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Abstract

Generalizability and stability are two key objectives for operating reinforcement learning
(RL) agents in the real world. Designing RL algorithms that optimize these objectives
can be a costly and painstaking process. This paper presents MetaPG, an evolutionary
method for automated design of actor-critic loss functions. MetaPG explicitly optimizes
for generalizability and performance, and implicitly optimizes the stability of both metrics.
We initialize our loss function population with Soft Actor-Critic (SAC) and perform multi-
objective optimization using fitness metrics encoding single-task performance, zero-shot
generalizability to unseen environment configurations, and stability across independent runs
with different random seeds. On a set of continuous control tasks from the Real-World RL
Benchmark Suite, we find that our method, using a single environment during evolution,
evolves algorithms that improve upon SAC’s performance and generalizability by 4% and
20%, respectively, and reduce instability up to 67%. Then, we scale up to more complex
environments from the Brax physics simulator and replicate generalizability tests encountered
in practical settings, such as different friction coefficients. MetaPG evolves algorithms that
can obtain 10% better generalizability without loss of performance within the same meta-
training environment and obtain similar results to SAC when doing cross-domain evaluations
in other Brax environments. The evolution results are interpretable; by analyzing the
structure of the best algorithms we identify elements that help optimizing certain objectives,
such as regularization terms for the critic loss.

1 Introduction

Two key bottlenecks for the deployment of reinforcement learning (RL) in the real world are failing to
generalize beyond the training distribution and unstable training. Both are common in practical settings and
constitute two important aspects of RL robustness. On one hand, many real-world environments present
themselves in multiple configurations (e.g., different sizes, structure, context, properties) and practitioners
expect zero-shot generalization when facing new configurations in robot manipulation (Ibarz et al., 2021),
navigation (Chiang et al., 2019), energy systems (Perera & Kamalaruban, 2021), and fluid dynamics (Garnier
et al., 2021). On the other hand, real-world elements such as stochastic dynamics should not result in unstable
learning behaviors that lead to undesired performance drops. Even for state-of-the-art RL algorithms,
zero-shot generalization and instability are considerable challenges (Henderson et al., 2018; Dulac-Arnold
et al., 2021).

Improving generalizability has been addressed by learning or encoding inductive biases in RL algorithms
(Raileanu & Fergus, 2021; Vlastelica et al., 2021). Gains mostly come by manually modifying existing
algorithms (Cobbe et al., 2019; Igl et al., 2019; Cobbe et al., 2021). As RL design for real-world environments
tends to be empirical (Andrychowicz et al., 2020; Linke et al., 2020), finding the suitable algorithmic changes
that benefit generalizability might take many iterations, especially if performance loss must be avoided (see
Figure 1). As environments become more complex and inductive biases become environment-specific, the
cost of human-driven design might be too expensive when optimizing for generalizability (Zhao et al., 2019),
let alone when optimizing for both performance and generalizability (Hessel et al., 2019), which are just
two objectives we consider but there are many more. In addition, stable algorithms that show consistent
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performance and generalizability across independent runs leads to higher algorithm reusability within the
same environment and across environments. We argue that optimizing generalizability and stability in
addition to performance in RL builds the case for automating algorithm design and speeding up the process
of RL algorithm discovery. Automated Machine Learning or AutoML (Hutter et al., 2019) has proven to be a
successful tool for supervised learning problems (Vinyals et al., 2016; Zoph et al., 2018; Real et al., 2019;
Finn et al., 2017), and it has been recently applied in the context of RL for automating loss function search
(Oh et al., 2020; Xu et al., 2020; Co-Reyes et al., 2021; Bechtle et al., 2021; He et al., 2022; Lu et al., 2022).

