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Abstract

The human-like capability of Multimodal001
Large Language Models (MLLMs) like GPT-002
4o to process both text and images enables them003
to help humans with quantitative analysis of004
charts. However, these models are known to005
hallucinate, more so on vision language tasks;006
our initial study on a sample from the ChartQA007
dataset (Masry et al., 2022) indicates that GPT-008
4o provides accurate answers only 58% of the009
time for questions on chart images. In this pa-010
per, we introduce attribution for chart-based011
mathematical questions, where bounding boxes012
identify the key regions that justify answers,013
building on recent work in factual verification014
for text-based question answering. Taking in-015
spiration from Chain-of-Thought (CoT)-like016
prompting strategies, we hypothesize that un-017
derstanding step-by-step reasoning can help in018
improving attribution accuracy in chart-based019
mathematical question-answering. We propose020
a semi-automatic approach to obtain a bench-021
marking dataset comprising 7,819 diverse sam-022
ples with charts, questions, reasoning steps, and023
attribution annotations. We introduce a method024
using the open-source Internlm-XComposer2025
model with Partial Low-Rank Adaptation, treat-026
ing vision and language tokens equally to gen-027
erate high-quality attributions through detailed028
reasoning steps. Our experimental results show029
that our approach enhances attribution qual-030
ity by ∼15%, advancing the development of031
interpretable and trustworthy chart-based AI032
systems.033

1 Introduction034

Data visualizations like bar charts and line charts035

are among the most straightforward tools for rep-036

resenting and analyzing data, helping people make037

informed decisions. Analyzing these charts of-038

ten requires performing mathematical calculations039

and applying formulas to extract insights or an-040

swers (Kim et al., 2020). Studies by Satpute041

et al. (2024); Srivastava et al. (2024); Ahn et al.042

(2024); Gupta et al. (2024) evaluated Large Lan- 043

guage Models (LLMs) (Brown et al., 2020; Jiang 044

et al., 2024; Touvron et al., 2023; Achiam et al., 045

2023) and Multi-modal Large Language Models 046

(MLLMs) (OpenAI, 2023; Team et al., 2023; Su 047

et al., 2023; Chen et al., 2023) for their ability to 048

answer mathematical questions or provide reason- 049

ing using various datasets across tasks like solving 050

geometrical problems combining diagram and text 051

interpretation (Seo et al., 2015) and mathematical 052

word problems (Wang et al., 2017), etc. While 053

LLMs and MLLMs have demonstrated impressive 054

performance in mathematical question-answering 055

tasks, establishing trust in their generated answers 056

through attribution mechanisms is important. This 057

is particularly crucial for mathematical questions 058

involving charts, where numerical accuracy and 059

proper interpretation of visual elements directly 060

impact decision-making in real-world settings. 061

Prior work on attribution has primarily focused 062

on general text-based question-answering and vi- 063

sual question-answering tasks (Yue et al., 2023; 064

Phukan et al., 2024a,b; Bohnet et al., 2022; Qi 065

et al., 2024). However, directly applying these ap- 066

proaches to mathematical chart question answering 067

presents significant limitations. For instance, in fig 068

1, when applied to complex mathematical questions 069

involving charts, existing attribution methods often 070

fail to correctly identify the relevant chart regions 071

that contribute to the final answer. To the best of 072

our knowledge, attributing the generated answers 073

to the charts for such complex math questions has 074

been unexplored. In this paper, we address the 075

task of attributing generated answers to specific 076

regions in charts for complex mathematical ques- 077

tions. We focus specifically on line and bar charts, 078

covering a range of mathematical operations includ- 079

ing aggregations, comparisons, and trend analysis. 080

Drawing inspiration from Chain-of-Thought (CoT) 081

prompting strategies (Wei et al., 2024; Zhang et al., 082

2022), we hypothesize that incorporating step-by- 083
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Question: Is the difference between blue and green graph in 2008 the 
maxiumum among years? 
Answer: No

 GPT-4o 
———————————————-

Chart, Question, Answer

InternLM-XComposerV2 
————————————————

Chart, Question, Answer

GPT-4o 
——————————————— 
Chart, Question, Answer, Reasoning

InternLM-XComposerV2 
——————————————

Chart, Question, Answer, Reasoning

Reasoning: In 2008, the green ("Yes") is 69%, and the blue ("No") is 
26%. Difference = 43%. In 2013, the green ("Yes") is 76%, and the 
blue ("No") is 18%. Difference = 58%. The 2013 difference (58%) is 
greater than the 2008 difference (43%). The maximum difference is 
in 2013, not 2008.

Figure 1: Comparison of attribution methods between GPT-4o and InternLM-XComposer2 on a chart reasoning
task. Left: Both models receive only the chart, question, and answer as input. Right: Models additionally receive
reasoning steps, leading to more precise attributions. The example shows how incorporating reasoning steps helps
InternLM-XComposer2 correctly attribute the relevant data points for comparing differences between lines in 2008
and 2013, while GPT-4o struggles with accurate attribution even with reasoning provided.

