
Towards Understanding the Working Mechanism of
Text-to-Image Diffusion Model

Mingyang Yi1∗, Aoxue Li2∗, Yi Xin3∗, Zhenguo Li2
1 Renmin University of China

2 Huawei Noah’s Ark Lab
3 Nanjing University

{yimingyang@ruc.edu.cn}
{liaoxue2,li.zhenguo}@huawei.com

xinyi@smail.nju.edu.cn

Abstract

Recently, the strong latent Diffusion Probabilistic Model (DPM) has been applied
to high-quality Text-to-Image (T2I) generation (e.g., Stable Diffusion), by injecting
the encoded target text prompt into the gradually denoised diffusion image genera-
tor. Despite the success of DPM in practice, the mechanism behind it remains to be
explored. To fill this blank, we begin by examining the intermediate statuses during
the gradual denoising generation process in DPM. The empirical observations
indicate, the shape of image is reconstructed after the first few denoising steps, and
then the image is filled with details (e.g., texture). The phenomenon is because the
low-frequency signal (shape relevant) of the noisy image is not corrupted until the
final stage in the forward process (initial stage of generation) of adding noise in
DPM. Inspired by the observations, we proceed to explore the influence of each
token in the text prompt during the two stages. After a series of experiments of T2I
generations conditioned on a set of text prompts. We conclude that in the earlier
generation stage, the image is mostly decided by the special token [EOS] in the
text prompt, and the information in the text prompt is already conveyed in this
stage. After that, the diffusion model completes the details of generated images
by information from themselves. Finally, we propose to apply this observation
to accelerate the process of T2I generation by properly removing text guidance,
which finally accelerates the sampling up to 25%+.

1 Introduction

In real-world application, the Text-to-Image (T2I) generation has long been explored owing to its
wide applications [47, 31, 32, 2, 15], whereas the Diffusion Probabilistic Model (DPM) [12, 37, 32]
stands out as a promising approach, thanks to its impressive image synthesis capability. Technically,
the DPM is a hierarchical denoising model, which gradually purifies noisy data from a standard
Gaussian to generate an image. In the existing literature [31, 34, 28, 6], the framework of (latent)
Stable Diffusion model [31] is a backbone technique in T2I generation via DPM. In this approach,
the text prompt is encoded by a CLIP text encoder [30], and injected into the diffusion image decoder
as a condition to generate a target image (latent encoded by VQ-GAN in [31]) that is consistent with
the text prompt. Though this framework works well in practice, the working mechanism behind it,
especially for the text prompt, remains to be explored. Therefore, in this paper, we systematically
explore the working mechanism of stable diffusion.
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Our investigation starts from the intermediate status of the denoising generation process. Through
an experiment (details are in Section 4), we find that in the early stage of the denoising process, the
overall shapes of generated images (latent) are already reconstructed. In contrast, the details (e.g.,
textures) are then filled at the end of the denoising process. To explain this, we notice that the overall
shape (resp. semantic details) is decided by low-frequency (resp. high-frequency) signals [9]. We
both empirically show and theoretically explain that in contrast to the high-frequency signals, the
low-frequency signals of noisy data are not corrupted until the end stage of the forward noise-adding
process. Therefore, its reverse denoising process firstly recovers the low-frequency signal (so that
overall shape) in the initial stage, and then recovers the high-frequency part in the latter stage.

Following the phenomenons, we investigate the effect of encoded tokens in the text prompt of T2I
generation during the two stages, where each token is encoded by an auto-regressive CLIP text
encoder. The text prompt has a length of 76, and is enclosed by special tokens [SOS] and [EOS], † at
the beginning and end of the text prompt, respectively. Therefore, we categorize the tokens into three
classes, i.e., [SOS], semantic tokens, and [EOS]. Notably, the special token [SOS] does not contain
information, due to the auto-regressive encoding of the text prompt. Thus, our investigations into the
influence of tokens will primarily focus on the semantic tokens and [EOS]. Surprisingly, we find that
compared with semantic tokens, the special token [EOS] has a larger impact during generation.

