
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Bidirectional Adaptive Communication
for Heterogeneous Distributed Learning

Dmitrii Avdiukhin DAVDYUKH@IU.EDU
Indiana University, IN

Vladimir Braverman VOVA@CS.JHU.EDU
Google Research, NJ

Nikita Ivkin IVKIN@AMAZON.COM
Amazon, NY

Sebastian U. Stich STICH@CISPA.DE

CISPA, Germany

Abstract
Communication is a key bottleneck in distributed optimization, and, in particular, bandwidth and
latency can be limiting factors when devices are connected over commodity networks, such as in
Federated Learning. State-of-the-art techniques tackle these challenges by advanced compression
techniques or delaying communication rounds according to predefined schedules. We present a
new scheme that adaptively skips communication (broadcast and client uploads) by detecting slow-
varying updates. The scheme automatically adjusts the communication frequency independently
for each worker and the server. By utilizing an error-feedback mechanism – borrowed from the
compression literature – we prove that the convergence rate is the same as for batch gradient descent
in the convex and nonconvex smooth cases. We show that the total number of communication
rounds between server and clients needed to achieve a targeted accuracy is reduced, even in the
case when the data distribution is highly non-IID.

1. Introduction

With the data moving to the edge devices, training large scale machine learning models unavoidably
shifts towards the distributed settings [24]. More and more applications require large number of
workers cooperating in training one shared machine learning model, with each worker typically
holding its small share of data and has very limited network bandwidth. Often such settings are
driven by privacy concerns, so the data should not leave the device, among examples are personal
smartphones, geo-destributed devices storing medical data, sensor networks, etc [10, 57].

In this paper, we address the problem of data parallel stochastic optimization with a central node
coordinating computation of stochastic gradients on N edge nodes (or workers/clients):

min
x∈Rd

f(x) with f(x) =
1

N

N∑
i=1

fi(x) .

Here i ∈ [N] denotes the worker identifier, fi(x) : Rd → R the loss function with respect to the
model state x ∈ Rd on the worker i ∈ [N]. We assume that we can only query stochastic gradients
for each fi(x), that is, we have access to a stochastic oracle gi(x) with E[gi(x)] = ∇fi(x).

© D. Avdiukhin, V. Braverman, N. Ivkin & S.U. Stich.

In the parameter server model [15, 16] stochastic optimization is performed via the following
iterative steps: (1) at time step t, each worker node computes a stochastic gradient g(t)

i (x(t)) on
a local mini-batch of data and (2) each worker communicates the estimated gradient to the server,
(3) the server performs a gradient update step, x(t+1) = x(t) + α

N

∑N
i=1 g

(t)
i , where α denotes the

learning rate, and finally, (4) the server broadcasts x(t+1) to all workers.
With the number of workers growing and with additional network resources getting more and

more expensive, the speed of communicating local stochastic gradients and broadcasting the updates
became one of the main performance bottlenecks [3]. Major attempts to ease that communication
bottleneck fall into two categories: compressing the messages and reducing the communication
frequency.

A rich variety of compressors, including diverse sparsification [4, 23, 54] and quantization [3, 8]
techniques, can drastically speedup the communication by dropping the message size from O(d)
down to O(log d) [3] or even O(1) [4, 54] per worker. Nevertheless, all the workers and the server
are still required to communicate at every iteration, which can be infeasible in the Federated Learn-
ing setting when number of workers is in millions, and each worker have very limited network
access (i.e. smartphones, or sensor networks) [24]. Reducing the communication frequency can
be achieved by either fixed communication delay (a.k.a. LocalSGD [51, 64]) or via more adaptive
communication protocols [11, 48]. Both can be effectively incorporated into the error accumulation
framework [53] to guarantee the convergence. Our method falls into the class of adaptive commu-
nication protocols. Note that it is very well orthogonal to message compressing methods, thus can
be efficiently combined with it.

While several compression methods [43, 56] address the cost of broadcasting the updates (down-
link), current approaches reducing the communication frequency, such as e.g. [48], often neglect the
cost of downlink and focus primarily on the cost of sending the gradients (uplink). In this paper we
present a new communication protocol PROCRASTINATOR which detects slow-varying updates and
gradients and choose to adaptively skip communication rounds—both server broadcasts and worker
uploads, thus effectively reducing the latency for both.

1.1. Related Works

For training machine learning models in data centers, parameter-servers are used to aggregate the
updates from participating devices and to orchestrate training [15, 28]. In Federated Learning this
server-based approach has been extend to train over decentralized data at larger scale [24, 41]. To
alleviate communication bottlenecks for exchanging updates between devices, several techniques
have been proposed:

(i) Compressing updates: Computed gradients are compressed using vector sparsification—
communicate only top k or random k coordinates of the gradient vector [2, 54], value quantization—
efficiently encode every gradient value to use smaller number of bits [3, 8] and random pro-
jections [23, 47, 58]. The downside of these approaches is an inevitable loss of information
during compression, which can potentially increase the number of iterations.

(ii) Local SGD [51, 64]: Every client performs multiple steps using the local gradients, and af-
ter that the results are averaged. Unfortunately, for some iteration, not all workers may be
available for computation or communication, and a practical approach is to use updates from
the clients which communicated first. Federated Averaging [35, 40] mimics this behavior
by subsampling the workers whose updates are used at the current iterations. However, these

2

approaches require client communication and server broadcast even when the communicated
data didn’t significantly change. See [39] for more discussion on the local SGD and its vari-
ants.

(iii) Sparse communication on decentralized topologies: While relying on a parameter server to
aggregate updates [15] or communication-heavy all-reduce, in decentralized training methods
clients exchange model updates in a peer-to-peer fashion. This can alleviate communication
bottlenecks in data-center training [5] and can be applied to arbitrary network topologies [36,
55].

(iv) Delayed and Asynchronous Updates: Methods that can tolerate delayed updates are often
used for optimization in data centers or over unreliable channels [14]. While skipping up-
dates may cause a short-term reduction in communication, such methods cannot guarantee a
reduction in communication over the entire phase of training (standard convergence proofs
depend on the property that all updates are communicated eventually [1, 53]).

These techniques have been refined in follow up works and to some extent are orthogonal to
each other, i.e. they can be applied on top of each other, see e.g. [7].

Most of the papers introducing the compression techniques only focus on compressing the up-
link messages sent from the workers to the server, but do not compress donwlink broadcast messages
from the server to the workers [3, 4, 18, 42, 46, 52–54, 61]. A few recent works study bi-directional
compression [13, 38, 43, 44, 56, 62, 63], however these works do not consider event triggered
communication. Decentralized techniques alleviate the broadcast by design and only exchange
compressed messages [30, 31, 55].

Distributed methods that use only intermittent communication most frequently communicate
after a prescribed number of iterations (or epochs) on the local data [37, 40, 59], it is also possible
to maintain a constant frequency only in expectation [32], to increase the frequency during training
[60] or decrease the frequency [20]. However, for these methods, the communication frequency has
to be fixed in advance.

In contrast, event triggered schemes do not follow prescribed communication patterns, but trig-
ger communication events based on local (or global) decision rules, taking the problem data and
algorithm state into account. Event triggered communication has been considered in the control
community [17, 21] and optimization community [11, 12, 22, 25, 29].