step reasoning in the attribution process can im-084

prove performance by mimicking human mathe-085

matical problem-solving approaches.086

We make four main contributions in our work087

ATLAS: A Reasoning-Guided ATtribution Frame-088

work for MathematicaL ChArt AnalysiS: (1) We089

introduce the task of attribution for mathemat-090

ical question answering in charts, addressing a091

critical gap in current visual mathematical question092

answering, as outlined in figure 1. (2) We present093

a systematic data curation strategy that com-094

bines MLLM-generated reasoning and attribution095

annotations with human corrections. This results096

in a high-quality dataset derived from ChartQA097

(Masry et al., 2022), comprising annotated exam-098

ples spanning line and bar chart types and math-099

ematical operations. (3) We propose an auto-100

matic attribution and reasoning method that uti-101

lizes InternLM-XComposer2 (Dong et al., 2024)102

model to generate attribution for chart QA (Masry103

et al., 2022) dataset by taking the reasoning for104

the answers as input. Our approach utilizes an105

InternLM-XComposer2 model that uses Partial106

Low-Rank Adaptation (PLoRA) on to generate rea-107

soning steps from chart-question-answer triples,108

then uses these to produce attribution bounding109

boxes. (4) Through extensive empirical evaluation,110

we demonstrate that high-quality reasoning steps 111

significantly improve attribution accuracy. Our 112

results show an average of 15% improvement from 113

baseline approaches through our proposed method- 114

ology, highlighting current limitations and areas 115

for future enhancement in reasoning generation. 116

2 Related Work 117

Recent work has increasingly focused on attribu- 118

tion mechanisms to improve the trustworthiness 119

of AI systems’ outputs. For text-based systems, 120

Bohnet et al. (2022) survey attribution methods in 121

open-domain generative systems, highlighting chal- 122

lenges like ambiguous knowledge sources and bi- 123

ases. In the context of question answering, Phukan 124

et al. (2024b) leverage LLMs’ hidden state repre- 125

sentations to attribute parts of generated answers to 126

source documents, while Qi et al. (2024) propose 127

MIRAGE, a model internals-based approach for 128

faithful answer attribution in retrieval-augmented 129

generation. For multimodal systems, Phukan et al. 130

(2024a) extend the logit lens technique to detect 131

and ground visual hallucinations using contextual 132

token embeddings from middle layers of MLLMs, 133

improving bounding box precision and spatial un- 134

derstanding. Chart-based question answering has 135

emerged as a crucial task for visual data interpre- 136
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Question: What's the product of the 
median values of blue and green bar?  

Answer: 5478

Visual Question Answering (VQA) Attribution

Step 1: First, identify the median values 
for both the blue bar and the green bar 
in the chart.

Step 2: For the blue bar data: 71, 66, 62 
The median value is 66.  

Step 3: For the green bar data: 91, 83, 
59 The median value is 83 and then 
multiplying them the median values is 
66 times 83 = 5478. 

Visual Question Reasoning (VQR) Attribution Step 1 Visual Question Reasoning (VQR) Attribution Step 2 Visual Question Reasoning (VQR) Attribution Step 3

Figure 2: ATLAS’s attribution process for mathematical reasoning on charts. Left to right: (1) VQA attribution
highlights all relevant data bars needed for computing the final answer, (2) Step 1 attribution identifies the specific
bars needed to find median values, (3) Step 2 attribution focuses on the blue bars for calculating their median
(66), and (4) Step 3 attribution shows the green bars used for the final multiplication step (66 × 83 = 5478). The
progressive attribution demonstrates how our framework traces both the final answer and intermediate reasoning
steps to specific chart regions.

tation. The ChartQA dataset (Masry et al., 2022)137

provides a comprehensive benchmark with 9.6K138

human-written and 23.1K generated questions for139

visual and logical reasoning over various chart140

types. Recent advances like Chart Llama (Han141

et al., 2023) have demonstrated superior perfor-142

mance in tasks like ChartQA, Chart-to-text, and143

chart extraction. Supporting technologies such as144

ChartOCR (Luo et al., 2021) combine deep learn-145

ing and rule-based methods to effectively extract146

chart segments, facilitating better chart understand-147

ing.148

Mathematical reasoning has become increas-149

ingly important in AI systems, particularly for150

chart interpretation where statistical understand-151

ing is crucial. Imani et al. (2023) proposed Math-152

Prompter, generating multiple solution paths using153

zero-shot CoT prompting to improve arithmetic154

problem-solving. While CoT prompting shows155

promise with large models, Ranaldi and Freitas156

(2024) addressed its limitations in smaller mod-157

els through instruction-tuning. As surveyed by Lu158

et al. (2023), mathematical reasoning serves as a159

crucial testbed for evaluating AI systems’ capabili-160

ties, with implications for chart-based mathemati-161

cal analysis. The need for trustworthy chart-based162

mathematical reasoning has highlighted the impor-163

tance of attribution in this domain. While models164

like InternLM-XComposer2 (Dong et al., 2024)165

excel in multimodal understanding through tech- 166

niques like Partial LoRA for image token process- 167

ing, existing attribution methods face challenges 168

with mathematical chart questions. Current ap- 169

proaches, while promising for general visual attri- 170

bution, underperform when dealing with complex 171

mathematical operations on charts, creating a crit- 172

ical gap in trustworthy chart-based mathematical 173

reasoning systems. 174

3 Attribution Definition 175

Chart attribution aims to identify regions of a 176

chart that support generated answers, similar to the 177

Grounded Visual Question Answering (VQA) ap- 178

proach proposed by (Phukan et al., 2024a). For 179

mathematical chart question answering, where 180

complex reasoning steps are essential to arrive at 181

answers, we propose a two-level attribution frame- 182

work that provides transparency not only for final 183

answers but also for intermediate reasoning steps. 184

3.1 Answer-Level Attribution 185

Basic chart attribution involves visually linking 186

chart elements to answers using bounding boxes, 187

highlighting the specific data points that support the 188

answer. In the leftmost chart of Figure 2, while the 189

bounding boxes highlight all datapoints contribut- 190

ing to the answer "5478", the reasoning behind 191

this calculation remains unclear without additional 192
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context. This demonstrates why incorporating rea-193