Concretely, under a set of collected text prompts, we select 1000 pairs “[SOS] + Prompt A (B)
+ [EOS]A(B)” from it. Then, replace the special token [EOS]A in the text prompt A with [EOS]B
from prompt B to observe the generated data under this condition. Interestingly, we find that the
generated images are more likely to be aligned with text prompt B (especially for the shape features)
instead of A, so that [EOS] has a larger impact compared with semantic tokens. Besides that, we
further find that the information in [EOS] is already conveyed during the early shape reconstruction
stage of the denoising process. Exploring along the working stage of [EOS], we further verify and
explain that the whole text prompts (including semantic ones) primarily work on the early denoising
process, when the overall shapes of generated images are constructed. After that, the image details are
mainly reconstructed by the images themselves. This phenomenon is explained by “first shape then
details”, as the injected text prompt implicitly penalizes the generated images to be consistent with it.
Therefore, the penalization quickly becomes weak, when the overall shape of image is reconstructed.

Finally, we apply our observations in one practical cases: Training-free sampling acceleration, as
the text prompt works in the first stage of denoising process, we remove the textual prompt-related
model propagation (ϵθ(t,xt, C) in (3)) during the details reconstruction stage, which merely change
the generated images but save about 25%+ inference cost.

We summarize our contributions as follows.

1. We show, during the denoising process of the stable diffusion model, the overall shape and
details of generated images are respectively reconstructed in the early and final stages of it.

2. For the working mechanism of text prompt, we empirically show the special token [EOS]
dominates the influence of text prompt in the early (overall shape reconstruction) stage of
denoising process, when the information from text prompt is also conveyed. Subsequently,
the model works on filling the details of generated images mainly depending on themselves.

3. We apply our observation to accelerate the sampling of denoising process 25%+.

2 Related Work

Diffusion Model. In this paper, our exploration is based on the Stable Diffusion [32], which now
terms to be a standard T2I generation technique based on DPM [12, 36], and has been applied into
various computer vision domains e.g., 3D [29, 33, 19] and video generation [26, 4]. In practice,
the goal of T2I is generating an image that is consistent with a given text injected into the cross-
attention module [42] of the image decoder. Therefore, understanding the working mechanism of
stable diffusion potentially improves the existing techniques [1]. Unfortunately, to the best of our
knowledge, the problem is limited explored, expected in [46, 35], where they similarly observe the
low-frequency signals are firstly recovered in the denoising process. However, further explanations
for this phenomenon are neglected in these works.

†[EOS] contains the overall information in text prompt due to the auto-regressive CLIP text-encoder
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Influence of Tokens. Understanding the working mechanism of encoded (by a pretrained language
model) text prompt [3, 30, 43, 27] helps us understanding T2I generation [38, 16, 21]. For example,
[45] finds that in LLM, the first token primarily decides the weights in the cross-attention map,
which similarly appeared in the cross-modality text-image stable diffusion model as we observed.
[48] explores the influence of individual tokens in counterfactual memorization. However, in the
multi-modality models e.g., [30, 18, 17, 23], whereas the textual information interacted with the
image in the cross-attention module as in stable diffusion, the working mechanism of tokens interacts
with cross-modality data is limited explored, expected in [1]. They find in a single case that the
influence of text prompts may decrease during the denoising process, while they do not proceed to
study or apply this phenomenon as in this paper. Recently, [49] finds that the cross-attention map
between the text prompt and generated images converges during the denoising process, which is also
explained by our observations that the information conveyed during the first few denoising steps.
Besides that, unlike ours, their observations are lack of theoretical explanation.