This paper proposes MetaPG (see Figure 2), a method that evolves a
population of actor-critic RL algorithms (Sutton & Barto, 2018), identified
by their loss functions, with the goal of increasing single-task performance,
zero-shot generalizability, and stability across independent runs. Loss
functions are represented symbolically as directed acyclic computation
graphs and two independent fitness scores are used to encode performance
and generalizability, respectively. A measure for stability is accounted for
in both objectives and the multi-objective ranking algorithm NSGA-II
(Deb et al., 2002) is used to identify the best algorithms. Compared to
manual design, this strategy allows us to explore the algorithm space
more efficiently by automating search operations. MetaPG finds algorithm
improvement directions that jointly optimize both objectives until it obtains
a Pareto Front of loss functions that maximizes fitness with respect to
each objective, approximating the underlying tradeoff between them. On
one end of the Pareto Front we obtain algorithms that perform well in the
training task (beneficial when faster learning is required and overfitting
is not a concern), on the other end we find algorithms that generalize
better to unseen configurations, and in between there are algorithms that
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Figure 1: In many practical con-
texts, designing the RL agent that
achieves the right performance, gen-
eralizability, and stability is an em-
pirical and costly iteration-based

interpolate between both behaviors. process.

To evaluate MetaPG, we run experiments using, first the zero-shot gener-

alizability benchmark from the Real-World RL environment suite (Dulac-Arnold et al., 2021); and second,
the Ant and Humanoid environments from Brax physics simulator Freeman et al. (2021), where we simulate
perturbations like mass changes, different friction coefficients, and joint torques. We warm-start the evolution
with a graph-based representation of Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and demonstrate that
our method is able to evolve a Pareto Front of multiple actor-critic algorithms that outperform SAC and
increase its performance and generalizability up to 4% and 20%, respectively, and decrease instability up to
67%. In the Brax environments, the evolved algorithms outperform SAC by 15% and 10% in performance
and generalizability, respectively. Instability is reduced 23% in that case. Furthermore, we observe that
algorithms evolved in Ant show minimal generalizability loss when transferred to Humanoid and vice versa.
Finally, by inspecting the graphs of the evolved algorithms, we interpret which substructure drive the gains.
For instance, we find that MetaPG evolves loss functions that remove the entropy term in SAC to increase
performance.

In summary, this paper makes three main contributions:

1. A method that combines multi-objective evolution with a search language representing actor-critic
RL algorithms as graphs, which can discover new loss functions over a set of different objectives.

2. A formulation of stability-adjusted scores that explicitly optimize for performance and generalizability
and implicitly encourage stability.

3. A dataset! of Pareto-optimal actor-critic loss functions which outperform baselines like SAC on
multiple objectives. This dataset may be further analyzed to understand how algorithmic changes
affect the tradeoff between different objectives.

IThe dataset can be found at: https://github.com/authors2022/dataset
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Figure 2: MetaPG overview, example with two fitness scores encoding two RL objectives. (a) The method starts by
taking a warm-start RL algorithm with its loss function represented in the form of a directed acyclic graph. MetaPG
consists of a meta-evolution process that, after initializing algorithms to the warm-start, discovers a population of
new algorithms. (b) Each evolved graph is evaluated by training an agent following the algorithm encoded by it,
and then computing two fitness scores based on the training outcome. (c¢) After evolution, all RL algorithms can
be represented in the fitness space and a Pareto-optimal set of algorithms can be identified. (d) Identifying which
graph substructures change across the algorithms in the Pareto set reveals which operations are useful for specific RL
objectives. MetaPG can be scaled to more than two RL objectives.

2 Related Work

Generalizability in RL One of the aspects of RL robustness is generalizability (Kirk et al., 2022; Xu
et al., 2022). Increasing generalizability has been addressed by means of environment randomization (Tobin
et al., 2017; Peng et al., 2018; Akkaya et al., 2019). Other authors have shown that removing or adding
certain algorithmic components impacts generalizability (e.g. using batch normalization (Cobbe et al., 2019),
adding elements to rewards (Chen, 2020), or using regularizers (Igl et al., 2019; Cobbe et al., 2019)). Others
directly achieve generalizability gains by modifying existing actor-critic RL algorithms (Raileanu & Fergus,
2021; Cobbe et al., 2021). Vlastelica et al. (2021) propose a hybrid architecture combining a neural network
with a shortest path solver to find better inductive biases that improve generalizing to unseen environment
configurations. We automate the search of algorithmic changes for actor-critic algorithms using generalizability
as one of the search metrics.

Stability in RL Achieving stable behaviors during training is essential in many domains, particularly in
control applications (Ibarz et al., 2021; Azar et al., 2021). It has been shown that randomness can play a
substantial role in the outcome of a training run (Henderson et al., 2018). Stable learning has been sought by
means of algorithmic innovation (Haarnoja et al., 2018; Fox et al., 2015; Bao et al., 2021; Jiang et al., 2021).
New stable algorithms have been mainly developed after looking into stability in isolation; in this work we
focus on stability as one of the three objectives to simultaneously optimize.

