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ABSTRACT

Multiple-choice question answering (MCQA) is a key competence of performant
transformer language models that is tested by mainstream benchmarks. However,
recent evidence shows that models can have quite a range of performance, par-
ticularly when the task format is diversified slightly (such as by shuffling answer
choice order). In this work we ask: how do successful models perform format-
ted MCQA? We employ vocabulary projection and activation patching methods
to localize key hidden states that encode relevant information for predicting the
correct answer. We find that the prediction of a specific answer symbol is causally
attributed to a few middle layers, and specifically their multi-head self-attention
mechanisms. We show that subsequent layers increase the probability of the pre-
dicted answer symbol in vocabulary space, and that this probability increase is
associated with a sparse set of attention heads with unique roles. We additionally
uncover differences in how different models adjust to alternative symbols. Finally,
we demonstrate that a synthetic task can disentangle sources of model error to pin-
point when a model has learned formatted MCQA, and show that logit differences
between answer choice tokens continue to grow over the course of training.1

1 INTRODUCTION

Figure 1: We investigate the ability of transformer
LMs to answer formatted multiple-choice ques-
tions, which involves producing an answer choice
symbol (here, A or B). We discover 1-3 middle
layers at the last token position, and particularly,
their multi-head self-attention functions, respon-
sible for answer selection. Hidden states out-
put by later layers assign increasing probability
to the symbol of interest in the model’s vocab-
ulary space, for which a sparse set of attention
heads are responsible. Finally, when the prompt
contains unusual answer choice symbols such as
Q/Z/R/X, some models initially assign high val-
ues to common answer symbols like A/B/C/D
before aligning to the symbols in the prompt at
a late layer.

Multiple-choice question answering (MCQA) is a mainstay of language model (LM) evaluation
(Liang et al., 2022; Gao et al., 2023; Beeching et al., 2023), not in the least because it avoids the chal-
lenges of open-ended text evaluation. A prominent example is the MMLU benchmark (Hendrycks
et al., 2021), which is considered a meaningful signal for new model releases (Lambert, 2024a;b).

While early LMs were evaluated on MCQA questions by treating the task as next-token-prediction
and scoring each answer choice appended to the input independently, many benchmarks and datasets

1Code is available at anonymous.
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now evaluate models on their ability to produce the correct answer choice symbol in a single infer-
ence run when given the answer choices in the prompt (formatted MCQA; Figure 1 and §3.1). In-
deed, it has been shown that capable models, and particularly those that have been instruction-tuned,
perform well on formatted MCQA tasks (Liang et al., 2022; Robinson & Wingate, 2023; Wiegreffe
et al., 2023). At the same time, despite their strong end-task performance, some models are not
robust to seemingly inconsequential format changes, such as shuffling the position of the correct an-
swer choice, changing letters that answers are mapped to, or using different symbols (Pezeshkpour
& Hruschka, 2023; Alzahrani et al., 2024; Khatun & Brown, 2024).

Understanding how LMs form their predictions, particularly on real-world benchmarks and task
formats such as MCQA, is important for reliability reasons. Motivated by this, we ask: How do
successful models perform formatted MCQA?

In this paper, we interpret internal components to uncover how models promote the prediction of
specific answer choice symbols. We perform vocabulary projection and activation patching analyses
on three model families—Llama 3.1 (Dubey et al., 2024), Olmo 0724 (Groeneveld et al., 2024) and
Qwen 2.5 (Yang et al., 2024)—and three datasets—MMLU (Hendrycks et al., 2021), HellaSwag
(Zellers et al., 2019), and a copying task we create. Our findings, summarized in Figure 1, are:

1. When models are correct, they both encode information needed to predict the correct answer
symbol and promote answer symbols in the vocabulary space in a very similar fashion across
tasks, even when their overall task performance varies.

2. Answer symbol production is driven by a sparse portion of the network, namely, attention heads.
3. The process for correctly answering more unnatural prompt formats is in some cases more

complex: Olmo 7B Instruct and Qwen 2.5 1.5B models sometimes only begin producing the
correct symbols for these prompts in later layers. We discover that the models’ hidden states
initially assign high logit values to expected answer symbols (here, A/B/C/D) before switching
to the symbols given in the prompt (here, random letters like Q/Z/R/X or O/E/B/P).

4. A simple synthetic task can disentangle formatted MCQA performance from dataset-specific
performance, and allows us to narrow down a point during training at which Olmo 7B learns
formatted MCQA.

2 RELATED WORK

Behavioral analyses of LM abilities to answer formatted MCQA questions prompt models in a black-
box manner by constructing different input prompts and observing how they affect models’ predic-
tions (Wiegreffe et al., 2023; Pezeshkpour & Hruschka, 2023; Sun et al., 2024; Zheng et al., 2024;
Alzahrani et al., 2024; Khatun & Brown, 2024; Balepur et al., 2024; Wang et al., 2024). These
methods and findings are complementary to ours.

