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Abstract
Communication is a key bottleneck in distributed optimization, and, in particular, bandwidth and
latency can be limiting factors when devices are connected over commodity networks, such as in
Federated Learning. State-of-the-art techniques tackle these challenges by advanced compression
techniques or delaying communication rounds according to predefined schedules. We present a
new scheme that adaptively skips communication (broadcast and client uploads) by detecting slow-
varying updates. The scheme automatically adjusts the communication frequency independently
for each worker and the server. By utilizing an error-feedback mechanism – borrowed from the
compression literature – we prove that the convergence rate is the same as for batch gradient descent
in the convex and nonconvex smooth cases. We show that the total number of communication
rounds between server and clients needed to achieve a targeted accuracy is reduced, even in the
case when the data distribution is highly non-IID.

1. Introduction

With the data moving to the edge devices, training large scale machine learning models unavoidably
shifts towards the distributed settings [24]. More and more applications require large number of
workers cooperating in training one shared machine learning model, with each worker typically
holding its small share of data and has very limited network bandwidth. Often such settings are
driven by privacy concerns, so the data should not leave the device, among examples are personal
smartphones, geo-destributed devices storing medical data, sensor networks, etc [10, 57].

In this paper, we address the problem of data parallel stochastic optimization with a central node
coordinating computation of stochastic gradients on N edge nodes (or workers/clients):

min
x∈Rd

f(x) with f(x) =
1

N

N∑
i=1

fi(x) .

Here i ∈ [N ] denotes the worker identifier, fi(x) : Rd → R the loss function with respect to the
model state x ∈ Rd on the worker i ∈ [N ]. We assume that we can only query stochastic gradients
for each fi(x), that is, we have access to a stochastic oracle gi(x) with E[gi(x)] = ∇fi(x).

© D. Avdiukhin, V. Braverman, N. Ivkin & S.U. Stich.



In the parameter server model [15, 16] stochastic optimization is performed via the following
iterative steps: (1) at time step t, each worker node computes a stochastic gradient g(t)

i (x(t)) on
a local mini-batch of data and (2) each worker communicates the estimated gradient to the server,
(3) the server performs a gradient update step, x(t+1) = x(t) + α

N

∑N
i=1 g

(t)
i , where α denotes the

learning rate, and finally, (4) the server broadcasts x(t+1) to all workers.
With the number of workers growing and with additional network resources getting more and

more expensive, the speed of communicating local stochastic gradients and broadcasting the updates
became one of the main performance bottlenecks [3]. Major attempts to ease that communication
bottleneck fall into two categories: compressing the messages and reducing the communication
frequency.

A rich variety of compressors, including diverse sparsification [4, 23, 54] and quantization [3, 8]
techniques, can drastically speedup the communication by dropping the message size from O(d)
down to O(log d) [3] or even O(1) [4, 54] per worker. Nevertheless, all the workers and the server
are still required to communicate at every iteration, which can be infeasible in the Federated Learn-
ing setting when number of workers is in millions, and each worker have very limited network
access (i.e. smartphones, or sensor networks) [24]. Reducing the communication frequency can
be achieved by either fixed communication delay (a.k.a. LocalSGD [51, 64]) or via more adaptive
communication protocols [11, 48]. Both can be effectively incorporated into the error accumulation
framework [53] to guarantee the convergence. Our method falls into the class of adaptive commu-
nication protocols. Note that it is very well orthogonal to message compressing methods, thus can
be efficiently combined with it.

While several compression methods [43, 56] address the cost of broadcasting the updates (down-
link), current approaches reducing the communication frequency, such as e.g. [48], often neglect the
cost of downlink and focus primarily on the cost of sending the gradients (uplink). In this paper we
present a new communication protocol PROCRASTINATOR which detects slow-varying updates and
gradients and choose to adaptively skip communication rounds—both server broadcasts and worker
uploads, thus effectively reducing the latency for both.

1.1. Related Works

For training machine learning models in data centers, parameter-servers are used to aggregate the
updates from participating devices and to orchestrate training [15, 28]. In Federated Learning this
server-based approach has been extend to train over decentralized data at larger scale [24, 41]. To
alleviate communication bottlenecks for exchanging updates between devices, several techniques
have been proposed:

(i) Compressing updates: Computed gradients are compressed using vector sparsification—
communicate only top k or random k coordinates of the gradient vector [2, 54], value quantization—
efficiently encode every gradient value to use smaller number of bits [3, 8] and random pro-
jections [23, 47, 58]. The downside of these approaches is an inevitable loss of information
during compression, which can potentially increase the number of iterations.

(ii) Local SGD [51, 64]: Every client performs multiple steps using the local gradients, and af-
ter that the results are averaged. Unfortunately, for some iteration, not all workers may be
available for computation or communication, and a practical approach is to use updates from
the clients which communicated first. Federated Averaging [35, 40] mimics this behavior
by subsampling the workers whose updates are used at the current iterations. However, these
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approaches require client communication and server broadcast even when the communicated
data didn’t significantly change. See [39] for more discussion on the local SGD and its vari-
ants.

(iii) Sparse communication on decentralized topologies: While relying on a parameter server to
aggregate updates [15] or communication-heavy all-reduce, in decentralized training methods
clients exchange model updates in a peer-to-peer fashion. This can alleviate communication
bottlenecks in data-center training [5] and can be applied to arbitrary network topologies [36,
55].