Optimizing RL components Automated RL or AutoRL seeks to meta-learn RL components (Parker-
Holder et al., 2022), such as RL algorithms (Co-Reyes et al., 2021; Kirsch et al., 2020; Oh et al., 2020; Bechtle
et al., 2021), their hyperparameters (Zhang et al., 2021; Hertel et al., 2020; Xu et al., 2018), policy /neural
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network (Gaier & Ha, 2019; Miao et al., 2021), or the environment (Ferreira et al., 2021; Gur et al., 2021;
Dennis et al., 2020; Florensa et al., 2018; Volz et al., 2018; Faust et al., 2019). This work evolves RL loss
functions and leaves other elements of the RL problem out of the scope. We focus on the RL loss function
given its interaction with all elements in a RL problem: states, actions, rewards, and the policy.

Evolutionary AutoML Neuro-evolution introduced evolutionary methods in the context of AutoML
(Miller et al., 1989; Stanley & Miikkulainen, 2002), including neural network architecture search (Stanley
et al., 2009; Jozefowicz et al., 2015; Real et al., 2019). In the RL context evolution searched for policy
gradients (Houthooft et al., 2018) and value iteration losses (Co-Reyes et al., 2021). Our work is also related
to the field of genetic programming, in which the goal is to discover computer code (Koza, 1994; Real et al.,
2020; Co-Reyes et al., 2021). In this work we use a multi-objective evolutionary method to discover new RL
algorithms, specifically actor-critic algorithms (Sutton & Barto, 2018), represented as graphs.

Learning RL loss functions Loss functions play a central role in RL algorithms and are traditionally
designed by human experts. Recently, several lines of work propose to view RL loss functions as tunable
objects that can be optimized automatically (Parker-Holder et al., 2022). One popular approach is to use
neural loss functions whose parameters are optimized via meta-gradient (Kirsch et al., 2020; Bechtle et al.,
2021; Oh et al., 2020; Xu et al., 2020; Lu et al., 2022). An alternative is to use symbolic representations of
loss functions and formulate the problem as optimizing over a combinatorial space. One example is (Alet
et al., 2019), which represents extrinsic rewards as a graph and optimizes it by cleverly pruning a search
space. Learning value-based RL loss functions by means of evolution was first proposed by Co-Reyes et al.
(2021), and was applied to solving discrete action problems. He et al. (2022) propose a method to evolve
auxiliary loss functions which complemented predefined standard RL loss functions. MetaPG focuses on
continuous control problems and searches for complete symbolic loss functions of actor-critic algorithms.

3 Methods

We represent actor-critic loss functions (policy loss and critic loss) as directed acyclic graphs and use an
evolutionary algorithm to evolve a population of graphs, which are ranked based on their fitness scores. The
population is warm-started with known algorithms such as SAC and undergoes mutations over time. Each
graph’s fitnesses are measured by training from scratch an RL agent with the corresponding loss function
and encode performance and generalizability as explicit objectives, and stability as a third objective defined
implicitly. We use the multi-objective evolutionary algorithm NSGA-II (Deb et al., 2002) to jointly optimize
all fitness scores until growing a Pareto-optimal set of graphs or Pareto Front. Algorithm 1 summarizes the
process; 0ffspring and RankAndSelect are NSGA-II subroutines.

Section 3.1 provides RL algorithm graph representation details. The main logic of MetaPG is contained in
the evaluation routine, which computes fitness scores (Section 3.2) and employs several techniques to speed
up the evolution and evaluation processes (Section 3.3). See Appendix B for further implementation details.

