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DP-RAE: A Dual-Phase Merging Reversible Adversarial Example
for Image Privacy Protection

Anonymous Author(s)

ABSTRACT
In digital security, Reversible Adversarial Examples (RAE) blend ad-
versarial attacks with Reversible Data Hiding (RDH) within images
to thwart unauthorized access. Traditional RAE methods, however,
compromise attack efficiency for the sake of perturbation conceal-
ment, diminishing the protective capacity of valuable perturbations
and limiting applications to white-box scenarios. This paper pro-
poses a novel Dual-Phase merging Reversible Adversarial Example
(DP-RAE) generation framework, combining a heuristic black-box
attack and RDH with Grayscale Invariance (RDH-GI) technology.
This dual strategy not only evaluates and harnesses the adversarial
potential of past perturbations more effectively but also guarantees
flawless embedding of perturbation information and complete re-
covery of the original image. Experimental validation reveals our
method’s superiority, secured an impressive 96.9% success rate and
100% recovery rate in compromising black-box models. In particu-
lar, it achieved a 90% misdirection rate against commercial models
under a constrained number of queries. This marks the first suc-
cessful attempt at targeted black-box reversible adversarial attacks
for commercial recognition models. This achievement highlights
our framework’s capability to enhance security measures without
sacrificing attack performance. Moreover, our attack framework is
flexible, allowing the interchangeable use of different attack and
RDH modules to meet advanced technological requirements.

CCS CONCEPTS
• Security and privacy → Privacy protections; Systems secu-
rity; • Computing methodologies→ Computer vision tasks;
Computer vision tasks.

KEYWORDS
Adversarial attack, Privacy protection, Black-box attack

1 INTRODUCTION
Deep neural networks (DNNs) have taken several domains [10, 16,
18, 21, 34], by storm due to their unique expressive capabilities and
superior performance. However, with the rapid and unregulated
expansion of DNNs, human concerns regarding privacy and secu-
rity continuously intensify [2, 4, 28, 30, 41]. Numerous malicious
commercial entities illicitly harvest user privacy to achieve their
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Figure 1: RAEs thwart malicious DNNs from stealing privacy
data and recover image quality via RDH, ensuring authorized
users’ normal access.

profit-driven goals. For example, personal data belonging to mil-
lions of Facebook users leakage and was analysed by Cambridge
Analytica for political advertising [3].

Recent research has exposed DNN vulnerabilities, proposing
algorithms to deceive these models with minimal image modifica-
tions, thereby inducing incorrect classifications [35, 37, 44, 45, 48].
This paper leverages such adversarial characteristics to develop a
novel privacy protection mechanism within social networks. While
traditional adversarial attacks can effectively mislead DNNs [7–
9, 25, 39], preventing targeted information retrieval and key feature
extraction based on DNN models, introducing perturbations to pro-
tected images compromises their quality. Hence, there is a pressing
need for a privacy-preserving mechanism that upholds both the vi-
sual integrity of images and their ability to counteract diverse DNN
analyses. Our in-depth research leads to developing Reversible Ad-
versarial Examples (RAE) [24, 43, 46], showcasing their significant
capability in confusing DNN classification and analysis while al-
lowing images to be reverted back to their original form. Illustrated
in Figure 1, RAEs not only deceive DNNs but also provide a method
to revert images to their normal state, introducing an innovative
method for protecting image privacy.

In the emerging area of Reversible Adversarial Examples (RAE),
existing research is still developing. Xiong et al. [43] was the first
to apply Reversible Data Hiding (RDH) techniques in black-box
attacks by embedding compressed data of perturbations into the
images. This approach allows the original images to be recovered.
Besides, Their method, by integrating ensemble model techniques
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[6], demonstrates the potential of adversarial examples to be ap-
plied across different models due to their transferability, yet it falls
short in accurately attacking models that have not been previously
encountered. On a different note, Zhang et al. [46] explored an alter-
native approach to reverse adversarial examples. They introduced
an RGAN, consisting of an attack encoder network and a recovery
decoder network, aimed at efficiently producing adversarial exam-
ples and then reversing them. While this approach is effective in
recovering the original state of images, it underperforms against
black-box models.

Given the specialized use cases of RAE, most current RAE re-
search relies on the transferability of white-box attacks for imple-
menting black-box scenarios. Yet, the success of this transferability
depends greatly on the strength of the perturbations. The RDH
methods used in RAE have strict limits on the perturbation size, cre-
ating a design conflict that substantially reduces the effectiveness
of RAE against unknown black-box models.