(iv) Delayed and Asynchronous Updates: Methods that can tolerate delayed updates are often
used for optimization in data centers or over unreliable channels [14]. While skipping up-
dates may cause a short-term reduction in communication, such methods cannot guarantee a
reduction in communication over the entire phase of training (standard convergence proofs
depend on the property that all updates are communicated eventually [1, 53]).

These techniques have been refined in follow up works and to some extent are orthogonal to
each other, i.e. they can be applied on top of each other, see e.g. [7].

Most of the papers introducing the compression techniques only focus on compressing the up-
link messages sent from the workers to the server, but do not compress donwlink broadcast messages
from the server to the workers [3, 4, 18, 42, 46, 52–54, 61]. A few recent works study bi-directional
compression [13, 38, 43, 44, 56, 62, 63], however these works do not consider event triggered
communication. Decentralized techniques alleviate the broadcast by design and only exchange
compressed messages [30, 31, 55].

Distributed methods that use only intermittent communication most frequently communicate
after a prescribed number of iterations (or epochs) on the local data [37, 40, 59], it is also possible
to maintain a constant frequency only in expectation [32], to increase the frequency during training
[60] or decrease the frequency [20]. However, for these methods, the communication frequency has
to be fixed in advance.

In contrast, event triggered schemes do not follow prescribed communication patterns, but trig-
ger communication events based on local (or global) decision rules, taking the problem data and
algorithm state into account. Event triggered communication has been considered in the control
community [17, 21] and optimization community [11, 12, 22, 25, 29].

The foundational results on delayed SGD method in [1] were derived under the simplifying
assumption that the data on the worker nodes follows the same distribution (IID setting). While
this may be a valid assumption in distributed optimization on a server (with frequent data-shuffling
among nodes [19] in the Federated Learning setting, where the data is distributed in a fixed partition
over the clients, it is paramount to study the non-IID setting. Distributed optimization under non-
IID assumptions is a significantly harder problem than the IID case (where in principle, workers
could solve the problem independently of each other, without ever communicating with others).
A further distinguishing feature that sets our work apart from the standard literature on delayed
communication is that we do not need to assume a fixed upper bound on the maximal encountered
delay, as opposed in [1, 50, 53]. Instead, the communication frequency is automatically controlled
by the algorithm. Very recently, Aviv et al. [6] present an algorithm that automatically adapts to the
delays, but this methods does not guarantee a reduction in communication.

The most closely related work is the LENA [48] framework, which was the first to introduce the
combination of event-triggered communication and drifting. Drift can be seen as expected gradient
step from a silent worker: if at the iteration t, worker i decided not to communicate, the server will
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assume the gradient of that worker is equal to the predefined drift value. Drift value can be updated
when the next communication from that worker happens. While different triggering rules and drift
strategies can be designed, it still requires broadcasting updated model parameters to all the workers
every iteration, i.e. downlink stays the same. Thus even if all workers communicate infinitely rare,
broadcasts will stay the same and effective reduction in latency is at most twice. In this paper, we
challenge this limitation by introducing server triggers and global update drift (can be seen as a
server drift), which is conceptually symmetric to the client drift. Main challenge in reducing the
downlink is caused by dissynchronisation of workers drifts. In section C we compare our approach
to the LENA framework [48] experimentally.

1.2. Our contributions

Our main contribution is the framework PROCRASTINATOR (Algorithm 1) which allows both the
server and the workers to control their communication, sending updates only when necessary. In a
nutshell, each worker monitors the norm of an accumulated difference between the current gradient
and the last communicated gradient, and delays communication until the norm of the accumulated
difference passes a certain threshold. The server computes the average of the last communicated
local gradients as an estimate of the average gradient which is broadcast to the workers in the
similar pattern. Our framework allows one to control the communication frequency by specifying
the appropriate thresholds. Regardless of the choices of the thresholds, we show that, with the
appropriate step size, the algorithm converges to a local minimum:

Theorem 1 (Informal, see Theorem 5) For a Lipschitz function f , when the stochastic variance
and the deviation between local gradients are bounded, after T iterations of Algorithm 2 we have:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(
1√
NT

+
1

T
2
3

)
.

1.3. Preliminaries

For a function f : Rn → R, we consider the minimization problem minx f(x). We make the
following standard assumptions [9]:

Assumption 1 f : Rd → R is L-smooth, i.e. for all x,y: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

In distributed settings, we have N clients, where each client corresponds to its local function fi such
that f(x) = avgi fi(x), where avgi ai =

1
N

∑N
i=1 ai. Furthermore, for each client, we assume that

we have access to the stochastic gradient oracle gi:

Assumption 2 For every client i ∈ [N ], the stochastic gradient is unbiased and has bounded
variance, i.e. E[gi(x) | x] = ∇fi(x), E[∥gi(x)−∇fi(x)∥2 | x] ≤ σ2 for all x.

Finally, we bound the deviation of local gradients from the global gradient:

Assumption 3 For every client i ∈ [N ], we have ∥∇fi(x)−∇f(x)∥2 ≤ α∥∇f(x)∥2 + β .