3.1 RL algorithm representation

MetaPG encodes loss functions as graphs consisting of typed nodes sufficient to represent a wide class of
actor-critic algorithms. Compared to the prior value-based RL evolutionary search method introduced by
Co-Reyes et al. (2021), MetaPG’s search space greatly expands on it and adds input and output types to
manage the search complexity. As a representative example, Figure 8 in Appendix D presents the encoding
for SAC that we use in this paper. In our experiments we limit the number of nodes per graph to 60 and 80,
which can represent approximately 103% and 10%%° graphs, respectively (see Appendix A.2). Nodes in the
graph encode loss function inputs, operations, and loss function outputs. The inputs include elements from
transition tuples, constants such as the discount factor v, a policy network 7, and multiple critic networks
Q;. Operation nodes support intermediate algorithm instructions such as basic arithmetic neural network
operations. Then, outputs of the graphs correspond to the policy and critic losses. The gradient descent
minimization process takes these outputs and computes their gradient with respect to the respective network
parameters. In Appendix A.1 we provide a full description of the search language and nodes considered.
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Algorithm 1 MetaPG Overview

Input: Training environments £

Initialize: Initialize population Py of loss function graphs (random initial-
ization or bootstrap with an algorithm such as SAC).

for L in Py do L.score < Eval(L, &)
end for
Qo + Offspring(P) > NSGA-II
for L in Qg do L.score « Eval(L, &)
end for
for t=1to G do
R+ P_1JQi1
P, < RankAndSelect(R) > NSGA-II
Q¢ <+ Offspring(P;) > NSGA-II
for L in Q; do L.score < Eval(L,€&)
end for
: end for
: Output: Pareto Front of all loss function graphs.

— =

MetaPG’s search language supports both on-policy and off-policy algorithms; however, in this paper we focus
on off-policy algorithms given their better sample efficiency.

3.2 Fitness scores

This work focuses on optimizing single-task performance, zero-shot generalizability, and stability across
independent runs with different random seeds. The process to compute the fitness scores is depicted in
Figure 3. We use N random seeds and a set of environments £, which comprises multiple instances of the
same environment class, including a training instance Ejy.q;, € €. For example, £ is the set of all RWRL
Cartpole environments with different pole lengths (0.1 meters to 3 meters in 10-centimeter intervals), and
Etrain corresponds to an instance with a specific pole length (1 meter). The first step (see Figure 3a) is to
compute raw performance and generalizability scores for each individual seed. Using Fi,.q;», and seed k to
train a policy 7y, the performance score fperf, is the average evaluation return on the training environment

configuration:
1 Neual

fperfk = Ni Z Gn(ﬂ-k»Etrain)v (1)

eval ne1
where G,, corresponds to the normalized return for episode n given a policy and an environment instance,
and Ngyq; is the number of evaluation episodes. Algorithms that learn faster in the training environment and
overfit to it obtain higher performance scores. The generalizability score fgep, is in turn computed as the
average evaluation return of the policy trained on FEj..;, over the whole range of environment configurations.
We emphasize that the policy is trained on a single environment configuration (for example 1.0 meter pole

length) and then is evaluated in a zero-shot fashion to new unseen environment configurations:?
1 Ne'ual
fQEnk = W Z Gn(']TkHE) (2)
eval EcE n=1

We look for stable training results for both performance and generalizability. To that end, once we have
independent raw scores for each seed (N different performance and generalizability scores) we define the
stability-adjusted scores (see Figure 3b) as

F=n{fadnzn) = k- o({falnzn) 3)

2More precisely, it should be E € £ \ {E4trqin}- In practice, we find this makes no significant difference in the metric because
the number of test configurations is normally around 30.
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Figure 3: Process to compute fitness scores. (a) Independently for each seed from a set of N seeds, we first train a
policy 7 using environment Eirq:in and seed k. During training the policy is allowed to take stochastic actions. Then,
we evaluate 7 deterministically on that same environment Fyrqin to get a raw performance score fpery, , and on a set
of environments £ (same environment with different configurations; e.g., different pole lengths as shown) to get a
raw generalizability score fgen,. (b) We compute stability-adjusted fitness scores fper ¢ and fgen by aggregating raw
scores from each seed using Equation 3.

where f is a score (performance or generalizability), f,, denotes the score for seed n; p and o are the mean
and standard deviation across the N seeds, respectively; and « is a penalization coefficient. The final fitness
of a graph is the tuple (fperf, fgen)-

3.3 Evolution details

Mutation The population is initialized with a warm-start RL algorithm; all individuals are copies of this
algorithm’s graph at the beginning. Once the population is initialized, individuals undergo mutations that
change the structure of their respective graphs. Specifically, mutations consist of either replacing one or more
nodes in the graph or changing the connectivity for one edge. The specific number of nodes that are affected
by mutation is randomly sampled for each different individual; see Appendix B for more details.

