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Abstract

The human-like capability of Multimodal
Large Language Models (MLLMs) like GPT-
4o to process both text and images enables them
to help humans with quantitative analysis of
charts. However, these models are known to
hallucinate, more so on vision language tasks;
our initial study on a sample from the ChartQA
dataset (Masry et al., 2022) indicates that GPT-
40 provides accurate answers only 58% of the
time for questions on chart images. In this pa-
per, we introduce attribution for chart-based
mathematical questions, where bounding boxes
identify the key regions that justify answers,
building on recent work in factual verification
for text-based question answering. Taking in-
spiration from Chain-of-Thought (CoT)-like
prompting strategies, we hypothesize that un-
derstanding step-by-step reasoning can help in
improving attribution accuracy in chart-based
mathematical question-answering. We propose
a semi-automatic approach to obtain a bench-
marking dataset comprising 7,819 diverse sam-
ples with charts, questions, reasoning steps, and
attribution annotations. We introduce a method
using the open-source Internlm-XComposer2
model with Partial Low-Rank Adaptation, treat-
ing vision and language tokens equally to gen-
erate high-quality attributions through detailed
reasoning steps. Our experimental results show
that our approach enhances attribution qual-
ity by ~15%, advancing the development of
interpretable and trustworthy chart-based Al
systems.

1 Introduction

Data visualizations like bar charts and line charts
are among the most straightforward tools for rep-
resenting and analyzing data, helping people make
informed decisions. Analyzing these charts of-
ten requires performing mathematical calculations
and applying formulas to extract insights or an-
swers (Kim et al., 2020). Studies by Satpute
et al. (2024); Srivastava et al. (2024); Ahn et al.

(2024); Gupta et al. (2024) evaluated Large Lan-
guage Models (LLMs) (Brown et al., 2020; Jiang
et al., 2024; Touvron et al., 2023; Achiam et al.,
2023) and Multi-modal Large Language Models
(MLLMs) (OpenAl, 2023; Team et al., 2023; Su
et al., 2023; Chen et al., 2023) for their ability to
answer mathematical questions or provide reason-
ing using various datasets across tasks like solving
geometrical problems combining diagram and text
interpretation (Seo et al., 2015) and mathematical
word problems (Wang et al., 2017), etc. While
LLMs and MLLMs have demonstrated impressive
performance in mathematical question-answering
tasks, establishing trust in their generated answers
through attribution mechanisms is important. This
is particularly crucial for mathematical questions
involving charts, where numerical accuracy and
proper interpretation of visual elements directly
impact decision-making in real-world settings.

Prior work on attribution has primarily focused
on general text-based question-answering and vi-
sual question-answering tasks (Yue et al., 2023;
Phukan et al., 2024a,b; Bohnet et al., 2022; Qi
et al., 2024). However, directly applying these ap-
proaches to mathematical chart question answering
presents significant limitations. For instance, in fig
1, when applied to complex mathematical questions
involving charts, existing attribution methods often
fail to correctly identify the relevant chart regions
that contribute to the final answer. To the best of
our knowledge, attributing the generated answers
to the charts for such complex math questions has
been unexplored. In this paper, we address the
task of attributing generated answers to specific
regions in charts for complex mathematical ques-
tions. We focus specifically on line and bar charts,
covering a range of mathematical operations includ-
ing aggregations, comparisons, and trend analysis.
Drawing inspiration from Chain-of-Thought (CoT)
prompting strategies (Wei et al., 2024; Zhang et al.,
2022), we hypothesize that incorporating step-by-



Question: Is the difference between blue and green graph in 2008 the

maxiumum among years?
Answer: No

i| Reasoning: In 2008, the green ("Yes") is 69%, and the blue ("No") is
:126%. Difference = 43%. In 2013, the green ("Yes") is 76%, and the
:[blue ("No") is 18%. Difference = 58%. The 2013 difference (58%) is
greater than the 2008 difference (43%). The maximum difference is
1|in 2013, not 2008.
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Figure 1: Comparison of attribution methods between GPT-40 and InternLM-XComposer2 on a chart reasoning
task. Left: Both models receive only the chart, question, and answer as input. Right: Models additionally receive
reasoning steps, leading to more precise attributions. The example shows how incorporating reasoning steps helps
InternLM-XComposer2 correctly attribute the relevant data points for comparing differences between lines in 2008
and 2013, while GPT-4o struggles with accurate attribution even with reasoning provided.

step reasoning in the attribution process can im-
prove performance by mimicking human mathe-
matical problem-solving approaches.

We make four main contributions in our work
ATLAS: A Reasoning-Guided ATtribution Frame-
work for Mathematical. ChArt AnalysiS: (1) We
introduce the task of attribution for mathemat-
ical question answering in charts, addressing a
critical gap in current visual mathematical question
answering, as outlined in figure 1. (2) We present
a systematic data curation strategy that com-
bines MLLM-generated reasoning and attribution
annotations with human corrections. This results
in a high-quality dataset derived from ChartQA
(Masry et al., 2022), comprising annotated exam-
ples spanning line and bar chart types and math-
ematical operations. (3) We propose an auto-
matic attribution and reasoning method that uti-
lizes InternLM-XComposer2 (Dong et al., 2024)
model to generate attribution for chart QA (Masry
et al., 2022) dataset by taking the reasoning for
the answers as input. Our approach utilizes an
InternLM-XComposer2 model that uses Partial
Low-Rank Adaptation (PLoRA) on to generate rea-
soning steps from chart-question-answer triples,
then uses these to produce attribution bounding
boxes. (4) Through extensive empirical evaluation,

we demonstrate that high-quality reasoning steps
significantly improve attribution accuracy. Our
results show an average of 15% improvement from
baseline approaches through our proposed method-
ology, highlighting current limitations and areas
for future enhancement in reasoning generation.