soning steps becomes crucial for questions involv-194

ing mathematical operations, where the path to the195

answer is as important as the answer itself.196

3.2 Reasoning-Level Attribution197

When solving mathematical questions with charts,198

the path to the answer often involves multiple rea-199

soning steps. Our framework attributes each rea-200

soning step to relevant chart regions, creating a201

traceable connection between the reasoning pro-202

cess and visual elements. As shown in Figure 2,203

the 2nd, 3rd and the 4th chart represents each of the204

reasoning steps. This granular-level attribution ap-205

proach enhances trust in the system by making both206

final answers and the reasoning process transparent207

and verifiable against the source chart.208

Additional examples for both answer level and209

reasoning level attribution is present in Appendix210

section A.211

4 Dataset Curation212

Currently, no datasets exist that provide reasoning213

steps for chart question answering or attribution214

annotations for mathematical chart QA. To address215

this gap, we first examine existing model capabili-216

ties before developing a semi-automatic annotation217

strategy.218

4.1 Reasoning Capabilities of MLLMs for219

Charts220

Based on performance evaluations in the Polymath221

benchmark (Gupta et al., 2024), we select Claude222

3.5 Sonnet and GPT-4o as our primary models for223

analysis. We also include GPT-4v for its vision ca-224

pabilities. To assess the performance on reasoning225

generation, we randomly select 100 examples from226

the ChartQA dataset (Masry et al., 2022), each con-227

taining a chart, question, and answer triple. Charts228

and questions are passed to these models as input229

and they are prompted to generate answers and rea-230

soning. These answers and reasoning are annotated231

by human annotators on whether they are correct232

or not, and the results are presented in Table 1.233

Model Answer is Correct Reasoning is Correct
(Human Annotated) (Human Annotated)

Gpt-4o 58% 49%
Gpt-4v 64% 45%
Claude-3.5-sonnet 96% 75%

Table 1: Benchmarking performance based on Visual
Question Answering and Visual Question Reasoning.

As shown in Table 1, while Claude 3.5 Sonnet 234

demonstrates strong answer generation (96% ac- 235

curacy), its reasoning capabilities show significant 236

room for improvement (75% accuracy). Other mod- 237

els perform notably worse, with reasoning accura- 238

cies below 50%. 239

Reasoning Failure

Color Mismatch 
[12%]

Illogical Conclusion 
[24%]

Numerical 
Hallucination [64%]

Random Number Generated [26%]

Skipped Number [11%]

Same Number Repeated[ 27%]

Figure 3: Taxonomy of Failure Cases that represents the
categories of reasoning failure.

A more detailed error analysis, including word 240

clouds of failure patterns in appendix section B 241

figure 12 and specific examples, is provided in the 242

appendix section B figure 13. Notably, providing 243

correct answers alongside questions reduced rea- 244

soning failures from 51% to 25%, suggesting the 245

potential for improved performance through better 246

model guidance. 247

4.2 Task Setup 248

Our goal is to obtain three types of annotations for 249

chart-based mathematical attribution: (1) reason- 250

ing steps for given chart-question-answer triples, 251

(2) answer attribution, and (3) reasoning step attri- 252

bution. Rather than annotating from scratch, we 253

developed a semi-automatic approach leveraging 254

Claude 3.5 Sonnet’s capabilities to generate initial 255

annotations for human correction. 256

We recruited two qualified annotators through 257

the Upwork platform1 after an initial screening of 258

three candidates using 100 sample data points. The 259

entire annotation process went for 120 hours and 260

each annotator was paid 15 USD hourly. 261

For attribution annotation, we employed the 262

VGG Image Annotator platform2, which provides 263

an intuitive interface for drawing bounding boxes 264

and mapping them to textual reasoning steps. 265

Screenshots from the annotation interface, more 266

details on initial screening and examples of such 267

annotations are provided in the appendix section A 268

fig 6 and 10. 269

Stage 1: Reasoning Validation and Correc- 270

tion. In Stage 1, annotators perform reasoning 271

validation through three key steps: (1) correction 272

1https://www.upwork.com
2https://annotate.officialstatistics.org/
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Figure 4: Overview of our proposed ATLAS framework for reasoning step generation. The architecture leverages
InternLM-XComposer2 with Partial-LoRA for visual token adaptation. Given a chart and Q&A pair, the model
processes visual tokens through CLIP ViT-Large and applies Partial-LoRA for chart-specific feature adaptation,
while textual inputs are processed by InternLM-2. The final output provides reasoning steps through hidden state
analysis.

by reviewing Claude-3.5-sonnet generated reason-273

ing for chart-question-answer triples, (2) provid-274

ing a binary correctness assessment (Yes/No) for275

each triple, and (3) categorizing errors in incorrect276

reasoning (such as color mismatches or illogical277

conclusions) while supplying corrected reasoning278

when the original is found to be inaccurate.279

Stage 2: Answer Attribution. For each chart-280

question-answer triple, annotators draw bounding281

boxes using the VGG image annotator indicating282

chart regions supporting the answer. Figure 6283

demonstrates this process, showing both input and284

resulting annotations.285

Stage 3: Reasoning Attribution. Using the286

validated reasoning from Stage 1, annotators are in-287

structed to provide bounding boxes using the VGG288

image annotator for each reasoning step. As shown289

in Figure 10, each statement (e.g., "orange line290

represents unfavorable") is linked to relevant chart291

regions.292

4.3 Data Annotation & Analysis293

To ensure annotation quality, we conducted initial294

screening to select mathematically proficient anno-295

tators, measured inter-annotator agreement using296

Kappa score (Cohen, 1960), and had authors man-297

ually verify a sample of annotations. This semi-298

automatic approach significantly reduced annota-299

tion effort while maintaining high quality through300

human validation and correction. More details on301

the InterAnnotator Agreement consisting of Kappa302

score and Intersection Over Union (IOU) score303

(Rezatofighi et al., 2019) calculation formula are 304

present in the Appendix section B.1. 305

Chart Stage 1 Stage 2 Stage 3
Type [Kappa Score] [IOU Score] [IOU Score]

Line 0.825 0.524 0.561
Bar 0.920 0.579 0.647

Table 2: Annotation scores across three stages for line
and bar charts. Stage 1 shows high inter-annotator agree-
ment (Kappa score > 0.8) for reasoning validation. Stage
2 demonstrates moderate agreement in answer-based at-
tribution (IOU scores 0.5), while Stage 3 shows agree-
ment (0.56 < IOU scores < 0.64) when incorporating
reasoning-based attribution. This progression suggests
that reasoning steps help annotators more consistently
identify relevant chart regions. Also, this indicates the
complexity of annotations for Stage 2 and Stage 3.