4



Algorithm 1: Procrastinator (for more detailed pseudocode refer to Appendix B)
parameters: step size γ, number of iterations T , trigger parameters (A,B)
input: Initial point x(0), stochastic gradient oracles gi
// drift and error accumulators for server and clients

1 u(0) ← 0, r(0) ← 0, ∀i : d(0)
i ← 0, e(0)i ← 0

2 for t = 0, 1, 2, . . . , T − 1 do
For each client i ∈ [N ]:

Compute local stochastic gradient g(t)
i

// Update local error: + gradient - local drift
3 e

(t+1)
i ← e

(t)
i + g

(t)
i − d

(t)
i

4 d
(t+1)
i ← d

(t)
i

// Check if the local error is large
5 if ∥e(t+1)

i ∥2 ≥ A∥g(t)
i ∥2 +B then

// New local drift estimate
6 d

(t+1)
i = g

(t)
i

7 Send (e
(t+1)
i ,d

(t+1)
i ) to the server

8 e
(t+1)
i ← 0

9 if Didn’t receive updated (x(t+1),u(t+1)) from server then
// Use u(t) for local step

10 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

Server Update:
Let C(t) ⊂ [N ] be the set of clients that send updated (e

(t+1)
i ,d

(t+1)
i ) at iteration t

11 for i ∈ C(t) do
12 Receive (e

(t+1)
i ,d

(t+1)
i ) from client i

13 for i ̸∈ C(t) do d
(t+1)
i ← d

(t)
i ;

14 r(t+1) ← r(t) + 1
N

N∑
i=1

(d
(t)
i − u(t)) + 1

N

∑
i∈C(t)

e
(t+1)
i

// Update server error: + local step estimates - global step + communicated errors
15 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

// Check if the server error is large
16 if ∥r(t+1)∥2 ≥ A∥avgi(d

(t)
i )∥2 +B then

// Average drift is local update at next iterations
17 u(t+1) ← 1

N

∑N
i=1 d

(t+1)
i

// Propagate server error
18 x(t+1) ← x(t) − γu(t) − γr(t+1)

19 Broadcast (x(t+1),u(t+1))

20 r(t+1) ← 0
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2. Algorithm and Analysis

In distributed SGD, at every iteration, each client computes local gradient and communicates it to the
server, which broadcasts the average gradient to all clients. After that, all clients perform a gradient
descent step using this average. This approach requires each client and server to communicate at
every iteration, which leads to extensive communication. The intuition behind our algorithm is to
maintain estimates—of local gradient on the server and of average gradient on the clients—and
communicate the actual values only when they significantly deviate from the estimates.

Our approach, PROCRASTINATOR, is presented as Algorithm 1. The server uses d(t)
i to estimate

local gradients (Lines 6 and 7) and clients use u(t) to estimate the average gradient. Since d
(t)
i are

the only estimates of local gradients available to the server, we compute u(t) as an average of
d
(t)
i (Line 17). Since u(t) is the best estimate of the average gradient available to clients, the clients

perform update x(t+1) ← x(t) − γu(t) instead of a gradient descent step (Line 10).
The key idea of our algorithm is to use triggers to control communication. Both client and

server triggers have the following structure: they maintain an “error”, which accumulates deviation
of the actual value from the current estimate (Lines 3 and 14). When the accumulated error passes
a certain threshold (Lines 5 and 16), a new estimate is communicated (Lines 7 and 19) and the
error is reset. Note that, while the difference between the actual value and its estimate can be small,
accumulated throughout multiple iterations it can substantially alter the algorithm behavior. To
address this problem, the errors accumulate these differences since the last trigger activation.

2.1. Convergence Analysis

The main idea behind our analysis of Algorithm 2 is to use error-feedback framework [27, 45,
53, 54]. We introduce the sequence of corrected iterates {y(t)} where y(0) = x(0) and y(t+1) =

y(t) − γ avgi g
(t)
i . Unlike {x(t)}, the sequence uses gradients for updates, and such a sequence

commonly used in the analysis of SGD with error-feedback. The sequence {y(t)} has the following
relation with {x(t)}:

Lemma 2 For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i ).

Therefore, ξ(t) = r(t) + avgi e
(t)
i is the full error. Based on the proof of [27, Theorem II], we have

the following intermediate result:

Lemma 3 Let ξ(t) = r(t) + avgi e
(t)
i . Then under Assumptions 1 and 2, for every T we have

E[f(y(T ))] ≤f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2 .

It remains to bound
∑T−1

t=0 E∥ξ(t)∥2. The following lemma shows that it can be expressed in
terms of

∑T−1
t=0 E∥∇f(x(t))∥2:

Lemma 4 Under Assumption 3, for every T we have:

T−1∑
t=0

E∥ξ(t)∥2 = O(
T−1∑
t=0

E∥∇f(x(t))∥2 + T ) .
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The proof of this lemma crucially exploits the main property of the Algorithm 1: the choice of our
trigger condition allows to ensure that the accumulated error always remains bounded.

Selecting γ2 ≤ 1
4c1L2 (and therefore γ ≤ 1

4L ), from Lemma 3 we have:

E[f(y(T ))] ≤f(y(0))− γ

4

T−1∑
t=0

E∥∇f(x(t))∥2 + T
Lγ2σ2

2N
+ T

L2γ3

2
.

After regrouping the terms and using that f(y(0))− E[f(y(T ))] ≤ fmax:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O(
fmax

Tγ
+

Lγσ2

N
+ 2L2γ2) .

