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ABSTRACT

In this work, we propose a novel system for automatically generating multi-shot
speech videos with natural camera transitions, using input text lines and reference
images from various camera angles. Existing human video generation datasets
and methods are largely centered on faces or half-body single-shot videos, thus
lack the capacity to produce multi-shot full-body dynamic movements from dif-
ferent camera angles. Recognizing the lack of suitable datasets, we first intro-
duce TalkCuts, a large-scale dataset containing over 500 hours of human speech
videos with diverse camera shots, rich 3D SMPL-X motion annotations, and cam-
era trajectories, covering a wide range of identities. Based on this dataset, we fur-
ther propose an LLM-guided multi-modal generation framework, named Orator,
where the LLM serves as a multi-role director, generating detailed instructions for
camera transitions, speaker gestures, and vocal delivery. This enables the system
to generate coherent long-form videos through a multi-modal video generation
module. Extensive experiments show that our framework successfully generates
coherent and engaging multi-shot speech videos. Both the dataset and the model
will be made publicly available. We encourage the readers to view the illustration
of the dataset and generated results at https://oratordemo.github.io/.

1 INTRODUCTION

Creating multi-shot human speech videos is of significant importance across various industries, in-
cluding entertainment, education, the film industry, corporate communications, and content creation.
The production of such videos involves an intricate interplay of several interacting systems. These
systems encompass the way a speaker articulates a given speech, the manner in which the speaker
gesticulates and moves within a scene to emphasize certain aspects of the speech and the dynamic
camera work that decides between multi-angle shots to emphasize emotions and follow the human
subject. However, at its core, a video production begins with a script, and the complex interplay-
ing systems are interpretations of the script, performed and executed by experts such as speakers,
educators, comedians, and camera operators, and tied together by a director.

In this work, we pose a novel question: can this intricate process be automated by a system of
foundation models? Specifically, can we design foundation models that, given a script and reference
images of a person, collaborate to generate a multi-shot human speech video while accounting for
all aspects of the production, including vocal delivery, human motion, and dynamic camera work?
A high-level overview of this concept is illustrated in Fig. 1.

Recent works have tackled partial aspects of this challenge. Pose-guided methods like AnimateAny-
one (Hu, 2024) and MimicMotion (Zhang et al., 2024a) leverage diffusion models to synthesize
videos of dancing humans based on driving human pose sequences. Audio-driven methods like
EMAGE (Liu et al., 2023) generate 3D proxy geometry from speech inputs. Despite these ad-
vancements, current human video generation approaches still fall short in handling the complexity
required for multi-shot speech video generation. Firstly, most pose-guided approaches rely on key-
points and images, focusing on domains like dancing (Islam et al., 2019; Guo et al., 2021; Wang
et al., 2024a; Xue et al., 2024). These methods often depend on pre-defined keypoints, limiting
their ability to function in fully automated systems. While some works attempt to generate speech
or talk show scenarios, they are typically constrained to single, static half-body shots(Corona et al.,
2024; Zhou et al., 2020), lacking dynamic camera transitions and failing to maintain visual consis-

1

https://oratordemo.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Hey Director. Let's create a long-form 
human speech video using the provided 
text lines and reference images.

Reference 

 Images

[1] I’m like, I ain’t taking this. My foot 

said, you better try it… 

[2] That’s why you see me do this. I’m 

making a shoe for people over… 

[3] And the only medication they got for 

gout kills your liver, so they tell you, 

take it for a day …

[4] If you see me dressed up, the first 

thing I do is I kick my shoes off…

Input Text

Lines

[1] I’m like, I ain’t taking this [Audio Instruction: 
Annoyed, slightly raised pitch]. My foot said, you 

better try it…  [Camera Instruction: Close Shot]

[2] That’s why you see me do this [Motion Instruction: 
Lift right hand]. I’m making a shoe for people over… 

[Camera Instruction: Medium Close Shot]

[3] And the only medication they got for gout kills your 

liver [Audio Instruction: Serious tone, slow pace], so 

they tell you, take it for a day… [Camera Instruction: 
Medium Shot]

[4] If you see me dressed up [Motion Instruction: Walk 
to the left], the first thing I do is I kick my shoes off… 

[Camera Instruction: Full Shot]

Sure! I will direct the talk by 
orchestrating camera shot changes, 
vocal delivery and speaker’s gestures.

Figure 1: Multi-shot Human Speech Video Generation. We propose Orator, a fully automated
system that generates human speech videos with dynamic camera shots. By organically integrating
multiple modules, a DirectorLLM directs camera transitions, gestures, and audio instructions, deliv-
ering coherent and engaging multi-shot speech videos.

tency across shots. Secondly, audio-to-gesture methods focus primarily on generating 3D gesture
sequences from speech (Wang et al., 2024d; Yi et al., 2023b; Lin et al., 2023), without incorporating
these gestures into full video generation or accounting for camera work.

The question remains: how can we generate long-form human speech videos with dynamic camera
shots in a holistic end-to-end system? To address this, we propose Orator, a pipeline automatically
orchestrates the entire process. The system is structured around two key components: a multi-modal
video generation module that synthesizes the final video, and a DirectorLLM that guides the gener-
ation process. In the multi-modal video generation module, the SpeechGen module first processes
the input text and LLM-generated audio instructions to produce synchronized speech audio. Next,
the MotionGen module synthesizes 3D motion sequences based on the audio and motion instruc-
tions from the DirectorLLM. These 3D motions are projected onto the reference images, following
camera shot instructions from LLM to generate 2D keypoint sequences. Finally, the VideoGen
module integrates these keypoints with the reference images via a video diffusion model, producing
long-form speech videos with natural camera transitions, synchronized gestures, and dynamic vocal
delivery. To naturally tie these modules together, a DirectorLLM serves as a multi-role director,
guiding the entire system. By providing instructions for camera shot transitions, speaker gestures,
and vocal delivery, ensuring that camera angles and actions are synchronized with the speech con-
tent and emotional flow. The DirectorLLM determines when to switch between camera angles (e.g.,
close-up, medium, or wide shots) based on the speech content and emotional flow. Beyond camera
control, the DirectorLLM generates natural gesture sequences that align with the speaker’s actions
and offer vocal delivery guidance to modulate tone, emotion, and pacing. By automating the coor-
dination between these components, our pipeline effectively overcomes the limitations of existing
methods, advancing the generation of long-form human speech videos in dynamic settings.

Another key reason why no existing method has holistically addressed this problem is the lack of
suitable datasets. Popular public human video generation datasets like TikTok (Jafarian & Park,
2021) and UBC-Fashion (Zablotskaia et al., 2019) focus on dancing and fashion, while datasets like
TED Talks (Siarohin et al., 2021) target speech scenarios but are limited in scale and quality. In
summary, as shown in Table 1, current human speech video generation benchmarks are restricted by
their limited scale, diversity of identities, and lack of comprehensive 2D, 3D, and camera annota-
tions. Moreover, they are constrained to static single-shot settings. To address this gap, we introduce
TalkCuts, a large-scale dataset specifically curated for human speech video generation with dynamic
camera shots. TalkCuts features a diverse collection of videos from talk shows, TED talks, stand-up
comedy, and other speech scenarios, comprising over 10,000 unique speaker identities. Each video
contains multiple camera shots and is annotated with 2D whole-body keypoints, 3D SMPL-X esti-
mations, and camera trajectories. With 1080p resolution and over 500 hours of footage, TalkCuts
is the largest public dataset of its kind. All videos have been meticulously filtered and annotated to
ensure high quality, providing a comprehensive resource for training and evaluating models capable
of generating realistic, multi-shot videos in dynamic speech settings.

Our experimental results demonstrate the effectiveness of our system in generating high-quality
speech videos with realistic camera shot transitions. The LLM-directed camera shot planning pro-
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duces coherent transitions that align well with the speech content and emotional flow, validating
the effectiveness of the LLM’s role in guiding both camera shots. The experiments also validate the
value of the TalkCuts dataset, showing that it provides sufficient diversity in camera angles, gestures,
and speech dynamics to advance high-quality speech multi-shot video generation.