The foundational results on delayed SGD method in [1] were derived under the simplifying
assumption that the data on the worker nodes follows the same distribution (IID setting). While
this may be a valid assumption in distributed optimization on a server (with frequent data-shuffling
among nodes [19] in the Federated Learning setting, where the data is distributed in a fixed partition
over the clients, it is paramount to study the non-IID setting. Distributed optimization under non-
IID assumptions is a significantly harder problem than the IID case (where in principle, workers
could solve the problem independently of each other, without ever communicating with others).
A further distinguishing feature that sets our work apart from the standard literature on delayed
communication is that we do not need to assume a fixed upper bound on the maximal encountered
delay, as opposed in [1, 50, 53]. Instead, the communication frequency is automatically controlled
by the algorithm. Very recently, Aviv et al. [6] present an algorithm that automatically adapts to the
delays, but this methods does not guarantee a reduction in communication.

The most closely related work is the LENA [48] framework, which was the first to introduce the
combination of event-triggered communication and drifting. Drift can be seen as expected gradient
step from a silent worker: if at the iteration t, worker i decided not to communicate, the server will

3

assume the gradient of that worker is equal to the predefined drift value. Drift value can be updated
when the next communication from that worker happens. While different triggering rules and drift
strategies can be designed, it still requires broadcasting updated model parameters to all the workers
every iteration, i.e. downlink stays the same. Thus even if all workers communicate infinitely rare,
broadcasts will stay the same and effective reduction in latency is at most twice. In this paper, we
challenge this limitation by introducing server triggers and global update drift (can be seen as a
server drift), which is conceptually symmetric to the client drift. Main challenge in reducing the
downlink is caused by dissynchronisation of workers drifts. In section C we compare our approach
to the LENA framework [48] experimentally.

1.2. Our contributions

Our main contribution is the framework PROCRASTINATOR (Algorithm 1) which allows both the
server and the workers to control their communication, sending updates only when necessary. In a
nutshell, each worker monitors the norm of an accumulated difference between the current gradient
and the last communicated gradient, and delays communication until the norm of the accumulated
difference passes a certain threshold. The server computes the average of the last communicated
local gradients as an estimate of the average gradient which is broadcast to the workers in the
similar pattern. Our framework allows one to control the communication frequency by specifying
the appropriate thresholds. Regardless of the choices of the thresholds, we show that, with the
appropriate step size, the algorithm converges to a local minimum:

Theorem 1 (Informal, see Theorem 5) For a Lipschitz function f , when the stochastic variance
and the deviation between local gradients are bounded, after T iterations of Algorithm 2 we have:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(
1√
NT

+
1

T
2
3

)
.

1.3. Preliminaries

For a function f : Rn → R, we consider the minimization problem minx f(x). We make the
following standard assumptions [9]:

Assumption 1 f : Rd → R is L-smooth, i.e. for all x,y: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

In distributed settings, we have N clients, where each client corresponds to its local function fi such
that f(x) = avgi fi(x), where avgi ai =

1
N

∑N
i=1 ai. Furthermore, for each client, we assume that

we have access to the stochastic gradient oracle gi:

Assumption 2 For every client i ∈ [N], the stochastic gradient is unbiased and has bounded
variance, i.e. E[gi(x) | x] = ∇fi(x), E[∥gi(x)−∇fi(x)∥2 | x] ≤ σ2 for all x.

Finally, we bound the deviation of local gradients from the global gradient:

Assumption 3 For every client i ∈ [N], we have ∥∇fi(x)−∇f(x)∥2 ≤ α∥∇f(x)∥2 + β .

4

Algorithm 1: Procrastinator (for more detailed pseudocode refer to Appendix B)
parameters: step size γ, number of iterations T , trigger parameters (A,B)
input: Initial point x(0), stochastic gradient oracles gi
// drift and error accumulators for server and clients

1 u(0) ← 0, r(0) ← 0, ∀i : d(0)
i ← 0, e(0)i ← 0

2 for t = 0, 1, 2, . . . , T − 1 do
For each client i ∈ [N]:

Compute local stochastic gradient g(t)
i

// Update local error: + gradient - local drift
3 e

(t+1)
i ← e

(t)
i + g

(t)
i − d

(t)
i

4 d
(t+1)
i ← d

(t)
i

// Check if the local error is large
5 if ∥e(t+1)

i ∥2 ≥ A∥g(t)
i ∥2 +B then

// New local drift estimate
6 d

(t+1)
i = g

(t)
i

7 Send (e
(t+1)
i ,d

(t+1)
i) to the server

8 e
(t+1)
i ← 0

9 if Didn’t receive updated (x(t+1),u(t+1)) from server then
// Use u(t) for local step

10 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

Server Update:
Let C(t) ⊂ [N] be the set of clients that send updated (e

(t+1)
i ,d

(t+1)
i) at iteration t

11 for i ∈ C(t) do
12 Receive (e

(t+1)
i ,d

(t+1)
i) from client i

13 for i ̸∈ C(t) do d
(t+1)
i ← d

(t)
i ;

14 r(t+1) ← r(t) + 1
N

N∑
i=1

(d
(t)
i − u(t)) + 1

N

∑
i∈C(t)

e
(t+1)
i

// Update server error: + local step estimates - global step + communicated errors
15 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

// Check if the server error is large
16 if ∥r(t+1)∥2 ≥ A∥avgi(d

(t)
i)∥2 +B then

// Average drift is local update at next iterations
17 u(t+1) ← 1

N

∑N
i=1 d

(t+1)
i

// Propagate server error
18 x(t+1) ← x(t) − γu(t) − γr(t+1)

19 Broadcast (x(t+1),u(t+1))

20 r(t+1) ← 0

5

2. Algorithm and Analysis

In distributed SGD, at every iteration, each client computes local gradient and communicates it to the
server, which broadcasts the average gradient to all clients. After that, all clients perform a gradient
descent step using this average. This approach requires each client and server to communicate at
every iteration, which leads to extensive communication. The intuition behind our algorithm is to
maintain estimates—of local gradient on the server and of average gradient on the clients—and
communicate the actual values only when they significantly deviate from the estimates.

Our approach, PROCRASTINATOR, is presented as Algorithm 1. The server uses d(t)
i to estimate

local gradients (Lines 6 and 7) and clients use u(t) to estimate the average gradient. Since d
(t)
i are

the only estimates of local gradients available to the server, we compute u(t) as an average of
d
(t)
i (Line 17). Since u(t) is the best estimate of the average gradient available to clients, the clients

perform update x(t+1) ← x(t) − γu(t) instead of a gradient descent step (Line 10).
The key idea of our algorithm is to use triggers to control communication. Both client and

server triggers have the following structure: they maintain an “error”, which accumulates deviation
of the actual value from the current estimate (Lines 3 and 14). When the accumulated error passes
a certain threshold (Lines 5 and 16), a new estimate is communicated (Lines 7 and 19) and the
error is reset. Note that, while the difference between the actual value and its estimate can be small,
accumulated throughout multiple iterations it can substantially alter the algorithm behavior. To
address this problem, the errors accumulate these differences since the last trigger activation.