To overcome the inherent challenges for existing RAE method-
ologies, specifically the tension between executing effective adver-
sarial attacks and adhering to the stringent perturbation constraints
of RDH technologies, we propose a Dual-Phase merging Reversible
Adversarial Example (DP-RAE) generation framework. This frame-
work adeptlymarries the transferability strengths of bothwhite-box
and black-box attacks through a bifurcated attack process, signif-
icantly improving cross-model applicability. Besides, to address
the perturbation storage issues posed by RDH, we propose two
novel perturbation optimization techniques: Gradient Quantized
Binary Encoding (GQBE) for white-box scenarios and Threshold-
Informed Superpixel Attack (TISA) for black-box contexts. The
GQBE approach capitalizes on integrated gradient information
from models to classify gradient magnitudes into discrete pertur-
bation levels during iterative updates. This stratification reduces
the complexity of perturbation data, facilitating its conversion into
binary streams for seamless RDH integration. Conversely, if GQBE
fails to achieve transferable attacks on uncharted black-box models,
TISA is employed to bolster transferability. TISA segments images
into superpixel blocks, selecting them randomly to apply uniform
perturbations. The impact on model confidence is assessed follow-
ing each perturbation; a rise in confidence prompts a reversal in the
perturbation direction of the targeted superpixel block. Following
every set of𝑚 perturbations, an analysis of historical alterations
identifies three points below the perturbation cap for additional
adjustment. The culmination of this meticulously designed process
allows for the final perturbations to be stored as binary streams via
RDH, thereby ensuring their effective preservation within the RDH
framework without compromising image integrity.

In summary, the main contributions of this paper are as follows:
•We propose a novel dual-phase merging framework for RAE

generation, significantly enhancing the transferability of adversar-
ial examples to both unknown and commercial black-box models.
To the best of our knowledge, our approach is the first successful
application of RAE attacks on commercial black-box models.

• We propose the GQBE and TISA as innovative solutions for
reversible perturbations with RDH technologies. These methodolo-
gies address the critical challenge of maintaining the integrity of
adversarial examples while ensuring their reversibility.

• Experimental results affirm the superiority of our attack frame-
work, achieving a 96.9% Attack Success Rate (ASR) for reversible
adversarial examples on specific models, with a 100% restoration
rate for the recovered images. These outcomes validate the practical
feasibility of our approach.

2 BACKGROUND
Adversarial Attacks are broadly classified into white-box and
black-box strategies. White-box attacks entail complete access to
the target models’ architecture and parameters. Goodfellow et al.
[11] introduced the Fast Gradient Sign Method (FGSM) in 2014,
leveraging single-step gradient updates for generating perturba-
tions:

𝜂 = 𝜖 sign (∇𝒙 𝐽 (𝜽 , 𝒙, 𝑦)) . (1)

Expanding on FGSM, Kurakin et al. [20] developed the Basic Itera-
tive Method (BIM) in 2016, enhancing the granularity and attack
success rate through iterative small-step perturbations. Dong et al.
[6] subsequently introduced the Momentum Iterative Fast Gradient
Sign Method (MI-FGSM) in 2018, which integrates a momentum
component to ensure the attack progresses in a steady direction,
thereby improving the precision and reliability of adversarial attack.
In contrast, black-box attacks lack direct model knowledge, instead
leveraging output observations. The Query-Efficient Boundary-
based blackbox Attack (QEBA) [22] estimates decision boundaries
via gradient direction, while the Simple Black-box Attack (SimBA)
[12] alters inputs based on output changes. Surfree [27] generates
perturbations by exploiting classifier decision boundary geometry,
showcasing the advancement in adversarial techniques and the
nuanced understanding of model vulnerabilities.
Reversible Data Hiding (RDH) is a typical technique to extract
embedded hidden data from labeled camouflage images. Tian et al.
[38] pioneered the RDH technique via difference expansion, em-
bedding secret data by enlarging the differences between adjacent
pixels. Subsequent research has explored utilizing the histogram
properties of images for data hiding [23, 47]. However, conventional
RDH methods often induce distortions in the grayscale versions of
images, which is important in feature analyses of images. Therefore,
our paper adopted the RDH with Grayscale Invariance (RDH-GI)
proposed by Hou et al. [14], which uses the R and B channels of the
color image to embed information and ensure grayscale invariance
by adjusting the pixel value of the G channel.

3 PROPOSED METHOD
3.1 Overview
In this section, we introduce the Dual-Phase Merging Reversible
Adversarial Example (DP-RAE) framework, which leverages dual-
phase crossover techniques for targeted attacks on black-box mod-
els. As shown in Figure 2, the DP-RAE consists of three main compo-
nents: a white-box attack using Gradient Quantized Binary Encod-
ing (GQBE), a black-box attack via Threshold-Informed Superpixel
Attack (TISA), and Reversible Perturbation Embedding and Recov-
ery for maintaining the attack’s integrity and reversibility. Initially,
GQBE preprocesses images for robust adversarial examples, reduc-
ing black-box attack query costs. TISA then intensifies the attack,
producing the DP-AE and perturbation matrix. GQBE and TISA
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Figure 2: An overview of our proposed framework.

can adjust to diverse attack strategies independently. Finally, em-
bedding this matrix and additional data into DP-AE via RDH yields
DP-RAE. For restoration, the RDH extracts the hidden informa-
tion from the DP-RAE, restores the perturbation and recovers the
original image.

3.2 Gradient Quantized Binary Encoding
Before delving into GQBE, it’s essential to address RDH’s limita-
tions on information length, making perturbation data compression
vital. Our study introduces GQBE, a white-box attack leveraging
super-pixels for efficient perturbation compression. This method
reduces storage needs while maintaining adversarial effectiveness
through gradient smoothing over super-pixels. Consequently, the
perturbations retain their capacity to effectively challenge models
despite the reduced data footprint.