In summary, this paper makes the following contributions: (1) We introduce a novel task of speech
video generation with dynamic camera shots across different scales, including head, half-body,
and full-body views; (2) We present TalkCuts, the first large-scale dataset specifically designed for
speech-driven video generation, featuring over 10,000 unique identities, diverse scenarios, and rich
annotations including multi-shot camera transitions, 3D SMPLX motion data, and camera trajecto-
ries; (3) We propose Orator, an automatic pipeline for fine-grained video generation across various
speech scenarios, ensuring visual identity consistency. The pipeline integrates a multi-modal gen-
eration system guided by a DirectorLLM for camera shot transitions, gesture dynamics, and vocal
delivery; (4) Extensive experimental results validate the effectiveness of our approach in generating
engaging and realistic multi-shot speech videos.

2 RELATED WORKS

Pose-guided Human Video Generation. Current research on pose-driven human video generation
typically follows a standardized pipeline, with a growing emphasis on efficient pose representations
such as skeletons, dense poses, depth maps, mesh models, and optical flow. Early works (Yoon et al.,
2021; Chan et al., 2019) predominantly based on GANs (Goodfellow et al., 2020). However, with
the development of diffusion model like stable diffusion (SD) and Stable Video Diffusion (SVD),
more recent approaches (Tu et al., 2024; Wang et al., 2024b) utilize the UNet structure for video
generation. For example, MagicPose (Chang et al., 2023) injects pose features into SD by Control-
Net (Zhang et al.) meanwhile MimicMotion (Zhang et al., 2024a) and AnimateAnyone (Hu et al.,
2023) extract skeleton poses from targvideo frames using DwPose or OpenPose. Unlike skeleton-
based methods, DreamPose (Karras et al., 2023) and MagicAnimate (Xu et al., 2023) employ dense
poses, which are directly integrated into the denoising UNet. Furthermore, methods such as Hu-
man4DiT (Shao et al., 2024) and Champ (Zhu et al., 2024b) extracts 3D mesh maps using SMPLX.

Audio-Driven Human Video and Motion Generation Holistic body motion generation from
speech involves synthesizing whole-body motions (Li et al., 2021; Qi et al., 2024). Recognizing that
audio signals convey more than just semantic content, (Yi et al., 2023a) propose a method to gener-
ate holistic body movements by segmenting the audio signal into different components, each guiding
a separate motion generation process. Similarly, learning from masked gesture data, EMAGE (Liu
et al., 2023) utilizes four compositional VQ-VAEs for generation. Witnessing the success of diffu-
sion models, more and more works (Chen et al., 2024) began to utilize a diffusion-based structure.
MotionCraft (Bian et al., 2024b) exemplifies this trend, using a unified DiT structure to incorpo-
rate multimodal controls and achieving state-of-the-art results in audio-to-motion generation. In the
domain of audio-driven video generation, preliminary works (Sun et al., 2023; Tian et al., 2024; Ji
et al., 2024b) have primarily concentrated on facial regions, ensuring a high degree of consistency
between lip movements and the semantic content of the corresponding audio. To expand the gener-
ated region, (Corona et al., 2024) synthesizes half-body human videos, while Make-Your-Anchor
(Huang et al., 2024c) generates anchor-style full-body videos by translating audio into detailed torso
and hand movements using a two-stage diffusion model. ANGIE (Liu et al., 2022) employs an unsu-
pervised feature to model body motion while DiffTED (Hogue et al., 2024) decouples motion from
gesture videos while preserving additional appearance information.

3 TALKCUTS DATASET

We introduce TalkCuts, a large-scale human video dataset specifically designed for speech scenarios
such as TED talks and talkshows. TalkCuts provides high-resolution speech videos with varying
camera shots, and includes diverse modalities such as synchronized texts, audio, 2D keypoints, 3D
SMPLX parameters, and camera trajectories, enabling comprehensive multimodal training and eval-
uation for multi-shot speech video generation. This dataset provides a comprehensive benchmark
for future research, facilitating further improvements in speech video generation.
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3.1 DATA CURATION

Data Collection. We performed keyword searches targeting different speech scenarios on YouTube,
Xiaohongshu, and Bilibili platforms to crawl copyright-free, high resolution real-world videos.
Then, manual filtering was applied to remove low-quality or irrelevant content. Only videos fea-
turing a clearly visible human speaker with corresponding speech audio were retained, while videos
with significant obstructions, unclear visuals, or mismatched audio were discarded.

Dataset Meta Information Modality Camera
Clips Frames Resolution Hours ID 2D Annot. 3D Annot. Audio Trajectory Shots

Pose-guided Generation Datasets
TikTok (Jafarian & Park, 2021) 340 93k 604x1080 1.03 ≈300 ✗ ✗ ✓ ✗ Single
TED Talks (Siarohin et al., 2021) 1322 197k 384x384 - 173 ✗ ✗ ✓ ✗ Single
UBC-Fashion (Zablotskaia et al., 2019) 500 192k 720x964 2 ≈600 DWPose ✗ ✗ ✗ Single

Audio-to-gesture Generation Datasets
Speech2Gesture (Ginosar et al., 2019) - - - 144 10 OpenPose ✗ ✓ ✗ Single
UBody (Lin et al., 2023) - 1051k - 11.7 - DWPose SMPL-X ✗ ✗ Single
TalkSHOW (Yi et al., 2023b) 17k - - 38.6 4 ✓ SMPL-X ✓ ✗ Single
BEAT2 (Liu et al., 2023) - 32M 1080P 76 30 ✓ SMPL-X ✓ ✗ Single

Ours 164k 57M 1080P 507 11k+ DWPose SMPL-X ✓ ✓ Multi

Table 1: Comparison of existing public datasets for pose-guided video generation (top) and audio-
to-gesture generation (bottom), categorized by meta information, modality, and camera details.

f) lectured) Vlog

b) TED talk c) poem reciting

e) comedy

a) interview

1. Different Scenes 2. Various Identity 3. Diverse Video Angles

f)

Figure 2: Visual overview of TalkCuts dataset. (1) The dataset covers diverse speech scenarios.
(2) It features a wide range of identities, capturing individuals of various ethnicities, body types, and
ages. (3) Most identities are recorded with multiple diverse camera shots.

Data Filtering and 2D Keypoint Detection. We use PySceneDetect (Castellano) to segment each
video into multiple clips based on scene transitions. To ensure high-quality clips, we apply RTMDet
(Lyu et al., 2022) from MMDetection (Chen et al., 2019) for human detection. Clips are filtered out
if no human or multiple humans are detected, or if the bounding box is too small. For the remaining
clips, we apply DWPose (Yang et al., 2023a) for human pose estimation to obtain the COCO-whole
body pose with 133 keypoints. Final filtering is based on the head keypoint confidence scores,
discarding clips with low scores for key facial points.

Data Statistics. Our dataset contains over 500 hours of video, with 164K clips and 57M frames,
featuring more than 10K unique speaker identities, all in 1080p resolution. Table 1 provides a com-
prehensive comparison of our dataset with existing speech video datasets, highlighting its scale,
diversity, and rich annotations, including multi-camera-shots and 3D SMPLX motion data. Addi-
tionally, as shown in Fig. 2, our dataset captures a wide range of speech scenarios (e.g., TED talk,
stand-up comedy, presentation, lecture, interview, talkshow and so on), featuring diverse speaker
demographics (in terms of race, body type, and age) and various camera shots for each identity,
making it suitable for training and evaluating multi-shot speech video generation models.