Selecting the step size based on [32, Lemma 17], we have:

Theorem 5 Under Assumptions 1–3, after T iterations of Algorithm 2, we have:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(
1√
NT

+
1

T
2
3

)
,

which matches the convergence rate O( 1√
NT

) of distributed SGD when N = O( 3
√
T ) or when the

number of iterations T = Ω(N3) is sufficiently large.

In the appendix, we present an additional convergence result for the case when the objective is
convex.

2.2. Experiments and Hyperparameter Selection

Our experimental results in Appendix C show that PROCRASTINATOR outperforms local/distributed
SGD with respect to communication. Compared with LENA, it shows similar client communication
requirements, while requiring substantially less broadcasts.

The choice of parameter B in the trigger condition is primarily motivated by the desired com-
munication gap. For a communication gap C, the expected accumulated stochastic variance after C
iterations is C · σ2, and therefore setting B to C · σ2 offsets the variance.

Parameter A is important when gradients can be unbounded, e.g. in case of a strongly convex
function with a starting point being far from optimum. A reasonable choice of A is 1, meaning that
the client/server communicates when the corresponding error is comparable to the gradient norm. In
all our experiments, we use A = 1 and B = 10, showing that the same choice of hyperparameters
is applicable across various tasks.

3. Conclusion

We present a new method—PROCRASTINATOR—to address the communication bottlenecks and
latency in distributed optimization. As a distinguishing novelty, our scheme can automatically sup-
press broadcast of model updates to clients if the updated model state on the server does not deviate
much from predicted values. If the clients do not receive a broadcast, they update their state accord-
ing to a predefined rule which ensures that clients stay in sync—avoiding client drift [24, 26]. This
enables drastic savings in the total number of broadcasts, but also client uploads.
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learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[43] Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous
settings for distributed or federated learning with partial participation: tight convergence guar-
antees. arXiv preprint arXiv:2006.14591, 2020.

[44] Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for faster bidirec-
tional compression in distributed settings. In Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc., 2021.
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Appendix A. Algorithm

Algorithm 2 shows the complete version of the algorithm.

Appendix B. Convergence Proof

B.1. Non-convex Case

Recall that y(t+1) = y(t) − γ avgi(g
(t)
i ). From Algorithm 2:

x(t+1) =

{
x(t) − γu(t), if broadcast doesn’t happen at iteration t

x(t) − γu(t) − γr(t+1/2), if broadcast happens at iteration t
We first show

the relation between x(t) and y(t).

Lemma 6 For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i ).

Proof Proof by induction. The equality holds for t = 0. Assume that for some t, y(t) = x(t) −
γ(r(t) + avgi e

(t)
i ). Recall that C(t) is the set of clients communicating at iteration t. By definition

of r(t+1/2) and e
(t+1)
i , we have:

r(t+
1/2) + avg

i
(e

(t+1)
i )

=

r(t) + avg
i
(d

(t)
i − u(t)) +

1

N

∑
i∈C(t)

e
(t+1/2)
i

+
1

N

∑
i ̸∈C(t)

e
(t+1/2)
i (Def. of r(t+1/2) and e

(t+1)
i )

= r(t) + avg
i
(d

(t)
i − u(t)) + avg

i
(e

(t+1/2)
i )

= r(t) + avg
i
(d

(t)
i − u(t)) + avg

i
(e

(t)
i ) + avg

i
(g

(t)
i − d

(t)
i ) (Def. of e(t+

1/2)
i )

= r(t) + avg
i
(e

(t)
i ) + avg

i
(g

(t)
i − u(t)) (1)

If the broadcast doesn’t happen at iteration t, then:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i
(g

(t)
i − u(t))

= −γ(r(t) + avg
i
(e

(t)
i ) + avg

i
(g

(t)
i − u(t))) (IH)

= −γ(r(t+1) + avg
i
(e

(t+1)
i )) (Equation (1))

If the broadcast happens, we have:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i
(g

(t)
i − u(t) − r(t+

1/2))

= −γ(r(t) + avg
i
(e

(t)
i ) + avg

i
(g

(t)
i − u(t))− r(t+

1/2)) (IH)

= −γ(r(t+1/2) + avg
i
(e

(t+1)
i )− r(t+

1/2)) (Equation (1))

= −γ(r(t+1) + avg
i
(e

(t+1)
i )) (r(t+1) = 0) ■
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Algorithm 2: Procrastinator (complete version)
parameters: step size γ, number of iterations T , client trigger parameters (A,B), server
trigger parameters (C,D)

input: Initial point x(0), stochastic gradient oracles gi
1 r(0) ← 0 // Server error
2 Broadcast x(0) to all clients
3 for each client i ∈ [N ] do
4 d

(0)
i ← 0 // client drift — server’s estimation of client’s gradient

5 u(0) ← 0 // server drift during last broadcast — client’s estimation of the global update

6 e
(0)
i ← 0 // Local error

7 for t = 0, 1, 2, . . . do

For each client i ∈ [N ]:
g
(t)
i ← ∇Fi(x

(t)) // Compute local stochastic gradient

Client trigger:
e
(t+1/2)
i ← e

(t)
i + g

(t)
i − d

(t)
i // Update local error: + gradient - local drift

8 if ∥e(t+1/2)
i ∥2 ≥ A∥g(t)

i ∥2 +B then // Check if the local error is large
9 d

(t+1)
i = g

(t)
i // New local drift estimate

10 Send (e
(t+1/2)
i ,d

(t+1)
i ) to the server

11 e
(t+1)
i ← 0

12 else
13 d

(t+1)
i ← d

(t)
i

14 e
(t+1)
i ← e

(t+1/2)
i

15 if Didn’t receive updated (x(t+1),u(t+1)) from server then
16 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Use u(t) for local step