Operation consistency To prevent introducing corrupted child graphs into the population, MetaPG
checks operation consistency, i.e., for each operation, it makes sure the shapes of the input tensors are valid
and compatible, and computes the shape of the output tensor. These shapes and checks are propagated along
the computation graph.

Hashing To avoid repeated evaluations, MetaPG hashes (Real et al., 2020) all graphs in the population.
Once the method produces a child graph and proves its consistency, it computes a hash value and, in case of
a cache hit, reads the fitness scores from the cache. Since only the gradient of a loss function matters during
training, we hash a graph by computing the corresponding loss function’s gradient on synthetic inputs.

Hurdle evaluations We carry out evaluations for different individuals in the population in parallel, while
evaluating across seeds for one algorithm is done sequentially. To prevent spending too many resources
on algorithms that are likely to yield bad policies, MetaPG uses a simple hurdle environment (Co-Reyes
et al., 2021) and a number of hurdle seeds. We first evaluate the algorithm on the hurdle environment for
each hurdle seed, and only proceed with more complex and computationally expensive environments if the
resulting policy performs above a certain threshold on the hurdle environment.

4 Results
This section aims to answer the following questions:

1. Is MetaPG capable of evolving algorithms that improve upon performance, generalizability, and
stability in different practical settings?

2. How well do discovered algorithms do in environments different from those used to evolve them?

3. Are the evolutionary results interpretable?
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Figure 4: Running an experiment with MetaPG is divided into three phases. 1. Meta-training: we evolve a
population of algorithms using a set of random seeds Strqin to compute scores. 2. Meta-validation: to prevent
overfitting, we reevaluate the scores of all algorithms in the population using a different set of random seeds Syaiid-
3. Meta-testing: specific algorithms such as those in the Pareto Front are tested in different environments using a
third set of random seeds Stest.

We run the experiments following the process represented in Figure 4; we divide them into meta-training,
meta-validation, and meta-testing phases. Each phase relies on a different set of N random seeds: Strqin,
Svalid, and Stest, respectively. Each MetaPG run begins with the meta-training phase, which consists of
the evolution process described in the previous section. The result of this phase is a population of evolved
algorithms, each with a pair of meta-training fitness scores. Since the evolution process is non-deterministic,
we run each experiment multiple times without configuration changes and aggregate all resulting populations
into one single larger population.

Then, to avoid selecting algorithms that overfit to the set of seeds St,qin, We reevaluate all algorithms in the
population with a different set of seeds Syq1:4; this corresponds to the meta-validation phase, which provides
updated fitness scores for all algorithms. Finally, to assess the fitness of specific algorithms (e.g., the Pareto
Front) when deployed in different environments, we use a third set of seeds Sies+ that provides realistic fitness
scores in the new environments; this corresponds to the meta-testing phase. In our analyses of the results, we
focus on the set of meta-validated algorithms and then meta-test some of them.

4.1 Training setup

Training environments We use as training environments: Cartpole and Walker from the RWRL Envi-
ronment Suite (Dulac-Arnold et al., 2021), Gym Pendulum, and Ant and Humanoid from the Brax physics
simulator (Freeman et al., 2021). We define different instances of these environments by varying the pole
length in Cartpole, the thigh length in Walker, the pendulum length and mass in Pendulum, and, to mimic a
practical setting, the mass, friction coefficient, and torque in Ant and Humanoid. See Appendix C for the
specifics.

Meta-training details The population and maximum graph size consist of 100 individuals and 80 nodes
in the Brax environments, respectively, and 1,000 individuals and 60 nodes in the rest of the environments.
All are initialized using SAC as a warm-start (see Appendix D). For RL algorithm evaluation, we use 10
different seeds Sy qin and fix the number of evaluation episodes Ne,q; to 20. In the case of Brax, since training
takes longer, we use 4 different seeds but increase Neyq to 32. We meta-train using 100 TPU 1x1 v2 chips
for 4 days in the case of Brax environments (~200K and ~50K evaluated graphs in Ant and Humanoid,
respectively), and using 1,000 CPUs for 10 days in the rest of environments (~100K evaluated graphs per
experiment). In all cases we normalize the fitness scores to the range [0, 1]. We set x = 1 in equation 3.
Additional details are in Appendix B.