2.1. Convergence Analysis

The main idea behind our analysis of Algorithm 2 is to use error-feedback framework [27, 45,
53, 54]. We introduce the sequence of corrected iterates {y(t)} where y(0) = x(0) and y(t+1) =

y(t) − γ avgi g
(t)
i . Unlike {x(t)}, the sequence uses gradients for updates, and such a sequence

commonly used in the analysis of SGD with error-feedback. The sequence {y(t)} has the following
relation with {x(t)}:

Lemma 2 For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i).

Therefore, ξ(t) = r(t) + avgi e
(t)
i is the full error. Based on the proof of [27, Theorem II], we have

the following intermediate result:

Lemma 3 Let ξ(t) = r(t) + avgi e
(t)
i . Then under Assumptions 1 and 2, for every T we have

E[f(y(T))] ≤f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2 .

It remains to bound
∑T−1

t=0 E∥ξ(t)∥2. The following lemma shows that it can be expressed in
terms of

∑T−1
t=0 E∥∇f(x(t))∥2:

Lemma 4 Under Assumption 3, for every T we have:

T−1∑
t=0

E∥ξ(t)∥2 = O(
T−1∑
t=0

E∥∇f(x(t))∥2 + T) .

6

The proof of this lemma crucially exploits the main property of the Algorithm 1: the choice of our
trigger condition allows to ensure that the accumulated error always remains bounded.

Selecting γ2 ≤ 1
4c1L2 (and therefore γ ≤ 1

4L), from Lemma 3 we have:

E[f(y(T))] ≤f(y(0))− γ

4

T−1∑
t=0

E∥∇f(x(t))∥2 + T
Lγ2σ2

2N
+ T

L2γ3

2
.

After regrouping the terms and using that f(y(0))− E[f(y(T))] ≤ fmax:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O(
fmax

Tγ
+

Lγσ2

N
+ 2L2γ2) .

Selecting the step size based on [32, Lemma 17], we have:

Theorem 5 Under Assumptions 1–3, after T iterations of Algorithm 2, we have:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(
1√
NT

+
1

T
2
3

)
,

which matches the convergence rate O(1√
NT

) of distributed SGD when N = O(3
√
T) or when the

number of iterations T = Ω(N3) is sufficiently large.

In the appendix, we present an additional convergence result for the case when the objective is
convex.

2.2. Experiments and Hyperparameter Selection

Our experimental results in Appendix C show that PROCRASTINATOR outperforms local/distributed
SGD with respect to communication. Compared with LENA, it shows similar client communication
requirements, while requiring substantially less broadcasts.

The choice of parameter B in the trigger condition is primarily motivated by the desired com-
munication gap. For a communication gap C, the expected accumulated stochastic variance after C
iterations is C · σ2, and therefore setting B to C · σ2 offsets the variance.

Parameter A is important when gradients can be unbounded, e.g. in case of a strongly convex
function with a starting point being far from optimum. A reasonable choice of A is 1, meaning that
the client/server communicates when the corresponding error is comparable to the gradient norm. In
all our experiments, we use A = 1 and B = 10, showing that the same choice of hyperparameters
is applicable across various tasks.

3. Conclusion

We present a new method—PROCRASTINATOR—to address the communication bottlenecks and
latency in distributed optimization. As a distinguishing novelty, our scheme can automatically sup-
press broadcast of model updates to clients if the updated model state on the server does not deviate
much from predicted values. If the clients do not receive a broadcast, they update their state accord-
ing to a predefined rule which ensures that clients stay in sync—avoiding client drift [24, 26]. This
enables drastic savings in the total number of broadcasts, but also client uploads.

7

References

[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems (NeurIPS), pages 873–881. Curran Associates, Inc.,
2011.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing, pages 440–445, Copenhagen, Denmark, 2017. Association for Computational Linguistics.
URL http://aclweb.org/anthology/D17-1045.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709–1720, 2017.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khiri-
rat, and Cedric Renggli. The convergence of sparsified gradient methods. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31, pages 5977–
5987. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7837-the-convergence-of-sparsified-gradient-methods.pdf.

[5] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient
push for distributed deep learning. In International Conference on Machine Learning, pages
344–353. PMLR, 2019.

[6] Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Asynchronous dis-
tributed learning : Adapting to gradient delays without prior knowledge. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 436–445. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/aviv21a.html.

[7] Debraj Basu, Deepesh Data, Can Karakus, and Suhas N. Diggavi. Qsparse-local-SGD: Dis-
tributed SGD with quantization, sparsification, and local computations. IEEE J. Sel. Ar-
eas Inf. Theory, 1(1):217–226, 2020. doi: 10.1109/jsait.2020.2985917. URL https:
//doi.org/10.1109/jsait.2020.2985917.

[8] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[9] L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018. URL https://doi.org/10.1137/
16M1080173.

[10] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis,
and Wei Shi. Federated learning of predictive models from federated electronic health records.
International journal of medical informatics, 112:59–67, 2018.

8

http://aclweb.org/anthology/D17-1045
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
https://proceedings.mlr.press/v139/aviv21a.html
https://doi.org/10.1109/jsait.2020.2985917
https://doi.org/10.1109/jsait.2020.2985917
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173

[11] Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. LAG: Lazily aggregated gradient
for communication-efficient distributed learning. In Advances in Neural Information Process-
ing Systems, pages 5050–5060, 2018.

[12] Weisheng Chen and Wei Ren. Event-triggered zero-gradient-sum distributed consensus opti-
mization over directed networks. Automatica, 65:90–97, 2016. ISSN 0005-1098. doi: https:
//doi.org/10.1016/j.automatica.2015.11.015. URL https://www.sciencedirect.
com/science/article/pii/S0005109815004793.

[13] Laurent Condat and Peter Richtárik. Murana: A generic framework for stochastic variance-
reduced optimization. In Mathematical and Scientific Machine Learning, pages 81–96. PMLR,
2022.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc D’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V.
Le, and Andrew Y. Ng. Large scale distributed deep networks. In Advances
in Neural Information Processing Systems 25 (NeurIPS), pages 1223–1231.
Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4687-large-scale-distributed-deep-networks.pdf.

[15] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y.
Ng. Large scale distributed deep networks. In Advances in Neural Information Processing
Systems, pages 1223–1231, 2012.

[16] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. J. Mach. Learn. Res., 13(1):165–202, January 2012. URL
http://dl.acm.org/citation.cfm?id=2503308.2188391.

[17] Dimos V. Dimarogonas, Emilio Frazzoli, and Karl H. Johansson. Distributed event-triggered
control for multi-agent systems. IEEE Transactions on Automatic Control, 57(5):1291–1297,
2012. doi: 10.1109/TAC.2011.2174666.

[18] Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly con-
verging error compensated SGD. In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2020. URL https://arxiv.org/abs/2010.12292.

[19] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[20] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck R. Cadambe.
Local SGD with periodic averaging: Tighter analysis and adaptive synchronization. In Ad-
vances in Neural Information Processing Systems, 2019.

[21] W. Heemels, K. H. Johansson, and Paulo Tabuada. An introduction to event triggered and
self-triggered control. In IEEE Conference on Decision and Contro, pages 3270–3285, 2012.