Efforts to interpret transformer LMs for MCQA are limited. Most similar to ours is Lieberum
et al. (2023), who study what attention heads at the final token position are doing, and isolate a
subset they coin “correct letter heads”. They demonstrate how these heads attend to answer symbol
representations at earlier token positions and promote the correct symbol based on its position in
the symbol order, though they show this behavior does not hold entirely for answer choices other
than A/B/C/D. Their experiments are limited to one task (MMLU) and one closed-source model
(Chinchilla-70B). Apart from broadening the scope of analysis substantially, we also analyze model
behavior over the course of training and when it is poor, and create a synthetic task to disentangle
task-relevant knowledge from the ability to answer formatted MCQA questions. We additionally
put forward a hypothesis for how models adapt when other answer choice symbols are used.

Li & Gao (2024) use vocabulary projection and study the norms of weighted value vectors in multi-
layer perceptrons of GPT-2 models in order to localize the production of A, which GPT-2 models are
biased towards producing when prompted 0-shot. They find that updating a single value vector can
substantially reduce this label bias. Unlike that work, we investigate how models do symbol binding
when they are performant at formatted MCQA; label bias is one reason why a model may not be
correctly performing symbol binding.

Outside of MCQA, many works investigate how models internally build up representations that lead
to their predictions, such as on factual recall (Geva et al., 2021; Dai et al., 2022; Geva et al., 2022b;
Meng et al., 2022; Geva et al., 2023; Yu et al., 2023; Merullo et al., 2024a) or basic linguistic (Vig
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et al., 2020; Wang et al., 2023; Merullo et al., 2024b; Prakash et al., 2024; Todd et al., 2024) or
arithmetic (Stolfo et al., 2023; Hanna et al., 2023; Wu et al., 2023) tasks. MCQA differs because it
is both directly represented in real benchmarks and involves multiple reasoning steps.

3 FORMATTED MCQA

3.1 TASK NOTATION

Formatted MCQA is a prompt format in which possible answer choices are presented to the model
as an enumerated list, each associated with an answer choice symbol. All of our dataset instances
are either 0-shot or 3-shot with 4 answer choices, formatted as follows:

For each of the following phrases, select the
best completion.

<optional in-context examples of the same format>

Phrase: Corn is yellow. What color is corn?
Choices:
A. yellow
B. grey
C. blue
D. pink
The correct answer is:

where y∗ = A, B, C, or D (A in this example).2 Models parameterized by θ are evaluated
on their ability to assign higher probability to the symbol associated with the correct answer
choice (here, A) as opposed to the alternative symbols (here, B, C, and D). We compute ŷ =

argmaxA,B,C,D
[
pθ(A|x), pθ(B|x), pθ(C|x), pθ(D|x)

]
. To perform well at this task, models must not

only predict the correct answer phrase (yellow in the above example), but then map it to its corre-
sponding symbol (A). Robinson & Wingate (2023) refers to this capability as symbol binding.

3.2 DATASETS

We experiment on two challenging real-world multiple-choice datasets from LLM benchmarks:
HellaSwag (Zellers et al., 2019) and MMLU (Hendrycks et al., 2021). Details are given in Ap-
pendix A.1. We additionally use a prototypical colors dataset (Norlund et al., 2021) to create a
synthetic 4-way task disentangling dataset-specific knowledge from the ability to perform sym-
bol binding: Copying Colors from Context (‘Colors’). The dataset consists of instances such as
x =Corn is, y =yellow. We include y in the context, so the model’s only task is to produce
the symbol associated with that answer choice given three distractors randomly selected from the
ten colors present in the dataset (i.e., perform symbol binding). We use 3 instances as in-context
examples and the remaining 105 as our test set. An example formatted instance is given above.

We validate that all models achieve 100% 3-shot accuracy on a generative version of the Colors task:
we provide instances in the format ‘‘ Corn is yellow. What color is corn?’’ and take
the first greedy-decoded token as the prediction (i.e., we expect the model to produce ‘‘yellow’’).

3.3 MODELS

Olmo family. We experiment on the base (Olmo 0724 7B) and instruction-tuned (Olmo 0724 7B
Instruct) versions of the most recent (0724) release of the Olmo model (Groeneveld et al., 2024).
These have 32 layers with 32 attention heads per layer. We additionally benchmark performance on
the smaller Olmo 0724 1B and supervised finetuned Olmo 0724 7B SFT models.

Llama family. We experiment with the smallest Llama 3.1 models: Llama 3.1 8B base model and
Llama 3.1 8B Instruct (Dubey et al., 2024). These have 32 layers with 32 attention heads per layer.

Qwen family. To study smaller performant models, we include the base and instruct versions of
the 0.5B and 1.5B Qwen 2.5 models (Yang et al., 2024). The 1.5B model has 28 layers with 12
attention heads per layer.

2The actual answer tokens include preceding spaces in some of the tokenizers of the models we study.
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Figure 2: Results by model on Colors, Hellaswag and MMLU. Plotted is the minimum accuracy
across A/B/C/D, Q/Z/R/X, and 1/2/3/4 prompts, where the accuracy for each prompt is taken
as the average over all four correct answer positions. 0-shot results for select models in Fig. 11.