3.2 DATA ANNOTATION

Camera Shots Definition. In our paper, we classify camera shots into six types: Close-Up (CU),
Medium Close-Up (MCU), Medium Shot (MS), Medium Full Shot (MFS), Full Shot (FS), and Wide
Shot (WS) based on established cinematographic principles (as is shown in Fig. 2), as outlined by
(Brown, 2016). This classification allows for capturing a wide range of visual details and character
interactions, from intimate facial expressions to contextualizing the subject within their environment.
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3D SMPL-X Annotation. We adopt the SMPL-X (Pavlakos et al., 2019) model to represent 3D
human motion. For a given T-frame video clip, the corresponding pose states P are represented
as: P = {Pf ,Pb,Ph, ζ, ϵ}, where Pf ∈ RT×3, Pb ∈ RT×63, and Ph ∈ RT×90 represent the
jaw poses, body poses, and hand poses, respectively. ζ ∈ RT×10 and ϵ ∈ RT×3 denote the facial
expressions and global translation. We initially use the state-of-the-art method SMPLerx (Cai et al.,
2024) to estimate the whole-body motion sequence P , but observed limitations in the accuracy of
face and hand parameters, specifically Pf , ζ, and Ph. To address this, we refine the hand poses P ′

h
using HaMeR (Pavlakos et al., 2024), and improve the jaw poses P ′

f and facial expressions ζ ′ using
EMOCA (Danecek et al., 2022; Feng et al., 2021). We then combine the refined P ′

f , ζ ′, and P ′
h into

the original pose prediction P to obtain the final high-quality motion estimation P ′.

Camera Trajectory Annotation. To reconstruct global camera trajectories from the monocular
videos in our dataset, we employ TRAM (Wang et al., 2024c), which builds upon DROID-SLAM
(Teed & Deng, 2021) for recovering camera trajectories. To achieve metric-scale accuracy, we refine
the estimations by leveraging depth predictions (Bhat et al., 2023) and incorporating semantic cues
from the background. This process enables us to recover precise, metric-scale camera motion.

4 METHOD

In this section, we present the details of Orator for multi-shot human speech video generation. We
begin with an overview of the overall system in Sec. 4.1. Following this, we introduce our proposed
Multimodal Video Generation Module, composed of the SpeechGen, MotionGen, and VideoGen
modules, which sequentially generate the audio, 3D motions, and final video outputs in Sec. 4.2.
Then, in Sec. 4.3, we describe the DirectorLLM, which provides instructions for camera transitions,
gestures, and vocal delivery to guide the generation process.

4.1 OVERALL FRAMEWORK

The overall framework of Orator is shown in Fig. 3, which consists of a DirectorLLM and a Mul-
timodal Video Generation Module with a set of specialized generation modules. Given an input
speech script S and a set of reference images {Ik}Kk=1 from different camera angles, our framework
aims to automatically generate a long-form speech video V with natural camera shot transitions.
Firstly, the DirectorLLM takes the speech script S as input and generates camera shot instructions
{T c

i }Ni=1 that determine when and how to transition between shots. These instructions segment the
script into N segments {Si}Ni=1, each corresponding to a distinct shot. For each segment, the Di-
rectorLLM additionally produces motion instructions {Tm

i }Ni=1for the speaker’s gestures and body
movements, as well as audio instructions {T a

i }Ni=1 for vocal delivery, such as tone and pace.

These instructions {T c
i }Ni=1, {Tm

i }Ni=1, and {T a
i }Ni=1 are then passed to the corresponding genera-

tion modules. The SpeechGen module processes each text segment Si with the audio instructions
T a
i to generate the vocal output Ai. The MotionGen module then takes the generated audio Ai

and motion instructions Tm
i to synthesize 3D motion sequences {Mi}Ni=1. Using the camera shot

instructions {T c
i }Ni=1, these 3D motion sequences are projected onto the corresponding reference

images to get 2D keypoint sequences {Ki}Ni=1. Finally, the VideoGen module takes the keypoint
sequences {Ki}Ni=1 and the reference images {Ik}Kk=1 to generate the final video V via a video
diffusion model, incorporating smooth camera transitions, natural gestures, and synchronized audio.

4.2 MULTIMODAL VIDEO GENERATION

To enable the automatic generation of long-form speech videos with natural camera transitions,
we design a multimodal video generation pipeline. This system integrates three submodules that
collaboratively generate synchronized audio, 3D motion sequences, and final video outputs, with
instructions provided by the DirectorLLM.

SpeechGen. The SpeechGen module is responsible for generating expressive speech audio based on
the vocal instructions provided by the DirectorLLM. After receiving the vocal instructions {T a

i }Ni=1,
which specify the tone, pitch, pace, and pauses for each speech segment Si, the SpeechGen module
processes the input text lines Si and generates corresponding audio output Ai.

5
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Input Lines

[1] What kind of impact did it make on 

you and on the lives of others around 

you…

[2] I've preached at people for years, 

trying to get them to follow a strict set of 

rules that I wasn't even willing to abide 

by…

[3] As a pastor, I was trying my best to 

make a positive impact in the lives of 

others…

Director

LLM

Retrieval-based 

Augmentation Generation

Embedding 

Model

Corpus Database
Top-k Few

Shot Examples

SpeechGen

Motion

Instructions

Audio

Instructions

Camera

Instructions

MotionGen

Audio

SMPLX Motion Sequence

[1]: Close Shot

[2]: Medium Shot

[3]: Full Shot

2D Keypoints 

Sequence

Input Images

“Close Shot”

“Medium Shot”

“Full Shot”

Projection

Close Shot

Medium Shot

Full Shot

VideoGen

VideoGen

VideoGen

Output Videos

Video Clip 1

Video Clip 2

Video Clip 3

Audio

+

+

+

Director

LLM

Figure 3: Pipeline of Orator. The DirectorLLM processes the input script to generate instructions
for camera shots, motion, and audio. These guide the multi-modal generation module to produce
the final long-form speech video with natural transitions and gestures.

We utilize the text-to-speech model CosyVoice (Du et al., 2024), which is instruction fine-tuned (Ji
et al., 2024a) for enhanced controllability. The model allows for sentence-level adjustments such
as emotion, speaking rate, and pitch, as well as token-level controls to insert elements like laughter,
breaths, and word emphasis. The SpeechGen module seamlessly integrates these controls from
the DirectorLLM, with sentence-level prompts guiding the overall tone and pacing, and tokens like
<strong> for emphasis and [breath] for natural pauses. This combined approach ensures that
the generated audio synchronizes with the speech content and emotional flow.

MotionGen. The MotionGen module generates 3D whole-body motion sequences based on the
DirectorLLM’s motion instructions {Tm

i }Ni=1 and the speech audio Ai generated by the SpeechGen
module. We leverage MotionCraft (Bian et al., 2024a), a unified diffusion transformer model with
multimodal control, to generate SMPL-X 3D motion sequences. The model follows a two-stage
coarse-to-fine framework: generating high-level semantic motion from coarse-grained text descrip-
tions and fine-tuning the speech control branches to achieve detailed control over 3D poses.

However, since the pre-trained MotionCraft model was trained only on the BEAT2 dataset (Liu et al.,
2023), which limits the variety of generated gestures and movements to a few specific identities, to
address this limitation, we freeze the first stage of the model and fine-tune the second stage, specifi-
cally the speech control branch, using our dataset. This enables the model to generate more diverse
and natural motions tailored to different speech scenarios. Through this process, the MotionGen
module generates coherent 3D motion sequences {Mi}Ni=1 for each segment Si, which are later pro-
jected onto the 2D reference images according to the camera shot instructions {T c

i }Ni=1 to generate
the 2D keypoint sequences {Ki}Ni=1.

VideoGen. The VideoGen module is responsible for generating human speech videos based on the
provided reference images {Ik}Kk=1 and the 2D pose sequences {Ki}Ni=1 generated by the Motion-
Gen module. The goal is to produce videos that not only align with the given pose sequences but
also maintain visual fidelity to the reference images throughout the video.

