	ArcMemo-PS