Server Update:
Let C(t) ⊂ [N ] be the set of clients that send updated (e

(t+1/2)
i ,d

(t+1)
i ) at iteration t

17 for i ∈ C(t) do Receive (e
(t+1/2)
i ,d

(t+1)
i ) from client i ;

18 for i ̸∈ C(t) do d
(t+1)
i ← d

(t)
i ;

Server trigger:
r(t+1/2) ← r(t) + 1

N

∑N
i=1(d

(t)
i − u(t)) + 1

N

∑
i∈C(t) e

(t+1/2)
i // Update server error:

+ local step estimates - global step + communicated errors
19 if ∥r(t+1/2)∥2 ≥ C∥avgi(d

(t)
i )∥2 +D then // Check if the server error is large

20 u(t+1) ← 1
N

∑N
i=1 d

(t+1)
i // Average drift is local update at next iterations

21 x(t+1) ← x(t) − γu(t) − γr(t+1/2) // Propagate server error
22 Broadcast (x(t+1),u(t+1))

23 r(t+1) ← 0

24 else
25 x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Same as clients
26 r(t+1) ← r(t+1/2)
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Lemma 7 Let ξ(t) = r(t) + avgi e
(t)
i . Then for every T we have

E[f(y(T ))] ≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2

Proof By the Descent Lemma:

Et[f(y
(t+1))]

≤ f(y(t))− ⟨∇f(y(t)),Et[y
(t+1) − y(t)]⟩+ L

2
Et∥y(t+1) − y(t)∥2

= f(y(t))− γ⟨∇f(y(t)),Et[g
(t)]⟩+ Lγ2

2
Et∥g(t)∥2

= f(y(t))− γ⟨∇f(y(t)),∇f(x(t))⟩+ Lγ2

2
(∥∇f(x(t))∥2 + Et∥

1

N

N∑
i=1

(g
(t)
i −∇fi(x

(t)))∥2)

= f(y(t))− γ⟨∇f(y(t)),∇f(x(t))⟩+ Lγ2

2
(∥∇f(x(t))∥2 + σ2

N
),

where we used the fact that Et[g
(t)] = ∇f(x(t)) stochastic noises are independent. Since ⟨∇f(x(t)),∇f(x(t))⟩ =

∥∇f(x(t))∥2 and using inequality ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2:

Et[f(y
(t+1))]

≤ f(y(t))− γ∥∇f(x(t))∥2 + Lγ2

2
(∥∇f(x(t))∥2 + σ2

N
) + γ⟨∇f(x(t))−∇f(y(t)),∇f(x(t))⟩

≤ f(y(t))− γ(1− Lγ

2
)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

γ

2
∥∇f(x(t))−∇f(y(t))∥2 + γ

2
∇∥f(x(t))∥2

≤ f(y(t))− γ

2
(1− Lγ)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

L2γ

2
∥x(t) − y(t)∥2

= f(y(t))− γ

2
(1− Lγ)∥∇f(x(t))∥2 + Lγ2σ2

2N
+

L2γ3

2
∥ξ(t)∥2

Taking the expectation:

E[f(y(t))] ≤ f(y(0))−
t−1∑
τ=0

γ

2
(1− Lγ)E∥∇f(x(τ))∥2 + t

Lγ2σ2

2N
+

L2γ3

2

t−1∑
τ=0

E∥ξ(τ)∥2 .

It suffices to bound
∑t−1

τ=0 E∥ξ(τ)∥2.

Lemma 8 Under Assumption 3, for every T we have:

T−1∑
t=0

E∥ξ(t)∥2 ≤ c1

T−1∑
t=0

E∥∇f(x(t))∥2 + c2T,

where c1 = 8(A+AC + C)(1 + α) and c2 = 4((A+AC + C)(β + σ2) +BC +D)T .
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Proof Since ∥ξ(t)∥2 ≤ 2(∥r(t)∥2 + ∥ avgi e
(t)
i ∥2), we bound

∑
t E∥e

(t)
i ∥2 and

∑
t E∥r(t)∥2 sepa-

rately.
Bounding

∑
t E∥e

(t)
i ∥2. If the client communicates to the server at iteration t, then e(t+1) = 0.

Otherwise, e(t+1) = e(t+1/2), and by Line 8 of Algorithm 2, we have:

E∥e(t+1)
i ∥2 ≤ AE∥g(t)

i ∥
2 +B

and therefore
T−1∑
t=0

E∥e(t)i ∥
2 ≤ A

T−1∑
t=0

E∥g(t)
i ∥

2 +BT

Bounding
∑

t E∥r(t)∥2. From Line 19 of Algorithm 2, we have:

T−1∑
t=0

∥r(t)∥2 ≤ C

T−1∑
t=0

∥ avg
i
(d

(t)
i )∥2 + TD ≤ C

T−1∑
t=0

avg
i
∥d(t)

i ∥
2 + TD = C avg

i

T−1∑
t=0

∥d(t)
i ∥

2 + TD,

and therefore it suffices to bound
∑T−1

t=0 E∥d(t)
i ∥2 for all i. For a client i, let t1 and t2 be the

iterations such that the client communicated at times t1 and t2 and didn’t communicate for any t ∈
(t1, t2) (t1 = −1 if t2 is the earliest communication, t2 = T − 1 if t1 is the latest communication).
If t2 = t1 + 1, then