Meta-validation details During meta-validation, we use a set of 10 seeds Syqi4, disjoint with respect to
Strain- In the case of Brax environments, we use 4 meta-validation seeds. Same applies during meta-testing.
In each case, we use a number of seeds that achieve a good balance between preventing overfitting and having
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Figure 5: Evolution results (meta-validation across 10 different seeds) alongside the warm-start algorithm (SAC),
and the hyperparameter-tuned ACME SAC when using the RWRL Cartpole environment for training. We show
the Pareto Front of algorithms that results after merging the 10 populations corresponding to the 10 repeats of the
experiment. The best performer and best generalizer correspond to the algorithms with the highest stability-adjusted
performance and generalizability scores, respectively, according to Equations 1, 2, and 3.

affordable evaluation time. The value of N, during meta-validation and meta-testing matches the one used
in meta-training.

Hyperparameter tuning We use the same fixed hyperparameters during all meta-training. Algorithms are
also meta-validated using the same hyperparameters. In the case of Brax environments, we do hyperparameter-
tune the algorithms during meta-validation; additional details can be found in Appendix G.5. We also
hyperparameter-tune all baselines we compare our evolved algorithms against.

RL Training details The architecture of the policies corresponds to two-layer MLPs with 256 units each.
Additional training details are presented in Appendix E.

4.2 Optimizing performance, generalizability, and stability in RWRL Environment Suite

We apply MetaPG to RWRL Cartpole and compare the evolved algorithms in the meta-validated Pareto Front
with the warm-start SAC and ACME SAC (Hoffman et al., 2020) (Figure 5a). When running ACME SAC
we first do hyperparameter tuning and pick the two configurations that lead to the best stability-adjusted
performance and the best stability-adjusted generalizability (ACME SAC HPT Perf and ACME SAC HPT
Gen, respectively). In Table 1, we show numeric values for each of the three metrics. In the case of stability,
we show a measure of instability represented as the change in standard deviation compared to the warm-start
(i.e., warm-start has the value 1.0). We independently measure instability with respect to performance and
generalizability.

The results from Table 1 show that MetaPG discovers RL algorithms that improve upon the warm-start’s and
ACME SAC’s performance, generalizability, and stability in the same environment we used during evolution.
Compared to the warm-start, the best performer achieves a 4% improvement in the stability-adjusted
performance score (from 0.836 to 0.868), the best generalizer achieves a 20% increase in the stability-adjusted
generalizability score (from 0.460 to 0.551), and the selected algorithm in the Pareto-optimal set (Pareto
point 6) achieves a 2% and a 12% increase in both stability-adjusted performance and stability-adjusted
generalizability, respectively. Then, in terms of the stability objective, the best performer reduces performance
instability by 67% and the best generalizer achieves a reduction of 30% for generalizability instability.

The gains in generalizability and stability are substantial when comparing the results to hyperparameter-tuned
ACME SAC. The best generalizer achieves a 15% increase in stability-adjusted generalizability compared to
ACME SAC tuned for such metric. The instability in the hyperparameter-tuned SAC is twice as high (1.48
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Table 1: We compare three algorithms in the Pareto Front with SAC (warm-start and hyperparameter-
tuned ACME SAC) using metrics obtained in the RWRL Cartpole environment: average performance
and generalizability, stability-adjusted performance and generalizability scores, and measure of instability
(standard deviation o divided by the warm-start’s oys). We compute these metrics across 10 seeds and the
best result in a column is bolded. TIn contrast to performance and generalizability, the lower the instability
the better.

Performance | Generalizability | Instability! (o/ows)
RL Algorithm foerf  fperf | faoen foen Perf. Gen.
Pareto point 1: Best performer 0.871 0.868 | 0.475 0.459 0.33 0.59
Pareto point 6 0.854 0.852 | 0.531 0.514 0.22 0.63
Pareto point 10: Best generalizer 0.770 0.756 | 0.570 0.551 1.55 0.70
Warm-start SAC 0.845 0.836 | 0.487 0.460 1.0 1.0
ACME SAC HPT Perf 0.865 0.864 | 0.372 0.312 0.11 2.22
ACME SAC HPT Gen 0.845 0.833 | 0.518 0.478 1.33 1.48

vs. 0.70, as shown in Table 1). In terms of performance, the best performer achieves a slightly better result
compared to SAC hyperparameter-tuned for performance.