To achieve this, we leverage the pre-trained capabilities of Stable Video Diffusion (SVD) (Blattmann
et al., 2023). SVD is known for its performance in generating high-quality, diverse videos from sin-
gle images, making it an effective model for image-based video generation in our task. By utilizing
a pre-trained model, we can significantly reduce the data requirements and computational costs. To
enable pose-guide video generation, we integrate ControlNeXt (Peng et al., 2024), a lightweight
convolution module for efficient controllable video generation. ControlNeXt efficiently extracts hu-
man pose control features using multiple ResNet blocks, which are then integrated into the denoising
process of the pre-trained SVD model. Specifically, the conditional control features derived from the
pose sequences are added to the denoising branch of SVD at the middle block, allowing the system
to directly utilize the pose sequence Ki during video generation. While combining the pre-trained
SVD and ControlNeXt models results in smooth video generation aligned with the pose sequences,
we observed an issue: the generated faces often lacked fidelity to the reference images. To address
this, we fine-tune the ControlNeXt branch on our dataset, specifically adapting the model to the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

speech-driven domain. By fine-tuning only the pose control branch, we retain the advantages of the
pre-trained SVD model while adapting it to produce videos that maintain consistent visual fidelity
with the identity in the reference images. Finally, for each video segment, we generate individual
video clips Vi by combining the corresponding 2D keypoint sequence Ki and the reference image
Iki

. The final long-form speech video V with different camera shots is obtained by concatenating
all the generated video clips {Vi}Ni=1.

4.3 DIRETCORLLM AS A MULTI-ROLE DIRECTOR FOR HUMAN VIDEO GENERATION

In this section, we describe the DirectorLLM’s role in orchestrating the key elements of video gen-
eration: camera shot planning, speaker gesture control, and vocal delivery guidance. Below, we first
elaborate how the DirectorLLM handles camera shot planning based on the input speech script.

LLM as Camera Shots Planner. The DirectorLLM analyzes the speech script S and generates cam-
era shot instructions {T c

i }Ni=1, which are then utilized to segment the script into N segments {Si}Ni=1
corresponding to different camera shots. These shot instructions determine the optimal camera an-
gle transitions based on the narrative structure, emotional flow, and key emphasis points within the
speech. The LLM selects camera shots based on narrative structure, emotional intensity, and key
moments in the script, recommending shot transitions like “close-up” (close up shot) during
emotional highlights and “wide shots” (wide shot) for contextual emphasis. In our approach to
automatic shot division, we employ a Retrieval-Augmented Generation (RAG)-based method (Guu
et al., 2020; Lewis et al., 2020), leveraging GPT-4o (Achiam et al., 2023) to produce shot transi-
tions {T c

i }Ni=1 for video content based on speech. The process begins by extracting text embeddings
E(S) from the input speech S using a text-embedding model. We then compute the cosine similar-
ity between the input embeddings E(S) and a pre-computed set of embeddings {E(Sj)}Mj=1 from
our training dataset, the Shot Division Corpus (SDC), which contains speech segments paired with
ground-truth shot transitions {T c

j }Mj=1. Using this, we retrieve the top-5 most similar speech seg-
ments based on the cosine similarity. These retrieved examples {Sj}5j=1 and their corresponding
shot transitions {T c

j }5j=1, are used as few-shot prompts for GPT-4o (Achiam et al., 2023). Given
these contextually relevant examples, GPT-4o generates a shot transition plan {T c

i }Ni=1 for the input
speech S. This approach enables the model to adapt its predictions by learning from past similar
examples, effectively capturing the nuanced relationship between speech content and shot division.

LLM as Motion Instructor. The DirectorLLM also acts as a motion planner, guiding the speaker’s
body language, gestures, and movement on stage to enhance the delivery of the speech. For
each speech segment Si, the LLM motion instructions {Tm

i }Ni=1, tailored to the content and emo-
tional tone of the speech. For gestures, the LLM analyzes key points of emphasis and emotion
to suggest actions like “raise right hand” (gesture raise right hand) or “open arms”
(gesture open arms) during moments of intensity. For more reflective segments, it might rec-
ommend subtler movements like “fold hands” (gesture fold hands). In addition to gestures,
the LLM provides instructions for stage movement. Based on the flow of the speech, the LLM
suggests where and when the speaker should move on stage, suggesting instructions such as “move
left” (move left) or “step forward” (step forward) to maintain a dynamic presence.

LLM as Voice Delivery Instructor. The DirectorLLM provides fine-grained vocal instructions
for intonation, pitch, pace, and emotion, guiding the speaker’s delivery to enhance engagement.
For each speech segment Si, the LLM generates vocal instructions {T a

i }Ni=1 tailored to the emo-
tional tone and context. The LLM could conduct prompt-based control for sentence-level adjust-
ments, controlling overall pitch, emotion, and pacing of a sentence. For example, for introductory
remarks or transitions, the LLM might instruct: “calm tone and lower pitch” (tone calm and
pitch low). During critical moments, the LLM can adjust the pace or suggest pauses for em-
phasis: “slow down for emphasis” (slow pace). The LLM can also leverage token-based control
for fine-grained adjustments by inserting word-level emphasis, breathing, or laughter tokens. For
instance, it can emphasize key terms: “The <strong>only</strong> medication they have
for gout kills your liver” or add realism with [breath] or [laughter] tokens: “I’m like, I ain’t taking
this... [breath] My foot said, you better try it.”. By combining these sentence-level and word-level
controls, the LLM dynamically adjusts the vocal performance to match the speech’s emotional flow,
providing a more engaging and natural delivery for speech-driven videos.
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5 EXPERIMENTS

We evaluate our proposed Orator on three key tasks: LLM-guided camera shot transitions, speech-
to-gesture generation, and human video generation. Each section presents the metrics and results
for these components.

5.1 LLM-GUIDED CAMERA SHOT TRANSITIONS

Metrics. We assess shot planning accuracy using three key metrics: IoU (Intersection over Union),
measuring the overlap between predicted and ground truth shot boundaries (higher IoU indicates
better alignment); Accuracy, reflecting the percentage of correctly predicted shot types; and Shot
Matching Accuracy (SMA), which evaluates how consistently the predicted shot types match the
ground truth at specific time intervals.

Method Accuracy↑ SMA↑ IOU↑

Embedding Model 35.60% 30.42% 35.60%

Llama 3.1 Z.S. 20.41% 23.72% 10.50%
Llama 3.1 R.F. 24.63% 44.01% 13.28%
Llama 3.1 RAG 21.65% 47.15% 15.33 %
Llama 3.1 Tune 79.09% 49.40% 30.06%

GPT-4o Z.S. 64.34% 48.34% 40.59%
GPT-4o R.F. 67.50% 58.12% 42.46%

GPT-4o RAG (Ours) 70.66% 64.06 % 48.10%

(a) LLM-guided Camera Shot Transitions

Method FIDH ↓ FIDB ↓ Face L2↓ BA↑ Div↑

Talkshow 129.623 143.827 11.976 7.982 5.861
EMAGE 138.196 156.441 11.791 9.023 5.476
MotionCraft 125.375 123.340 12.985 9.001 6.217

Ours 121.526 123.304 12.495 9.090 6.605

(b) Speech-to-Motion Generation

Table 2: Quantitative results of LLM-guided camera shot transitions and speech-to-moton
generation. (a) compares with different baselines designed for camera-shot transition planning; (b)
compares with speech-to-motion baselines. best in red and second best in yellow .

OursReference Image GTControlNeXtAnimateAnyone MusePoseMagicAnimate MimicMotion

Figure 4: Qualitative Comparison of Human Video Generation Results. We compare our result
with baseline models across close-up, medium, and full shots. Notable artifacts in the baseline mod-
els, such as facial distortions, motion blur, or inconsistencies in body movements, are highlighted
using arrows and bounding boxes. Our method produces more consistent and realistic results across
all shot types, maintaining visual fidelity and smoother transitions compared to the baselines.