4.4 Data Analysis 306

After the annotation process, the key statistics 307

about the data are summarized in the table 3. Table 308

3 shows the breakdown of the dataset by chart type. 309

There are a total of 1000 charts, consisting of 500 310

line charts and 500 bar charts. For each chart, there 311

are 2 QA pairs, resulting in a total of 2000 QA 312

pairs. Additionally, the annotators identified a total 313

of 3599 reasoning steps across all the charts (stage 314

1). The table also shows the number of image re- 315

gions that were attributed to the QA-based annota- 316

tions (stage 2) and the reasoning-based annotations 317

(stage 3). For line charts, there are 1465 QA-based 318

and 2691 reasoning-based attributed regions, while 319
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for bar charts, there are 2627 QA-based and 4437320

reasoning-based attributed regions.321

Chart No. of No. of No. of No. of attributed No. of attributed
Type Charts QA pairs reasoning image regions image regions

steps (QA-based) (reasoning-based)

Line 500 1000 1773 1465 2691
Bar 500 1000 1826 2627 4437

Total 1000 2000 3599 4092 7128

Table 3: Summary of the ATLAS Dataset. Our dataset
contains an equal distribution of line and bar charts
(500 each), with 2 QA pairs per chart. The table shows
the progression from basic QA pairs through reason-
ing steps to attributed regions, with reasoning-based
attribution requiring significantly more regions (7128)
compared to QA-based attribution (4092).

5 ATLAS: Proposed Method322

Our proposed method, ATLAS, addresses the323

challenge of attributing mathematical reasoning324

in charts through a two-stage pipeline (figure325

4). Given a chart-question-answer triple, we first326

generate step-by-step reasoning using InternLM-327

XComposer2 model (figure 5), then leverage these328

reasoning steps along with the chart, question,329

and answer to produce attribution bounding boxes330

for both the final answer and intermediate reason-331

ing steps. For reasoning generation, we utilize332

InternLM-XComposer23 output. The model archi-333

tecture incorporates a vision encoder (CLIP ViT-334

Large (Radford et al., 2021)) that processes charts335

into a 35×35 grid (1225 visual tokens) and maps336

them to a shared 4096-dimensional embedding337

space with text from InternLM-2 (Cai et al., 2024).338

Using (Dong et al., 2024), we employ Partial LoRA339

(Hu et al., 2021) (PLoRA), which applies additional340

trainable parameters specifically to visual tokens341

while preserving the base 7B-parameter language342

model’s capabilities.343

We utilize (Phukan et al., 2024a)’s findings on344

attribution, and extract hidden states from layer345

16, which empirically provides optimal semantic346

representations for our task. The attribution mech-347

anism employs a GPU-accelerated sliding window348

approach, efficiently processing window configu-349

rations from 3×3 to 35×35 patches through nor-350

malized patch embedding averaging and cosine351

similarity metrics between textual descriptions and352

visual regions.353

3https://github.com/InternLM/
InternLM-XComposer

6 Experiments 354

We conduct experiments on the curated dataset pre- 355

sented in section 4.4. We experiment on this dataset 356

for two tasks i.e. (i) Attribution based on Visual 357

Question Answering (VQA) and (ii) Attribution 358

based on Visual Question Reasoning (VQR). 359

6.1 Baselines 360

We evaluate ATLAS against three state-of-the-art 361

MLLMs: GPT-4o, GPT-4v, and Claude 3.5 Son- 362

net. For each baseline, we test both zero-shot and 363

few-shot prompting strategies for two tasks: attri- 364

bution based on answer attribution and reasoning 365

attribution. 366

Answer Attribution (VQA): Models must identify 367

relevant chart regions using bounding boxes that 368

support their answers to specific questions. 369

Reasoning Attribution (VQR): Models must at- 370

tribute their mathematical reasoning steps using 371

bounding boxes to specific chart elements. Each 372

reasoning step has different granular attribution as 373

described in VQR step 1, 2 and 3 of fig 2. 374

We collect attribution results through API calls 375

to GPT-4o4, GPT-4v5, and Claude 3.5 Sonnet6. 376

Since these models cannot directly output chart 377

images with bounding boxes, we design prompts 378

to obtain coordinates of the bounding boxes in the 379

format of X1, Y1, X2, and Y2. 380

Zero Shot For answer attribution, we used the 381

following zero shot prompt: 382

Zero-Shot Prompt
System Prompt: You are a helpful assistant
that responds in markdown. Help me with
my math question.
Input Format:

• Chart: [chart_image], Question: [ques-
tion_text], Answer: [answer_text]

User Prompt: Given this chart and the
question-answer pair: question = "question",
answer = "answer"; ONLY generate bound-
ing box coordinates in X1, Y1, X2, Y2 for-
mat - A list of tuples, each containing (x1,
y1, x2, y2) representing the bounding box
coordinates without additional text which
represents which part of the chart corre-
sponds to the answer.

383

4GPT-4o: "GPT-4o", "2023-05-15"
5GPT-4v: "gpt-4-vision-preview", "2023-07-01-preview"
6Claude 3.5 Sonnet: "claude-3-5-sonnet-20240620-v1:0"
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Q: What’s the percentage of Mod/Lib 
who say Donald Trump will be too 
cautious in making important 
decisions? 
A: 5

To find the percentage, locate the row 
labeled "Mod/Lib" and then look at the 
column labeled "Too cautious." The 
intersection of this row and column gives 
the required percentage, which is 5%.