3 Preliminaries

We briefly introduce the (latent) stable diffusion model [31], which transfers a standard Gaussian
noise into a target image latent that aligns with pre-given text prompts. Here, the generated data space
is a low-dimensional Vector-Quantized (VQ) [7] image latent to reduce the computational cost of
generation. One may get the target natural image by decoding the generated image latent. In this
paper, the original data (image latent) is denoted by x0, and the encoded textual prompt (by CLIP
text encoder [30]) is represented by C. The noisy data

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, (1)

is used as input to diffusion model ϵθ trained by

min
θ

E
[
∥ϵθ(t,xt, C, ∅)− ϵt∥2

]
, (2)

with 0 ≤ t ≤ T , ϵt ∼ N (0, I) independent of x0, ᾱt → 0 (resp. ᾱt → 1) for t → 0 (resp. t → T ).
Here, the noise prediction model ϵθ(t,xt, C, ∅) is constructed by classifier-free guidance [13] with

ϵθ(t,xt, C, ∅) = ϵθ(t,xt, ∅) + w (ϵθ(t,xt, C)− ϵθ(t,xt, ∅)) , (3)

where ϵθ(t,xt, ∅) is an unconditional generative model, and the w ≥ 0 is guidance scale. As the
model is trained to predict noise ϵt in xt, and xT approximates a standard Gaussian, we can conduct
the reverse denoising process (DDIM [36]) transfers a standard Gaussian to target image x0

xt−1 =

√
ᾱt−1

ᾱt
xt +

(√
1− ᾱt−1

ᾱt−1
−
√

1− ᾱt

ᾱt

)
ϵθ(t,xt, C, ∅). (4)

Finally, the diffusion model (usually UNet) takes the text prompt as input to the cross-attention module
in each basic block † of diffusion model with output Attention(Q,K, V ) = Softmax(QK⊤/

√
d)V

(d is dimension of image feature), where ϕ(xt) is the feature of image, and
Q = WQϕ(xt);K = WKC;V = WV C. (5)

4 First Overall Shape then Details

In this section, we first explore the image reconstruction process of the stable diffusion model. As
noted in [1], the generated image’s overall shape is difficult to be alterted in the final stage of the
denoising process. Inspired by this observation, and note that the low-frequency and high-frequency
signals of image determine its overall shape and details, respectively [9]. We theoretically and
empirically verify that the denoising process recovers the low and high-frequency signals in its initial
and final stages, respectively, which explains the phenomenon of “first overall shape then details”.

4.1 Two Stages of Denoising Process

Settings (PromptSet). As in [14], we use 1600 prompts following the template “a {attribute}
{noun}”, with the attribute as an adjective of color or texture. We create 800 text prompts respectively

†The model is stacked by such basic blocks sequentially with residual module, self-attention module, and
cross-attention module in each of it.
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Generate Image

Text Prompt: The square coaster was next to the circular mug. 

t=50

t=40

t=30

t=20

t=10

t=0

[SOS] The square coaster was next to the circular mug [EOS]

(a) Cross-Attention Map (b) Convergence of Cross-Attention Map

Figure 1: Figure 1a is the averaged cross-attention over denoising steps. The two generated images
are on the top, and the weights in cross-attention maps of each tokens are on the bottom with whiter
pixels correspond to larger weights in cross-attention map. Figure 1b is obtained by taking average
over tokens and prompts in PromptSet, which compares the shapes of cross-attention map and final
generated images, Measured by relative F1-score F1t/F11 over different denoising steps.

under each of the two categories of attributes. Besides that, we add another extra 1000 complex
natural prompts in [14] without a predefined sentence template. These prompts consist of the text
prompts set (abbrev PromptSet) we used. The classes of nouns, colors, and textures are respectively
230, 33, and 23 in these prompts. In this paper, we generate images under PromptSet by Stable
Diffusion v1.5-Base [31]. Finally, without specification, we use 50 steps DDIM sampling [36].