2 Related Work

Recent work has increasingly focused on attribu-
tion mechanisms to improve the trustworthiness
of Al systems’ outputs. For text-based systems,
Bohnet et al. (2022) survey attribution methods in
open-domain generative systems, highlighting chal-
lenges like ambiguous knowledge sources and bi-
ases. In the context of question answering, Phukan
et al. (2024b) leverage LLLMs’ hidden state repre-
sentations to attribute parts of generated answers to
source documents, while Qi et al. (2024) propose
MIRAGE, a model internals-based approach for
faithful answer attribution in retrieval-augmented
generation. For multimodal systems, Phukan et al.
(2024a) extend the logit lens technique to detect
and ground visual hallucinations using contextual
token embeddings from middle layers of MLLMs,
improving bounding box precision and spatial un-
derstanding. Chart-based question answering has
emerged as a crucial task for visual data interpre-



Question: What's the product of the
median values of blue and green bar?

Answer: 5478

Step 1: First, identify the median values
for both the blue bar and the green bar
in the chart.

Step 2: For the blue bar data: 71, 66, 62
The median value is 66.

Step 3: For the green bar data: 91, 83,
59 The median value is 83 and then
multiplying them the median values is
66 times 83 = 5478.
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Figure 2: ATLAS’s attribution process for mathematical reasoning on charts. Left to right: (1) VQA attribution
highlights all relevant data bars needed for computing the final answer, (2) Step 1 attribution identifies the specific
bars needed to find median values, (3) Step 2 attribution focuses on the blue bars for calculating their median
(66), and (4) Step 3 attribution shows the green bars used for the final multiplication step (66 x 83 = 5478). The
progressive attribution demonstrates how our framework traces both the final answer and intermediate reasoning

steps to specific chart regions.

tation. The ChartQA dataset (Masry et al., 2022)
provides a comprehensive benchmark with 9.6K
human-written and 23.1K generated questions for
visual and logical reasoning over various chart
types. Recent advances like Chart Llama (Han
et al., 2023) have demonstrated superior perfor-
mance in tasks like ChartQA, Chart-to-text, and
chart extraction. Supporting technologies such as
ChartOCR (Luo et al., 2021) combine deep learn-
ing and rule-based methods to effectively extract
chart segments, facilitating better chart understand-
ing.

Mathematical reasoning has become increas-
ingly important in Al systems, particularly for
chart interpretation where statistical understand-
ing is crucial. Imani et al. (2023) proposed Math-
Prompter, generating multiple solution paths using
zero-shot CoT prompting to improve arithmetic
problem-solving. While CoT prompting shows
promise with large models, Ranaldi and Freitas
(2024) addressed its limitations in smaller mod-
els through instruction-tuning. As surveyed by Lu
et al. (2023), mathematical reasoning serves as a
crucial testbed for evaluating Al systems’ capabili-
ties, with implications for chart-based mathemati-
cal analysis. The need for trustworthy chart-based
mathematical reasoning has highlighted the impor-
tance of attribution in this domain. While models
like InternLM-XComposer2 (Dong et al., 2024)

excel in multimodal understanding through tech-
niques like Partial LoRA for image token process-
ing, existing attribution methods face challenges
with mathematical chart questions. Current ap-
proaches, while promising for general visual attri-
bution, underperform when dealing with complex
mathematical operations on charts, creating a crit-
ical gap in trustworthy chart-based mathematical
reasoning systems.

3 Attribution Definition

Chart attribution aims to identify regions of a
chart that support generated answers, similar to the
Grounded Visual Question Answering (VQA) ap-
proach proposed by (Phukan et al., 2024a). For
mathematical chart question answering, where
complex reasoning steps are essential to arrive at
answers, we propose a two-level attribution frame-
work that provides transparency not only for final
answers but also for intermediate reasoning steps.

3.1 Answer-Level Attribution

Basic chart attribution involves visually linking
chart elements to answers using bounding boxes,
highlighting the specific data points that support the
answer. In the leftmost chart of Figure 2, while the
bounding boxes highlight all datapoints contribut-
ing to the answer "5478", the reasoning behind
this calculation remains unclear without additional



context. This demonstrates why incorporating rea-
soning steps becomes crucial for questions involv-
ing mathematical operations, where the path to the
answer is as important as the answer itself.

3.2 Reasoning-Level Attribution

When solving mathematical questions with charts,
the path to the answer often involves multiple rea-
soning steps. Our framework attributes each rea-
soning step to relevant chart regions, creating a
traceable connection between the reasoning pro-
cess and visual elements. As shown in Figure 2,
the 2nd, 3rd and the 4th chart represents each of the
reasoning steps. This granular-level attribution ap-
proach enhances trust in the system by making both
final answers and the reasoning process transparent
and verifiable against the source chart.

Additional examples for both answer level and
reasoning level attribution is present in Appendix
section A.

4 Dataset Curation

Currently, no datasets exist that provide reasoning
steps for chart question answering or attribution
annotations for mathematical chart QA. To address
this gap, we first examine existing model capabili-
ties before developing a semi-automatic annotation
strategy.

4.1 Reasoning Capabilities of MLLMs for
Charts

Based on performance evaluations in the Polymath
benchmark (Gupta et al., 2024), we select Claude
3.5 Sonnet and GPT-40 as our primary models for
analysis. We also include GPT-4v for its vision ca-
pabilities. To assess the performance on reasoning
generation, we randomly select 100 examples from
the ChartQA dataset (Masry et al., 2022), each con-
taining a chart, question, and answer triple. Charts
and questions are passed to these models as input
and they are prompted to generate answers and rea-
soning. These answers and reasoning are annotated
by human annotators on whether they are correct
or not, and the results are presented in Table 1.