We report the complete results in Appendix F.1 and repeat the same experiments in RWRL Walker (Appendix
F.2) and Gym Pendulum (Appendix F.3) and observe that MetaPG also discovers a Pareto Front of algorithms
that outperform SAC in both environments. Additional information on the stability of the algorithms is
presented in Appendix F.4.

Figure 5b compares how the best performer and the best generalizer behave in different instances of the
environment in which we change the pole length (all instances form the environment set £ used during
evolution). We follow the same procedure described by Dulac-Arnold et al. (2021). The best performer
achieves better return in the training configuration than the warm-start’s. The best generalizer in turn
achieves a lower return but it trades it for higher returns in configurations outside of the training regime,
being better at zero-shot generalization. The same behavior holds when using RWRL Walker and Gym
Pendulum as training environments (see Appendix F.2 and F.3, respectively).

4.3 Transferring evolved algorithms between Brax environments

Figure 6 shows the behaviour of evolved algorithms when meta-tested in perturbed Brax Ant environments
(changes in friction coefficient, mass, and torque, see Appendix C). We first evolve algorithms independently in
both Ant and Humanoid, then select those algorithms that have the highest stability-adjusted generalizability
score fgen during meta-validation. We then re-evaluate using the meta-testing seeds. We compare algorithms
evolved in Ant and Humanoid with hyperparameter-tuned SAC.

These results highlight that an algorithm evolved by MetaPG in Brax Ant performs and generalizes better
than a SAC baseline. Specifically, we observe a 15% improvement in stability-adjusted performance and
10% improvement in stability-adjusted generalizability. We also obtain a 23% reduction in instability. In
addition, we observe that an algorithm initially evolved using Brax Humanoid and meta-validated in Ant
transfers reasonably well to Ant during meta-testing, achieving slight loss of performance compared to
hyperparameter-tuned SAC (adjusting for stability, 17% less performance and 13% less generalizability
compared to SAC). We evolved fewer graphs in the case of Humanoid (50K compared to 200K evolved graphs
for Brax Ant), as training a policy in Humanoid is more costly. We expect these results to improve if more
algorithms are evolved in the population. We present complete results for the Brax Ant environment in
Appendix F.5 and repeat the same analysis for the Brax Humanoid environment in Appendix F.6, in which
we observe similar results.
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Figure 6: Meta-testing in Brax Ant. We compare, after hyperparameter tuning, loss functions evolved in Brax
Ant, Brax Humanoid (to assess cross-domain transfer), and the SAC baseline used as warm-start. We plot the
average return and standard deviation across random seeds when evaluating in multiple Brax Ant instances
with different friction coefficients, mass coeflicients, and torque multipliers (in all cases 1.0 is used as training
configuration). The loss function evolved in Ant improves upon SAC’s performance and generalizability.

4.4 Analyzing the evolved RL algorithms
Next, we analyze evolved algorithms from our experiments on RWRL Cartpole. We pick the best meta-
validated performer and generalizer, both evolved from the warm-start SAC (see Appendix D for its graph

representation in the search space). The policy loss L, and critic losses Lg, (one for each critic network @,
see Appendix A.1 for details) observed from the graph structure for the best performer are the following:

LA =By a5 |08 (0in(m(ra]s041), 7)) — min Qi(si, ar)| (4)

2
Lgeirf = E(s,,a1,r¢,5041)~D {(Tt + (Hliiﬂ Qtarg; (8t+1, Gry1)— log 7r(&t+1|5t+1)> — Qi(st, at)) ] (5)

where @; ~ m(-|st), Gry1 ~ 7(-|s¢+1), and D is an experience dataset extracted from the replay buffer. We
highlight in blue the changes and additions with respect to SAC, and in red the elements of the SAC loss
function that evolution removes. The loss equations for the best generalizer are:

LI = E(s, a1,5001)~D [10g m(@e]se) — min Qs(se+1, ?lt)} (6)

2
Lgin — E(St»at7Tt75t+1)ND [atan <(’r't + Y (miin Qtll’f‘gi (st+1,dt) — logw(dt|st)) — Qi(st, Clt)) >:| (7)
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(a) Average entropy of the policy during training for (b) Average gradient norm of the actor loss during training
RWRL Cartpole. for RWRL Cartpole.