We denote𝑥 as the clean imagewith the dimensionsC ×H ×W,
𝑦𝑡𝑟𝑢𝑒 as the true label, and y as the model 𝑓 output result:𝑦 = F𝜃 (𝑥).
Super-pixel size as ℎ ×𝑤 , 𝜂 represents the perturbation generated
by GQBE. The adversarial examples 𝑥

′

𝑎𝑑𝑣
can be expressed as:

𝑥
′

𝑎𝑑𝑣
=𝑚𝑎𝑥 (0,𝑚𝑖𝑛(𝑥 + T (𝜂), 1)), (2)

whereT is a function designed for dimension expansion and padding.
Due to the intervention of super-pixels, 𝜂 essentially acts as a
compressed two-dimensional matrix perturbation with dimensions
(⌊H/ℎ⌋ , ⌊W/𝑤⌋). More specifically, 𝜂𝑖 𝑗 represents the perturba-
tion of the super-pixel at position (𝑖, 𝑗), and the T function expands
this perturbation to cover the area (𝑐, 𝑖 : 𝑖 + ℎ, 𝑗 : 𝑗 + 𝑤), where
0 ≤ 𝑖 ≤ ⌊H/ℎ⌋ , 0 ≤ 𝑗 ≤ ⌊W/𝑤⌋. We use 𝜖 as the unit of per-
turbation, employing a three-bit code to denote the magnitude of
perturbation at 𝜂𝑖 𝑗 , which signifies the count of unit perturbations.

Then, we dissect how to craft perturbations based on the devia-
tion of the gradients. Initially, the purpose of GQBE is to mislead

classifier F𝜃 through perturbations:

F𝜃 (𝑥
′

𝑎𝑑𝑣
) = 𝑦 ≠ 𝑦𝑡𝑟𝑢𝑒 , 𝑠 .𝑡 . ∥T (𝜂)∥∞ ≤ 𝜖 ·M (3)

whereM represents the maximum multiplicative factor stored in
three bits. To generate 𝑥

′

𝑎𝑑𝑣
, we compute pixel-wise gradients from

the loss function, adding perturbations to increase the loss in non-
targeted attacks. Given the variability of gradient values across
different positions, applying uniform perturbations would lead to
varied impacts on the loss function. Recognizing this, we prioritize
larger perturbations at points with a more significant influence on
the loss function, as these regions are more sensitive to changes
in input that substantially affect the final classification decision,
potentially making the attack more effective. Consequently, by
smoothing the gradients for each super-pixel:

▽𝜂J (𝑥,𝑦𝑡𝑟𝑢𝑒 )𝑖 𝑗 =
∑𝑐
0
∑ℎ
0
∑𝑤
0 ∇𝑥 𝐽 (𝑥,𝑦𝑡𝑟𝑢𝑒 )𝑖 𝑗
𝑐 × ℎ ×𝑤

, (4)

and obtain the the absolute value matrix A through ∇𝜂J (𝑥,𝑦true):

A =
��▽𝜂J (𝑥,𝑦𝑡𝑟𝑢𝑒 )

�� , (5)

finally, compute the gradient contribution score E:

E𝑖 𝑗 =
𝑒𝑥𝑝 (A𝑖 𝑗 )∑𝑖× 𝑗
𝑝=0𝑒𝑥𝑝 (A𝑝 )

, 𝑠 .𝑡 .𝑖 ∈ [0, ⌊H/ℎ⌋] , 𝑗 ∈ [0, ⌊W/𝑤⌋] (6)

where E denotes the impact of perturbations at different positions
on the loss function, termed as the contribution score of gradients
to the deviation in the loss function. Given the varied contributions,
the generated perturbation values are quantized into multiple levels.
The algorithmic procedure is outlined as Algorithm 1.

It is noteworthy that the GQBE framework exhibits compatibil-
ity with a broad spectrum of gradient-based methods, serving as
its foundational mechanism. Such versatility enables the dynamic
refinement of our attack’s potency, ensuring its alignment with the
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evolving landscape of adversarial attack methodologies. This paper
illustrates the application of the GQBE framework by deploying
the ensemble attack strategy within MI-FGSM [6], a paradigmatic
example that elucidates our attack process in detail. For ensemble
attacks, we fuse the logits of K different models:

𝑙 (𝑥) = ∑𝐾
𝑘=1𝑤𝑘𝑙𝑘 (𝑥), (7)

where 𝑙𝑘 (𝑥) represents the logits of the k-th model and 𝑤𝑘 as it
weight. To decrease the confidence 𝑝 (𝑥), the loss function J is
defined as:

J (𝑥) = −1𝑦𝑡𝑟𝑢𝑒 · 𝑙𝑜𝑔( 𝑒𝑥𝑝 (𝑙 (𝑥, 𝑡))∑𝐶
𝑐=1𝑒𝑥𝑝 (𝑙 (𝑥, 𝑐))

), (8)

where 1𝑦𝑡𝑟𝑢𝑒 is the one-hot encoding of𝑦𝑡𝑟𝑢𝑒 ,𝐶 represents the total
number of classes and 𝑡 is the correct category of the image. The
detailed procedure of the GQBE attack is methodically delineated
in Algorithm 2, providing a comprehensive step-by-step guide to
implementing this novel attack strategy.