3.4 IDENTIFYING CONSISTENT MCQA MODELS

We next isolate models capable of performing formatted MCQA by testing whether models answer
formatted MCQA prompts consistently, i.e., they are robust to the position and symbol of the correct
answer choice. For each dataset instance, we construct four versions where we vary the location of
the correct answer string, and thus y∗. We denote these as A/B/C/D, A/B/C/D, A/B/C/D, and
A/B/C/D, where bold indicates the location of the correct answer. We average over these four
prompts when reporting accuracy, and refer to this collective set of instances of size 4 ∗ |dataset|
as A/B/C/D prompts.3 Lastly, to understand what behaviors we localize are specific to the letters
used, we additionally include prompts Q/Z/R/X and 1/2/3/4.4 We evaluate each model per
dataset instance on this set of 12 total prompts.

Results are in Fig. 2, where the minimum performance across A/B/C/D, Q/Z/R/X, and 1/2/3/4
is plotted. Models exhibit differing performance on the 3 datasets, indicating the datasets capture a
meaningful range of difficulty. We additionally observe that many models achieve perfect or near-
perfect performance on Colors while being far from it on the other two datasets, indicating that
error can be attributed to dataset difficulty as opposed to symbol binding. Finally, most (but not all)
models are capable of performing symbol binding on the Colors dataset with all 3 sets of answer
choice symbols, despite the Q/Z/R/X prompt being far less likely to occur in the training data.5

We select the best-performing model from each model family for subsequent analysis: Olmo 0724
7B Instruct, Llama 3.1 8B Instruct, and Qwen 2.5 1.5B. They perform all 3 tasks sufficiently above
random accuracy (>20% above random, when averaged across prompts and answer positions).

4 LOCALIZING ANSWER SYMBOL PRODUCTION

4.1 ACTIVATION PATCHING

Activation patching, sometimes referred to as causal tracing (Meng et al., 2022), causal mediation
analysis (Vig et al., 2020), or interchange intervention (Geiger et al., 2020), is a method for perform-
ing mediation on neural network hidden states to localize which network components have a causal
effect on a model’s prediction. The method involves performing the following steps:

1. Run inference on a dataset instance that the model predicts correctly, say, one formatted as
A/B/C/D (xA). This will produce scores sc(A|xA) (higher) and sc(B|xA), sc(C|xA), sc(D|xA)
(lower).

3Always predicting a single letter results in 25% accuracy when averaged across correct answer positions.
This ensures that models with a strong bias towards a particular symbol are penalized.

4When this prompt format is used, we format the in-context examples with the same symbols.
5For models that do not perform well on the Colors task, this is due to the MCQA format, since all models

can copy and produce the color string from the context with 100% accuracy (§3.2).
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2. Run inference on the same dataset instance, but in a different format, such as A/B/C/D, that the
model still predicts correctly (xB). This will produce a second set of scores sc(B|xB) (higher)
and sc(A|xB), sc(C|xB), sc(D|xB) (lower). We store hidden state activations of interest.

3. While running inference on xA, replace the output hidden state at the final token position T and
layer ℓ, h(A)

ℓ,T , with the hidden state from the same layer and token position, but from the infer-

ence run of xB , h(B)
ℓ,T . We measure and plot sc(A|xA,h

(B)
ℓ,T ), sc(B|xA,h

(B)
ℓ,T ), sc(C|xA,h

(B)
ℓ,T ),

and sc(D|xA,h
(B)
ℓ,T ).

4. Repeat step 3 for each layer (ℓ ∈ [1, L]).

We use the notation xB → xA to indicate patching a hidden state from xB into xA. Meng et al.
(2022) proposed performing activation patching not only on layerwise outputs, but also on the out-
puts of multi-layer perceptron (MLP) and multi-head self-attention (MHSA) functions; we do the
same (positions A, B, and C in Fig. 10).6 Note two preliminary conditions for activation patching:
the model predicts the correct answer for both xA and xB , and xA and xB do not have the same
answer. The score sc can be either a logit or probit value; we discuss this in §4.3.

4.2 VOCABULARY PROJECTION

Residual connections have been shown to allow for the iterative refinement of features in neural
networks (Jastrzebski et al., 2018; Simoulin & Crabbé, 2021). In addition to understanding which
hidden states have the largest causal effect on predictions, it is useful to understand how predictions
form in the vocabulary space defined by the dot product between the hidden state output by the
LM, hL,T , and the unembedding matrix, WU . Recall that for an L-layer autoregressive LM, model
predictions are derived from logit values assigned to each item in the vocabulary V , sc ∈ R|V|, given
by: sc = WU · LN(hL,T )) where LN is layer normalization, and hL,T is the hidden state output by
the final layer at the last token position. The scores are then further normalized into probits that sum
to 1 over the vocabulary: p = Softmax(sc).

Prior work (nostalgebraist, 2020; Geva et al., 2021; 2022a;b; Dar et al., 2023; Katz & Belinkov,
2023; Yu et al., 2023; Merullo et al., 2024a, i.a.) has proposed projecting any hidden state in the
Transformer block of dimensionality d to the vocabulary space, in order to inspect when and how
models build up to sc and/or p via their internal representations. This technique, “vocabulary pro-
jection”, also sometimes called “logit lens” when logits are used, is equivalent to early exiting on
the Transformer block at inference time (Dehghani et al., 2019; Elbayad et al., 2020; Schuster et al.,
2021; 2022, i.a.). We plot the values assigned to the answer symbol tokens, as well as the maximum
values in sc and p assigned to any other token, at model states from each layer at the final token po-
sition T . The “max other token” line delineates when scores assigned to the tokens of interest reach
the top of the vocabulary ranking. The “logit difference” line plots the gap between the predicted
token and the next-largest of the answer choices (akin to the scoring rule described in §3.1).

