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Abstract

Gaussian fields are a promising representation for robot
body modeling due to their differentiability and inherently
low sim-to-real gap. However, existing methods like Dr-
Robot overlook explicit geometric constraints, leading to
artifacts under novel poses or views. Directly enforcing
depth and normal supervision on articulated Gaussians is
unstable due to entanglement between pose deformation
and 3D appearance learning. To address this, we pro-
pose a two-stage training strategy: we first learn a canon-
ical Gaussian field in a canonical pose using dense RGB,
depth, and normal supervision, establishing a geometry-
aware reconstruction. We then fine-tune the Gaussian pa-
rameters jointly with a deformation network conditioned on
Jjoint angles using only RGB losses, ensuring consistent ge-
ometry and appearance across poses. To further mitigate
rendering artifacts in novel poses and viewpoints, we in-
tegrate a diffusion-based refinement module. This module
conditions on both the initial Gaussian renderings and the
target robot skeletons, and significantly enhances visual fi-
delity while preserving pose accuracy. Experiments across
multiple robotic platforms show that GRADRobot outper-
forms DrRobot by a large margin in both rendering quality
(PSNR) and geometric accuracy (Chamfer Distance).

1. Introduction

Modeling articulated robots requires a differentiable 3D
representation that captures fine-grained geometry and
view-dependent appearance for simulation and vision-based
control. Gaussian fields are efficient and differentiable, but
without explicit geometric constraints they tend to over-
smooth details and produce artifacts under novel poses or
viewpoints—as observed in prior work such as DrRobot
[7]. Jointly supervising depth/normals while learning artic-
ulation further entangles geometry with pose, which often
destabilizes optimization.

We propose GRADRobot, a compact pipeline that de-

Chongjie Ye!'? Bohan Li'3
Hao Tang® Hao Zhao'”
INTU SBAAI SPKU

couples geometry learning from articulation and adds an
optional pose-aware refinement for high-frequency details.
First, we learn a canonical Gaussian field in a fixed pose
with pixel-space RGB, depth, and normal supervision that
anchors Gaussians on the surface, stabilizing geometry.
Second, we introduce a lightweight linear-blend-skinning
(LBS) deformation conditioned on joint angles and fine-
tune appearance using RGB-only losses, preserving canon-
ical geometry while learning pose-dependent effects. Fi-
nally, when desired, a single-step structure-conditioned dif-
fusion module (e.g., ControlNet [13]) refines thin structures
and specularity without altering the commanded pose; this
refiner can be disabled in latency-sensitive loops.

On a MuJoCo benchmark covering nine robot morpholo-
gies, GRADRobot reduces Chamfer Distance by up to 37%
and improves PSNR by 0.6-1.2dB over DrRobot under
identical protocols. Geometry anchoring accounts for most
of the CD gains; the optional refiner contributes the PSNR
boost. Our evaluation is synthetic to enable controlled
ground truth; real-robot experiments are an important di-
rection for future work.

Our main contributions are:

(1) Surface-anchored canonical GS: pixel-space
depth/normal losses keep Gaussians near the surface,
yielding stable, geometry-aware reconstructions.

(ii) Pose-conditioned articulation: an LBS field with
RGB-only fine-tuning decouples articulation from geome-
try while retaining full differentiability.

(iii) Optional skeleton-conditioned refinement: a single-
step diffusion stage enhances high-frequency details with-
out changing pose.

2. Related Work

2.1. Gaussian-Based Differentiable Rendering

3D Gaussian Splatting (GS) enables real-time, differen-
tiable radiance-field rendering [5]. Extensions adapt GS
to humans/sparse views [14], introduce depth/normal cues
for inverse rendering [6], align shading with Gaussian nor-
mals [4], mitigate aliasing or enable editing via multi-scale
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Figure 1. Overview of the GRADRobot Framework

The pipeline consists of canonical Gaussian reconstruction, pose-conditioned deformation, Optimization of Deformable Gaussians, and

diffusion-based refinement for photorealistic, pose-aware 3D rendering.

kernels and mesh anchoring [2, 11], and optimize surface-
aware opacity [12]. For articulated robots, DrRobot cou-
ples GS with kinematics-aware deformation to backpropa-
gate image-space gradients to joint angles [7], but typically
learns geometry and articulation jointly without explicit ge-
ometric constraints, which can cause over-smoothing and
pose-dependent artifacts. In contrast, we first learn a canon-
ical field with pixel-space depth/normal supervision that
anchors Gaussians on the surface, then apply LBS artic-
ulation with RGB-only fine-tuning—decoupling geometry
from appearance and improving stability. Most of the above
GS variants are designed for static or human-centric recon-
struction and cannot directly handle kinematic articulation.
DrRobot is the prior method that explicitly targets articu-
lated robot rendering, which is why we focus on it as the
primary baseline in our comparisons.