Partial-LoRA. The blue tokens represent the visual tokens and 
the gray tokens are the language tokens. Partial-LoRA is only 
applied to the visual tokens.

Figure 5: Overview of our proposed ATLAS framework. The architecture leverages InternLM-XComposer2 with
Partial-LoRA for visual token adaptation. Given a chart and Q&A pair, the model processes visual tokens through
CLIP ViT-Large and applies Partial-LoRA for chart-specific feature adaptation, while textual inputs are processed by
InternLM-2. The final output provides both answer and reasoning-based attributions through hidden state analysis.

Few Shot Using Few-shot prompting for answer384

attribution, an example is passed in the prompt, and385

the prompt is described below:386

Few-Shot Prompt
System Prompt: You are a helpful assistant
that responds in markdown. Help me with
my math question.
Example 1:

Chart: [bar_chart_image] Question:
"What was the highest value in 2020?"
Answer: "85 units"
Bounding Box: (120, 45, 140, 230)

User Prompt: Given this chart and the
question-answer pair: question = "question",
answer = "answer" and examples; ONLY
generate bounding box coordinates in X1,
Y1, X2, Y2 format - A list of tuples, each
containing (x1, y1, x2, y2) representing
the bounding box coordinates without ad-
ditional text which represents which part of
the chart corresponds to the answer.

387

Appendix section C contains additional details.388

For Reasoning Attribution (VQR): Few-shot389

and zero-shot prompting are conducted and the de-390

tails of the prompt are present in Appendix sec-391

tion C figure 16 and 17 for zero-shot and few-392

shot respectively. The input charts are encoded 393

before being passed as prompts and are decoded 394

using base64 encoding/decoding after collecting 395

the bounding box coordinates for further analysis. 396

6.2 ATLAS-Automatic Reasoning Step 397

Generation 398

For automatic reasoning step generation, we lever- 399

age the Partial LoRA framework from (Dong et al., 400

2024) due to its effectiveness in preserving lan- 401

guage capabilities while adapting to visual inputs. 402

Given a chart-question-answer triple (C,Q,A), our 403

goal is to generate reasoning steps R that explain 404

the answer derivation while maintaining alignment 405

with visual elements. 406

Following the existing Partial LoRA architec- 407

ture, we process inputs x = [xv, xt], where xv 408

represents visual tokens from the chart processed 409

through CLIP ViT-Large, and xt represents the 410

concatenated question-answer tokens. The output 411

features are computed as follows: 412

x̂ = [x̂v, x̂t] (1) 413

where x̂t follows the standard language model 414

path, and x̂v incorporates visual adaptation through 415

the Partial LoRA matrices. 416

Reasoning generator is used to maximize: 417

P (R|C,Q,A) =
n∏

i=1

P (ri|r<i, C,Q,A) (2) 418

7



where ri represents the i-th token in the reasoning419

sequence.420

This approach enables our model to generate421

step-by-step reasoning by utilizing chart-specific422

visual features while maintaining strong language423

capabilities, producing coherent explanations that424

explicitly reference chart elements, and describing425

the mathematical operations needed to arrive at426

the answer. The generated reasoning provides a427

transparent explanation of the answer derivation428

process, which is then used to guide our attribution429

mechanism for identifying relevant chart regions.430

6.3 Metrics431

We employ IOU score (Rezatofighi et al., 2019) as432

our primary evaluation metric:433

IOU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(3)434

where Bp represents the predicted bounding box435

and Bgt represents the ground truth box. Addi-436

tionally, we measure the cosine similarity between437

textual descriptions and visual regions to evaluate438

semantic alignment.439

7 Results and Discussion440

Table 4 presents the IOU scores across different441

models and prompting strategies. Our ATLAS442

framework shows substantial improvements across443

all metrics compared to baseline models.444

Using the ATLAS method, we achieve im-445

provements of 504% (0.026 → 0.157) and 446%446

(0.028 → 0.153) for VQA tasks (line and bar447

charts, respectively). With automated reasoning448

generated using fig 5, we report a 230% (0.122 →449

0.037) and 110% (0.039 → 0.082) improvement450

for VQR tasks. These improvements further in-451

crease when using human-validated reasoning, par-452

ticularly for VQR tasks, reaching 268% (0.037 →453

0.136) for line charts and 405% (0.197 → 0.039)454

for bar charts, while maintaining the same VQA455

performance since in the VQA task, only question456

and answer is given as input. This demonstrates457

the value of both our automated approach and the458

potential for further improvements with human val-459

idation.460

We note that ATLAS with automated reasoning461

is not very far from that with human reasoning,462

indicating that our reasoning generation using In-463

ternLM is fairly good, close to human-provided or464

corrected reasoning steps. However, there is still a465

very long way to go for attribution for charts, given 466

that even the best-performing, human-based rea- 467

soning variant of ATLAS leads to 0.15− 0.2 IOU 468

scores. One possible future direction could be to 469

come up with better attribution bounding box pre- 470

diction systems. A promising direction would be 471

fine-tuning an MLLM to generate these attribution 472

bounding boxes. 473

Model VQA IOU VQR IOU
Line Bar Line Bar

GPT-4o (zero-shot) 0.026 0.028 0.025 0.021
GPT-4o (few-shot) 0.020 0.022 0.022 0.019
GPT-4v (zero-shot) 0.016 0.019 0.021 0.023
GPT-4v (few-shot) 0.014 0.017 0.022 0.024
Claude 3.5 (zero-shot) 0.024 0.025 0.032 0.035
Claude 3.5 (few-shot) 0.025 0.021 0.037 0.039

ATLAS 0.157 0.153 0.122 0.082
(Automated Reasoning)
ATLAS 0.157 0.153 0.136 0.197
(Human Reasoning)

Table 4: Attribution performance comparison across
different models and settings. Performance is measured
using IOU scores for both VQA and VQR tasks on
line and bar charts. Baseline models (GPT-4o, GPT-4v,
Claude 3.5) show limited performance in both zero and
few-shot settings (<0.04 IOU). Our ATLAS framework
demonstrates substantial improvements, achieving IOU
scores >0.15 for VQA tasks and up to 0.197 for VQR
tasks when using human-validated reasoning, highlight-
ing the benefits of incorporating reasoning steps in the
attribution process.