9

https://www.sciencedirect.com/science/article/pii/S0005109815004793
https://www.sciencedirect.com/science/article/pii/S0005109815004793
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://dl.acm.org/citation.cfm?id=2503308.2188391
https://arxiv.org/abs/2010.12292

[22] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R Ganger,
Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-distributed machine learning approaching
LAN speeds. In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 629–647, 2017.

[23] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Ra-
man Arora. Communication-efficient distributed SGD with sketching. arXiv preprint
arXiv:1903.04488, 2019.

[24] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[25] Michael Kamp, Mario Boley, Michael Mock, Daniel Keren, Assaf Schuster, and Izchak
Sharfman. Adaptive communication bounds for distributed online learning. arXiv preprint
arXiv:1911.12896, 2019.

[26] Sai P. Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda T. Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated
learning. In ICML - Proceedings of the 37th International Conference on Machine Learn-
ing. PMLR, 2020. URL https://arxiv.org/abs/1910.06378.

[27] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 3252–3261. PMLR, 09–
15 Jun 2019. URL http://proceedings.mlr.press/v97/karimireddy19a.
html.

[28] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In ICLR, 2017.

[29] Solmaz S. Kia, Jorge Cortés, and Sonia Martı́nez. Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication. Automatica,
55:254–264, 2015. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2015.
03.001. URL https://www.sciencedirect.com/science/article/pii/
S0005109815001053.

10

https://arxiv.org/abs/1910.06378
http://proceedings.mlr.press/v97/karimireddy19a.html
http://proceedings.mlr.press/v97/karimireddy19a.html
https://www.sciencedirect.com/science/article/pii/S0005109815001053
https://www.sciencedirect.com/science/article/pii/S0005109815001053

[30] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Decentralized stochastic opti-
mization and gossip algorithms with compressed communication. In Proceedings of the 36th
International Conference on Machine Learning, volume 97, pages 3478–3487. PMLR, 2019.
URL https://arxiv.org/abs/1902.00340.

[31] Anastasia Koloskova, Tao Lin, Sebastian U. Stich, and Martin Jaggi. Decentralized deep
learning with arbitrary communication compression. International Conference on Learning
Representations, 2020. URL https://arxiv.org/abs/1907.09356.

[32] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A
unified theory of decentralized SGD with changing topology and local updates. Proceedings
of the 37th International Conference on Machine Learning, 2020. URL http://arxiv.
org/abs/1602.05629.

[33] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto,
05 2012.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[35] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the conver-
gence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[36] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decen-
tralized algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Information Processing Systems 30, pages
5330–5340. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.
pdf.

[37] Tao Lin, Sebastian U. Stich, Kumar K. Patel, and Martin Jaggi. Don’t use large mini-batches,
use local SGD. International Conference on Learning Representations (ICLR), 2020. URL
https://arxiv.org/abs/1808.07217.

[38] Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm
for efficient distributed learning. In Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 133–143. PMLR, 2020. URL http://proceedings.mlr.press/
v108/liu20a.html.

[39] Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance reduced proxskip: Algorithm,
theory and application to federated learning. arXiv preprint arXiv:2207.04338, 2022.

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, pages 1273–1282,
2017.

11

https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1907.09356
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
https://arxiv.org/abs/1808.07217
http://proceedings.mlr.press/v108/liu20a.html
http://proceedings.mlr.press/v108/liu20a.html

[41] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated
learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2016.
URL http://arxiv.org/abs/1602.05629.

[42] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed
learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[43] Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous
settings for distributed or federated learning with partial participation: tight convergence guar-
antees. arXiv preprint arXiv:2006.14591, 2020.

[44] Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for faster bidirec-
tional compression in distributed settings. In Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc., 2021.

[45] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

[46] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braver-
man, Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated
learning with sketching. In Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine Learning Research, pages 8253–
8265. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/
rothchild20a.html.

[47] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braver-
man, Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learn-
ing with sketching. In International Conference on Machine Learning, pages 8253–8265.
PMLR, 2020.

[48] Hossein Shokri Ghadikolaei, Sebastian Stich, and Martin Jaggi. LENA: Communication-
efficient distributed learning with self-triggered gradient uploads. In Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Pro-
ceedings of Machine Learning Research, pages 3943–3951. PMLR, 2021. URL http:
//proceedings.mlr.press/v130/shokri-ghadikolaei21a.html.

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[50] Sebastian Stich, Amirkeivan Mohtashami, and Martin Jaggi. Critical parameters for scalable
distributed learning with large batches and asynchronous updates. In Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130, pages 4042–
4050. PMLR, 2021.

[51] Sebastian U. Stich. Local SGD converges fast and communicates little. International Confer-
ence on Learning Representations, art. arXiv:1805.09767, 2019. URL https://arxiv.
org/abs/1805.09767.

12

http://arxiv.org/abs/1602.05629
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v130/shokri-ghadikolaei21a.html
http://proceedings.mlr.press/v130/shokri-ghadikolaei21a.html
https://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1805.09767

[52] Sebastian U. Stich. On communication compression for distributed optimization on heteroge-
neous data. arXiv preprint arXiv:2009.02388, 2020.

[53] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with
delayed gradients. Journal of Machine Learning Research, 21(237):1–36, 2020. URL http:
//jmlr.org/papers/v21/19-748.html.

[54] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with mem-
ory. In Advances in Neural Information Processing Systems 31, pages 4447–4458. Curran
Associates, Inc., 2018.

[55] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Advances in Neural Information Processing Systems 31, pages
7663–7673. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7992-communication-compression-for-decentralized-training.pdf.

[56] Hanlin Tang, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochas-
tic gradient descent with double-pass error-compensated compression. arXiv preprint
arXiv:1905.05957, 2019.

[57] Mark Tomlinson, Wesley Solomon, Yages Singh, Tanya Doherty, Mickey Chopra, Petrida
Ijumba, Alexander C Tsai, and Debra Jackson. The use of mobile phones as a data collection
tool: a report from a household survey in south africa. BMC medical informatics and decision
making, 9(1):51, 2009.

[58] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank
gradient compression for distributed optimization. arXiv preprint arXiv:1905.13727, 2019.

[59] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and
analysis of communication-efficient SGD algorithms. arXiv preprint arXiv:1808.07576, 2018.
URL http://arxiv.org/abs/1808.07576.

[60] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the
best error-runtime trade-off in local-update SGD. In A. Talwalkar, V. Smith, and
M. Zaharia, editors, Proceedings of Machine Learning and Systems, volume 1, pages
212–229, 2019. URL https://proceedings.mlsys.org/paper/2019/file/
c8ffe9a587b126f152ed3d89a146b445-Paper.pdf.

[61] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
SGD and its applications to large-scale distributed optimization. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 5325–5333. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/v80/wu18d.html.

[62] Yue Yu, Jiaxiang Wu, and Longbo Huang. Double quantization for communication-efficient
distributed optimization. In Advances in Neural Information Processing Systems. Curran As-
sociates, Inc., 2019.