From [40], though stable diffusion generates encoded VQ image latents [7]. These latents preserve
semantic information transformed by text prompt through cross-attention module (5). Notably, in the
cross-attention module, the pixel is a weighted sum of token embedding with cross-attention map
Softmax(QK⊤/

√
d) as weights. The weights reveal the semantic information of token, as they are

the correlations between image query Q and textual key K. To check the correlation, we visualize the
averaged cross-attention map over all layers of model ϵθ under different time steps t, from 50 to 1.

Interestingly, the cross-attention map of each token already has a semantic shape in the early stage of
the denoising process, e.g., for t = 40 in example Figure 1a. This can hold only if the overall shape
of the image is constructed in this early stage, so that each pixel can correspond to the correct token.
To further investigate this, we compute the average cross-attention map of each token under the
aforementioned PromptSet. We compare the shape of the cross-attention map and the final generated
image quantitatively by transforming them into canny images [9] and computing the F1-score [39]
(F1t for each t) between these canny images. To compare the difference over different time steps
more clearly, we plot the relative F1-score F1t/F11 (t = 1 the image has been recovered). The result
in Figure 1b shows the shape of the cross-attention map rapidly close to the ones of the generated
image in the early stage of denoising, which is consistent with our speculation and the result in [49],
where they conclude that the cross-attention map will converge during the denoising process.

4.2 Frequency Analysis

To further explain the above phenomenon, we refer to the frequency-signal analysis. It has been
well explored that the low-frequency signals represent the overall smooth areas or slowly varying
components of an image (related to the overall shape). On the other hand, the high-frequency signals
correspond to the fine details or rapid changes in intensity (related to attributes like textures) [9].
Thereafter, to explain the “first overall shape then details” in the denoising process, it is natural to
refer to the variations in frequency signals of images during the denoising process.

Mathematically, suppose the clean data (image latent) x0 has M ×N dimensions for each channel
with xt defined in (1). Then the Fourier transformation Fxt

(u, v) (with u ∈ [M ], v ∈ [N ]) of xt is

Fxt
(u, v) =

1

MN

M−1∑
k=0

N−1∑
l=0

xkl
t exp

(
−2πi

(
ku

M
+

lv

N

))
=

√
ᾱtFx0(u, v) +

√
1− ᾱtFϵt(u, v),

(6)
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(a) Noisy data and its high, low frequency parts (b) Norm of features
√
ᾱtx0

and
√
1− ᾱtϵt

(c) Ratio of high / low fre-
quency parts variation

Figure 2: Figure 2a visualizes the completed noisy data and its high-frequency, and low-frequency
parts over different time steps, listed from top to bottom. Figures 2b and 2c measure the low/high-
frequency signals of xt. In Figure 2b, “Low Add Noisy Data/eps” means the norm of

√
ᾱtx

low
0

and
√
1− ᾱtϵ

low
t , vise versa for “High ...”. On the other hand, Figure 2c measures the variation

ratio of high/low frequency parts of images during the noising/denoising process. For example,
“High Add Noise” represents ∥xhigh

t − xhigh
0 ∥/∥xhigh

0 ∥ during noising process.

where
√
−1 = i, and xkl

t is the (k, l) component of xt. As we do not now the distribution of x0, we
explore the Fϵt(u, v) in sequel. The result is in the following proposition proved in Appendix A.

Proposition 1. For all u ∈ [M ], v ∈ [N ], with high probability, the complex number Fϵt(u, v)
satisfies

∥Fϵt(u, v)∥
2 ≈ O

(
1

MN

)
. (7)

This proposition indicates that under large image size (MN ), the strength of frequency signals (no
matter low or high) of standard Gaussian are equally close to zero. Thus, the frequency signal of x0

in noisy data xt is mainly corrupted by the shrink factor ᾱt due to (6), instead of the noise in it.

However, as visualized in Figure 2a †, in contrast to high-frequency part of image, the image’s
low-frequency parts † are more robust than the ones of high-frequency. For example, for t = 20 in
Figure 2a, the shape of the clock is still perceptible in the low-frequency part of the image. † If this
fact is generalized to image latent, then it explains the two stages of generation as observed in Section
4.1. Because the low-frequency parts are not corrupted until the end of the adding noise process.
Then, it will be recovered at the beginning of the reverse denoising process.