4.3 LOGITS VS. PROBITS

Logits are a useful choice of metric for activation patching and vocabulary projection, in part because
they are capable of detecting model components which demote particular answer choices by assign-
ing lower-than-average logit values (Zhang & Nanda, 2024); these can become indistinguishable
from average logit values (i.e., both on or near 0) after Softmax normalization. They also measure
the direct additive contribution that each model component makes to the residual stream, and thus
have a loosely causal interpretation, assuming no layer normalization on model outputs (Lieberum
et al., 2023; Zhu et al., 2024). On the other hand, it is valuable to measure scores assigned to the
tokens of interest (such as answer symbol tokens) with respect to scores assigned to other tokens in
the vocabulary and on a normalized 0-1 scale, as probits do. This 1) gives us insight into the rank
of the tokens of interest in vocabulary space, which affects greedy generation; 2) allows us to com-
pare processing patterns across different models, which often have different absolute logit scales,
and 3) allows us to disentangle logit changes that are specific to the tokens of interest as opposed
to general trends to the entire model vocabulary. We thus use both metrics because they provide
complementary information.

6See Appendix A.2 for background on the Transformer architecture.
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(a)
A/B/C/D→A/B/C/D
(HellaSwag)

(b)
A/B/C/D→A/B/C/D
(Colors)

(c)
Q/Z/R/X →A/B/C/D
(HellaSwag)

(d)
1/2/3/4 →A/B/C/D
(HellaSwag)

Figure 3: Average effect (top: logits; bottom: probits) of patching individual output hidden states for
Olmo 7B 0724 Instruct (xB → xA) on predictions correct under both prompts. Patterns are largely
similar regardless of which position is used for replacement and the direction of replacement. See
Fig. 15 for additional results.

(a) Colors (100% acc.) (b) HellaSwag (62.4% acc.) (c) MMLU (53.5% acc.)

Figure 4: Average projected logits (top) and probits (bottom) of answer tokens at each layer for
Olmo 0724 7B Instruct, for correct 3-shot predictions with the prompt A/B/C/D. See Fig. 12 for
Llama 3.1 8B Instruct and Fig. 13 for Qwen 2.5 1.5B Instruct. See Fig. 14 for 0-shot results.

4.4 INITIAL OBSERVATIONS

Activation patching and vocabulary projection are complementary. As elucidated in Fig. 3b,
activation patching highlights the key causal role that layer 24 plays in encoding the answer choice
that Olmo 7B Instruct will predict on Colors. While layers prior to 24 may promote or demote a
specific token choice, the predicted token does not change, indicating that these layers’ contributions
to the residual stream are either nonexistent, or are overridden by layer 24’s. Similarly, later layers
appear to be carrying forward information contributed to the residual stream by layer 24 (while also
slightly reducing the logits of the other answer choices), since they do not have any effect at undoing
the change in predicted token caused by intervening on layer 24’s output representation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) A/B/C/D (b) A/B/C/D (c) A/B/C/D (d) A/B/C/D

Figure 5: Average projected logits (top) and probits (bottom) of answer tokens at each layer for
correct 3-shot predictions by Olmo 0724 7B Instruct on HellaSwag, with the prompt A/B/C/D. See
Fig. 16 for Llama 3.1 8B Instruct, Fig. 17 for Qwen 2.5 1.5B Instruct, and Fig. 18 for 0-shot results.

(a) Q/Z/R/X (b) Q/Z/R/X (c) Q/Z/R/X (d) Q/Z/R/X

(e) 1/2/3/4 (f) 1/2/3/4 (g) 1/2/3/4 (h) 1/2/3/4

Figure 6: Average projected probits of answer tokens at each layer for correct 3-shot predictions by
Olmo 0724 7B Instruct on HellaSwag for the Q/Z/R/X (top) and 1/2/3/4 (bottom) prompts with
various correct answers (indicated in bold). Results for another random set of letters (O/E/B/P)
are in Fig. 20; logit values are in Fig. 19. See Fig. 21 for Llama 3.1 8B Instruct and Fig. 22 for Qwen
2.5 1.5B Instruct.
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Compared with Fig. 3b, Fig. 4a illustrates the complementary nature of the two methods: activation
patching reveals important mechanisms before hidden states are projectable to the vocabulary space,
while vocabulary projection shows how relevant information in the residual stream appears in the
vocabulary space over remaining layers. Indeed, one hypothesis that arises from these results is that
it takes a couple of layers of processing for information encoded in a hidden state to become mapped
to higher scores on those tokens.