Model Answer is Correct  Reasoning is Correct
(Human Annotated) (Human Annotated)

Gpt-40 58% 49%

Gpt-4v 64% 45%

Claude-3.5-sonnet 96% 75%

Table 1: Benchmarking performance based on Visual
Question Answering and Visual Question Reasoning.

As shown in Table 1, while Claude 3.5 Sonnet
demonstrates strong answer generation (96% ac-
curacy), its reasoning capabilities show significant
room for improvement (75% accuracy). Other mod-

els perform notably worse, with reasoning accura-
cies below 50%.

Color Mismatch
[12%] Skipped Number [11%)

Numerical

Reasoning Failure
soning raiu Hallucination [64%]

Random Number Generated [26%]

lllogical Conclusion Same Number Repeated|[ 27%]

[24%1

Figure 3: Taxonomy of Failure Cases that represents the
categories of reasoning failure.

A more detailed error analysis, including word
clouds of failure patterns in appendix section B
figure 12 and specific examples, is provided in the
appendix section B figure 13. Notably, providing
correct answers alongside questions reduced rea-
soning failures from 51% to 25%, suggesting the
potential for improved performance through better
model guidance.

4.2 Task Setup

Our goal is to obtain three types of annotations for
chart-based mathematical attribution: (1) reason-
ing steps for given chart-question-answer triples,
(2) answer attribution, and (3) reasoning step attri-
bution. Rather than annotating from scratch, we
developed a semi-automatic approach leveraging
Claude 3.5 Sonnet’s capabilities to generate initial
annotations for human correction.

We recruited two qualified annotators through
the Upwork platform' after an initial screening of
three candidates using 100 sample data points. The
entire annotation process went for 120 hours and
each annotator was paid 15 USD hourly.

For attribution annotation, we employed the
VGG Image Annotator platform?, which provides
an intuitive interface for drawing bounding boxes
and mapping them to textual reasoning steps.
Screenshots from the annotation interface, more
details on initial screening and examples of such
annotations are provided in the appendix section A
fig 6 and 10.

Stage 1: Reasoning Validation and Correc-
tion. In Stage 1, annotators perform reasoning
validation through three key steps: (1) correction

"https: //www. upwork . com
2https: //annotate.officialstatistics.org/
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Figure 4: Overview of our proposed ATLAS framework for reasoning step generation. The architecture leverages
InternLM-XComposer2 with Partial-LoRA for visual token adaptation. Given a chart and Q&A pair, the model
processes visual tokens through CLIP ViT-Large and applies Partial-LoRA for chart-specific feature adaptation,
while textual inputs are processed by InternLM-2. The final output provides reasoning steps through hidden state

analysis.

by reviewing Claude-3.5-sonnet generated reason-
ing for chart-question-answer triples, (2) provid-
ing a binary correctness assessment (Yes/No) for
each triple, and (3) categorizing errors in incorrect
reasoning (such as color mismatches or illogical
conclusions) while supplying corrected reasoning
when the original is found to be inaccurate.

Stage 2: Answer Attribution. For each chart-
question-answer triple, annotators draw bounding
boxes using the VGG image annotator indicating
chart regions supporting the answer. Figure 6
demonstrates this process, showing both input and
resulting annotations.

Stage 3: Reasoning Attribution. Using the
validated reasoning from Stage 1, annotators are in-
structed to provide bounding boxes using the VGG
image annotator for each reasoning step. As shown
in Figure 10, each statement (e.g., "orange line
represents unfavorable") is linked to relevant chart
regions.

4.3 Data Annotation & Analysis

To ensure annotation quality, we conducted initial
screening to select mathematically proficient anno-
tators, measured inter-annotator agreement using
Kappa score (Cohen, 1960), and had authors man-
ually verify a sample of annotations. This semi-
automatic approach significantly reduced annota-
tion effort while maintaining high quality through
human validation and correction. More details on
the InterAnnotator Agreement consisting of Kappa
score and Intersection Over Union (IOU) score

(Rezatofighi et al., 2019) calculation formula are
present in the Appendix section B.1.

Chart Stage 1 Stage 2 Stage 3
Type [Kappa Score] [IOU Score] [IOU Score]
Line 0.825 0.524 0.561
Bar 0.920 0.579 0.647

Table 2: Annotation scores across three stages for line
and bar charts. Stage 1 shows high inter-annotator agree-
ment (Kappa score > 0.8) for reasoning validation. Stage
2 demonstrates moderate agreement in answer-based at-
tribution (IOU scores 0.5), while Stage 3 shows agree-
ment (0.56 < IOU scores < 0.64) when incorporating
reasoning-based attribution. This progression suggests
that reasoning steps help annotators more consistently
identify relevant chart regions. Also, this indicates the
complexity of annotations for Stage 2 and Stage 3.

4.4 Data Analysis

After the annotation process, the key statistics
about the data are summarized in the table 3. Table
3 shows the breakdown of the dataset by chart type.
There are a total of 1000 charts, consisting of 500
line charts and 500 bar charts. For each chart, there
are 2 QA pairs, resulting in a total of 2000 QA
pairs. Additionally, the annotators identified a total
of 3599 reasoning steps across all the charts (stage
1). The table also shows the number of image re-
gions that were attributed to the QA-based annota-
tions (stage 2) and the reasoning-based annotations
(stage 3). For line charts, there are 1465 QA-based
and 2691 reasoning-based attributed regions, while



for bar charts, there are 2627 QA-based and 4437
reasoning-based attributed regions.