8 Conclusion 474

In this paper, we presented a novel framework for 475

chart attribution that combines visual and mathe- 476

matical reasoning capabilities. Our primary con- 477

tributions include (i) the formalization of chart 478

attribution for mathematical question answering 479

and reasoning tasks, (ii) a systematic data cura- 480

tion strategy that combines MLLM-generated rea- 481

soning with human corrections for reliable attri- 482

bution annotation, and (iii) a framework for using 483

InternLM-XComposer2 model that utilizes auto- 484

matic reasoning steps to improve attribution accu- 485

racy. While our approach demonstrates significant 486

improvements over baselines, opportunities remain 487

for enhancing reasoning generation, extending sup- 488

port for complex chart types, and integrating with 489

downstream applications. Our framework provides 490

a foundation for building more trustworthy and in- 491

terpretable AI systems for mathematical reasoning 492

tasks, paving the way for chart-based systems that 493

can better explain their decision-making processes. 494
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9 Limitations495

While our framework demonstrates promising re-496

sults for chart attribution through automated rea-497

soning, several important limitations and areas for498

discussion emerge from our study:499

Restrictive Prompting: To produce bounding500

boxes, we use a highly restrictive prompting ap-501

proach. We instruct the model to generate bound-502

ing boxes as a list of coordinate tuples in the format503

(X1, Y1, X2, Y2). However, research works on re-504

strictive prompting (Tam et al., 2024) has found505

that using overly restrictive prompts can lead to no-506

table decreases in model performance compared to507

less constrained prompting techniques. Therefore508

Attribution Task is Challenging for Humans:509

As shown in Table 2, the attribution task proved510

difficult for human annotators. In stages 2 and 3 of511

the annotation process, the agreement percentages512

ranged from just 52% to 64%. These relatively513

low levels of agreement underscore the inherent514

challenge of the attribution task, even for human515

raters with domain expertise.516

Reasoning Quality Dependencies: Our attribu-517

tion system’s performance depends on the quality518

of generated reasoning steps. While fine-tuning519

InternLM-XComposer2 may improve reasoning520

generation, complex mathematical operations, and521

multi-step calculations still present challenges, po-522

tentially affecting attribution accuracy. We discuss523

failure cases for reasoning in fig 12.524

Chart Type Constraints: The current imple-525

mentation focuses primarily on line and bar charts,526

limiting its applicability to other visualization types.527

Complex charts with multiple axes, overlapping528

elements, or nested visualizations may pose addi-529

tional challenges for both reasoning generation and530

attribution.531

Computational Requirements: The sliding532

window mechanism used for attribution, while533

effective, requires significant computational re-534

sources, especially for high-resolution charts or535

when processing multiple reasoning steps. This536

may impact the system’s practicality in real-time537

applications.538

Human Validation Process: While our data cu-539

ration strategy employs human validation to ensure540

quality, the subjectivity in reasoning annotation and541

attribution marking can introduce inconsistencies.542

The inter-annotator agreement scores suggest room543

for improvement in standardizing the validation544

process.545

Model Architecture Limitations: The cur- 546

rent approach relies on layer 16 hidden states of 547

InternLM-XComposer2, which may not capture all 548

relevant features for attribution. Alternative archi- 549

tectural choices or multi-layer approaches could 550

potentially yield better results. 551

These limitations point to several promising di- 552

rections for future research, including more robust 553

reasoning generation mechanisms, efficient attribu- 554

tion algorithms, and improved validation method- 555

ologies. 556

10 Ethics Statement 557

We acknowledge several ethical considerations in 558

our development of chart attribution systems. First, 559

we prioritized transparency by openly documenting 560

our methodology, model limitations, and potential 561

biases in both reasoning generation and attribution 562

accuracy. All training data was properly sourced 563

from public datasets with appropriate licensing, 564

and our human annotation process followed fair 565

labor practices, including equitable compensation 566

($15/hour) and clear guidelines. While our system 567

aims to improve accessibility and understanding of 568

quantitative information through transparent rea- 569

soning steps, we recognize potential risks of mis- 570

use, such as automated generation of misleading 571

chart interpretations. We recommend deploying 572

this technology with appropriate human oversight 573

in high-stakes scenarios and maintaining regular 574

audits for systematic biases. Our goal is to advance 575

chart interpretation capabilities while implement- 576

ing safeguards that protect against potential misuse 577

and ensure the technology serves its intended pur- 578

pose of making quantitative information more ac- 579

cessible and understandable to diverse user groups. 580
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Appendix794

This section provides additional examples to assist in the understanding and interpretation of the research795

work presented.796

• Section A: Attribution Examples797

• Section B: Dataset Curation798

• Section C: Experiments799

A Attribution Definition & Examples800

Examples of attribution based on visual question answering is present in fig 6 and 7.

Question : How many value is below 40 in unfavorable graph? Answer : 6 
——————————————————————————————————————————————— 
Explantion: The chart on the right side shows Human-annotated Attribution based on VQA. Each datapoint 
contributing to the answer is represented through a distinct bounding box, with a total of six boxes displayed on the 
visualization. 