5 ROLES OF SPECIFIC LAYERS

Key Layers differ across models and # of shots, but are consistent across datasets and predicted
tokens. Fig. 4 presents projected token scores for Olmo 7B Instruct across all three datasets, and
Figs. 3a and 3b activation patches for two datasets. Despite Olmo 7B Instruct’s varying performance
on the datasets, key layers are largely consistent. Notably, layer 24 also plays the key causal role in
the promotion of answer symbol tokens for HellaSwag, though layers 22-23 also have a small effect.
In Fig. 4, the outputs of layers 26 and 29 lead to the largest logit and probit increases for the predicted
answer token, with layer 31 serving to boost the logits of all tokens (this has no effect in probability
space). Similar results are found for the Llama and Qwen models (Figs. 12 and 13), corroborating
the hypothesis that the same mechanisms are responsible for promoting answer symbol letters across
tasks, regardless of task complexity. However, comparing these graphs with Fig. 4 reveals that logit
magnitudes and key layers differ across models, even for those of comparable size.

Comparing Fig. 4 (3-shot) to 0-shot results (Fig. 14), the role of in-context examples primarily
manifests in not only increasing the logit values of all answer choices in the last layers of the model
(29-31), but also leading to a substantial increase in the predicted token’s value such that it far
surpasses other tokens in the vocabulary and accumulates nearly all the probability mass. This
does not happen in the 0-shot case despite overall accuracy being similar, and also coincides with a
noticeable (temporary) demotion of valid answer symbols at layer 28.

We break down Fig. 4b by predicted answer letter (Fig. 5), observing that trends are generally similar
across A, B, C, and D for Olmo 7B Instruct and Llama 3.1 8B Instruct (Fig. 16).7 Qwen 2.5 1.5B
exhibits a fairly strong early preference for A at layer 20 which may be due to the token’s corpus
frequency, but is otherwise similar across symbols (Fig. 17), particularly from layer 22 onward.

Some answer symbols are produced in a two-stage process. Processing trends are noticeably
different for some models when using a different symbol space (Q/Z/R/X, 1/2/3/4, or another
set of random letter symbols, O/E/B/P). For random letters, Olmo and Qwen models first assign
non-negligible probability to labels that are more likely or expected (A, B, C, D) even though they
are not included in the prompt, before making an abrupt switch to the correct symbols (Q/Z/R/X or
O/E/B/P) at layers 29 and 23, respectively (Fig. 6, top, Fig. 20 and Fig. 22). Activation patching
reveals the same trend (Figs. 3c and 15). For example, for the Olmo model, patching in from
prompts containing Q/Z/R/X or O/E/B/P only decisively promotes the new symbol from layer
29, noticeably later than layer 24 in the A/B/C/D experiments (Figs. 3a and 3b). This provides
evidence that Olmo 7B Instruct solidifies final label predictions for “OOD” prompts in later layers,
and could explain why some models struggle with OOD formats. In the case of a more standard
prompt, 1/2/3/4, scores assigned to A/B/C/D remain negligible (Fig. 6, bottom).8

6 ROLES OF LAYER COMPONENTS

We next investigate the role that MHSA and MLP functions play in the observed behavior.9

7We observe similar results in activation patching experiments to Figs. 3a and 3b when using different
correct answer letters, further corroborating this trend.

8It is of note that activation patching from A/B/C/D to 1/2/3/4 (Fig. 3d) also identifies layer 29 as a
key layer. This differs from Fig. 3a, where position but not symbols changed. Since correct answer position
does not change in this experiment, one possible explanation is that layer 24 is causally attributed to encoding
positional information, while layer 29 is attributed to encoding the relevant answer token at that position.

9Vocabulary projections in logit space of a layer’s MLP and MHSA functions are a direct additive decom-
position of the projections on the layer’s final hidden state. This is also true for individual attention heads
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(a) MHSA Projection (b) MLP Projection (c) MHSA Patching (d) MLP Patching

Figure 7: Avg. projected logits with the A/B/C/D and avg. logit values at the final layer (patching
A/B/C/D→A/B/C/D) of hidden states output by different functions of the Olmo 7B 0724 Instruct
model on HellaSwag. These are function-wise breakdowns of Figs. 3a and 4b.

Self-attention mechanisms dominate the production of answer choice symbols (over MLPs).
In Figs. 7a and 7b, we directly project the hidden states output by these functions (positions A and B
in Fig. 10). Both functions map to large increases in logit values at layer 29. However, MLP outputs
serve to increase the logit value of all answer choices, not to be discriminative (as noted by the near-
0 logit difference line). Increases in the logit difference are attributed to the MHSA functions at
layers 26, 27, and 29. This is despite the fact that MHSA functions only contain ˜half the learnable
parameters of MLPs (˜67M vs. ˜135M per layer). However, attention heads have access to global
context which an MLP does not have, making them especially useful for resolving back-references
to portions of the input sequence or copying information from one position to another.

Answer symbol production is driven by a sparse portion of the network. The corresponding
breakdown in the logit and probit differences from projecting individual attention head output vec-
tors to the vocabulary space (Fig. 8a) shows that this effect is quite sparse, with 1-4 attention heads
per layer (out of 32) projecting to non-negligible values on any answer choice symbol. We addi-
tionally observe high absolute magnitude overlap between Fig. 8a and Fig. 8b/8c, indicating that
the same components promoting probability on any answer choices (Fig. 8a) are also generally dis-
criminative in preferring one choice over the other (Fig. 8b/8c). However, the differences between
Figs. 8b and 8c reveal that some heads play letter-specific roles. Similar trends hold for the Qwen
model (Fig. 24). Activation patching results (Figs. 7c and 7d) further elucidate that the MHSA
mechanism is driving the encoding of relevant information to predict the answer primarily at layer
24.