Algorithm 1: Gradient Contribution Score
Input: Gradient of the super-pixels ▽𝜂J (𝑥,𝑦𝑡𝑟𝑢𝑒 )
Input: Percentage PCT ; unit perturbation 𝜖

Output: Perturbation 𝜉

Initialize the absolute value matrix A, the sign function S
and the contribution score matrix E;
A =

��▽𝜂J (𝑥,𝑦𝑡𝑟𝑢𝑒 )
��;

S = 𝑠𝑖𝑔𝑛
(
▽𝜂J (𝑥,𝑦𝑡𝑟𝑢𝑒 )

)
;

Compute the contribution score matrix E;
for 0 ≤ 𝑖 ≤ ⌊H/ℎ⌋ do

for 0 ≤ 𝑗 ≤ ⌊W/𝑤⌋ do
E𝑖 𝑗 = 𝑒A𝑖 𝑗 /∑𝑖× 𝑗

𝑝=0𝑒
A𝑝 ;

end
end

Obtain the coordinates of the top PCT values in the E;
Set the values at these positions in A to 2, and the rest to 1;
𝜉 = 𝜖 (A ⊙ S);
return 𝜉

3.3 Threshold-Informed Superpixel Attack
After integrating preprocessing techniques derived from white-box
attacks, the DP-RAE execute a black-box attack on an unexposed
model. We utilize the perturbation 𝜂 generated by the Algorithm 2
and clean image 𝑥 as the input. A direction𝑞 is randomly selected by
choosing 𝜂𝑖 𝑗 . Adding a perturbation in the 𝑞 direction will change
the confidence 𝑝 in the model. If the direction 𝑞 fails to decrease the
𝑝 (𝑦𝑡𝑟𝑢𝑒 |𝑥 +T (𝜂+𝑞 ·𝜖)), the direction of 𝑞 will be reversed. For each
perturbed point, we document its contribution to the reduction in
confidence. Following a predefined number𝑚 of perturbation iter-
ations, we identify and select the three points that exhibit the most
substantial decrease in model confidence from these documented
instances. As the super-pixel blocks of perturbations may have
already reached their maximum threshold, augmenting these pairs
of perturbations may not directly affect the confidence. Therefore,
we excluded these points and only augmented the perturbations
for the points that could be added.

Algorithm 2: Gradient Quantized Binary Encoding
Input: The logits of K classifiers𝑙1, 𝑙2, ..., 𝑙𝑘 ; ensemble

weights𝑤1,𝑤2, ...,𝑤𝑘 ; clean image x; and the true
label 𝑦𝑡𝑟𝑢𝑒

Input: Percentage PCT ; unit perturbation 𝜖 ; iteration I;
and the maximum multiplicative factorM

Output: Adversarial examples 𝑥
′

𝑎𝑑𝑣
; Perturbation 𝜂

Initialize 𝑔0 = 0, 𝑥
′0
𝑎𝑑𝑣

= 𝑥 , 𝜂0 = zero matrix;
for 𝑖 = 0 to I − 1 do

Input 𝑥
′𝑖
𝑎𝑑𝑣

and output 𝑙𝑘 (𝑥
′𝑖
𝑎𝑑𝑣

) for 𝑘 = 1, 2, ...,K ;
Fuse the logits as 𝑙 (𝑥 ′𝑖

𝑎𝑑𝑣
) = ∑𝐾

𝑘=1𝑤𝑘𝑙𝑘 (𝑥
′𝑖
𝑎𝑑𝑣

);
Get softmax cross entropy loss J (𝑥 ′𝑖

𝑎𝑑𝑣
, 𝑦𝑡𝑟𝑢𝑒 ) based on

𝑙 (𝑥 ′𝑖
𝑎𝑑𝑣

) and Eq. (8); ▷ Apply MI
Smooth the gradient of super-pixels based on Eq. (4) to
obtain the gradient: ▽𝜂𝑖 J ((𝑥 ′𝑖

𝑎𝑑𝑣
, 𝑦𝑡𝑟𝑢𝑒 );

Input ▽𝜂𝑖 J ((𝑥 ′𝑖
𝑎𝑑𝑣

, 𝑦𝑡𝑟𝑢𝑒 ),PCT , 𝜖 in Algorithm 1 and
obtain the output 𝜉 ;
Clip 𝜂𝑖+1 to ensure ∥T (𝜂𝑖+1)∥∞ ≤ 𝜖 ·M;
𝑥
′𝑖+1
𝑎𝑑𝑣

=𝑚𝑎𝑥 (0,𝑚𝑖𝑛(𝑥 + T (𝜂𝑖+1), 1));
end

return 𝑥
′

𝑎𝑑𝑣
and 𝜂

3.4 Embed And Recover
DP-RAE can utilize RDH-GI technology to embed additional data
intricately into adversarial images. Upon generating the adversarial
examples with the dual-phase attack mechanism, DP-AE, the per-
turbation matrix is encoded into a binary information stream. This
stream is then meticulously embedded into the adversarial image
alongside pertinent auxiliary data, ensuring the integrity of the
embedded information while maintaining the adversarial nature of
the image. When the recovery of the original image becomes nec-
essary, the hidden information within DP-RAE is extracted using
the RDH-GI technology. This enables accurate reconstruction of
the perturbation matrix and lossless recovery of the pristine image
upon its removal. Through this innovative approach, DP-RAE not
only maintains the efficacy of adversarial attacks but also ensures
the reversibility of the process, allowing for the seamless restoration
of the unmodified original image.