Baselines. We compare several models: GPT-4o (Achiam et al., 2023), LLaMA 3.1-8B-Instruct
(Dubey et al., 2024), and Snowflake-Embed (Merrick et al., 2024). For GPT-4o, we evaluate three
setups: RAG-fewshot, random-fewshot, and zeroshot. For the RAG-fewshot setup, we utilized text-
embedding-3-small and FAISS (Douze et al., 2024) to retrieve the five most similar examples from
the training set to serve as few-shot samples. In contrast, for the random-fewshot setup, we randomly
selected five examples from the training set. LLaMA 3.1 (Dubey et al., 2024) is evaluated using
similar setups, with additional fine-tuning performed using LoRA (Hu et al., 2021). Snowflake-
Embed, being a lightweight embedding model, required the addition of a linear classification head
to function as a classifier.

Result Analysis. We present the comparison between different baselines in Tab. 2 (a). The embed-
ding model serves as a baseline and shows limited performance without contextual understanding.
IoU and SMA values are observed to be better indicators of alignment between the predicted and
ground truth shot boundaries compared to accuracy, as high accuracy may due to overfitting. For
SMA and IoU, both the Llama (Dubey et al., 2024) and GPT-4o (Achiam et al., 2023) RAG models

8
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outperforms random-fewshot, indicating that selecting relevant examples in our data corpus im-
proves shot planning performance. It is worth noting that the fine-tuned LLaMA model does not
achieve a higher IoU than the Embedding Model, but its SMA is significantly better. This suggests
that the fine-tuned Llama model has learned some contextual information. On the other hand, GPT-
4o (Achiam et al., 2023), although slightly inferior to the fine-tuned Llama (Dubey et al., 2024) in
terms of accuracy, shows much higher SMA and IoU, making it the final chosen model.

5.2 SPEECH-TO-GESTURE GENERATION

Metrics and Baselines. We use FIDH , FIDB , and Div for quality and diversity measurement.
FIDH represents the difference between the hand motion distribution and the ground truth gesture
distribution, while FIDB focuses on the distance between the distributions of whole-body motion.
Moreover, we use the Beat Alignment Score (Davies & Plumbley, 2007) to measure the alignment
between the motion and speech beats and employ L2 Loss to measure the difference between gener-
ated and real expressions. We compare our result with the SOTA audio-to-motion methods Talkshow
(Yi et al., 2023b), EMAGE (Liu et al., 2023) and MotionCraft (Bian et al., 2024b).

Comparison on Speech-to-Gesture Generation. Table 2 (b) demonstrates that our fine-tuned
model achieves noticeable improvements across all metrics compared to baseline models. Specif-
ically, our model achieves the best or second-best performance in all metrics, highlighting its ef-
fectiveness. By fine-tuning on our dataset, which contains diverse speech scenarios, our model
achieves notable improvements over MotionCraft (Bian et al., 2024b), which was originally trained
on a limited dataset. This fine-tuning significantly enhances the performance, allowing our model to
generate more varied and contextually appropriate gestures, making it suitable for a wide range of
speech scenarios.

Animate Anyone Animate Anyone Tuned MusePose MusePose Tuned ControlNeXt ControlNeXt Tuned GT

W
ho

le
 b

od
y

H
al

f b
od

y
H

ea
d
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Figure 5: Ablation Study on Multi-Shot Human Video Generation. We compares the results of
different models after fine-tuning on TalkCuts across various camera shots.

5.3 HUMAN VIDEO GENERATION

Method Video Generation Quality ID Preser.
SSIM↑ PSNR↑ LPIPS↓ FID↓ FVD↓ ArcFace Dis. ↓

MagicAnimate Xu et al. (2024) 0.731 18.397 0.235 125.500 893.230 0.552
Animate Anyone Hu (2024) 0.754 20.468 0.176 93.230 789.360 0.450
MusePose Tong et al. (2024) 0.771 19.468 0.191 106.760 823.020 0.513

ControlNeXt Peng et al. (2024) 0.746 21.584 0.149 63.150 485.118 0.409
MimicMotion Zhang et al. (2024b) 0.759 20.572 0.168 81.820 702.410 0.435

Ours 0.763 21.959 0.146 62.550 480.210 0.372

Table 3: Quantitative Comparison for human speech video generation. Best result is shown in bold
and the second-best result is shown in underline.

Metrics. We assess the generation quality across three dimensions: 1) Single-frame image qual-
ity using SSIM (Wang et al., 2004), PSNR (Wang et al., 2004), LPIPS (Zhang et al., 2018), and
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FID (Guo et al., 2023); 2) Video quality measured by FVD (Unterthiner et al., 2019); 3) Identity
preservation using the ArcFace Distance (Deng et al., 2019).

Baselines. We compare our model against previous state-of-the-art methods, including MagicAni-
mate (Xu et al., 2024), MusePose (Tong et al., 2024), MimicMotion (Zhang et al., 2024a), Animate
Anyone (Hu, 2024) (using a third-party implementation1 due to the original model not being open-
source), and ControlNeXt (Peng et al., 2024).

Evaluation Benchmark. We provide a test set of 50 video clips from our proposed TalkCuts dataset,
featuring diverse identities and varying camera shot angles for comprehensive evaluation.

Result Analysis. As shown in Table 1, training on our proposed TalkCuts dataset with its diverse
range of identities and videos featuring dynamic camera shots, our model achieves high scores in
both video generation quality and identity preservation. In Fig. 4, we present a qualitative compari-
son with previous SOTA methods. We observe that previous methods suffer from notable artifacts.
For instance, AnimateAnyone (Hu, 2024), MusePose (Tong et al., 2024), and MagicAnimate (Xu
et al., 2024) struggle to preserve the human’s appearance, generating inaccurate and low-quality
facial expressions. Additionally, ControlNext (Peng et al., 2024) produces images with motion blur
and misaligned lip movements relative to the speech.

Method Video Generation Quality ID Preser.
SSIM↑ PSNR↑ LPIPS↓ FID↓ FVD↓ ArcFace Dis.↓

AnimateAnyone 0.754 20.468 0.176 93.230 789.360 0.450
AnimateAnyone Tuned 0.843 24.576 0.114 57.410 456.842 0.344

MusePose 0.771 19.468 0.191 106.760 823.020 0.513
MusePose Tuned 0.785 20.933 0.164 87.000 1014.342 0.450

ControlNeXt 0.746 21.584 0.149 63.150 485.118 0.409
ControlNeXt Tuned 0.763 21.959 0.146 62.550 480.210 0.372

Table 4: Quantitative Comparison for ablation study.

Ablation Study. To further investigate the effectiveness of our proposed TalkCuts dataset, we se-
lected three SOTA methods—MusePose (Tong et al., 2024), Animate Anyone (Hu, 2024), and Con-
trolNeXt (Peng et al., 2024) —and fine-tuned them on our dataset. As is shown in Table. 4, the
results show significant improvements across all key metrics after training on our dataset. We also
provide further qualitative results from different models across different camera shots in Fig. 5. It
is evident that after fine-tuning on our proposed dataset, all models exhibit significantly improved
detail in hand and facial features compared to the original results. This enhancement results in more
natural and refined body movements and facial expressions under different camera shots, which can
be attributed to the high quality and diversity of our dataset. Moreover, we observed distinct behav-
iors among these models. For instance, Animate Anyone (Hu, 2024), a two-stage diffusion model
that first learns appearance and then motion, preserves detailed appearance information well when
evaluated frame by frame. However, the generated videos exhibit noticeable temporal instability,
resulting in unsmooth motion. In contrast, ControlNeXt (Peng et al., 2024), based on SVD, pro-
duces smooth motion across the video but struggles with maintaining facial consistency and identity
preservation. Although fine-tuning improved the model’s ability to retain appearance details, it still
exhibited some discrepancies between the generated faces and the reference images.