(a) sum of A, B, C, D
when A correct

(b) A– max(B, C, D)
when A correct

(c) B– max(A, C, D)
when B correct

Figure 8: Average sum (left) vs. difference (right two; separated by predicted letter) of logits when
individual attention heads are projected to vocabulary space (Footnote 9). Plotted are results for
correctly-predicted HellaSwag instances by Olmo 0724 7B Instruct. See Fig. 23 for probits. See
Fig. 24 for Qwen 2.5 1.5B Instruct.

weighted by their respective rows of the MHSA output matrix, since the MHSA output vector is a weighted
sum of the heads’ output vectors. See Eqs. (1) to (3) in Appendix A.2 for the derivation.
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7 WHERE ARE POORLY-PERFORMING MODELS GOING WRONG?

Our synthetic task separates formatted MCQA performance from dataset-specific perfor-
mance. In Fig. 9, our synthetic task confirms that there is a crucial point at which formatted
MCQA skill is learned for Olmo 0724 7B base – between 80k and 100k training steps. Perfor-
mance goes from near-random to near-100%, even for checkpoints with poor performance on more
challenging datasets. This result highlights the value of a synthetic task: it helps to disentangle to
what extent poor MCQA performance on a dataset is due to a lack of dataset-specific knowledge vs.
an inability to perform formatted MCQA.

Training Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100000 200000 300000 400000 500000 600000

Figure 9: 3-shot accuracy of various Olmo 0724
7B Base checkpoints on the Colors task. Avg.
performance across all four correct answer posi-
tions is plotted, with the dotted line indicating ran-
dom performance. MCQA format is learned at a
specific (early) point in training. Black dots indi-
cate checkpoints used in subsequent analysis, rep-
resenting 3 distinct points on the learning curve.
See Fig. 25 for 0-shot results.

Poorly performing models cannot separate answer choice symbols in vocabulary space. We
use vocabulary projection to inspect differences between these checkpoints on the Colors task.
Fig. 26 (Appendix) illustrates the separability between the answer choice symbols, which grows
as a function of training for more steps. While at 100k and 200k steps the model represents a
meaningful ranking of the answer tokens that results in high accuracy using the multiple-choice
prediction rule, only with sustained training does the model widen the logit difference substantially,
leading to the model assigning high probability to the predicted answer alone. The small differences
in logit scores observed at earlier checkpoints may explain why small edits to network parameters
are effective at decreasing label bias (Li & Gao, 2024).

Finally, we observe in Fig. 27 (Appendix) that the ability to do symbol binding at the final training
checkpoint, as demonstrated on Colors, does not alleviate small logit differences between answer
symbols, even for correct predictions, on datasets on which the model is less performant: scores
assigned to correct answers are both higher variance and tempered in layers 30-31 in these cases.

8 CONCLUSION

This work provides novel insights into the mechanisms language models employ when answering
formatted multiple-choice questions. Our analysis leverages two complementary techniques: vocab-
ulary projection and activation patching. Using carefully designed prompts and a synthetic task, we
uncover a series of stages, attributable to a sparse set of specialized network components, in which
models select, promote, and align (for OOD prompts) the answer choice symbol they predict. With
MCQA datasets such as MMLU routinely used as a performance signal for model development, it
is important to disentangle and test formatted MCQA ability in order to build models that operate in
more robust and reliable ways. Our work makes an important first step towards this goal.

REPRODUCIBILITY STATEMENT

To the best of our ability, we have included all details necessary to reproduce our experiments in the
text of this paper. We have also open-sourced our code (though we do not link it here to preserve
anonymity), and will update the URL to the repository in a camera-ready version. We fixed random
seeds to ensure full reproducibility of our experiments in the codebase, and also plan to release our
Colors dataset on Huggingface.
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Hovy, and Barbara Plank. ” my answer is c”: First-token probabilities do not match text answers
in instruction-tuned language models. arXiv preprint arXiv:2402.14499, 2024. URL https:
//arxiv.org/abs/2402.14499.

14

https://aclanthology.org/2021.emnlp-main.406
https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6fac9e316a4ae75ea244ddcef1982c71-Paper-Conference.pdf
https://aclanthology.org/2021.acl-srw.23
https://aclanthology.org/2023.emnlp-main.435
https://aclanthology.org/2023.emnlp-main.435
https://openreview.net/forum?id=g9diuvxN6D
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://openreview.net/forum?id=AwyxtyMwaG
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2402.14499
https://arxiv.org/abs/2402.14499


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sarah Wiegreffe, Matthew Finlayson, Oyvind Tafjord, Peter Clark, and Ashish Sabharwal. In-
creasing probability mass on answer choices does not always improve accuracy. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pp. 8392–8417, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.522. URL
https://aclanthology.org/2023.emnlp-main.522.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. In-
terpretability at scale: Identifying causal mechanisms in alpaca. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 78205–78226. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/f6a8b109d4d4fd64c75e94aaf85d9697-Paper-Conference.pdf.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv:2407.10671,
2024. URL https://arxiv.org/abs/2407.10671.