Chart  No. of No. of No. of No. of attributed No. of attributed

Type Charts QA pairs reasoning image regions image regions

steps (QA-based) (reasoning-based)
Line 500 1000 1773 1465 2691
Bar 500 1000 1826 2627 4437
Total 1000 2000 3599 4092 7128

Table 3: Summary of the ATLAS Dataset. Our dataset
contains an equal distribution of line and bar charts
(500 each), with 2 QA pairs per chart. The table shows
the progression from basic QA pairs through reason-
ing steps to attributed regions, with reasoning-based
attribution requiring significantly more regions (7128)
compared to QA-based attribution (4092).

5 ATLAS: Proposed Method

Our proposed method, ATLAS, addresses the
challenge of attributing mathematical reasoning
in charts through a two-stage pipeline (figure
4). Given a chart-question-answer triple, we first
generate step-by-step reasoning using InternLM-
XComposer2 model (figure 5), then leverage these
reasoning steps along with the chart, question,
and answer to produce attribution bounding boxes
for both the final answer and intermediate reason-
ing steps. For reasoning generation, we utilize
InternLM-XComposer2® output. The model archi-
tecture incorporates a vision encoder (CLIP ViT-
Large (Radford et al., 2021)) that processes charts
into a 35x35 grid (1225 visual tokens) and maps
them to a shared 4096-dimensional embedding
space with text from InternLLM-2 (Cai et al., 2024).
Using (Dong et al., 2024), we employ Partial LoRA
(Huetal., 2021) (PLoRA), which applies additional
trainable parameters specifically to visual tokens
while preserving the base 7B-parameter language
model’s capabilities.

We utilize (Phukan et al., 2024a)’s findings on
attribution, and extract hidden states from layer
16, which empirically provides optimal semantic
representations for our task. The attribution mech-
anism employs a GPU-accelerated sliding window
approach, efficiently processing window configu-
rations from 3x3 to 35x35 patches through nor-
malized patch embedding averaging and cosine
similarity metrics between textual descriptions and
visual regions.

Shttps://github.com/InternLM/
InternLM-XComposer

6 Experiments

We conduct experiments on the curated dataset pre-
sented in section 4.4. We experiment on this dataset
for two tasks i.e. (i) Attribution based on Visual
Question Answering (VQA) and (ii) Attribution
based on Visual Question Reasoning (VQR).

6.1 Baselines

We evaluate ATLAS against three state-of-the-art
MLLMs: GPT-40, GPT-4v, and Claude 3.5 Son-
net. For each baseline, we test both zero-shot and
few-shot prompting strategies for two tasks: attri-
bution based on answer attribution and reasoning
attribution.

Answer Attribution (VQA): Models must identify
relevant chart regions using bounding boxes that
support their answers to specific questions.
Reasoning Attribution (VQR): Models must at-
tribute their mathematical reasoning steps using
bounding boxes to specific chart elements. Each
reasoning step has different granular attribution as
described in VQR step 1, 2 and 3 of fig 2.

We collect attribution results through API calls
to GPT-40*, GPT-4v°, and Claude 3.5 Sonnet®.
Since these models cannot directly output chart
images with bounding boxes, we design prompts
to obtain coordinates of the bounding boxes in the
format of X1, Y1, X2, and Y2.

Zero Shot For answer attribution, we used the
following zero shot prompt:

/[ Zero-Shot Prompt ]

System Prompt: You are a helpful assistant
that responds in markdown. Help me with
my math question.

Input Format:

e Chart: [chart_image], Question:
tion_text], Answer: [answer_text]

[ques-

User Prompt: Given this chart and the
question-answer pair: question = "question",
answer = "answer"; ONLY generate bound-
ing box coordinates in X1, Y1, X2, Y2 for-
mat - A list of tuples, each containing (x1,
yl, x2, y2) representing the bounding box
coordinates without additional text which
represents which part of the chart corre-
sponds to the answer.

*GPT-40: "GPT-40", "2023-05-15"
>GPT-4v: "gpt-4-vision-preview", "2023-07-01-preview"
%Claude 3.5 Sonnet: "claude-3-5-sonnet-20240620-v1:0"
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Partial-LoRA. The blue tokens represent the visual tokens and
the gray tokens are the language tokens. Partial-LoRA is only
applied to the visual tokens.

Figure 5: Overview of our proposed ATLAS framework. The architecture leverages InternLM-XComposer2 with
Partial-LoRA for visual token adaptation. Given a chart and Q&A pair, the model processes visual tokens through
CLIP ViT-Large and applies Partial-LoRA for chart-specific feature adaptation, while textual inputs are processed by
InternLM-2. The final output provides both answer and reasoning-based attributions through hidden state analysis.

Few Shot Using Few-shot prompting for answer
attribution, an example is passed in the prompt, and
the prompt is described below:

/[ Few-Shot Prompt ]

System Prompt: You are a helpful assistant
that responds in markdown. Help me with
my math question.

Example 1:

Chart: [bar_chart_image] Question:
"What was the highest value in 20207?"
Answer: "85 units"

Bounding Box: (120, 45, 140, 230)

User Prompt: Given this chart and the
question-answer pair: question = "question",
answer = "answer" and examples; ONLY
generate bounding box coordinates in X1,
Y1, X2, Y2 format - A list of tuples, each
containing (x1, yl, x2, y2) representing
the bounding box coordinates without ad-
ditional text which represents which part of

the chart corresponds to the answer.
. y

Appendix section C contains additional details.
For Reasoning Attribution (VQR): Few-shot
and zero-shot prompting are conducted and the de-
tails of the prompt are present in Appendix sec-
tion C figure 16 and 17 for zero-shot and few-

shot respectively. The input charts are encoded
before being passed as prompts and are decoded
using base64 encoding/decoding after collecting
the bounding box coordinates for further analysis.