6 CONCLUSION

In this paper, we introduced a novel framework, Orator, for generating human speech videos with
dynamic camera shot transitions. Our system integrates an LLM-guided multi-modal generation
pipeline, effectively orchestrating the generation of expressive speech audio, natural 3D motion
sequences, and coherent video outputs. To address the lack of suitable datasets for this task, we
presented TalkCuts, a large-scale dataset specifically curated for multi-shot speech-driven video
generation, featuring diverse identities, camera shots, and rich annotations. Extensive experiments
demonstrate the effectiveness of our approach, advancing the state-of-the-art in speech-driven video
generation and opening new avenues for future research in dynamic human video synthesis.

1https://github.com/MooreThreads/Moore-AnimateAnyone
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A APPENDIX

The appendix is organized as follows:

• Sec. A.1 presents the supplemental website showcasing additional qualitative results;

• Sec. A.2 introduces additional related works;

• Sec. A.3 provides extended quantitative and qualitative results;

• Sec. A.4 gives additional information of proposed TalkCuts dataset;

• Sec. A.5 explains details of RAG process;

• Sec. A.6, Sec. A.7 and Sec. A.8 discuss limitations and future work, potential practical
application and potential risks, respectively.

A.1 ADDITIONAL QUALITATIVE RESULTS

In order to provide more vivid and clear qualitative results, we make a supplemental website demo
to demonstrate the TalkCuts dataset and the multi-shot human speech video generation results. We
encourage the readers to view the results at https://oratordemo.github.io/.

A.2 ADDITIONAL RELATED WORKS

A.2.1 HUMAN VIDEO DATASETS.

Recently, various datasets derived from public platforms such as TikTok and YouTube have been
introduced to advance human video generation research. For example, the TikTok dataset (Jafar-
ian & Park, 2021) includes 340 short video clips, each lasting 10-15 seconds, primarily featuring
dancing humans, while UBC-Fashion (Zablotskaia et al., 2019) consists of 500 fashion-related clips.
However, these datasets are limited in both scale and quality. To overcome these limitations, several
synthetic datasets (Varol et al., 2017; Patel et al., 2021; Cai et al., 2021; Yang et al., 2023b) have
been developed, significantly enhancing the diversity of backgrounds and the scale of training data.
For instance, Bedlam (Black et al., 2023) includes thousands of clips with over 1.5 million frames,
featuring high-resolution rendered humans in realistic environments.

Recognizing the growing importance of multi-modal data for training, recent datasets Li et al.
(2021); Siarohin et al. (2021); Luo et al. (2020) have incorporated various modalities. Further-
more, advancements in annotation tools have facilitated the creation of large-scale, highly realistic
datasets.HumanVid (Wang et al., 2024d) consist of more than 50M frames and these frames are well
annotated and BEAT2 has more than 32M frames with a high resolution of 1080P. However, these
datasets are still limited to identity numbers, which may constraint the ability of generalizations.
While datasets like MENTOR (Corona et al., 2024) exists that have over 80k identities dynamic
gestures, the dataset remains private. To the best of our knowledge, we are the first public human
video datasets that contains thousands of identities.

A.2.2 MOVIE & CARTOON UNDERSTANDING AND GENERATION

Recent advancements in generative video models have integrated autoregressive frameworks, dif-
fusion models, and large language models (LLMs) to address challenges in long-form, multimodal
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video generation and animation. Early methods such as StoryGAN (Li et al., 2019) and Pororo-
GAN(Zeng et al., 2019) used GAN-based models for visual storytelling but were limited by con-
textual inconsistencies in generated frames. To address these limitations, Anim-Director (Li et al.,
2024) uses LLMs to autonomously manage the entire animation creation process, refining narra-
tives, generating scripts, and producing contextually coherent animations from brief inputs. Simi-
larly, MovieDreamer (Zhao et al., 2024) combines autoregressive models with diffusion rendering
to maintain narrative and character consistency in long-form videos, decomposing complex stories
into manageable segments for high-quality visual synthesis. Recent research has also explored using
LLMs as ”directors” in video generation, where they coordinate various elements similar to a human
director managing a film production. (Zhu et al., 2024a) use LLMs to decompose complex prompts
into sub-tasks, enabling precise control over 3D scene generation.(Argaw et al., 2022) introduce a
benchmark for AI-assisted video editing, focusing on decomposing movie scenes into individual
shots based on attributes like camera angles and shot types. This structured representation of shots
is conducive to LLM-based systems, which can then manage and edit sequences in a manner similar
to a human editor, enhancing the automation of video editing tasks. Additionally, (Rao et al., 2020)
propose a subject-centric model to classify shot types, which can enhance LLM-guided video gen-
eration by providing structured visual cues. This research suggests that LLMs are well-suited for
directing complex video creation processes.

A.3 ADDITIONAL EVALUATION

Figure 6: User study on camera shot changes directed by LLM.

A.3.1 HUMAN EVALUATION FOR CAMERA SHOT CHANGES DIRECTED BY LLM

For subjective evaluation of camera shot changes generated by the LLM, we conduct an experiment
with 20 participants, each rating several criteria on a 1-5 scale (1 = poor, 5 = excellent). We compare
our model, ground truth (GT), a rule-based system (shots based on speech length, punctuation, and
keywords), zero-shot LLM, and a random baseline (shots randomly assigned). Evaluators will assess
from the following aspects:

• Shot Coherence: measures the logical flow between camera shots and evaluates how well
the transitions follow the speech content. Evaluators will assess whether the changes in
shots are smooth and whether the cuts feel appropriate based on the context. For instance,
sharp and abrupt cuts during calm moments would detract from coherence, while fluid
transitions during significant speech segments should enhance it.

• Visual Engagement: aimed at evaluating whether the video remains visually captivating
and holds the viewer’s attention throughout.

• Shot-Type Appropriateness: refers to how suitable the selected shot types (e.g., close-up,
medium shot, wide shot) are in relation to the content being delivered. Evaluators will
consider whether emotional intensity or important speech moments are reflected with close-
up shots and whether wider shots are used to contextualize broader topics or transitions.
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• Overall Quality: provides a holistic evaluation of the video, capturing the combined effec-
tiveness of shot selection, transitions, and flow.

The results of the user study are presented in Fig. 6. As demonstrated, our DirectorLLM consistently
outperforms the rule-based system, zero-shot LLM, and random baselines in all evaluation criteria.
While the ground truth still holds the highest ratings, our model closely approaches its performance,
indicating the effectiveness of LLM-driven shot changes and the smoothness of transitions generated
by our approach.

A.3.2 HUMAN EVALUATION ON SPEECH VIDEO GENERATION

To further evaluate the quality of the generated videos, we conduct a user study comparing our re-
sults with those from AnimateAnyone, ControlNeXt, and MusePose. The study presents two video
clips—one generated by our method and the other by a baseline method (Animate Anyone, Con-
trolNext, or MimicMotion)—to participants. Each participant is asked to evaluate which video they
believe demonstrates higher quality, taking into consideration factors such as visual fidelity, smooth-
ness of motion, and consistency in character appearance. We gathered feedback from 20 participants,
each of whom evaluated twelve video pairs, with our method compared against each baseline. The
results, shown in Fig. 7, highlight a consistent preference for our approach, particularly in terms of
maintaining smooth transitions and character consistency. These findings align with our quantitative
and qualitative evaluations, supporting the effectiveness of our method in generating high-quality
human video synthesis.

Figure 7: User study comparisons on human video generation.

A.3.3 ADDITIONAL OVERALL EFFECT EVALUATION

Design Video Generation Quality Long Video Metrics (↑)
PSNR↑ LPIPS↓ FVD↓ Subject Con. Background Con. Temporal Flickering Motion Smoothness Imaging Quality

w/o. LLM Director 19.82 0.269 588.24 95.24% 95.44% 95.84% 97.26% 66.62%
w/o. tuned VideoGen 20.05 0.265 580.72 95.56% 94.78% 96.88% 97.24% 65.78%

Ours 20.28 0.254 560.39 97.92% 96.59% 97.24% 97.56% 68.24%

Table 5: Overall effect evaluation. Best result is shown in bold and the second-best result is shown
in underline.