2.2. Generative Diffusion Models

Diffusion models achieve strong results in image synthe-
sis and restoration [8, 9], with plug-and-play priors im-
proving fidelity/efficiency [1, 15]. ControlNet enables con-
ditioning on external structure [13]. We use an optional,
single-step skeleton-conditioned refiner: given a coarse GS
render and a forward-kinematics skeleton, it recovers thin
structures/high-frequency details while preserving the com-
manded pose. The refiner can be disabled in latency-
sensitive, real-time loops.

3. Method

We target articulated rendering with stable geometry and
high-frequency detail. GRADRobot decouples learning
into three stages: (I) surface-anchored canonical recon-
struction, (II) pose-conditioned articulation with RGB-
only fine-tuning, and (III) an optional skeleton-conditioned,
single-step diffusion refiner (Fig. 1).

Accurately rendering articulated robots across diverse
poses requires a representation that is both geometrically
consistent and visually detailed. Jointly learning geome-
try and articulation often entangles the two and destabilizes
optimization. We therefore first learn a canonical Gaussian
field under a fixed pose with explicit pixel-space geometry
supervision; next, we articulate it using LBS and fine-tune
appearance using only RGB; finally, when desired, we ap-
ply a pose-aware diffusion refiner that preserves the com-
manded kinematics.

3.1. Canonical GS with Pixel-Space Geometry
Losses

We represent the canonical scene with M anisotropic Gaus-
sians G = {(ui, 3i, ¢i, i)}, and render by differentiable
splatting [5]. Given a rendered image I and ground-truth 7,
the objective is

Ecanon = »Crgb + )\g »Cgem
Lygy = ||T = I||1 + Asim DSSIM(Z, T).

To anchor Gaussians on the surface, we add depth distor-
tion and normal consistency in pixel space. Let 2 be pixel

(1



Table 1. Mean Chamfer Distance (xlO_3 m) over 50 random poses.

Method Shadow Hand  Unitree G1 ~ Unitree HI  Google Robot ~ ViperX300 xArm7 Unitree GOl Unitree GO2 URS5  Average
DrRobot 0.1372 0.3344 0.5119 0.2956 0.1292 0.4321 0.3103 0.1697 0.3009  0.2913
Ours w/o Geo Loss 0.1273 0.2078 0.3162 0.2937 0.1019 0.2001 0.1885 0.1152 0.2409  0.1991
Ours 0.1210 0.1895 0.3083 0.2827 0.0846 0.1936 0.1538 0.1053 0.2205  0.1844

indices, G(p) the Gaussians contributing to pixel p, w;(p)
the stop-gradient blending weight from the rasterizer, p* the
ground-truth depth, z;(p) the depth of Gaussian 7 at p, n;(p)
its local normal, and 7:(p) the normal from depth gradients:

ﬁgeo = A\g »Cdist + An »Cnormal; (2

Edlst — Z Z w1 |Zz pz|a (3)
PEQ icG(p)

normal - Z Z ’LUZ ||n2 ) - ﬁ(p)H% (4)
PEQ icG(p)

This surface anchoring reduces interior artifacts and im-
proves articulation; in ablation it yields about 8% CD gains
(Table 1).

3.2. Pose-Conditioned Deformation and RGB-Only
Fine-Tuning

Let g;(#) € SE(3) be the joint transform of joint j and C(j)
its kinematic chain from root to j. For a canonical Gaussian
center z € R and homogeneous & = [z",1]T, the posed
point is

Z exp( sj

Zk exp(sk(x

w; ()

(Hgk) 5)

keC(j)

where s;(-) is the MLP output before softmax. For
anistropic Gaussians with covariance ¥ € R3*3, we trans-
form both mean and covariance via the linear part R;(6) of
the chain:

u’=ij(

which preserves positive semidefiniteness and aligns co-
variance axes with link frames. We additionally regularize
|I2||F and a(l — «) to discourage oversized kernels and
saturated opacity.

=> w; R;ZR], (6)

J

Rj/i + tj),

3.3. Skeleton-Conditioned Single-Step Diffusion

For thin structures/specularity, we add an optional single-
step refiner built on Stable Diffusion v1-5 [3, 8] with a
ControlNet [13]. Given the posed coarse render I.oarse and
a color-coded skeleton map S(6) from forward kinematics,
we encode I.ourse With a frozen VAE and apply one denois-
ing step conditioned on S(6):

a) Dr Robot

b) Slices c) ours

Figure 2. Chamfer-distance visualisation on the ufactory xarm?7 .
(a) DrRobot; (b) Slice; (c) Ours

zZ= z(Icoarse> - Ea(z(lcoarse)v t=0, c, fw<S<8)))7 7

Iiet = VAEgec(2).

Training uses ||[Ier — I||1 4+ Apl|¢(Ler) — ¢(1)]|3 with
VGG features ¢, freezing the VAE/text encoder and tuning
ControlNet/U-Net. The refiner preserves pose and can be
disabled for real-time loops.