13

http://jmlr.org/papers/v21/19-748.html
http://jmlr.org/papers/v21/19-748.html
http://papers.nips.cc/paper/7992-communication-compression-for-decentralized-training.pdf
http://papers.nips.cc/paper/7992-communication-compression-for-decentralized-training.pdf
http://arxiv.org/abs/1808.07576
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
http://proceedings.mlr.press/v80/wu18d.html

[63] Shuai Zheng, Ziyue Huang, and James T. Kwok. Communication-efficient distributed block-
wise momentum SGD with error-feedback. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2019.

[64] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems, pages 2595–2603,
2010.

14

Appendix A. Algorithm

Algorithm 2 shows the complete version of the algorithm.

Appendix B. Convergence Proof

B.1. Non-convex Case

Recall that y(t+1) = y(t) − γ avgi(g
(t)
i). From Algorithm 2:

x(t+1) =

{
x(t) − γu(t), if broadcast doesn’t happen at iteration t

x(t) − γu(t) − γr(t+1/2), if broadcast happens at iteration t
We first show

the relation between x(t) and y(t).

Lemma 6 For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i).

Proof Proof by induction. The equality holds for t = 0. Assume that for some t, y(t) = x(t) −
γ(r(t) + avgi e

(t)
i). Recall that C(t) is the set of clients communicating at iteration t. By definition

of r(t+1/2) and e
(t+1)
i , we have:

r(t+
1/2) + avg

i
(e

(t+1)
i)

=

r(t) + avg
i
(d

(t)
i − u(t)) +

1

N

∑
i∈C(t)

e
(t+1/2)
i

+
1

N

∑
i ̸∈C(t)

e
(t+1/2)
i (Def. of r(t+1/2) and e

(t+1)
i)

= r(t) + avg
i
(d

(t)
i − u(t)) + avg

i
(e

(t+1/2)
i)

= r(t) + avg
i
(d

(t)
i − u(t)) + avg

i
(e

(t)
i) + avg

i
(g

(t)
i − d

(t)
i) (Def. of e(t+

1/2)
i)

= r(t) + avg
i
(e

(t)
i) + avg

i
(g

(t)
i − u(t)) (1)

If the broadcast doesn’t happen at iteration t, then:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i
(g

(t)
i − u(t))

= −γ(r(t) + avg
i
(e

(t)
i) + avg

i
(g

(t)
i − u(t))) (IH)

= −γ(r(t+1) + avg
i
(e

(t+1)
i)) (Equation (1))

If the broadcast happens, we have:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i
(g

(t)
i − u(t) − r(t+

1/2))

= −γ(r(t) + avg
i
(e

(t)
i) + avg

i
(g

(t)
i − u(t))− r(t+

1/2)) (IH)

= −γ(r(t+1/2) + avg
i
(e

(t+1)
i)− r(t+

1/2)) (Equation (1))

= −γ(r(t+1) + avg
i
(e

(t+1)
i)) (r(t+1) = 0) ■

15

Algorithm 2: Procrastinator (complete version)
parameters: step size γ, number of iterations T , client trigger parameters (A,B), server
trigger parameters (C,D)

input: Initial point x(0), stochastic gradient oracles gi
1 r(0) ← 0 // Server error
2 Broadcast x(0) to all clients
3 for each client i ∈ [N] do
4 d

(0)
i ← 0 // client drift — server’s estimation of client’s gradient

5 u(0) ← 0 // server drift during last broadcast — client’s estimation of the global update

6 e
(0)
i ← 0 // Local error

7 for t = 0, 1, 2, . . . do

For each client i ∈ [N]:
g
(t)
i ← ∇Fi(x

(t)) // Compute local stochastic gradient

Client trigger:
e
(t+1/2)
i ← e

(t)
i + g

(t)
i − d

(t)
i // Update local error: + gradient - local drift

8 if ∥e(t+1/2)
i ∥2 ≥ A∥g(t)

i ∥2 +B then // Check if the local error is large
9 d

(t+1)
i = g

(t)
i // New local drift estimate

10 Send (e
(t+1/2)
i ,d

(t+1)
i) to the server

11 e
(t+1)
i ← 0

12 else
13 d

(t+1)
i ← d

(t)
i

14 e
(t+1)
i ← e

(t+1/2)
i

15 if Didn’t receive updated (x(t+1),u(t+1)) from server then
16 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Use u(t) for local step

Server Update:
Let C(t) ⊂ [N] be the set of clients that send updated (e

(t+1/2)
i ,d

(t+1)
i) at iteration t

17 for i ∈ C(t) do Receive (e
(t+1/2)
i ,d

(t+1)
i) from client i ;

18 for i ̸∈ C(t) do d
(t+1)
i ← d

(t)
i ;

Server trigger:
r(t+1/2) ← r(t) + 1

N

∑N
i=1(d

(t)
i − u(t)) + 1

N

∑
i∈C(t) e

(t+1/2)
i // Update server error:

+ local step estimates - global step + communicated errors
19 if ∥r(t+1/2)∥2 ≥ C∥avgi(d

(t)
i)∥2 +D then // Check if the server error is large

20 u(t+1) ← 1
N

∑N
i=1 d

(t+1)
i // Average drift is local update at next iterations

21 x(t+1) ← x(t) − γu(t) − γr(t+1/2) // Propagate server error
22 Broadcast (x(t+1),u(t+1))

23 r(t+1) ← 0

24 else
25 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Same as clients
26 r(t+1) ← r(t+1/2)

16

Lemma 7 Let ξ(t) = r(t) + avgi e
(t)
i . Then for every T we have

E[f(y(T))] ≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2

Proof By the Descent Lemma:

Et[f(y
(t+1))]

≤ f(y(t))− ⟨∇f(y(t)),Et[y
(t+1) − y(t)]⟩+ L

2
Et∥y(t+1) − y(t)∥2

= f(y(t))− γ⟨∇f(y(t)),Et[g
(t)]⟩+ Lγ2

2
Et∥g(t)∥2

= f(y(t))− γ⟨∇f(y(t)),∇f(x(t))⟩+ Lγ2

2
(∥∇f(x(t))∥2 + Et∥

1

N

N∑
i=1

(g
(t)
i −∇fi(x

(t)))∥2)

= f(y(t))− γ⟨∇f(y(t)),∇f(x(t))⟩+ Lγ2

2
(∥∇f(x(t))∥2 + σ2

N
),

where we used the fact that Et[g
(t)] = ∇f(x(t)) stochastic noises are independent. Since ⟨∇f(x(t)),∇f(x(t))⟩ =

∥∇f(x(t))∥2 and using inequality ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2:

Et[f(y
(t+1))]

≤ f(y(t))− γ∥∇f(x(t))∥2 + Lγ2

2
(∥∇f(x(t))∥2 + σ2

N
) + γ⟨∇f(x(t))−∇f(y(t)),∇f(x(t))⟩

≤ f(y(t))− γ(1− Lγ

2
)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

γ

2
∥∇f(x(t))−∇f(y(t))∥2 + γ

2
∇∥f(x(t))∥2

≤ f(y(t))− γ

2
(1− Lγ)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

L2γ

2
∥x(t) − y(t)∥2

= f(y(t))− γ

2
(1− Lγ)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

L2γ3

2
∥ξ(t)∥2

Taking the expectation:

E[f(y(t))] ≤ f(y(0))−
t−1∑
τ=0

γ

2
(1− Lγ)E∥∇f(x(τ))∥2 + t

Lγ2σ2

2N
+

L2γ3

2

t−1∑
τ=0

E∥ξ(τ)∥2 .