6.2 ATLAS-Automatic Reasoning Step
Generation

For automatic reasoning step generation, we lever-
age the Partial LoORA framework from (Dong et al.,
2024) due to its effectiveness in preserving lan-
guage capabilities while adapting to visual inputs.
Given a chart-question-answer triple (C, @, A), our
goal is to generate reasoning steps R that explain
the answer derivation while maintaining alignment
with visual elements.

Following the existing Partial LoRA architec-
ture, we process inputs © = [z, z¢], where x,
represents visual tokens from the chart processed
through CLIP ViT-Large, and z; represents the
concatenated question-answer tokens. The output
features are computed as follows:

T = [y, & )]

where Z; follows the standard language model
path, and z,, incorporates visual adaptation through
the Partial LoRA matrices.

Reasoning generator is used to maximize:

n

P(R|C,Q,A) = [[ P(rilr<:,C,Q, 4) (@

=1



where r; represents the i-th token in the reasoning
sequence.

This approach enables our model to generate
step-by-step reasoning by utilizing chart-specific
visual features while maintaining strong language
capabilities, producing coherent explanations that
explicitly reference chart elements, and describing
the mathematical operations needed to arrive at
the answer. The generated reasoning provides a
transparent explanation of the answer derivation
process, which is then used to guide our attribution
mechanism for identifying relevant chart regions.

6.3 Metrics
We employ IOU score (Rezatofighi et al., 2019) as

our primary evaluation metric:

B B
10U — area(Bp N Bgt) 3)
area(B, U Bg;)

where B), represents the predicted bounding box
and By represents the ground truth box. Addi-
tionally, we measure the cosine similarity between
textual descriptions and visual regions to evaluate
semantic alignment.

7 Results and Discussion

Table 4 presents the IOU scores across different
models and prompting strategies. Our ATLAS
framework shows substantial improvements across
all metrics compared to baseline models.

Using the ATLAS method, we achieve im-
provements of 504% (0.026 — 0.157) and 446%
(0.028 — 0.153) for VQA tasks (line and bar
charts, respectively). With automated reasoning
generated using fig 5, we report a 230% (0.122 —
0.037) and 110% (0.039 — 0.082) improvement
for VOQR tasks. These improvements further in-
crease when using human-validated reasoning, par-
ticularly for VQR tasks, reaching 268% (0.037 —
0.136) for line charts and 405% (0.197 — 0.039)
for bar charts, while maintaining the same VQA
performance since in the VQA task, only question
and answer is given as input. This demonstrates
the value of both our automated approach and the
potential for further improvements with human val-
idation.

We note that ATLAS with automated reasoning
is not very far from that with human reasoning,
indicating that our reasoning generation using In-
ternL.M is fairly good, close to human-provided or
corrected reasoning steps. However, there is still a

very long way to go for attribution for charts, given
that even the best-performing, human-based rea-
soning variant of ATLAS leads to 0.15 — 0.2 IOU
scores. One possible future direction could be to
come up with better attribution bounding box pre-
diction systems. A promising direction would be
fine-tuning an MLLM to generate these attribution
bounding boxes.

Model VQA IOU VQRIOU

‘ Line Bar | Line Bar
GPT-40 (zero-shot) 0.026 0.028 0.025 0.021
GPT-4o (few-shot) 0.020 0.022 0.022 0.019
GPT-4v (zero-shot) 0.016 0.019 0.021 0.023
GPT-4v (few-shot) 0.014 0.017 0.022 0.024
Claude 3.5 (zero-shot) 0.024 0.025 0.032 0.035
Claude 3.5 (few-shot) 0.025 0.021 0.037 0.039
ATLAS 0.157 0.153 0.122 0.082
(Automated Reasoning) ‘
ATLAS 0.157 0.153 0.136 0.197

(Human Reasoning) ‘ ‘

Table 4: Attribution performance comparison across
different models and settings. Performance is measured
using IOU scores for both VQA and VQR tasks on
line and bar charts. Baseline models (GPT-40, GPT-4v,
Claude 3.5) show limited performance in both zero and
few-shot settings (<0.04 IOU). Our ATLAS framework
demonstrates substantial improvements, achieving IOU
scores >0.15 for VQA tasks and up to 0.197 for VQR
tasks when using human-validated reasoning, highlight-
ing the benefits of incorporating reasoning steps in the
attribution process.

8 Conclusion

In this paper, we presented a novel framework for
chart attribution that combines visual and mathe-
matical reasoning capabilities. Our primary con-
tributions include (i) the formalization of chart
attribution for mathematical question answering
and reasoning tasks, (ii) a systematic data cura-
tion strategy that combines MLLM-generated rea-
soning with human corrections for reliable attri-
bution annotation, and (iii) a framework for using
InternLM-XComposer2 model that utilizes auto-
matic reasoning steps to improve attribution accu-
racy. While our approach demonstrates significant
improvements over baselines, opportunities remain
for enhancing reasoning generation, extending sup-
port for complex chart types, and integrating with
downstream applications. Our framework provides
a foundation for building more trustworthy and in-
terpretable Al systems for mathematical reasoning
tasks, paving the way for chart-based systems that
can better explain their decision-making processes.