4 EXPERIMENTS
4.1 Experiment setup
We use ILSVRC2012 [31] as the dataset for our experiments, which
is widely used in deep learning and is highly representative and
influential. The dataset covers 1000 different categories, and each
image is correctly labeled. In terms of model selection, we chose
several models to test the migration performance of adversarial
attack samples across different models, including Resnet34 (RN-34)
[13], Resnet50 (RN-50) [13], Resnet152 (RN-152) [13], DenseNet-121
(DN-121) [17], MobileNet-v2 (Mob-v2) [32], MobileNet-v3 (Mob-v3)
[15], VGG-16 [33], VGG-19 [33], AlexNet [19], Inception-v3 (Inc-
v3) [36]. To ensure the rigor and fairness of the experiment, we
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randomly selected 1000 images from ILSVRC2012, each of which
can be reliably classified by the above models.

The parameter settings for DP-RAE are as follows: the super-
pixel size is set to 4, the unit perturbation 𝜖 is set to 4/255, the
number of iterations for GQBE is set to 10, and the PCT is set to
50%. As for TISA, the attack is set to 3000 iterations, with an addi-
tional adjustment added every ten perturbations. All experiments
were performed on the NVIDIA A40 GPU.

To rigorously assess the efficacy of DP-RAE, we focus on three
key dimensions: attack ability, restoration quality, and visual in-
tegrity. We evaluate DP-AE and DP-RAE using established bench-
marks for image quality assessment, specifically Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [40].
In addition, we evaluate the model’s susceptibility to adversarial
attacks using the Attack Success Rate (ASR), which measures the
probability of adversarial examples causing misclassifications.

4.2 Attack ability
To demonstrate the superior performance of DP-RAE, we compared
it to a comprehensive set of adversarial attack methods. These
include classical white-box attacks such as the FGSM [11], BIM
[20], and Projected Gradient Descent (PGD) [26], alongside ad-
vanced black-box techniques like the SimBA [12], Discrete Cosine
Transform-based SimBA (SimBA-DCT) [12], and fast surrogate-free
black-box attack (Surfree) [27]. Our comparison focuses on the ca-
pability of attacks and their robustness, the experimental results
are detailed in Table 1.

The experimental data reveal that white-box adversarial exam-
ples are robust across different models, suggesting that these exam-
ples maintain misdirection effects even on models with significantly
different architectures. This observation hints at universally vulner-
able decision boundaries. Traditional white-box attacks, however,
often overfit a single model, compromising robustness when the
target model’s structure or data distribution varies from others. To
address this, DP-RAE adopts a multi-model strategy to enhance ad-
versarial example transferability and minimize model-specific over-
fitting, thereby demonstrating improved migration performance
across various models compared to conventional white-box attacks.

In black-box attack scenarios, attackers are constrained by their
lack of access to the target model’s internal mechanisms. While
query-based black-box attacks primarily exploit a model’s superfi-
cial characteristics, they fall short of uncovering deeper vulnerabil-
ities. Notably, black-box attacks generally show limited robustness.
Adversarial examples generated by SimBA, SimBA-DCT and Surfree
have only achieved single-digit success rates on other models. Our
DP-RAE addresses these limitations by initially identifying com-
mon vulnerability features across various models through GQBE.
Subsequently, it leverages TISA for precise attacks on black-box
models, integrating the strengths of both methodologies. DP-RAE
has an ASR of over 50% on multiple models, and it achieves a re-
markable ASR of up to 94.3% in black-box models under query
constraints.

4.3 Ablation study
This section presents the ablation studies conducted on DP-RAE
to evaluate the impact of different parameters and strategies on
its performance. We first focus on the impact of super-pixel size

Figure 3: (a) and (b) represent the queries demand and success
rate of attacking RN-50, respectively, the normal method
represents TISA without historical enhancement. (c) and (d)
represent the amount of storage and ASR for different super-
pixel sizes, respectively.

on the ASR and the volume of data. To this end, we evaluated the
efficacy of adversarial examples crafted with varying super-pixel
sizes across different target models. Table 2 shows that adversarial
examples created with smaller super-pixel sizes can obtain higher
transferability across different models. This is because the effective-
ness of adversarial examples depends on the precision and spatial
arrangement of the perturbations. As DNNs are highly sensitive
to the feature representation of input data, using excessively large
super-pixel blocks will oversimplify detailed perturbations. This
will reduce their impact on the models’ decision boundaries and
weaken the attack ability. However, a small size will geometrically
increase the number of super-pixels, as shown in Figure 3, the small
super-pixel size leads to a dramatic increase in the amount of stored
information. Based on the experimental result, we suggest that se-
lecting a super-pixel size of 4 achieves an optimal balance between
a high ASR and minimal data storage requirements.