It suffices to bound
∑t−1

τ=0 E∥ξ(τ)∥2.

Lemma 8 Under Assumption 3, for every T we have:

T−1∑
t=0

E∥ξ(t)∥2 ≤ c1

T−1∑
t=0

E∥∇f(x(t))∥2 + c2T,

where c1 = 8(A+AC + C)(1 + α) and c2 = 4((A+AC + C)(β + σ2) +BC +D)T .

17

Proof Since ∥ξ(t)∥2 ≤ 2(∥r(t)∥2 + ∥ avgi e
(t)
i ∥2), we bound

∑
t E∥e

(t)
i ∥2 and

∑
t E∥r(t)∥2 sepa-

rately.
Bounding

∑
t E∥e

(t)
i ∥2. If the client communicates to the server at iteration t, then e(t+1) = 0.

Otherwise, e(t+1) = e(t+1/2), and by Line 8 of Algorithm 2, we have:

E∥e(t+1)
i ∥2 ≤ AE∥g(t)

i ∥
2 +B

and therefore
T−1∑
t=0

E∥e(t)i ∥
2 ≤ A

T−1∑
t=0

E∥g(t)
i ∥

2 +BT

Bounding
∑

t E∥r(t)∥2. From Line 19 of Algorithm 2, we have:

T−1∑
t=0

∥r(t)∥2 ≤ C

T−1∑
t=0

∥ avg
i
(d

(t)
i)∥2 + TD ≤ C

T−1∑
t=0

avg
i
∥d(t)

i ∥
2 + TD = C avg

i

T−1∑
t=0

∥d(t)
i ∥

2 + TD,

and therefore it suffices to bound
∑T−1

t=0 E∥d(t)
i ∥2 for all i. For a client i, let t1 and t2 be the

iterations such that the client communicated at times t1 and t2 and didn’t communicate for any t ∈
(t1, t2) (t1 = −1 if t2 is the earliest communication, t2 = T − 1 if t1 is the latest communication).
If t2 = t1 + 1, then

∑t2−1
t=t1+1 ∥d

(t)
i ∥2 is trivially 0. Otherwise, since the trigger didn’t activate at

iteration (t2 − 1), by Line 8 of Algorithm 2 we have

∥e(t2)i ∥
2 = ∥e(t2−1+1/2)

i ∥2 = ∥e(t2−1)
i +(g

(t2−1)
i −d(t2−1)

i)∥2 = · · · = ∥
t2−1∑

t=t1+1

(g
(t)
i −d

(t)
i)∥2 ≤ A∥g(t2−1)

i ∥2+B

Using ∥a− b∥2 ≥ ∥a∥2
2 − ∥b∥

2 and d
(t1+1)
i = d

(t1+2)
i = · · · = d

(t2−1)
i :

1

2
(t2 − t1 − 1)

t2−1∑
t=t1+1

∥d(t)
i ∥

2 ≤ ∥
t2−1∑

t=t1+1

g
(t)
i ∥

2 +A∥g(t2−1)
i ∥2 +B

By Cauchy-Schwarz, ∥
∑t2−1

t=t1+1 g
(t)
i ∥2 ≤ (t2 − t1 − 1)

∑t2−1
t=t1+1 ∥g

(t)
i ∥2. Dividing the above

inequality by (t2 − t1 − 1), we have:

t2−1∑
t=t1+1

∥d(t)
i ∥

2 ≤ 2

t2−1∑
t=t1+1

∥g(t)
i ∥

2 +
2A

t2 − t1 − 1
∥g(t2−1)

i ∥2 + 2B

t2 − t1 − 1

Since d
(t2)
i = g

(t1)
i (defining g

(−1)
i = 0 for t1 = −1) and t2 − t1 − 1 ≥ 1:

t2∑
t=t1+1

∥d(t)
i ∥

2 ≤ 2

t2−1∑
t=t1

∥g(t)
i ∥

2 + 2A∥g(t2−1)
i ∥2 + 2B

18

Finally, splitting [0 : T − 1] into −1 = t0 < t1 < . . . < tk = T such that the i-th client
communicates at iterations tj , we have

T−1∑
t=0

∥d(t)
i ∥

2 =
k∑

j=0

tj+1∑
t=tj+1

∥d(t)
i ∥

2

≤ 2
k∑

j=0

 tj+1∑
t=tj+1

∥g(t)
i ∥

2 +A∥g(tj+1−1)
i ∥2 +B

≤ 2((1 +A)

T−1∑
t=0

∥g(t)
i ∥

2 +BT),

Bounding g
(t)
i in terms of∇f(x(t)). By Assumption 3, we have

∥∇fi(x)−∇f(x)∥2 ≤ α∥∇f(x)∥2 + β

Using inequality ∥a− b∥2 ≥ 1
2∥a∥

2 − ∥b∥2, we have:

1

2
∥∇fi(x)∥2 − ∥∇f(x)∥2 ≤ α∥∇f(x)∥2 + β =⇒ ∥∇fi(x)∥2 ≤ 2(1 + α)∥∇f(x)∥2 + 2β

Using E∥g(t)
i ∥2 = E∥∇fi(x(t))∥2+E∥g(t)

i −∇fi(x(t))∥2 = E∥∇fi(x(t))∥2+σ2, for g(t)
i we have

E∥g(t)
i (x)∥2 ≤ 2(1 + α)E∥∇f(x)∥2 + 2β + σ2

Bounding
∑

t E∥ξ(t)∥2. Putting the above bounds together, we have

T−1∑
t=0

E∥ξ(t)∥2 ≤ 2
T−1∑
t=0

E[∥r(t)∥2 + avg
i
∥e(t)i ∥

2]

≤ 2(C
T−1∑
t=0

avg
i

E[∥d(t)
i ∥

2 +DT +A
T−1∑
t=0

E∥g(t)
i ∥

2 +BT)

≤ 2(2C((1 +A)
T−1∑
t=0

E∥g(t)
i ∥

2 +BT) +DT +A
T−1∑
t=0

E∥g(t)
i ∥

2 +BT)

≤ 4(A+AC + C)
T−1∑
t=0

E∥g(t)
i ∥

2 + 4(BC +D)T

≤ 8(A+AC + C)(1 + α)
T−1∑
t=0

E∥∇f(x(t))i∥2 + 4((A+AC + C)(β + σ2) +BC +D)T.

19

Proof [Proof of the main theorem] By Lemma 7 and using bound on
∑T−1

t=0 E∥ξ(t)∥2:

E[f(y(T))]

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+ L2γ3(c1

T−1∑
t=0

E∥∇f(x(t))∥2 + Tc2)

= f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ − c1L

2γ2)E∥∇f(x(t))∥2 + T
Lγ2σ2

2N
+ c2TL

2γ3

= f(y(0))−
T−1∑
t=0

γ

4
E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+ c2TL

2γ3,

where the last inequality obtained by selecting γ ≤ 1
4L and γ2 ≤ 1

4c1L2 . Rearranging the terms and

dividing by γT
4 , we have

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 ≤ 4(f(y(0))− E[f(y(T))])

γT
+

2Lγσ2

N
+ 4c2L

2γ2.