Overall evaluation. We assess the generation quality via objective image/video-quality metrics
PSNR (Wang et al., 2004), LPIPS (Zhang et al., 2018), and FVD (Unterthiner et al., 2019). More-
over, to better evaluate long videos, we adopt long video metrics based on VBench-Long (Huang
et al., 2024b). The quantitative comparison results are presented in Table. 5. For compared base-
lines, “w/o. tuned VideoGen” denotes that we use the model without tuning the VideoGen module,
“w/o. LLM Director” denotes that we remove the LLM Director in generation.

Specifically, for long video metrics, we adopt the following metrics from VBench (Huang et al.,
2024a;b): 1) Subject Consistency measures whether the appearance of the subject remains consis-
tent throughout the video. This is assessed using DINO (Caron et al., 2021) feature similarity across
frames; 2) Background Consistency evaluates the temporal consistency of background scenes by
calculating CLIP (Radford et al., 2021) feature similarity across frames; 3) Temporal Flickering
captures imperfections in local and high-frequency temporal consistency. This is measured by tak-
ing static frames and computing the mean absolute difference between them; 4) Motion Smooth-
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ness focuses on the smoothness of movement rather than the consistency of appearance. Assesses
whether motion follows real-world physical laws using motion priors from a video frame interpo-
lation model (Li et al., 2023) and 5) Imaging Quality evaluates frame-level visual quality, such as
distortions (e.g., over-exposure, noise, blur), using the MUSIQ image quality predictor (Ke et al.,
2021) trained on aesthetic datasets. We follow the evaluation process of VBench Long (Huang
et al., 2024b) for long videos. Specifically, we first use PySceneDetect to segment long videos into
semantically consistent short clips, ensuring each clip ideally contains no scene cuts. Then the short
clips are further divided into fixed-length segments to facilitate slow-fast evaluation. Then for slow
branch: we analyze every frame in the short video clip, following VBench’s (Huang et al., 2024a)
original evaluation method for short videos. For fast branch: we focus on long-range consistency by
extracting the first frame from each fixed-length segment and evaluating high-level visual similarity
using new feature extractors. Finally, we assess the five metrics (Subject Consistency, Background
Consistency, Temporal Flickering, Motion Smoothness, and Imaging Quality) to comprehensively
evaluate long video quality.

As shown in Table. 5, our method achieves the best scores across all metrics in Video Generation
Quality, indicating superior alignment with real-world videos and higher visual quality. For the
long video mertics, the result reveals that removing the LLM Director leads to a significant drop in
Subject Consistency and Background Consistency, highlighting the importance of DirectorLLM in
coordinating the video generation process. Without tuning the VideoGen module, performance also
declines, indicating the necessity of fine-tuning for adapting to speech-driven scenarios.

Figure 8: User study comparisons on human video generation.

Additional user study. To assess the usability of the synthesized results, we conducted a user study
involving 15 participants who evaluated 50 randomly generated videos. Each video was assessed on
three critical aspects of artifact severity:

• Body Deformities: Distortions or unnatural movements in the generated bodies.

• Meaningless Shot Cuts: Irregular or incoherent transitions between shots.

• Low Lip-sync Accuracy: Mismatches between speech and lip movements.

Participants provided binary feedback (”Yes” or ”No”) for each aspect, indicating whether severe
artifacts were present. We demonstrate the results in Fig. 8. The chart highlights the proportion
of ”Yes” (severe artifacts) and ”No” (functional) responses for each category. The study reveals
distinct patterns in the usability of synthesized results: Low Lip-sync Accuracy emerged as the
most significant challenge, with 35% of the results exhibiting severe artifacts. This suggests room
for improvement in synchronizing speech with facial animations. Body Deformities were noted in
30% of responses, indicating a need for enhanced robustness in body generation, particularly to
avoid unnatural or distorted poses. Meaningless Shot Cuts, with a lower artifact rate of 16%, indi-
cate relatively better performance in maintaining coherent transitions, though further optimization is
desirable. These findings underline the importance of addressing lip-sync accuracy and body gener-
ation robustness to improve the overall usability of synthesized videos. The relatively lower issues
with shot cuts suggest that the system’s shot planning module is more reliable but still warrants
refinement to minimize occasional artifacts.
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Design Video Generation Quality Long Video Metrics (↑)
PSNR↑ LPIPS↓ FVD↓ Subject Con. Background Con. Temporal Flickering Motion Smoothness Imaging Quality

LLM-combined 18.24 0.342 712.42 91.18% 92.78% 94.98% 96.68% 62.24%
End-to-end 17.65 0.356 808.19 90.24% 91.18% 93.29% 95.79% 61.79%

Ours 20.28 0.254 560.39 97.92% 96.59% 97.24% 97.56% 68.24%

Table 6: Evaluation on end-to-end systems. Best result is shown in bold.

A.3.4 ADDITIONAL EVALUATION ON END-TO-END SYSTEM

In this section, we evaluate alternative end-to-end system designs and compare them with our pro-
posed modular pipeline. Table. 6 presents the results for the following methods: 1. “End-to-end”:
A direct approach where the VideoGen module is fine-tuned end-to-end on our dataset using text and
a reference image as input; 2. “LLM-combined”: A design inspired by works such as (Hong et al.,
2023; Dong et al., 2023; Zhen et al., 2024; Xiang et al., 2024), where the DirectorLLM is integrated
with the video generation model, directly guiding the diffusion process by providing contextual
features.

From Table. 6, we observe that our proposed pipeline outperforms both end-to-end designs across all
metrics, including PSNR, LPIPS, and FVD, as well as long video metrics like Subject Consistency,
Motion Smoothness, and Imaging Quality. The “End-to-end” design struggles with maintaining high
fidelity and temporal consistency, leading to lower scores across metrics. This indicates the chal-
lenges of learning all aspects of video generation in a unified model, particularly under limited data
conditions. The “LLM-combined” approach achieves better results than the direct end-to-end model
but still falls short of our modular design. This highlights the difficulty of integrating multi-modal
controls (e.g., camera shots, motion, and audio) into a single end-to-end framework without loss of
interpretability and control. These results validate our choice of a modular pipeline, where the Di-
rectorLLM orchestrates specialized generation modules for SpeechGen, MotionGen, and VideoGen.
The modular approach provides: 1) Interpretability: Each submodule’s output can be analyzed and
optimized independently and 2) Flexibility: Components like VideoGen can be fine-tuned separately
to adapt to domain-specific requirements.

While extending to end-to-end designs is a promising direction, particularly with access to larger
and higher-quality datasets, our modular pipeline serves as a strong baseline for this challenging
task. It lays the groundwork for future research into more unified systems.

A.3.5 ADDITIONAL QUALITATIVE RESULTS

Refernce Image AnimateAnyone MagicAnimate ControlNeXt MimicMotion MusePose Ours GT

Figure 9: Additional Qualitative Comparison of Human Video Generation Results. We include
additional examples to compare our results with baseline models. Key artifacts in the baseline
models, such as facial distortions, motion blur, and background inconsistencies, are highlighted
with arrows. In contrast, our method delivers more consistent and realistic outputs, preserving visual
fidelity and achieving smoother transitions compared to the baselines.

As shown in the Fig. 9, given a reference image and the corresponding pose, we test multiple base-
line models alongside our proposed model. Existing baseline models exhibit issues such as facial
distortions, hand deformities, and background inconsistencies. In contrast, the results generated by
our method are closest to the ground truth, with significant improvements in facial and hand details,
as well as better background consistency. This further illustrates that the data diversity we provide
enhances model performance, showcasing the effectiveness of both our dataset and method.
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A.4 ADDITIONAL INFORMATION ON TALKCUTS

A.4.1 MANUAL SCREENING PROCESS

We outline the detailed steps for ensuring consistency and accuracy in the manual screening process:

1. Scene Segmentation Validation: After performing automated scene segmentation using
PySceneDetect, human reviewers verify the correctness of the detected shot boundaries. Reviewers
ensure that transitions occur at logical points, such as changes in subject focus or significant shifts
in speech content. Incorrectly segmented scenes are manually adjusted to improve coherence.