To evaluate the efficacy of GQBE when integrated with various
gradient-based adversarial attack methodologies, we employed it
with FGSM, BIM, and MI-FGSM, respectively. This experimental
setup enabled a comprehensive analysis of how different gradi-
ent computation techniques affect the performance of GQBE. Ac-
cording to the data presented in Table 2, iterative methods BIM
and MI-FGSM, which calculate perturbations across multiple iter-
ations, outperform FGSM in terms of effectiveness. The iterative
refinement of super-pixel perturbations allows for a more precise
alignment of adversarial examples with the model’s decision bound-
aries. Notably, MI-FGSM exhibits a marginally superior efficacy to
BIM, attributed to the incorporation of momentum, enhancing the
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Table 1: The performance comparison of our method and state-of-the-art adversarial attack on robustness and attack ability.
DP-RAE was preprocessed by GQBE through ensemble models: RN-152, Inc-v3, VGG-19.

Attack ASR (%) on test models

Method Target model RN-34 RN-50 DN-121 Mob-v2 Mob-v3 VGG-16 AlexNet RN-152 Inc-v3 VGG-19

FGSM VGG-19 32.7 28.3 30.5 42.9 26.5 73.0 44.1 17.5 22.2 91.8
FGSM Inc-v3 23.9 23.7 22.9 35.9 24.9 34.3 42.5 17.0 74.1 32.5
FGSM RN-152 35.7 37.8 32.9 38.2 23.2 39.5 43.6 76.1 25.6 38.0

BIM VGG-19 26.0 22.8 20.6 40.3 15.9 93.7 32.1 11.8 14.6 99.7
BIM Inc-v3 22.7 19.0 21.2 28.5 18.1 27.2 30.2 11.7 97.7 27.7
BIM RN-152 48.3 61.5 43.4 41.4 17.8 40.5 34.2 99.9 25.6 41.7

PGD VGG-19 23.6 21.3 21.3 35.0 13.7 88.7 31.1 9.9 14.0 99.7
PGD Inc-v3 21.4 18.6 19.3 29.6 17.9 27.6 31.6 11.8 95.9 26.8
PGD RN-152 44.5 58.6 41.2 36.9 18.2 40.7 31.5 99.7 25.2 38.9

SimBA RN-50 0.5 93.8 0.5 0.7 0.2 1.6 1.3 0.3 1.0 1.6
SimBA-DCT RN-50 0.9 86.7 0.5 1.6 0.5 1.0 1.9 0.5 1.4 0.5
Surfree RN-50 3.3 82.0 2.8 10.5 7.4 12.7 24.5 2.4 3.5 11.4

DP-AE RN-50 56.4 95.5 56.8 52.7 38.5 66.4 42.2 94.2 98.6 96.4
DP-RAE RN-50 56.7 94.3 56.0 53.3 38.4 66.4 41.9 94.1 98.6 96.4

Table 2: ASR (%) of DP-RAE with different settings. The pixel size section demonstrates the ASR in multi-sizes, the embedding
attacks section indicates different attack benchmarks applied to GQBE, and the strategy section shows the advantages of dual
phase attack.

Situation Pixel Size Embedding attacks Strategy

Model 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 FGSM
(GQBE)

BIM
(GQBE)

MI-FGSM
(Smooth)

MI-FGSM
(GQBE) GQBE TISA DP-AE

RN-34 77.9 71.4 63.3 55.8 45.2 24.0 50.3 53.3 55.8 55.8 9.0 56.4
RN-50 81.8 71.7 62.2 55.1 47.0 19.8 49.9 52.3 55.1 55.6 91.2 95.5
DN-121 79.8 71.3 63.0 55.6 47.9 21.5 52.7 53.4 55.6 56.3 11.1 56.8
Mob-v2 79.2 69.6 62.1 52.9 47.5 27.7 46.0 50.9 52.9 54.0 10.0 52.7
Mob-v3 41.9 41.2 45.6 38.9 37.0 26.7 32.1 36.7 38.9 40.5 5.4 38.5
VGG16 94.4 84.7 79.1 67.4 53.6 28.5 64.0 64.1 67.4 68.1 8.4 66.4
AlexNet 50.2 52.7 47.7 43.8 39.5 35.2 37.2 42.7 43.8 44.6 7.9 42.2
RN-152 100 99.8 99.3 97.5 89.9 23.1 95.9 96.3 97.5 97.6 6.7 94.2
Inc-v3 99.9 99.9 99.6 98.8 98.4 53.7 98.7 99.0 98.8 98.8 7.2 98.6
VGG-19 100 99.9 98.7 97.4 92.3 42.8 97.1 97.1 97.4 97.5 6.8 96.4

speed in the perturbation calculation process. Therefore, combin-
ing GQBE and MI-FGSM for creating adversarial examples greatly
improves the attack capability. Additionally, compared to the origi-
nal MI-FGSM (only smooth), the adversarial examples combined
with GQBE demonstrate stronger aggressiveness and robustness,
resulting in an improved ASR when attacking different models to
varying degrees.