The rest of the proof follows that of [32, Lemma 17]. Let F = f(y(0)) − f⋆ ≥ f(y(0)) −
E[f(y(T))]. Balancing the first two terms:

4F

γT
=

2Lγσ2

N
=⇒ γ =

√
2FN√
Lσ

Balancing the first and the last term:

4F

γT
= 4c2L

2γ2 =⇒ γ =

(
F

c2L2T

)1/3

Therefore, by selecting γ = min

(√
2FN√
Lσ

,
(

F
c2L2T

)1/3
, 1
2L

√
c1

)
:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(√
LFσ√
NT

+

(
FL
√
c2

T

)2/3

+
FL
√
c1

T

)
.

B.2. Convex Case

Theorem 9 Let f be a convex function satisfying Assumptions 1-3. Let c1 and c2 be as defined in
Lemma 8. Let {x(t)} be the sequence from Algorithm 2 with γ ≤ min{ 1

4(1+α) ,
1

8
√
c1L
}. Then

E[f(
1

T

T−1∑
τ=0

x(τ))− f(x⋆)] ≤ 16γ2c2L+
2∥x(0) − x⋆∥2

γT
+ 2γ(2β +

σ2

N
)

20

Therefore, for γ = Θ(1/
√
T) we achieve O(1/

√
T) convergence rate.

Proof Let Et denote expectation conditioned on x(t), e
(t)
i , r(t). Since y(t+1) = y(t)−γ avgi∈[N](g

(t)
i):

Et∥y(t+1) − x⋆∥2 = ∥y(t) − γ avg
i∈[N]

(g
(t)
i)− x⋆∥2

= ∥y(t) − x⋆∥2 + γ2Et∥ avg
i∈[N]

(g
(t)
i)∥2 − 2γEt⟨ avg

i∈[N]
(g

(t)
i),y(t) − x⋆⟩

= ∥y(t) − x⋆∥2 + γ2Et∥ avg
i∈[N]

(g
(t)
i)∥2 − 2γ⟨∇f(x(t)),y(t) − x⋆⟩

For the last term, we have:

−2γ⟨∇f(x(t)),y(t) − x⋆⟩ = −2γ⟨∇f(x(t)),y(t) − x(t)⟩ − 2γ⟨∇f(x(t)),x(t) − x⋆⟩
≤ 2γ2∥∇f(x(t))∥ · ∥ξ(t)∥ − 2γ⟨∇f(x(t)),x(t) − x⋆⟩

Substituting this into the inequality above, by taking expectation and using telescoping, we have:

E∥y(t) − x⋆∥2 ≤ ∥x(0) − x⋆∥2 + γ2
t−1∑
τ=0

E∥ avg
i∈[N]

(g
(τ)
i)∥2

+ 2γ2
t−1∑
τ=0

E[∥∇f(x(τ))∥ · ∥ξ(τ)∥]− 2γ
t−1∑
τ=0

E⟨∇f(x(τ)),x(τ) − x⋆⟩ (2)

We’ll simplify the terms on the right-hand side. Using the fact that stochastic noises are independent,
as shown in Lemma 8:

t−1∑
τ=0

E∥g(τ)
i (x(τ))∥2 ≤ 2(1 + α)

t−1∑
τ=0

E∥∇f(x(τ))∥2 + t(2β +
σ2

N
)

By Cauchy-Schwarz inequality and by Lemma 8:

t−1∑
τ=0

E[∥∇f(x(τ))∥ · ∥ξ(τ)∥] ≤

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2] · E[∥
t−1∑
τ=0

ξ(τ)∥2]

≤

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2] · E[c1
t−1∑
τ=0

∥∇f(x(τ))∥2 + c2t]

≤
√
c1

t−1∑
τ=0

E∥∇f(x(τ))∥2 +
√
c2
√
t

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2].

By convexity:

−2γ
t−1∑
τ=0

E⟨∇f(x(τ)),x(τ) − x⋆⟩ ≤ −2γ
t−1∑
τ=0

E[f(x(τ))− f(x⋆)]

21

and for smooth convex functions we have:

E∥∇f(x(τ))∥2 = E∥∇f(x(τ))−∇f(x⋆)∥2 ≤ 2LE[f(x(τ))− f(x⋆)]

Let’s denote
√

1
t

∑t−1
τ=0 E[f(x(τ))− f(x⋆)] as St. Substituting the bounds above into Equal-

ity (2) and dividing it by t:

0 ≤ ∥x
(0) − x⋆∥2

t
+ 2γ2(1 + α)S2

t + γ2(2β +
σ2

N
) + 2γ2

√
c1LS

2
t + 4γ2

√
c2LSt − 2γS2

t

When γ ≤ min{ 1
4(1+α) ,

1
8
√
c1L
}, it follows:

S2
t − 4γ

√
c2LSt ≤

∥x(0) − x⋆∥2

γt
+ γ(2β +

σ2

N
)

By inequality ab ≤ a2

2 + b2

2 , we have 4γ
√
c2LSt ≤ S2

t
2 + 8γ2c2L, and therefore:

S2
t ≤ 16γ2c2L+

2∥x(0) − x⋆∥2

γt
+ 2γ(2β +

σ2

N
)

Finally, by convexity:

S2
t =

1

t

t−1∑
τ=0

E[f(x(τ))− f(x⋆)] ≥ E[f(
1

t

t−1∑
τ=0

x(τ))− f(x⋆)] .

Appendix C. Experiments

In this section, we empirically show convergence and communication improvements of PROCRAS-
TINATOR. We perform experiments on three datasets: MNIST [34], CIFAR-10 [33] and CIFAR-
100 [33]. For MNIST, we train a deep convolutional model with γ = 0.1 and batch size 8, while for
CIFAR-10 we train the VGG neural network [49] with γ = 0.01 and batch size 100.

In our experiments, we consider the following approaches:

• PROCRASTINATOR with parameters (A,B) as in Algorithm 1.

• LENA [48] with parameters (A,B).

• Local SGD with parameter gap. Each worker makes gradient descent step (i.e. x(t+1)
i ←

x
(t)
i − γg

(t)
i), and every gap iterations all worker synchronize their parameters.

For PROCRASTINATOR and LENA, we selected A = 1 and B = 10 as parameters which work
well across multiple tasks. For local SGD, we considered gap = 1 as the most basic baseline (the
algorithm becomes the distributed SGD), and gap = 5, since with such a gap, communication of
Local SGD is comparable to communication of PROCRASTINATOR and LENA.