Qinan Yu, Jack Merullo, and Ellie Pavlick. Characterizing mechanisms for factual recall in language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 9924–9959, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.615.
URL https://aclanthology.org/2023.emnlp-main.615.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
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A APPENDIX

A.1 DATASET DETAILS

HellaSwag (Zellers et al., 2019) is a 4-way multiple-choice commonsense natural language infer-
ence dataset. The goal is to select the best completion for a given sentence prompt. We sample a
fixed set of 1000 instances from the test set used in our experiments. We sample 3 random training
set instances to serve as in-context examples.

MMLU (Hendrycks et al., 2021), or the “Massive Multitask Language Understanding” benchmark,
spans 57 different topical areas. The questions are 4-way multiple-choice spanning subjects in social
sciences, STEM, and humanities that were manually scraped from practice materials available online
for exams such as the GRE and the U.S. Medical Licensing Exam. We sample a fixed set of 1000
instances from the test set used in our experiments. We sample a fixed set of 3 in-context example
instances from the 5 provided for each topical area.
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In-context example selection. We randomly select the correct answer position for each in-context
example (which comes to positions 012; or A B C, Q R X, or 1 2 3, depending on the prompt
format. We find that models have more consistent performance when in-context examples are used
(particularly, the models we benchmark which are not instruction-tuned), but we do also include
0-shot results for a subset of strong models, where the inclusion of in-context examples does not
have a large effect on performance (Fig. 11).

A.2 TRANSFORMER BACKGROUND

The output hidden states of transformer models (Vaswani et al., 2017) are a linear combination of
the outputs of non-linear functions (i.e., multi-head self-attention and multi-layer perceptrons) at
each layer. For most models, which sequentially apply multi-head self-attention (MHSA) and a
multi-layer perceptron (MLP), for input hidden state xℓ−1 ∈ Rd, the output hidden state xℓ ∈ Rd of
layer ℓ is defined by the following equation:

xℓ = xℓ−1 + MHSAθℓ

(
LN(xℓ−1)

)
+ MLPθℓ

(
xℓ−1 + MHSAθℓ

(
LN(xℓ−1)

))
(1)

Where MHSAθℓ and MLPθℓ represent the multi-head self-attention operation and multi-layer per-
ceptron, respectively, defined by their unique parameters at layer ℓ, and LN represents layer nor-
malization.10 Note that + represents simple vector addition, which serves to establish residual con-
nections. This is possible because the output of each operation (MHSA, MLP, and LN) is a vector
∈ Rd. We visualize a single layer’s block structure in Fig. 10.

Elhage et al. (2021) hypothesize and provide evidence for the “residual stream” view of Transformer
inference, in which MHSA and MLP functions “read from” and “write to” the residual stream, which
carries information through the layers. Additional evidence that MHSA and MLP functions promote
specific tokens by writing to the residual stream is given by Geva et al. (2022b).

Given an input token embedding x0 ∈ Rd and applying Eq. (1) recursively, the final hidden state of
a Transformer with L layers resolves to:

xL = x0 +

L−1∑
ℓ=0

[
MHSAθℓ+1

(
LN(xℓ)

)
+ MLPθℓ+1

(
xℓ + MHSAθℓ+1

(
LN(xℓ)

))]
(2)

The output of a MHSA function can be further broken down into a sum of the output of each attention
head. For the input vector to layer ℓ, xℓ−1, the output of MHSA is computed as the concatenation of
each head’s vector output, Att(ℓ)h

(
LN(xℓ−1)

)
∈ Rd/H , times an output weight matrix W

(ℓ)
O ∈ Rd×d

which can be simplified into a sum as follows (originally elucidated in (Elhage et al., 2021)):

MHSAθℓ

(
LN(xℓ−1)

)
=

H∑
h=1

W
(ℓ)
O,h · Att(ℓ)h

(
LN(xℓ−1)

)
(3)

where W
(ℓ)
O,h ∈ Rd×(d/H) are the specific columns of W (ℓ)

O corresponding to head h. When we
perform experiments on individual attention heads, we are referring to the individual components of
this sum (i.e., weighted attention head outputs).

B STRENGTHS AND WEAKNESSES OF VOCABULARY PROJECTION VS.
ACTIVATION PATCHING

Vocabulary projection provides a meaningful notion of how hidden states assign probabilities to
tokens in the vocabulary space defined by the unembedding matrix, but it is not a causal intervention,
and it cannot uncover ways in which hidden states could be working to promote tokens in other
linear (or non-linearly decodable) subspaces. For these reasons, negative results in earlier layers are

10MHSAθℓ also receives as input the hidden states at layer ℓ− 1 from other token positions in the rollout (as
dictated by the attention mask), which we omit here for brevity.
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uninformative. We supplement our findings by using activation patching to localize effects at earlier
layers.