Figure 7: Analysis of the entropy and gradient norm of the actor when evaluating the best generalizer from RWRL

Cartpole in comparison to the warm-start. We hypothesize this increase in entropy and decrease in gradient norm
with respect to SAC contribute to achieve better generalizability.
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While both algorithms resemble the warm-start SAC (see Appendix D), we observe that the best performer
does not include the entropy term in the critic loss while the best generalizer does (i.e., they correspond to
setting « to 0 and 1 in the original SAC algorithm (Haarnoja et al., 2018), respectively). This aligns with
the hypothesis that, since ignoring the entropy pushes the agent to exploit more and explore less, the policy
of the best performer overfits better to the training configuration compared to SAC. In contrast, the best
generalizer is able to explore more. Figure 7a validates the latter observation showing a higher entropy for
the best generalizer’s actor compared to the warm-start’s.

The use of arctangent in the critic loss of the best generalizer is also noticeable as, supported by Figure
b, we observe this operation serves as a way of clipping the loss, which makes gradients smaller and thus
prevents the policy’s parameters from changing too abruptly. In our experiments, we fix the number of
training episodes as a compromise between achievable returns and evaluation runtimes. Clipping the loss has
then an early-stopping effect compared to the baseline and results in a policy less overfitted, which benefits
generalization. In Appendix G.3, we show both extended results that ignore the fix budget requirement and
the equations for the best evolved algorithms in the remaining environments. Appendix G.1 and G.2 present
the equations for the other RWRL environments and the Brax environments, respectively.

4.5 Discussion & Future Work

We have shown that MetaPG can discover novel RL loss functions that achieve better training stability and
zero-shot generalization compared to warm-start algorithms such as SAC. Our search space consists only of
primitive operators similar to Co-Reyes et al. (2021). While this promotes expressiveness of algorithms in
the space, it requires many nodes and edges to represent a loss function which makes our search space vast
and good loss functions are extremely sparse in this space. It is challenging for evolutionary algorithms to
traverse this space given limited search budget. One area for improvement is to design a more efficient search
space so that we have a greater chance of discovering better algorithms under the same computation budget.

Another direction of future work is to improve the transferrability of evolved algorithms to new domains. We
have observed that, while evolved algorithms transfer reasonably well (especially best performers, see Appendix
G.6), sometimes they do not perform better than SAC in the new environments without hyperparameter
tuning first. At the same time, it poses an interesting research question of determining whether MetaPG
is better suited to find “super algorithms” for specific environments or a new generation of all-purpose
algorithms.

Finally, it would be interesting to ensemble the evolved loss functions on the Pareto front. Such loss function
may give additional flexibility for practitioners when designing an RL system by encoding complex design
choices into an interpolation across objectives. We hope the released dataset of evolved algorithms help the
community gain deeper insights on differences between loss functions.

5 Conclusion

We presented MetaPG, a method that evolves actor-critic RL loss functions to optimize multiple RL objectives
simultaneously and applied it to discovering algorithms that perform well, achieve zero-shot generalization
across different environment configurations, and are stable; a triad of objectives with real-world implications.
The experiments in RWRL Cartpole, RWRL Walker, and Gym Pendulum demonstrated that MetaPG
discovered algorithms that, when using one environment during evolution and then meta-validating in that
same environment, outperform SAC, achieving a 4% and 20% improvement in stability-adjusted performance
and stability-adjusted generalizability, respectively, and a reduction of up to 67% in instability. Experiments
on Brax Ant and Brax Humanoid proved evolution is successful in more complex environments, achieving a
15% and 10% increase in stability-adjusted performance and stability-adjusted generalizability, respectively.
We also observed that, when transferring evolved algorithms to environments different from those used during
evolution, the loss of performance and generalizability in the new environment is minimal and is comparable
to SAC. Finally, we have analyzed the evolved loss functions and linked specific elements in their structure to
fitness results, such as the removal of the entropy term to benefit performance.
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