4. Experiments

4.1. Dataset

We build a synthetic benchmark in MuJoCo [10]. For
each robot, we remove fixed joints and standardize light-
ing. Joint angles are partitioned into: (i) 500 collision-free
canonical poses, (ii) 10,000 training poses (allowing up to
10 self-collisions), and (iii) 500 fest poses. Each pose is
rendered from 12 RGB-D views at 256 X256 with azimuth
sampled from three uniform bins in [—180°, 180°] (with jit-
ter), elevation in {—45°,45°}, and radius in {1.0,2.0}d.
We back-project each RGB-D frame into a camera-centric
point cloud with Open3D, transform it to the world frame,
and voxel-downsample to 0.01 m. The 12 per-view clouds
are merged and sparsified by progressive voxelization (start-
ing at 0.005 m and increasing by 1% per step) until < 10k
points, yielding one fused ground-truth cloud per pose.



Table 2. Average PSNR (dB) for each robot model.

Method Shadow Hand ~ Unitree G1 ~ Unitree HI ~ Google Robot ~ ViperX300 xArm7 Unitree GOl  Unitree GO2 URS5  Average
K-Plane 9.74 11.23 8.26 13.21 8.45 18.93 11.23 8.41 13.63 1145
DrRobot w/o Deform 29.75 26.95 26.08 30.89 29.73 31.68 26.95 28.16 2635  28.50
DrRobot 31.44 28.31 27.77 32.60 30.59 33.25 29.74 29.60 3201 3059
Ours w/o Geo Loss 30.85 28.30 25.80 33.11 30.09 35.71 30.12 31.72 32.80 3094
Ours w/o Refine 31.25 29.49 28.07 34.20 30.84 37.95 31.27 31.41 3292 3193
Ours 31.86 29.69 28.12 35.53 31.08 36.51 32.01 33.94 3343 3246
4.2. Chamfer Distance Evaluation Urs  Ufactory Unitree Trossen Shadow
. arm7 G1 300s hand
Evaluation. We sample 50 poses per robot, deform the X v
learned Gaussians via the pose-conditioned LBS network, -
and export the resulting 3D points. We then compute the Dr Robot <8 9
symmetric Chamfer Distance between the deformed cloud
P and the ground-truth cloud P: "W
N Ours Q A 9
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Baseline. We compare against a re-implementation of
“DrRobot”, where canonical Gaussians are deformed and
fine-tuned by the same LBS network under the same 50-
pose protocol, with Chamfer Distance measured identically.

Results. Table | reports mean CD (x10~3 m) over
50 poses. GRADRobot achieves a 37% reduction ver-
sus DrRobot, demonstrating tighter surface alignment and
far fewer spurious interior points. This surface-proximal
distribution is crucial: without it, internal points deform
inconsistently, causing geometry collapse or visual arti-
facts, whereas our method maintains structural integrity and
artifact-free deformation.

Figure 2 further illustrates these gains. The global er-
ror maps ((a) vs. (b)) show markedly smaller high-error re-
gions, and the horizontal slice in (c) confirms our points lie
on the cylindrical link surface, while DrRobot produces a
dense ring of internal artifacts—highlighting the coherence
of our Gaussian representation before and after articulation.

Ablation Study Row “Ours w/o Geo Loss” in table |
removes the two surface-anchoring terms introduced in
subsection 3.1—the Depth-Distortion (dist) loss and the
Normal-Consistency (normal) loss. Re-adding the losses
cuts Chamfer Distance by a further 8% on average.

4.3. Image Quality Evaluation

Evaluation Protocols. We evaluate geometric and image-
space performance on a held-out set of 500 poses per robot.
For each pose, we render several 256 x 256 views. Im-
age quality is measured by PSNR between diffusion-refined
renders and ground-truth RGB. All methods are trained on
the same MuJoCo dataset and tested on unseen joint config-
urations.

Q.

Figure 3. Qualitative results across several robot morphologies.

Baselines. We compare GRADRobot (diffusion-
enhanced splatting) to DrRobot’s three-stage pipeline
(Gaussian splatting + LBS + joint fine-tuning) without dif-
fusion, using identical data, cameras, and backgrounds.

Results. Table 2 shows GRADRobot achieves the
highest PSNR across nine robots, with 0.6-1.2,dB gains
over the pose-conditioned splat and > 1.0,dB over Dr-
Robot. The diffusion module restores high-frequency de-
tails (e.g., thin links, sharp edges), yielding renders closer to
ground truth—important for downstream vision-driven con-
trol. Qualitative results in Fig. 3 show sharper contours for
GRADROobot, while DrRobot appears overly smooth.

Ablation Study. Ours w/o refine” disables diffusion and
uses the pose-conditioned splat as output, lowering mean
PSNR from 32.6 to 31.9dB (—0.7dB). Ours w/o Geo Loss”
reduces PSNR from 32.46 to 30.90,dB, yet still slightly out-
performs DrRobot (30.59,dB).

5. Conclusion

GRADROobot fuses surface-anchored 3-D Gaussian splat-
ting with a pose-aware diffusion refiner, producing sharper
renders and tighter geometry for articulated robots. Across
robot models it cuts Chamfer Distance by up to 37 %
and boosts PSNR by 0.6-1.2 dB over Dr Robot, all while
preserving real-time speed.The study shows that geometry
losses and diffusion are complementary in locking Gaus-
sians to the true surface and restoring high-frequency detail.
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