Activation patching makes some assumptions about the independence of model components to make
computation tractable (namely, that one can patch in individual hidden states in isolation to measure
their effect on the network as opposed to patching all possible combinations of states). A nascent
line of work focuses on making activation patching more efficient so that a larger number of states
and/or state combinations can be intervened on Kramár et al. (2024); Syed et al. (2023); this is an
interesting direction for future work.

input layernorm

self-attention

MLP

Post-attention 
layernorm

Output hidden 
state

+

+

Input hidden 
state

A

B

C

Figure 10: Structure of a single layer in the
Transformer architecture for the models we
study. Green lines indicate residual con-
nections. We perform vocabulary projection
and activation patching on different represen-
tations both pre-and-post residual combina-
tion, indicated by the letters.
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Figure 11: 0-shot performance results on
Colors, Hellaswag and MMLU datasets.
Plotted is the minimum accuracy across
A/B/C/D, Q/Z/R/X, and 1/2/3/4
prompts, where the accuracy for each
prompt is taken as the average over the
correct answer choice being at each position.
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(a) Colors (b) HellaSwag (c) MMLU

Figure 12: Fig. 4 results on Llama 3.1 8B Instruct.

(a) Colors (b) HellaSwag (c) MMLU

Figure 13: Fig. 4 results on Qwen 2.5 1.5B Instruct.
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(a) Colors (b) HellaSwag (c) MMLU

Figure 14: 0-shot version of Fig. 4.

(a) Q/Z/R/X→A/B/C/D
(Llama 3.1 8B Instruct)

(b) Q/Z/R/X→A/B/C/D
(Qwen 2.5 1.5B Instruct)

(c) O/E/B/P→A/B/C/D
(Olmo 7B 0724 Instruct)

Figure 15: Average effect (top: logits; bottom: probits) of patching individual output hidden states
for various models on predictions correct under both prompts on the Hellaswag dataset. See Fig. 3
for more details.
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(a) A/B/C/D (b) A/B/C/D (c) A/B/C/D (d) A/B/C/D

Figure 16: Fig. 5 for Llama 3.1 8B Instruct.

(a) A/B/C/D (b) A/B/C/D (c) A/B/C/D (d) A/B/C/D

Figure 17: Fig. 5 for Qwen 2.5 1.5B Instruct.

(a) A/B/C/D (b) A/B/C/D (c) A/B/C/D (d) A/B/C/D

Figure 18: 0-shot version of Fig. 5.
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(a) Q/Z/R/X (b) Q/Z/R/X (c) Q/Z/R/X (d) Q/Z/R/X

(e) 1/2/3/4 (f) 1/2/3/4 (g) 1/2/3/4 (h) 1/2/3/4

Figure 19: Logit plots for Fig. 6. See Fig. 21 (top) for Llama 3.1 8B Instruct and Fig. 22 (top) for
Qwen 2.5 1.5B Instruct.

(a) O/E/B/P (b) O/E/B/P (c) O/E/B/P (d) O/E/B/P

Figure 20: Average projected probits of answer tokens at each layer for correct 3-shot predictions by
Olmo 7B 0724 Instruct for the O/E/B/P prompt with various correct answers (indicated in bold).

(a) Q/Z/R/X (b) Q/Z/R/X (c) Q/Z/R/X (d) Q/Z/R/X

Figure 21: Average projected logits (top) and probits (bottom) of answer tokens at each layer for
correct 3-shot predictions by Llama 3.1 8B Instruct for the Q/Z/R/X prompt with various correct
answers (indicated in bold).
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(a) Q/Z/R/X (b) Q/Z/R/X (c) Q/Z/R/X (d) Q/Z/R/X

Figure 22: Average projected logits (top) and probits (bottom) of answer tokens at each layer for
correct 3-shot predictions by Qwen 2.5 1.5B Instruct for the Q/Z/R/X prompt with various correct
answers (indicated in bold).

(a) sum of A, B, C, D when A
correct

(b) A– max(B, C, D) when A cor-
rect

(c) B– max(A, C, D) when B cor-
rect

Figure 23: Probit plot version of Fig. 8. See Fig. 24 for Qwen 2.5 1.5B Instruct.

(a) sum of A, B, C, D when A
correct

(b) A– max(B, C, D) when A cor-
rect

(c) B– max(A, C, D) when B cor-
rect

Figure 24: Fig. 8 for Qwen 2.5 1.5B Instruct.
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Figure 25: 0-shot accuracy of various Olmo 0724
7B Base checkpoints on the Colors task. See
Fig. 9 for more info.

(a) 50K steps
(25% acc.)

(b) 100K steps
(97% acc.)

(c) 200K steps
(81% acc.)

(d) Final checkpoint
(100% acc.)

Figure 26: Average projected logits (top) and probits (bottom) of answer tokens at the final token
position across each layer for correctly-predicted instances from the Prototypical Colors dataset with
the 3-shot A/B/C/D prompt, across various Olmo 0724 7B Base checkpoints. The final checkpoint
is at approx. 652K steps.
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(a) Colors (100% acc.) (b) MMLU (53% acc.) (c) HellaSwag (39% acc.)

Figure 27: Average projected logits (top) and probits (bottom) of answer tokens at the final token
position across each layer for correctly-predicted instances for Olmo 0724 7B Base with the 3-shot
A/B/C/D prompt, across all 3 datasets.
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