Our results are shown in Figure 1. For each dataset, we report the following (additional results,
including test loss, are shown in the Appendix):

22

LocalSGD(gap = 1) LocalSGD(gap = 5) Procrastinator(A = 1, B = 10) LENA(A = 1, B = 10)

0 10 20 30 40 50
Epoch

0.01

0.1

1

Tr
ai

n
Lo

ss

(a) MNIST: train loss w.r.t. epoch

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.1

1
2

Tr
ai

n
Lo

ss

(b) CIFAR-10: train loss w.r.t. epoch

0 20000 40000 60000
Client communications

0.01

0.1

1

Tr
ai

n
Lo

ss

(c) MNIST: train loss w.r.t. client communica-
tions

0 150000 300000 450000
Client communications

0.1

1
2

Tr
ai

n
Lo

ss

(d) CIFAR-10: train loss w.r.t. client commu-
nications

0 5000 10000 15000 20000
Broadcasts

0.01

0.1

1

Tr
ai

n
Lo

ss

(e) MNIST: train loss w.r.t. broadcasts

0 15000 30000 45000
Broadcasts

0.1

1
2

Tr
ai

n
Lo

ss

(f) CIFAR-10: train loss w.r.t. broadcasts

0 10 20 30 40 50
Epoch

0

2000

4000

6000

Cl
ie

nt
 C

om
m

. L
at

en
cy

(g) MNIST: client communication latency

0 250 500 750 1000 1250 1500 1750 2000
Epoch

200

400

Cl
ie

nt
 C

om
m

. L
at

en
cy

(h) CIFAR-10: client communication latency

0 10 20 30 40 50
Epoch

0

200

400

600

Br
oa

dc
as

t L
at

en
cy

(i) MNIST: broadcast latency

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

20

40

Br
oa

dc
as

t L
at

en
cy

(j) CIFAR-10: broadcast latency

Figure 1: Convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5, PROCRAS-
TINATOR and LENA on MNIST (left) and CIFAR-10 datasets. For each dataset, we show train
loss with respect to: the number of iterations, the number of communications from clients and
the number of broadcasts. Additionally, we show the number of client communications and the
number of broadcasts per epoch. The results show that PROCRASTINATOR and LENA have the
best convergence w.r.t. client communication, while PROCRASTINATOR additionally has the best
convergence w.r.t. broadcasts. 23

LocalSGD(gap = 1)
LocalSGD(gap = 5)

Procrastinator(A = 1, B = 10)
LENA(A = 1, B = 10)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.6
1

Tr
ai

n
Lo

ss

(a) CIFAR-100: train loss w.r.t. epoch

0 20000 40000 60000 80000
Client communications

0.6
1

Tr
ai

n
Lo

ss

(b) CIFAR-100: train loss w.r.t. client commu-
nications

0 20000 40000 60000 80000
Broadcasts

0.6
1

Tr
ai

n
Lo

ss

(c) CIFAR-100: train loss w.r.t. broadcasts

0 250 500 750 1000 1250 1500 1750 2000
Epoch

200

400

Cl
ie

nt
 C

om
m

. L
at

en
cy

(d) CIFAR-100: client communication latency

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

20

40

Br
oa

dc
as

t L
at

en
cy

(e) CIFAR-100: broadcast latency

Figure 2: Convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5, PROCRAS-
TINATOR and LENA on CIFAR-100 dataset. Similarly to Figure 1, PROCRASTINATOR and LENA
have the best convergence w.r.t. client communication, while PROCRASTINATOR additionally has
the best convergence w.r.t. broadcasts.

24

• Train loss with respect to the number of epochs, the number of client communications and
the number of broadcasts.

• Client communication latency and broadcast latency. Namely, for each epoch we report the
number of communications/broadcasts during that epoch.

For the MNIST dataset, Figure 1(a) shows that all algorithms have comparable convergence rates,
and therefore, communication becomes the main deciding performance factor. In Figure 1(c), LENA

requires the least amount of communication, followed by PROCRASTINATOR and substantially out-
performing local SGD and distributed SGD in terms of communication required to reach the final
accuracy. However, LENA, similarly to distributed SGD, requires broadcasts at every iteration, and
therefore is significantly outperformed by PROCRASTINATOR in this aspect.

On CIFAR-10 and CIFAR-100 datasets, algorithm behavior is noticeably different. In Fig-
ure 1(b), all algorithms except Local SGD have similar performance. However, with respect to
client communication, PROCRASTINATOR and LENA have the best performance, requiring 2x-5x
times less communication compared with distributed/local SGD. And due to broadcast require-
ments of LENA, PROCRASTINATOR shows the best communication performance: 1.5x-2x times
less broadcasts compared with distributed/local SGD.

Overall, PROCRASTINATOR outperforms local/distributed SGD with respect to communication.
Compared with LENA, it shows similar client communication requirements, while requiring sub-
stantially less broadcasts.

C.1. Additional experimental results

In this section, we show the test loss convergence for datasets under study.

25

LocalSGD(gap = 1)
LocalSGD(gap = 5)

Procrastinator(A = 1, B = 10)
LENA(A = 1, B = 10)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

1

0.6
0.7
0.80.9

2

Te
st

 L
os

s

(a) CIFAR-100: test loss w.r.t. epoch

0 20000 40000 60000 80000
Client communications

1

0.6
0.7
0.80.9

2

Te
st

 L
os

s

(b) CIFAR-100: test loss w.r.t. client commu-
nications

0 20000 40000 60000 80000
Broadcasts

1

0.6
0.7
0.80.9

2

Te
st

 L
os

s

(c) CIFAR-100: test loss w.r.t. broadcasts

Figure 3: Test loss convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5,
PROCRASTINATOR and LENA on CIFAR-100 dataset.

26

LocalSGD(gap = 1) LocalSGD(gap = 5) Procrastinator(A = 1, B = 10) LENA(A = 1, B = 10)

0 10 20 30 40 50
Epoch

0.1

1

0.030.040.050.060.070.080.09
0.2
0.30.40.50.60.70.80.9

2

Te
st

 L
os

s

(a) MNIST: test loss w.r.t. epoch

0 250 500 750 1000 1250 1500 1750 2000
Epoch

1

0.6
0.7
0.80.9

2

Te
st

 L
os

s
(b) CIFAR-10: test loss w.r.t. epoch

0 20000 40000 60000
Client communications

0.1

1

0.030.040.050.060.070.080.09
0.2
0.30.40.50.60.70.80.9

2

Te
st

 L
os

s

(c) MNIST: test loss w.r.t. client communica-
tions

0 150000 300000 450000
Client communications

1

0.6
0.7
0.80.9

2
Te

st
 L

os
s

(d) CIFAR-10: test loss w.r.t. client communi-
cations

0 5000 10000 15000 20000
Broadcasts

0.1

1

0.030.040.050.060.070.080.09
0.2
0.30.40.50.60.70.80.9

2

Te
st

 L
os

s

(e) MNIST: test loss w.r.t. broadcasts

0 15000 30000 45000
Broadcasts

1

0.6
0.7
0.80.9

2

Te
st

 L
os

s

(f) CIFAR-10: test loss w.r.t. broadcasts

Figure 4: Test loss convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5,
PROCRASTINATOR and LENA on MNIST (left) and CIFAR-10 datasets. For each dataset, we
show test loss with respect to: the number of iterations, the number of communications from
clients and the number of broadcasts.

27

	Introduction
	Related Works
	Our contributions
	Preliminaries

	Algorithm and Analysis
	Convergence Analysis
	Experiments and Hyperparameter Selection

	Conclusion
	Algorithm
	Convergence Proof
	Non-convex Case
	Convex Case

	Experiments
	Additional experimental results