9 Limitations

While our framework demonstrates promising re-
sults for chart attribution through automated rea-
soning, several important limitations and areas for
discussion emerge from our study:

Restrictive Prompting: To produce bounding
boxes, we use a highly restrictive prompting ap-
proach. We instruct the model to generate bound-
ing boxes as a list of coordinate tuples in the format
(X1, Y1, X2, Y2). However, research works on re-
strictive prompting (Tam et al., 2024) has found
that using overly restrictive prompts can lead to no-
table decreases in model performance compared to
less constrained prompting techniques. Therefore

Attribution Task is Challenging for Humans:
As shown in Table 2, the attribution task proved
difficult for human annotators. In stages 2 and 3 of
the annotation process, the agreement percentages
ranged from just 52% to 64%. These relatively
low levels of agreement underscore the inherent
challenge of the attribution task, even for human
raters with domain expertise.

Reasoning Quality Dependencies: Our attribu-
tion system’s performance depends on the quality
of generated reasoning steps. While fine-tuning
InternLM-XComposer2 may improve reasoning
generation, complex mathematical operations, and
multi-step calculations still present challenges, po-
tentially affecting attribution accuracy. We discuss
failure cases for reasoning in fig 12.

Chart Type Constraints: The current imple-
mentation focuses primarily on line and bar charts,
limiting its applicability to other visualization types.
Complex charts with multiple axes, overlapping
elements, or nested visualizations may pose addi-
tional challenges for both reasoning generation and
attribution.

Computational Requirements: The sliding
window mechanism used for attribution, while
effective, requires significant computational re-
sources, especially for high-resolution charts or
when processing multiple reasoning steps. This
may impact the system’s practicality in real-time
applications.

Human Validation Process: While our data cu-
ration strategy employs human validation to ensure
quality, the subjectivity in reasoning annotation and
attribution marking can introduce inconsistencies.
The inter-annotator agreement scores suggest room
for improvement in standardizing the validation
process.

Model Architecture Limitations: The cur-
rent approach relies on layer 16 hidden states of
InternLM-XComposer2, which may not capture all
relevant features for attribution. Alternative archi-
tectural choices or multi-layer approaches could
potentially yield better results.

These limitations point to several promising di-
rections for future research, including more robust
reasoning generation mechanisms, efficient attribu-
tion algorithms, and improved validation method-
ologies.

10 Ethics Statement

We acknowledge several ethical considerations in
our development of chart attribution systems. First,
we prioritized transparency by openly documenting
our methodology, model limitations, and potential
biases in both reasoning generation and attribution
accuracy. All training data was properly sourced
from public datasets with appropriate licensing,
and our human annotation process followed fair
labor practices, including equitable compensation
($15/hour) and clear guidelines. While our system
aims to improve accessibility and understanding of
quantitative information through transparent rea-
soning steps, we recognize potential risks of mis-
use, such as automated generation of misleading
chart interpretations. We recommend deploying
this technology with appropriate human oversight
in high-stakes scenarios and maintaining regular
audits for systematic biases. Our goal is to advance
chart interpretation capabilities while implement-
ing safeguards that protect against potential misuse
and ensure the technology serves its intended pur-
pose of making quantitative information more ac-
cessible and understandable to diverse user groups.
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Appendix

This section provides additional examples to assist in the understanding and interpretation of the research
work presented.

* Section A: Attribution Examples
* Section B: Dataset Curation

* Section C: Experiments

A Attribution Definition & Examples

Examples of attribution based on visual question answering is present in fig 6 and 7.

Americans Give China Mostly Negative Ratings

U.S. views of China

Americans Give China Mostly Negative Ratings

U.S. views of China

80% 80%
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ATTRIBUTION BASED ON VISUAL QUESTION ANSWERING

Question : How many value is below 40 in unfavorable graph? Answer : 6

Explantion: The chart on the right side shows Human-annotated Attribution based on VQA. Each datapoint

contributing to the answer is represented through a distinct bounding box, with a total of six boxes displayed on the
visualization.

Figure 6: This figure shows attribution based on question answering. Here the bounding boxes clearly identify six

data points on the "Unfavorable" line that fall below 40%, directly supporting the answer to the question "How
many values are below 40 in the Unfavorable graph?

For Visual Question Reasoning, examples are present in fig 8, 9 and fig 10.
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Figure 7: This figure shows attribution annotation platform based on question answering. Annotators are provided
question = "What’s the value of smallest bar?" and answer="62.22%". The annotators draw bounding box based on

these as represented in the figure.
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Figure 8: This figure shows how sentence-level reasoning is attributed in our dataset. Annotators are provided
with a chart, question = What’s the average of Yemen and Brazil?, answer= 84.17, and reasoning = "First, identify
the net attendance rates for each country: Brazil has 97.91%. Yemen has 70.43%. Next, sum these values: 97.91
+ 70.43 = 168.34. Then, divide by the number of countries to find the average: 168.34 /2 = 84.17". The first
reasoning statement "First, identify the net attendance rates for each country: Brazil has 97.91%." is directly linked
to corresponding chart elements, ensuring each step of the mathematical reasoning process is grounded in the chart’s

components.

B Data Sources and Compilation

B.1 Data Annotation

To ensure annotation quality, we conducted initial screening to select mathematically proficient annotators,
measured inter-annotator agreement using Kappa score (Cohen, 1960), and had authors manually verify
a sample of annotations. This semi-automatic approach significantly reduced annotation effort while
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Figure 9: This figure shows how sentence-level reasoning is attributed in our dataset. Annotators are provided with
a chart, question = What’s the average of Yemen and Brazil?, answer= 84.17, and reasoning = "First, identify the
net attendance rates for each country: Brazil has 97.91%. Yemen has 70.43%. Next, sum these values: 97.91 +
70.43 = 168.34. Then, divide by the number of countries to find the average: 168.34 /2 = 84.17". The second
reasoning statement "Yemen has 70.43%" is directly linked to corresponding chart elements, ensuring each step of
the mathematical reasoning process is grounded in the chart’s components.