ATTRIBUTION BASED ON VISUAL QUESTION ANSWERING

Figure 6: This figure shows attribution based on question answering. Here the bounding boxes clearly identify six
data points on the "Unfavorable" line that fall below 40%, directly supporting the answer to the question "How
many values are below 40 in the Unfavorable graph?

801

For Visual Question Reasoning, examples are present in fig 8, 9 and fig 10.802
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Figure 7: This figure shows attribution annotation platform based on question answering. Annotators are provided
question = "What’s the value of smallest bar?" and answer="62.22%". The annotators draw bounding box based on
these as represented in the figure.

Figure 8: This figure shows how sentence-level reasoning is attributed in our dataset. Annotators are provided
with a chart, question = What’s the average of Yemen and Brazil?, answer= 84.17, and reasoning = "First, identify
the net attendance rates for each country: Brazil has 97.91%. Yemen has 70.43%. Next, sum these values: 97.91
+ 70.43 = 168.34. Then, divide by the number of countries to find the average: 168.34 / 2 = 84.17". The first
reasoning statement "First, identify the net attendance rates for each country: Brazil has 97.91%." is directly linked
to corresponding chart elements, ensuring each step of the mathematical reasoning process is grounded in the chart’s
components.

B Data Sources and Compilation 803

B.1 Data Annotation 804

To ensure annotation quality, we conducted initial screening to select mathematically proficient annotators, 805

measured inter-annotator agreement using Kappa score (Cohen, 1960), and had authors manually verify 806

a sample of annotations. This semi-automatic approach significantly reduced annotation effort while 807
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Figure 9: This figure shows how sentence-level reasoning is attributed in our dataset. Annotators are provided with
a chart, question = What’s the average of Yemen and Brazil?, answer= 84.17, and reasoning = "First, identify the
net attendance rates for each country: Brazil has 97.91%. Yemen has 70.43%. Next, sum these values: 97.91 +
70.43 = 168.34. Then, divide by the number of countries to find the average: 168.34 / 2 = 84.17". The second
reasoning statement "Yemen has 70.43%" is directly linked to corresponding chart elements, ensuring each step of
the mathematical reasoning process is grounded in the chart’s components.

Question: What is the value of unfavorable in the year 2015? Answer : 54 
——————————————————————————————————————————————————————————————— 
Reasoning generated by Claude 3.5 Sonnet followed by correct annotation by human: The orange line represents unfavorable. For value that 
corresponds to the year 2015 in orange line is 54. 
——————————————————————————————————————————————————————————————— 
Explanation: The chart on the right side shows human annotation based on reasoning steps. Given each reasoning step, we attribute it on a sentence level. 
For example, the first sentence i.e. orange line represents unfavorable is attributed as displayed in the chart.

ATTRIBUTION BASED ON VISUAL QUESTION REASONING

Figure 10: This figure shows how sentence-level reasoning is attributed in our dataset. The first reasoning statement
"The orange line represents unfavorable" is directly linked to corresponding chart elements, ensuring each step of
the mathematical reasoning process is grounded in the chart’s components.

maintaining high quality through human validation and correction.808

The agreement score for stage 1 is based on whether the reasoning is correct and is represented by809

Kappa score (Cohen, 1960). Kappa score is defined as a measure of inter-rater agreement for categorical810

items, taking into account the agreement occurring by chance. The Kappa score is defined mathematically811

as:812
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ChartQA Dataset

9.6K human-written questions 23.1K generated questions

Categorize by chart type

Line Charts Bar Charts Pie Charts

Random Sampling

1000 Line Chart QA pairs 1000 Bar Chart QA pairs

Final Dataset: 2000 QA pairs

Figure 11: Data Compilation Process Flowchart. From the ChartQA dataset containing both human-written (9.6K)
and generated (23.1K) questions, we focus on the human-written subset for quality assurance. We categorize these
by chart type (line, bar, and pie charts), then use random sampling to create a balanced final dataset of 2000 QA
pairs, comprising 1000 pairs each for line and bar charts.

Figure 12: Word cloud representing the annotated labels for reasoning failure. These annotated labels are Halluci-
nated numbers, Illogical conclusions, Color mismatch, data points ignored, etc.

κ =
po − pe
1− pe

where: 813

po is the observed agreement between the two annotators pe is the expected agreement by chance 814

The observed agreement po is calculated as: 815

po =
a+ d

a+ b+ c+ d

where: a is the number of cases where both annotators agreed on "yes" b is the number of cases where 816

the first annotator said "yes" and the second said "no" c is the number of cases where the first annotator 817

said "no" and the second said "yes" d is the number of cases where both annotators agreed on "no" 818
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Question: Is the difference between blue and green graph in 2008 the 
maxiumum among years? 
————————————————————————————————- 
Reasoning generated from GPT-4o: In 2008, the difference between the blue 
line (No) and the green line (Yes) is 43% (69% - 26%). Examining other years, 
the differences are: 58% in 2009, 48% in 2017, and 57% in 2018. The difference 
in 2008 is not the maximum among these years, with the maximum difference 
occurring in 2009. 
———————————————————————————————— 
Explanation: The years and numbers were incorrectly identified. An Illogical 
conclusion was drawn.

Reasoning Failure Category: Illogical Conclusion Reasoning Failure Category: Color Mismatch

Question: Is the sum of highest and lowest value of orange graph greater than 60? 
————————————————————————————————- 
Reasoning generated from GPT-4o: The highest value of the orange graph 
(Russia favorability in U.S.) is 49 in 2010, and the lowest value is 15 in 2015. 
Adding these two values gives 49 + 15, which equals 64. Since 64 is greater than 
60, the answer is ‘Yes’. 
————————————————————————————————- 
Explanation: Reasoning generated from GPT-4o for the orange graph contains an 
inaccuracy - it identified the lowest point as 15 in 2015 which is lowest for green 
graph; therefore its a color mismatch.