To systematically evaluate the effects of iteration count and the
PCT on the performance of GQBE, a series of experiments were
conducted, iterating over a range of PCT values. The empirical
findings, as summarized in Table 3, demonstrate a less number
of iterations impedes the perturbation’s convergence, leading to
diminished attack performance. Consequently, an iteration count
of 10 is the optimal setting to ensure adequate convergence while

maintaining computational efficiency. Further examination of the
impact of PCT indicates a performance peak when the parameter
is set beyond 50%. This suggests a higher proportion of reinforced
pixels contributes to a more effective perturbation strategy, likely
due to the enhanced potential for inducing misclassifications within
the target model. Therefore, we advocate for a PCT setting of 50%,
representing the threshold at which additional increments cease to
yield proportional gains in attack performance.

To evaluate the hypothesis that a dual-phase strategy—integrating
both black-box and white-box attacks—can leverage the strengths
of each approach, we designed ablation studies focusing on three
distinct strategies: solely employing GQBE, solely employing TISA,
and a combined DP-AE targeting RN-50. For TISA, we fixed the
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Table 3: The ASR (%) of GQBE with different iteration count and PCT settings.

Iteration : 5 steps Test model Attack model

Attack RN-34 RN-50 DN-121 Mob-v2 Mob-v3 VGG-16 AlexNet RN-152 Inc-v3 VGG-19

GQBE (PCT = 0) 46.7 46.3 48.5 44.8 36.4 57.0 41.6 86.4 97.2 93.7
GQBE (PCT = 0.1) 48.5 49.0 51.5 48.6 36.4 60.8 43.0 88.9 97.5 94.2
GQBE (PCT = 0.3) 50.4 49.1 50.1 49.6 38.0 61.7 43.0 89.9 97.9 94.8
GQBE (PCT = 0.5) 50.0 49.6 51.5 50.6 38.8 62.9 44.0 89.6 98.0 95.0
GQBE (PCT = 0.7) 50.4 50.1 51.3 49.5 39.2 63.1 43.6 89.9 97.8 94.4

Iteration : 10 steps Test model Attack model

Attack RN-34 RN-50 DN-121 Mob-v2 Mob-v3 VGG-16 AlexNet RN-152 Inc-v3 VGG-19

GQBE (PCT = 0) 53.1 52.3 53.3 51.0 36.9 64.0 42.7 96.3 99.0 97.1
GQBE (PCT = 0.1) 54.8 54.8 53.8 53.4 38.1 66.4 44.2 96.6 99.0 97.5
GQBE (PCT = 0.3) 55.7 55.5 56.0 52.6 39.0 67.0 44.1 97.3 98.8 97.6
GQBE (PCT = 0.5) 55.8 55.6 56.3 54.0 40.5 68.1 44.6 97.6 98.8 97.5
GQBE (PCT = 0.7) 55.3 57.2 56.8 54.9 40.0 68.0 45.6 97.0 99.0 97.3

iterations at 3000, with a history recorder size set to 10. The em-
pirical results, depicted in Figure 3, indicate that DP-AE not only
achieves a superior ASR but also necessitates fewer queries than the
standalone strategies. This improvement can be attributed to the
preprocessing phase of the white-box attack, leveraging its inherent
robustness. White-box attacks can effectively reduce the confidence
of certain examples in unknown models and even misclassify some
examples before the commencement of black-box attacks, thereby
significantly reducing the need for extensive queries in the subse-
quent black-box attack phase. Strategically incorporating historical
data further reduces query count while bolstering overall attack
efficacy.

Subsequent robustness tests across the three strategies reveal
distinct performance profiles in adversarial example generation.
As Table 2 shows, GQBE produced adversarial examples exhibit
commendable generalization across diverse models yet fall short
of achieving an optimal ASR against the targeted RN-50 model.
Conversely, TISA generated samples demonstrate a high degree
of specificity in compromising unknown models but suffer from
limited transferability, undermining their robustness. Notably, ad-
versarial examples generated via the DP-AE strategy not only excel
in model-specific attacks but also benefit from enhanced trans-
ferability, showcasing an advantageous blend of robustness and
specificity. Our findings thus advocate for the DP-AE approach,
which embodies a harmonious balance between achieving targeted
model vulnerability and ensuring broad applicability across various
model architectures.