∑t2−1
t=t1+1 ∥d

(t)
i ∥2 is trivially 0. Otherwise, since the trigger didn’t activate at

iteration (t2 − 1), by Line 8 of Algorithm 2 we have

∥e(t2)i ∥
2 = ∥e(t2−1+1/2)

i ∥2 = ∥e(t2−1)
i +(g

(t2−1)
i −d(t2−1)

i )∥2 = · · · = ∥
t2−1∑

t=t1+1

(g
(t)
i −d

(t)
i )∥2 ≤ A∥g(t2−1)

i ∥2+B

Using ∥a− b∥2 ≥ ∥a∥2
2 − ∥b∥

2 and d
(t1+1)
i = d

(t1+2)
i = · · · = d

(t2−1)
i :

1

2
(t2 − t1 − 1)

t2−1∑
t=t1+1

∥d(t)
i ∥

2 ≤ ∥
t2−1∑

t=t1+1

g
(t)
i ∥

2 +A∥g(t2−1)
i ∥2 +B

By Cauchy-Schwarz, ∥
∑t2−1

t=t1+1 g
(t)
i ∥2 ≤ (t2 − t1 − 1)

∑t2−1
t=t1+1 ∥g

(t)
i ∥2. Dividing the above

inequality by (t2 − t1 − 1), we have:

t2−1∑
t=t1+1

∥d(t)
i ∥

2 ≤ 2

t2−1∑
t=t1+1

∥g(t)
i ∥

2 +
2A

t2 − t1 − 1
∥g(t2−1)

i ∥2 + 2B

t2 − t1 − 1

Since d
(t2)
i = g

(t1)
i (defining g

(−1)
i = 0 for t1 = −1) and t2 − t1 − 1 ≥ 1:

t2∑
t=t1+1

∥d(t)
i ∥

2 ≤ 2

t2−1∑
t=t1

∥g(t)
i ∥

2 + 2A∥g(t2−1)
i ∥2 + 2B
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Finally, splitting [0 : T − 1] into −1 = t0 < t1 < . . . < tk = T such that the i-th client
communicates at iterations tj , we have

T−1∑
t=0

∥d(t)
i ∥

2 =
k∑

j=0

tj+1∑
t=tj+1

∥d(t)
i ∥

2

≤ 2
k∑

j=0

 tj+1∑
t=tj+1

∥g(t)
i ∥

2 +A∥g(tj+1−1)
i ∥2 +B


≤ 2((1 +A)

T−1∑
t=0

∥g(t)
i ∥

2 +BT ),

Bounding g
(t)
i in terms of∇f(x(t)). By Assumption 3, we have

∥∇fi(x)−∇f(x)∥2 ≤ α∥∇f(x)∥2 + β

Using inequality ∥a− b∥2 ≥ 1
2∥a∥

2 − ∥b∥2, we have:

1

2
∥∇fi(x)∥2 − ∥∇f(x)∥2 ≤ α∥∇f(x)∥2 + β =⇒ ∥∇fi(x)∥2 ≤ 2(1 + α)∥∇f(x)∥2 + 2β

Using E∥g(t)
i ∥2 = E∥∇fi(x(t))∥2+E∥g(t)

i −∇fi(x(t))∥2 = E∥∇fi(x(t))∥2+σ2, for g(t)
i we have

E∥g(t)
i (x)∥2 ≤ 2(1 + α)E∥∇f(x)∥2 + 2β + σ2

Bounding
∑

t E∥ξ(t)∥2. Putting the above bounds together, we have

T−1∑
t=0

E∥ξ(t)∥2 ≤ 2
T−1∑
t=0

E[∥r(t)∥2 + avg
i
∥e(t)i ∥

2]

≤ 2(C
T−1∑
t=0

avg
i

E[∥d(t)
i ∥

2 +DT +A
T−1∑
t=0

E∥g(t)
i ∥

2 +BT )

≤ 2(2C((1 +A)
T−1∑
t=0

E∥g(t)
i ∥

2 +BT ) +DT +A
T−1∑
t=0

E∥g(t)
i ∥

2 +BT )

≤ 4(A+AC + C)
T−1∑
t=0

E∥g(t)
i ∥

2 + 4(BC +D)T

≤ 8(A+AC + C)(1 + α)
T−1∑
t=0

E∥∇f(x(t))i∥2 + 4((A+AC + C)(β + σ2) +BC +D)T.
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Proof [Proof of the main theorem] By Lemma 7 and using bound on
∑T−1

t=0 E∥ξ(t)∥2:

E[f(y(T ))]

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+

L2γ3

2

T−1∑
t=0

E∥ξ(t)∥2

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+ L2γ3(c1

T−1∑
t=0

E∥∇f(x(t))∥2 + Tc2)

= f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ − c1L

2γ2)E∥∇f(x(t))∥2 + T
Lγ2σ2

2N
+ c2TL

2γ3

= f(y(0))−
T−1∑
t=0

γ

4
E∥∇f(x(t))∥2 + T

Lγ2σ2

2N
+ c2TL

2γ3,

where the last inequality obtained by selecting γ ≤ 1
4L and γ2 ≤ 1

4c1L2 . Rearranging the terms and

dividing by γT
4 , we have

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 ≤ 4(f(y(0))− E[f(y(T ))])

γT
+

2Lγσ2

N
+ 4c2L

2γ2.