Figure 13: Reasoning failure case examples

The expected agreement pe is calculated as:

pe =
(a+ b)(a+ c) + (c+ d)(b+ d)

(a+ b+ c+ d)2

For stage 2 and stage 3, the Intersection over Union (IOU) score (Rezatofighi et al., 2019) was calculated.819

IOU score is a measure of the overlap between the bounding box drawn by annotator 1 and bounding box820

drawn by annotator 2, defined as the ratio of the area of intersection to the area of union. The IOU score is821

mathematically defined as:822

IOU =
Area of Intersection

Area of Union
where the area of intersection is the overlapping area between the predicted bounding box and the823

ground truth bounding box, and the area of union is the total area covered by both bounding boxes.824

Let’s denote the predicted bounding box as Bp and the ground truth bounding box as Bg. Then, the825

IOU score can be calculated as:826

IOU =
|Bp ∩Bg|
|Bp ∪Bg|

Where |Bp ∩Bg| is the area of the intersection and |Bp ∪Bg| is the area of the union.827
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C Experiments 828

This section contains prompts and additional implementation details. 829

C.1 Computing Infrastructure Details 830

Our implementation uses PyTorch 2.0 and all experiments were conducted on 4 NVIDIA A100 GPUs with 831

80GB of memory each. The experiments were run on Amazon Elastic Compute Cloud (Amazon EC2) 832

instances equipped with A100 Tensor Core GPUs and 400 Gbps networking capabilities. The complete 833

experimental pipeline took approximately 100 hours. 834

C.2 Prompting Strategies for Attribution 835

We experimented with zero-shot and few-shot prompting strategies for both VQA-based and VQR-based 836

attribution. 837

VQA based Attribution For VQA based Attribution, we used both zero shot and few shot prompting 838

and the prompt is described in figure 14 and 15. 839

Figure 14: Zero Shot Prompting for Attribution based on VQA task.

Attribution based on VQR 840

For VQR based Attribution, we used both zero shot and few shot prompting and the prompt is described 841

in figure 16 and 17. 842
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Figure 15: Few Shot Prompting for Attribution based on VQA task.

Figure 16: Zero Shot Prompting for Attribution based on VQR task.

C.3 Implementation Details - ATLAS843

The proposed pipeline architecture for chart understanding consists of four integral stages that work in844

concert to process and analyze chart images with corresponding textual inputs.845

In the first stage, Input Processing, the system handles three primary inputs: the chart image, which846

serves as the visual input for analysis; the question and answer prompt, which guides the analysis direction.847

These inputs undergo Base64 encoding for the image and are formatted into a specialized text prompt848
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Figure 17: Few Shot Prompting for Attribution based on VQR task.

structure, resulting in encoded inputs suitable for model processing. 849

The second stage, MLLM Processing, leverages the InternLM-XComposer2 model’s multimodal 850

capabilities to process the encoded inputs. This stage extracts Layer 16 Hidden States, which contain 851

rich semantic information from both modalities. The image features are processed as a 35×35 patch grid, 852

while the text features are encoded into 4096-dimensional vectors, enabling comprehensive semantic 853

representation of both visual and textual content. This dual-stream processing ensures that both modalities 854

contribute effectively to the final analysis. 855

The third stage implements a Sliding Window Attribution mechanism, which is crucial for identifying 856

relevant regions within the chart. This process begins with window generation, where variable-sized 857

windows are created over the image feature space. The system then computes cosine similarity between 858

the text and image features for each window, enabling the identification of regions most pertinent to the 859

textual input. This stage culminates in the selection of the best region, outputting coordinates (i, j, h, w) 860

that specify both the location and dimensions of the most relevant area within the chart. 861

The final stage focuses on Visualization, transforming the mathematical outputs into interpretable 862

visual representations. This involves coordinate mapping, where the model’s internal coordinate space is 863

transformed into image pixel space, followed by bounding box generation that creates visible overlays 864

highlighting the relevant regions identified by the model. This visualization stage is crucial for making the 865

model’s decisions interpretable and useful for end users. 866

The entire pipeline demonstrates flexibility in handling both reasoning-based and answer-based attri- 867

bution scenarios through the same architectural framework. This unified approach allows for consistent 868

processing while accommodating different types of chart analysis tasks, from simple identification to 869

complex reasoning about chart elements. The system maintains a consistent flow of information through 870

each stage, ensuring that the final output effectively bridges the gap between the visual elements of the 871

chart and the textual understanding required for comprehensive chart analysis. 872

Figure 18 and 19 represents VQA based and VQR based attribution details respectively. 873
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Base 64 encoding

QuestionChart Image

Text Prompt

InternLM-XComposer2

Layer 16 Hidden States

Window Generation
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Coordinate Mapping
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Encoded Inputs

2. MLLM Processing
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Figure 18: The pipeline architecture for chart understanding with InternLM-XComposer2 illustrates a four-stage
process that bridges visual and textual modalities in chart analysis. The system progresses through Input Processing
(encoding of chart images and text), MLLM Processing (multimodal feature extraction), Sliding Window Attri-
bution (region identification), and Visualization (interpretable output generation), enabling comprehensive chart
understanding through a unified architectural framework. This architecture supports answer-based attribution.

ATLAS: A Reasoning-Guided ATtribution Framework for MathematicaL ChArt AnalysiS874
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Reasoning
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Figure 19: The pipeline architecture for chart understanding with InternLM-XComposer2 illustrates a four-stage
process that bridges visual and textual modalities in chart analysis. The system progresses through Input Processing
(encoding of chart images and text), MLLM Processing (multimodal feature extraction), Sliding Window Attri-
bution (region identification), and Visualization (interpretable output generation), enabling comprehensive chart
understanding through a unified architectural framework. This architecture supports reasoning based attribution.
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