4.4 Robustness evaluation
In real-world scenarios, images often undergo preprocessing via
defensive mechanisms before being fed into neural networks, aim-
ing to retain critical content while reducing the impact of pertur-
bations. Hence, the necessity for adversarial examples to exhibit
considerable robustness becomes paramount. This section explores
the effects of various defense strategies on adversarial examples,
including Spatial Squeezing (Spatial) [5], Random Resizing and
Padding (Random) [42], Gaussian Blurring (Gaussian) [1], JPEG

Compression (JPEG) [5], and Super-resolution (Super) [29]. As de-
picted in Table 4, perturbations from black-box attacks tend to
lose their potency under defensive measures, likely due to pre-
processing adding uncertainty to the model and thus diluting the
effectiveness of query-based attacks. Conversely, DP-RAE employs
the white-box preprocessing technique, GQBE, which identifies
and exploits common vulnerabilities across models, diminishing
the impact of defensive methods. By integrating multiple models,
DP-RAE addresses the overfitting issue and enhances resilience
against defensive tactics. As a result, DP-RAE showcases excep-
tional adaptability and robustness, maintaining high attack success
rates against diverse defense strategies.

Table 4: The ASR (%) of adversarial attacks when againsting
different defence methods.

Attack
method

Defense method

Spatial Random Gaussian JPEG Super

FGSM [11] 55.9 53.4 48.2 62.6 75.1
BIM [20] 51.5 62.3 38.6 60.2 90.7
PGD [26] 49.4 57.1 37.7 56.3 87.2

SimBA [12] 18.7 3.8 16.7 4.3 2.0
SimBA-DCT [12] 19.5 3.9 15.9 3.5 1.7
Surfree [27] 19.6 6.7 17.7 5.2 3.5

DP-AE (Ours) 63.1 62.9 59.4 69.8 83.6
DP-RAE (Ours) 63.2 62.6 59.2 69.4 82.3

4.5 Reversibility of DP-RAE
The restoration effect of adversarial images is pivotal in underscor-
ing DP-RAE’s efficacy. Notably, prior works have not extensively
explored the recovery performance of RAEs. To validate the restora-
tion capabilities of RAEs, we compared images restored by DP-RAE
with their original counterparts. As depicted in Figure 4, while ad-
versarial manipulations may marginally impact visual quality, they
do not hinder the accurate recognition of the content by human
observers. The restoration process effectively neutralizes DP-RAE’s
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Figure 4: Visual effects before and after DP-RAE recovery
and the ability of DP-RAE to mislead the model.

perturbations, thereby not only restoring visual fidelity but also
recovering the neural network’s initial classification accuracy for
these examples. Table 5 evaluates the image quality post-DP-RAE
restoration under three distinct perturbation intensities, revealing
that the Post-Recovery PSNR for all perturbation levels exceeds
40 dB and the SSIM approaches 1. This indicates exceptional re-
stored image quality. Moreover, the misclassification rate for images
post-recovery through DP-RAE significantly drops from 94.3% to
0%, affirming DP-RAE’s capacity to effectively counteract pertur-
bations that compromise the model’s classification accuracy, thus
facilitating self-recovery.

Table 5: The recoverability of our attack method varies with
different levels of unit noise. "Adversarial" and "Recover"
respectively indicate whether the detected image is an ad-
versarial example or a recovered image, "↑" means the bigger
the better.

Unit
noise

Adversarial Recover

PSNR ↑ SSIM ↑ ASR ↑ PSNR ↑ SSIM ↑ ASR ↓

3/255 30.42 0.8415 89.9 44.40 0.9877 0
4/255 27.94 0.7667 94.3 43.61 0.9841 0
5/255 25.97 0.6960 96.9 42.76 0.9801 0

Figure 5: In the commercial model, clean image identified as
a "Rocking chair", DP-RAE misclassified as "Historic sites".

4.6 Commercial model attack
To validate our RAE’s effectiveness on real-world systems, we tar-
geted Baidu’s cloud vision API1, a service for object recognition.
We aimed to eliminate the top label from the API’s top-3 returned
labels, considering the constraints on perturbations and queries. We
prepared 50 images, correctly identified by the API, for enhanced
robustness through white-box attacks. These attacks successfully
misled 70% of the images, thanks to significant perturbations, which
are reversible in RAEs, minimizing the impact on legitimate users.
Subsequent black-box attacks on the rest, by probing the API for
decision boundaries, achieved a 90% success rate.

As shown in Figure 5, we achieve the model misclassify from
the original label "rocking chair" to the wrong label "historic sites",
underscoring our method’s threat to commercial black-box mod-
els and its role in protecting user privacy. Given the limitation on
the number of queries allowed for commercial models, we believe
that increasing the number of queries can effectively enhance the
success rate of the attack. All relevant details and the corre-
sponding analyses of the evaluation results are included in
our provided supplemental material.

5 CONCLUSION
Based on the harm posed by adversarial examples to deep neural
networks, we leverage this characteristic as a new mechanism for
social privacy protection. This work introduces the DP-RAE frame-
work for creating robust adversarial examples aimed at specific
black-box models. Through initial white-box attack preprocessing,
these examples become more robust and simplify subsequent black-
box attacks. Utilizing historical query data, our heuristic black-
box attacks improve efficiency. Our experiments demonstrate that
DP-RAE surpasses conventional ones in effectiveness. Moreover,
DP-RAE marks the inception of reversible adversarial examples ap-
plicable to commercial black-box models, combining recoverability
and robustness to offer a novel privacy protection solution.

1https://ai.baidu.com/tech/imagerecognition/general
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