The rest of the proof follows that of [32, Lemma 17]. Let F = f(y(0)) − f⋆ ≥ f(y(0)) −
E[f(y(T ))]. Balancing the first two terms:

4F

γT
=

2Lγσ2

N
=⇒ γ =

√
2FN√
Lσ

Balancing the first and the last term:

4F

γT
= 4c2L

2γ2 =⇒ γ =

(
F

c2L2T

)1/3

Therefore, by selecting γ = min

(√
2FN√
Lσ

,
(

F
c2L2T

)1/3
, 1
2L

√
c1

)
:

1

T

T−1∑
t=0

E∥∇f(x(t))∥2 = O

(√
LFσ√
NT

+

(
FL
√
c2

T

)2/3

+
FL
√
c1

T

)
.

B.2. Convex Case

Theorem 9 Let f be a convex function satisfying Assumptions 1-3. Let c1 and c2 be as defined in
Lemma 8. Let {x(t)} be the sequence from Algorithm 2 with γ ≤ min{ 1

4(1+α) ,
1

8
√
c1L
}. Then

E[f(
1

T

T−1∑
τ=0

x(τ))− f(x⋆)] ≤ 16γ2c2L+
2∥x(0) − x⋆∥2

γT
+ 2γ(2β +

σ2

N
)
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Therefore, for γ = Θ(1/
√
T) we achieve O(1/

√
T) convergence rate.

Proof Let Et denote expectation conditioned on x(t), e
(t)
i , r(t). Since y(t+1) = y(t)−γ avgi∈[N ](g

(t)
i ):

Et∥y(t+1) − x⋆∥2 = ∥y(t) − γ avg
i∈[N ]

(g
(t)
i )− x⋆∥2

= ∥y(t) − x⋆∥2 + γ2Et∥ avg
i∈[N ]

(g
(t)
i )∥2 − 2γEt⟨ avg

i∈[N ]
(g

(t)
i ),y(t) − x⋆⟩

= ∥y(t) − x⋆∥2 + γ2Et∥ avg
i∈[N ]

(g
(t)
i )∥2 − 2γ⟨∇f(x(t)),y(t) − x⋆⟩

For the last term, we have:

−2γ⟨∇f(x(t)),y(t) − x⋆⟩ = −2γ⟨∇f(x(t)),y(t) − x(t)⟩ − 2γ⟨∇f(x(t)),x(t) − x⋆⟩
≤ 2γ2∥∇f(x(t))∥ · ∥ξ(t)∥ − 2γ⟨∇f(x(t)),x(t) − x⋆⟩

Substituting this into the inequality above, by taking expectation and using telescoping, we have:

E∥y(t) − x⋆∥2 ≤ ∥x(0) − x⋆∥2 + γ2
t−1∑
τ=0

E∥ avg
i∈[N ]

(g
(τ)
i )∥2

+ 2γ2
t−1∑
τ=0

E[∥∇f(x(τ))∥ · ∥ξ(τ)∥]− 2γ
t−1∑
τ=0

E⟨∇f(x(τ)),x(τ) − x⋆⟩ (2)

We’ll simplify the terms on the right-hand side. Using the fact that stochastic noises are independent,
as shown in Lemma 8:

t−1∑
τ=0

E∥g(τ)
i (x(τ))∥2 ≤ 2(1 + α)

t−1∑
τ=0

E∥∇f(x(τ))∥2 + t(2β +
σ2

N
)

By Cauchy-Schwarz inequality and by Lemma 8:

t−1∑
τ=0

E[∥∇f(x(τ))∥ · ∥ξ(τ)∥] ≤

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2] · E[∥
t−1∑
τ=0

ξ(τ)∥2]

≤

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2] · E[c1
t−1∑
τ=0

∥∇f(x(τ))∥2 + c2t]

≤
√
c1

t−1∑
τ=0

E∥∇f(x(τ))∥2 +
√
c2
√
t

√√√√E[
t−1∑
τ=0

∥∇f(x(τ))∥2].

By convexity:

−2γ
t−1∑
τ=0

E⟨∇f(x(τ)),x(τ) − x⋆⟩ ≤ −2γ
t−1∑
τ=0

E[f(x(τ))− f(x⋆)]
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and for smooth convex functions we have:

E∥∇f(x(τ))∥2 = E∥∇f(x(τ))−∇f(x⋆)∥2 ≤ 2LE[f(x(τ))− f(x⋆)]

Let’s denote
√

1
t

∑t−1
τ=0 E[f(x(τ))− f(x⋆)] as St. Substituting the bounds above into Equal-

ity (2) and dividing it by t:

0 ≤ ∥x
(0) − x⋆∥2

t
+ 2γ2(1 + α)S2

t + γ2(2β +
σ2

N
) + 2γ2

√
c1LS

2
t + 4γ2

√
c2LSt − 2γS2

t

When γ ≤ min{ 1
4(1+α) ,

1
8
√
c1L
}, it follows:

S2
t − 4γ

√
c2LSt ≤

∥x(0) − x⋆∥2

γt
+ γ(2β +

σ2

N
)

By inequality ab ≤ a2

2 + b2

2 , we have 4γ
√
c2LSt ≤ S2

t
2 + 8γ2c2L, and therefore:

S2
t ≤ 16γ2c2L+

2∥x(0) − x⋆∥2

γt
+ 2γ(2β +

σ2

N
)

Finally, by convexity:

S2
t =

1

t

t−1∑
τ=0

E[f(x(τ))− f(x⋆)] ≥ E[f(
1

t

t−1∑
τ=0

x(τ))− f(x⋆)] .