2. Subject Quality Evaluation: Each video clip is manually inspected to evaluate the clarity and
quality of the human subject within the frame:

• Clarity: The subject must be clearly visible without blurring or obstructions.
• Lighting: The subject’s features must be well-lit and distinguishable.
• Framing: The subject must be proportionally centered in the frame.

Clips failing to meet these criteria are discarded.

3. Consistency and Annotation Accuracy: Reviewers ensure: 1) Identity Consistency: The same
individual is consistent across clips for each speaker. 2) Annotation Validation: Automated an-
notations (2D keypoints, 3D SMPL-X, camera trajectories) are verified for a subset of samples.
Anomalies are flagged for correction.

4. General Quality Assessment: Reviewers ensure: 1) Speech Alignment: The subject’s lip move-
ments align with the speech audio; 2) Noise Filtering: Clips with significant environmental noise or
distractions are removed.

5. Reviewer Training and Quality Audits: To maintain consistency: 1) Reviewers are trained with
examples of acceptable and unacceptable clips. 2) Periodic audits are conducted on random samples
to ensure adherence to standards.

This multi-step process ensures that the dataset maintains high visual and audio quality, providing a
robust foundation for research.

A.4.2 DATA STATISTICS ON SHOT TYPES

Below are the results and corresponding analysis of the total number of clips and the distribution of
shot sizes for each identity.

Figure 10: Statistics of dataset clips: Left - Clip Count Distribution per ID grouped by range.
Right - Distribution of Unique IDs across Shot Categories.

Shown in Fig. 10, the bar chart in the left illustrates the frequency distribution of clip counts across
predefined ranges. The X-axis represents different ranges of clip counts (0-5, 5-12, 12-30, 30-70,
and 70+), while the Y-axis indicates the frequency, i.e., the frequency statistic represents the number
of distinct clips associated with each ID across the entire dataset, falling within specific ranges.
The Y-axis value corresponds to the number of IDs in each range. The bar chart on the right of
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Figure 11: Distribution of Average Clip Counts Per Identity Across Shot Types: the boxplot
shows the distribution of clip counts per identity across six shot types. The Y-axis represents the clip
counts, and the X-axis categorizes the shot types. Each box represents the interquartile range (IQR),
with the median as a horizontal line inside, whiskers indicating variability, and outliers shown as
points.

Fig. 10 visualizes the number of unique IDs (identities) associated with each shot category. The
X-axis represents the shot categories, including Close Up, Full Shot, Low Quality, Medium Close
Up, Medium Full Shot, Medium Shot, and Wide Shot. The Y-axis shows the count of unique IDs
for each category.

Additionally, shown in Fig. 11, each box represents the interquartile range (IQR), with the median as
a horizontal line inside, whiskers indicating variability, and outliers shown as points. Medium Shot
and Medium Close Up dominate with higher medians and broader distributions, while Full Shot and
Wide Shot have lower medians and fewer outliers. This visualization highlights the variability and
prevalence of shot types across identities.
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Figure 12: Pipeline of RAG in detail.

A.5 DETAILS OF RETRIEVAL-AUGMENTED GENERATION

A.5.1 RETRIEVAL-AUGMENTED GENERATION PROCESS

We provide a detailed illustration of the RAG process in Fig. 12. We aim to enhance the shot
transition performance of LLMs using RAG. To achieve this, we use scripts with annotated shot
transitions from the training dataset as the RAG corpus. The training dataset, composed of text
scripts, is converted into an embedding dataset using the OpenAI text-embedding-small model.
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For each input script, we similarly convert it into a text embedding using the same embedding model.
Then, utilizing the FAISS (Douze et al., 2024) tool, we calculate the L2 distance between the input
text embedding and each embedding in the embedding dataset. The top 5 files with the smallest
distances are selected as the context, which is provided alongside the input script as input to the
model.

A.5.2 RETRIEVAL EXAMPLES

As shown in Figure 13, these are two examples of RAG assisting LLM in making shot transitions. In
the first example, the bold blue portions of the script and relevant documents both express the love
between a boy and a girl in a poetic manner. In the second example, the bold blue text highlight
the importance of intimate relationships in helping humans confront pain and illness. The shot
transition results in both examples align with those obtained through our RAG-based approach. The
two examples respectively illustrate that the documents retrieved by RAG share similarities with our
input scripts in terms of content or narrative logic. This demonstrates that the documents retrieved
by RAG can indeed assist the LLM in making shot transitions.

Figure 13: Examples of RAG-Assisted Shot Transitions:The bold blue text highlights similarities
between the input script and the content retrieved from RAG documents.

A.6 LIMITATIONS AND FUTURE WORKS.

Despite the effectiveness of our framework, several challenges remain unsolved. First, interaction
with props and the environment (e.g., microphones or walking across a stage) is not yet seamlessly
integrated into the generated videos, limiting the naturalness of the speaker’s interaction with ob-
jects. Second, audience engagement elements such as eye contact, gaze shifts, and facial expressions
are critical in talk shows and speeches but are difficult to capture and simulate without audience
cues. Additionally, while our system handles multi-shot transitions effectively, it does not yet incor-
porate moving camera dynamics, which would further enhance the realism of the generated videos.
As future work, we aim to explore moving camera integration leveraging advanced camera control
modules.
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A.7 POTENTIAL PRACTICAL APPLICATION

The practical value of multi-shot speech video generation lies in its potential to revolutionize content
creation across various industries by automating a traditionally labor-intensive and creative process.
Key applications include:

• Entertainment and Media Production: This technology enables the efficient creation of
dynamic, multi-shot speech videos for films, TV shows, and online content. By automating
camera transitions, gesture synthesis, and vocal delivery, our system reduces the need for
extensive manual editing and enhances the storytelling quality.

• Education: Multi-shot speech videos can be used to create engaging educational content,
such as lectures or tutorials, where dynamic camera angles and gestures help maintain
viewer interest and improve the conveyance of information.

• Corporate Communications: Businesses can use this technology to generate polished
speech videos for presentations, product launches, or training sessions, offering a cost-
effective way to produce professional-quality content.

• Content Creation for Social Media: Influencers and creators can leverage multi-shot
speech video generation to produce compelling, visually engaging videos for platforms
like YouTube, TikTok, or Instagram without requiring advanced editing skills or significant
production resources.

• Virtual and Augmented Reality: Multi-shot speech videos could serve as a foundational
component for immersive virtual presentations or augmented reality experiences, where
dynamic and lifelike speech scenarios are crucial.

By addressing the complex challenge of generating long-form speech videos with dynamic camera
shots, our work provides a foundation for these applications. The integration of the DirectorLLM
with multimodal generation modules demonstrates a novel approach to orchestrating speech, motion,
and visual elements in a cohesive manner. Our system reduces the barriers to high-quality video
production, enabling creativity and innovation across industries. It offers a scalable solution that
can adapt to various content requirements while maintaining consistency and realism. We believe
that our research not only advances the technical capabilities in this domain but also opens up new
possibilities for practical applications that can have a positive impact on entertainment, education,
business, and more.

A.8 POTENTIAL RISKS

Our proposed method presents risks related to potential misuse for misinformation campaigns and
large-scale generation of fake news. To mitigate these concerns, we have carefully curated the
dataset to include only innocuous topics such as education, entertainment, and public speaking in
neutral settings. By focusing on benign subjects, we aim to minimize the potential for our work
to be exploited for malicious purposes, while still demonstrating the effectiveness of our approach
in a controlled and ethical manner. We are committed to responsible research practices and have
taken deliberate steps to ensure that our contributions do not inadvertently contribute to the spread
of misinformation or harmful content. Additionally, we encourage further exploration of ethical
safeguards and detection mechanisms to prevent misuse.
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