Americans Give China Mostly Negative Ratings Americans Give China Mostly Negative Ratings
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ATTRIBUTION BASED ON VISUAL QUESTION REASONING

Question: What is the value of unfavorable in the year 2015? Answer : 54

Reasoning generated by Claude 3.5 Sonnet followed by correct annotation by human: The orange line represents unfavorable. For value that
corresponds to the year 2015 in orange line is 54.

Explanation: The chart on the right side shows human annotation based on reasoning steps. Given each reasoning step, we attribute it on a sentence level.
For example, the first sentence i.e. orange line represents unfavorable is attributed as displayed in the chart.

Figure 10: This figure shows how sentence-level reasoning is attributed in our dataset. The first reasoning statement
"The orange line represents unfavorable" is directly linked to corresponding chart elements, ensuring each step of
the mathematical reasoning process is grounded in the chart’s components.

maintaining high quality through human validation and correction.

The agreement score for stage 1 is based on whether the reasoning is correct and is represented by
Kappa score (Cohen, 1960). Kappa score is defined as a measure of inter-rater agreement for categorical
items, taking into account the agreement occurring by chance. The Kappa score is defined mathematically
as:
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Figure 11: Data Compilation Process Flowchart. From the ChartQA dataset containing both human-written (9.6K)
and generated (23.1K) questions, we focus on the human-written subset for quality assurance. We categorize these
by chart type (line, bar, and pie charts), then use random sampling to create a balanced final dataset of 2000 QA
pairs, comprising 1000 pairs each for line and bar charts.

Illogical conclusion

Wrong number

Figure 12: Word cloud representing the annotated labels for reasoning failure. These annotated labels are Halluci-
nated numbers, Illogical conclusions, Color mismatch, data points ignored, etc.

o — Po — Pe
- Pe
where:
P, is the observed agreement between the two annotators p, is the expected agreement by chance

The observed agreement p,, is calculated as:

B a+d
S a+btc+d
where: a is the number of cases where both annotators agreed on "yes" b is the number of cases where

the first annotator said "yes" and the second said "no" c is the number of cases where the first annotator
said "no" and the second said "yes" d is the number of cases where both annotators agreed on "no"

Po
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Reasoning Failure Category: Illogical Conclusion

Reasoning Failure Category: Color Mismatch

Question: Is the difference between blue and green graph in 2008 the
maxiumum among years?

Reasoning generated from GPT-40: In 2008, the difference between the blue
line (No) and the green line (Yes) is 43% (69% - 26%). Examining other years,
the differences are: 58% in 2009, 48% in 2017, and 57% in 2018. The difference
in 2008 is not the maximum among these years, with the maximum difference
occurring in 2009.

Explanation: The years and numbers were incorrectly identified. An Illogical
conclusion was drawn.

Question: Is the sum of highest and lowest value of orange graph greater than 60?

Reasoning generated from GPT-40: The highest value of the orange graph
(Russia favorability in U.S.) is 49 in 2010, and the lowest value is 15 in 2015.
Adding these two values gives 49 + 15, which equals 64. Since 64 is greater than
60, the answer is ‘Yes’.

Explanation: Reasoning generated from GPT-4o for the orange graph contains an
inaccuracy - it identified the lowest point as 15 in 2015 which is lowest for green
graph; therefore its a color mismatch.

Figure 13: Reasoning failure case examples

The expected agreement p. is calculated as:

(a+b)(a+c)+ (c+d)(b+d)

Pe =

(a+b+c+d)?

For stage 2 and stage 3, the Intersection over Union (IOU) score (Rezatofighi et al., 2019) was calculated.
IOU score is a measure of the overlap between the bounding box drawn by annotator 1 and bounding box
drawn by annotator 2, defined as the ratio of the area of intersection to the area of union. The IOU score is

mathematically defined as:

Area of Intersection

I0U =

Area of Union

where the area of intersection is the overlapping area between the predicted bounding box and the
ground truth bounding box, and the area of union is the total area covered by both bounding boxes.
Let’s denote the predicted bounding box as B), and the ground truth bounding box as By. Then, the

IOU score can be calculated as:

I0U =

By N By|

| By U By

Where | B, N By| is the area of the intersection and | B, U B,| is the area of the union.
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C Experiments
This section contains prompts and additional implementation details.

C.1 Computing Infrastructure Details

Our implementation uses PyTorch 2.0 and all experiments were conducted on 4 NVIDIA A100 GPUs with
80GB of memory each. The experiments were run on Amazon Elastic Compute Cloud (Amazon EC2)
instances equipped with A100 Tensor Core GPUs and 400 Gbps networking capabilities. The complete
experimental pipeline took approximately 100 hours.

C.2 Prompting Strategies for Attribution

We experimented with zero-shot and few-shot prompting strategies for both VQA-based and VQR-based
attribution.

VQA based Attribution For VQA based Attribution, we used both zero shot and few shot prompting
and the prompt is described in figure 14 and 15.

System Prompt

You are a helpful assistant that responds in Markdown.
Help me with my math question!

User Input

. . Generate bounding box coordinates in X1,Y1,X2,Y2 format
Input Chart Question: {question} . )
i A list of tuples (x1, yl, x2, y2) representing
(Base64 encoded image) Answer: {answer}
the chart regions that support the answer

Figure 14: Zero Shot Prompting for Attribution based on VQA task.
Attribution based on VQR

For VQR based Attribution, we used both zero shot and few shot prompting and the prompt is described
in figure 16 and 17.
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System Prompt

You are a helpful assistant that responds in M
Help me with my math question!