Appendix C. Experiments

In this section, we empirically show convergence and communication improvements of PROCRAS-
TINATOR. We perform experiments on three datasets: MNIST [34], CIFAR-10 [33] and CIFAR-
100 [33]. For MNIST, we train a deep convolutional model with γ = 0.1 and batch size 8, while for
CIFAR-10 we train the VGG neural network [49] with γ = 0.01 and batch size 100.

In our experiments, we consider the following approaches:

• PROCRASTINATOR with parameters (A,B) as in Algorithm 1.

• LENA [48] with parameters (A,B).

• Local SGD with parameter gap. Each worker makes gradient descent step (i.e. x(t+1)
i ←

x
(t)
i − γg

(t)
i ), and every gap iterations all worker synchronize their parameters.

For PROCRASTINATOR and LENA, we selected A = 1 and B = 10 as parameters which work
well across multiple tasks. For local SGD, we considered gap = 1 as the most basic baseline (the
algorithm becomes the distributed SGD), and gap = 5, since with such a gap, communication of
Local SGD is comparable to communication of PROCRASTINATOR and LENA.

Our results are shown in Figure 1. For each dataset, we report the following (additional results,
including test loss, are shown in the Appendix):
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(a) MNIST: train loss w.r.t. epoch
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(b) CIFAR-10: train loss w.r.t. epoch
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(d) CIFAR-10: train loss w.r.t. client commu-
nications
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(e) MNIST: train loss w.r.t. broadcasts
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(f ) CIFAR-10: train loss w.r.t. broadcasts
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(g) MNIST: client communication latency
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(h) CIFAR-10: client communication latency
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(i) MNIST: broadcast latency
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(j) CIFAR-10: broadcast latency

Figure 1: Convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5, PROCRAS-
TINATOR and LENA on MNIST (left) and CIFAR-10 datasets. For each dataset, we show train
loss with respect to: the number of iterations, the number of communications from clients and
the number of broadcasts. Additionally, we show the number of client communications and the
number of broadcasts per epoch. The results show that PROCRASTINATOR and LENA have the
best convergence w.r.t. client communication, while PROCRASTINATOR additionally has the best
convergence w.r.t. broadcasts. 23
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(a) CIFAR-100: train loss w.r.t. epoch
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(c) CIFAR-100: train loss w.r.t. broadcasts
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(d) CIFAR-100: client communication latency
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(e) CIFAR-100: broadcast latency

Figure 2: Convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5, PROCRAS-
TINATOR and LENA on CIFAR-100 dataset. Similarly to Figure 1, PROCRASTINATOR and LENA
have the best convergence w.r.t. client communication, while PROCRASTINATOR additionally has
the best convergence w.r.t. broadcasts.

24



• Train loss with respect to the number of epochs, the number of client communications and
the number of broadcasts.

• Client communication latency and broadcast latency. Namely, for each epoch we report the
number of communications/broadcasts during that epoch.

For the MNIST dataset, Figure 1(a) shows that all algorithms have comparable convergence rates,
and therefore, communication becomes the main deciding performance factor. In Figure 1(c), LENA

requires the least amount of communication, followed by PROCRASTINATOR and substantially out-
performing local SGD and distributed SGD in terms of communication required to reach the final
accuracy. However, LENA, similarly to distributed SGD, requires broadcasts at every iteration, and
therefore is significantly outperformed by PROCRASTINATOR in this aspect.

On CIFAR-10 and CIFAR-100 datasets, algorithm behavior is noticeably different. In Fig-
ure 1(b), all algorithms except Local SGD have similar performance. However, with respect to
client communication, PROCRASTINATOR and LENA have the best performance, requiring 2x-5x
times less communication compared with distributed/local SGD. And due to broadcast require-
ments of LENA, PROCRASTINATOR shows the best communication performance: 1.5x-2x times
less broadcasts compared with distributed/local SGD.

Overall, PROCRASTINATOR outperforms local/distributed SGD with respect to communication.
Compared with LENA, it shows similar client communication requirements, while requiring sub-
stantially less broadcasts.

C.1. Additional experimental results

In this section, we show the test loss convergence for datasets under study.
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(a) CIFAR-100: test loss w.r.t. epoch
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(c) CIFAR-100: test loss w.r.t. broadcasts

Figure 3: Test loss convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5,
PROCRASTINATOR and LENA on CIFAR-100 dataset.
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(a) MNIST: test loss w.r.t. epoch
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(b) CIFAR-10: test loss w.r.t. epoch
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(c) MNIST: test loss w.r.t. client communica-
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(d) CIFAR-10: test loss w.r.t. client communi-
cations
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(e) MNIST: test loss w.r.t. broadcasts
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(f ) CIFAR-10: test loss w.r.t. broadcasts

Figure 4: Test loss convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5,
PROCRASTINATOR and LENA on MNIST (left) and CIFAR-10 datasets. For each dataset, we
show test loss with respect to: the number of iterations, the number of communications from
clients and the number of broadcasts.
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