Few-shot Example

Question: {question_fewshot}
Example
(Baseb4 encoded image) Answer: {answer_fewshot}
9 Bounding Box: {bounding_box_fewshot}

User Query

X : Generate bounding box coordinates in X1,Y1,X2,Y2 format
Input Chart Question: {question} .
. A list of tuples (x1, yl1, x2, y2) representing
(Base64 encoded image) Answer: {answer
the chart regions that support the answer

Figure 15: Few Shot Prompting for Attribution based on VQA task.

System Prompt

You are a helpful assistant that responds in Markdown.
Help me with my math question!

User Input

Question: {question} Generate bounding box coordinates in a list of tuple format

I t Chart
dlins ar Answer: {answer} A list of tuples [(x1, yl1, x2, y2)] representing

(Base64 encoded image)

easoning: {reasoning} the chart regions that correspond to each reasoning step

Model OQutput

[
(x1, y1, x2, y2), # First reasoning step
(x1, y1, x2, y2), # Second reasoning step
(x1, y1, x2, y2) # Third reasoning step
1

Figure 16: Zero Shot Prompting for Attribution based on VQR task.

C.3 Implementation Details - ATLAS

The proposed pipeline architecture for chart understanding consists of four integral stages that work in
concert to process and analyze chart images with corresponding textual inputs.

In the first stage, Input Processing, the system handles three primary inputs: the chart image, which
serves as the visual input for analysis; the question and answer prompt, which guides the analysis direction.
These inputs undergo Base64 encoding for the image and are formatted into a specialized text prompt
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System Prompt

You are a helpful assistant that responds in Markdown.
Help me with my math question!

Few-shot Example

Question: {question_fewshot}

Example Chart Answer: {answer_fewshot}
(Base64 encoded image) Reasoning: {reasoning_fewshot}

Bounding Boxes: [(x1, y1, x2, y2), (x1, y1, x2, y2)]

User Query
A @R Question: {question} Generate bounding box coordinates in a list of tuple format
P X Answer: {answer} A list of tuples [(x1, yl, x2, y2)] representing
(Base64 encoded image) X N . X
Reasoning: {reasoning} the chart regions that correspond to each reasoning step

Model Qutput

[

(x1, yl, x2, y2), # First reasoning step
(x1, y1, x2, y2), # Second reasoning step
(x1, y1, x2, y2) # Third reasoning step
1

Figure 17: Few Shot Prompting for Attribution based on VQR task.

structure, resulting in encoded inputs suitable for model processing.

The second stage, MLLM Processing, leverages the InternLM-XComposer2 model’s multimodal
capabilities to process the encoded inputs. This stage extracts Layer 16 Hidden States, which contain
rich semantic information from both modalities. The image features are processed as a 35x35 patch grid,
while the text features are encoded into 4096-dimensional vectors, enabling comprehensive semantic
representation of both visual and textual content. This dual-stream processing ensures that both modalities
contribute effectively to the final analysis.

The third stage implements a Sliding Window Attribution mechanism, which is crucial for identifying
relevant regions within the chart. This process begins with window generation, where variable-sized
windows are created over the image feature space. The system then computes cosine similarity between
the text and image features for each window, enabling the identification of regions most pertinent to the
textual input. This stage culminates in the selection of the best region, outputting coordinates (i, j, h, w)
that specify both the location and dimensions of the most relevant area within the chart.

The final stage focuses on Visualization, transforming the mathematical outputs into interpretable
visual representations. This involves coordinate mapping, where the model’s internal coordinate space is
transformed into image pixel space, followed by bounding box generation that creates visible overlays
highlighting the relevant regions identified by the model. This visualization stage is crucial for making the
model’s decisions interpretable and useful for end users.

The entire pipeline demonstrates flexibility in handling both reasoning-based and answer-based attri-
bution scenarios through the same architectural framework. This unified approach allows for consistent
processing while accommodating different types of chart analysis tasks, from simple identification to
complex reasoning about chart elements. The system maintains a consistent flow of information through
each stage, ensuring that the final output effectively bridges the gap between the visual elements of the
chart and the textual understanding required for comprehensive chart analysis.

Figure 18 and 19 represents VQA based and VQR based attribution details respectively.
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1. Input Processing

Chart Image Question Answer

l l l

Base 64 encoding Text Prompt

Encoded|Inputs

y

2. MLLM Processing
InternLM-XComposer2

}

Layer 16 Hidden States

' '

Image Features (35*35 Patch) Text Features (4096 dim)

3. Sliding Window Attribution
Window Generation

Cosine Similarity Computation

\/

Best Region Selection

)i, b, w)

4. Visualization

Coordinate Mapping

Bounding Box Generation

Figure 18: The pipeline architecture for chart understanding with InternLM-XComposer2 illustrates a four-stage
process that bridges visual and textual modalities in chart analysis. The system progresses through Input Processing
(encoding of chart images and text), MLLM Processing (multimodal feature extraction), Sliding Window Attri-
bution (region identification), and Visualization (interpretable output generation), enabling comprehensive chart
understanding through a unified architectural framework. This architecture supports answer-based attribution.

ATLAS: A Reasoning-Guided ATtribution Framework for Mathematical. ChArt AnalysiS
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Figure 19: The pipeline architecture for chart understanding with InternLM-XComposer2 illustrates a four-stage
process that bridges visual and textual modalities in chart analysis. The system progresses through Input Processing
(encoding of chart images and text), MLLM Processing (multimodal feature extraction), Sliding Window Attri-
bution (region identification), and Visualization (interpretable output generation), enabling comprehensive chart
understanding through a unified architectural framework. This architecture supports reasoning based attribution.
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