To investigate this, in Figures 2b and 2c, we plot the averaged results over time steps of variation
of low/high-frequency parts in images generated by PromptSet. In these figures, xlow

t is the low-
frequency part of xt and vice-versa for high-frequency part xhigh

t . As can be seen, in Figure 2c,
the behavior of xt is similar under add/de noise processes, and the reconstruction of low-frequency
signals is faster than the high-frequency signals. On the other hand, by comparing “Low ... Data”
( ∥

√
ᾱtx

low
0 ∥) and “High ... Data” (∥

√
ᾱtx

high
0 ∥) in Figure 2b, we observe the strength of high-

frequency signals are significantly lower than the low-frequency signals, which seems to be a property
adopted from natural image [9]. However, the relationship oppositely holds for Gaussian noise, which
is implied by Proposition 1, as the frequency signals of noise ϵt under each spectrum are all close to
zero, while the high-frequency parts contain 80% spectrum, so that ϵhight is larger than the ϵlowt .

These observations explain the phenomenon “first overall shape then details”. Since the low-frequency
parts of the image (decide overall shape) are not totally corrupted until the end of the noising process.
Thus, they will be firstly recovered during the reverse denoising process, while the phenomenon
does not hold for low-frequency parts of the image, as they are quickly corrupted during the noising
process, so they will not be recovered until the end of denoising.

†Please note that the t in Figure 2a and the other parts of this paper refers to the corresponding t-th time step
of 50-steps DDIM sampling, which corresponds to 20t steps in [12]

†We distinguish low frequency by threshold 20%, i.e., the lowest 20% parts of spectrum are low-frequency.
†This fact is also observed in [35, 46], while they leverage this phenomenon to refine the architecture of

UNet, and the rationale behind the phenomenon is unexplored.
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Figure 3: Averaged weights in cross-attention map over pixels of three classes of tokens. For each
prompt in PromptSet, the result is obtained by taking average over tokens in each class. The final
result is the average over PromptSet. Notably, the weights on [SOS] are all larger than 0.9.

Figure 4: Images under prompts from S-PromptSet with switched [EOS]. The objects are consistent
with the ones conveyed by [EOS], while some information in semantic tokens is still conveyed.

5 The Working Mechanism of Text Prompt

We have verified that the denoising process has two stages i.e., “first overall shape then details”. Next,
we explore the working mechanism of text prompts during these stages. Our main observations are
two fold, 1): The special tokens [EOS] dominate the influence of text prompt. 2): The text prompt
mainly works on the first overall shape reconstruction stage of the denoising process.

5.1 [EOS] Contains More Information

In T2I diffusion, the text prompt is encoded by auto-regressive CLIP text encoder, with semantic
tokens (SEM) enclosed with special tokes [SOS] and [EOS]. For such three classes of tokens, as the
information in these tokens is conveyed by the cross-attention module, we first compute the averaged
weights over pixels in the cross-attention map for each class. The weights are computed by taking
the average over PromptSet and presented in Figure 3. As can be seen, the weights of [SOS] are
significantly larger than the other classes. However, due to the CLIP text encoder is an auto-regressive
model, [SOS] does not contain any semantic information. Therefore, we conclude that the influence of
[SOS] is mainly adjusting the whole cross-attention map i.e., weights on the other tokens. To further
verify this conclusion, we conduct experiments in Appendix I.1. A similar phenomenon is observed
in single-modality LLM [45]. As the information of text prompt is conveyed by semantic tokens and
[EOS], we will focus on them instead of [SOS] in the sequel.

As both SEM and [EOS] contain the semantic information in the text prompt, we first explore which
of them has larger impact on T2I generation. To this end, we select 3000 pairs of text prompts from
PromptSet (2000 pairs follow the template, the other 1000 pairs have complex prompts), where the
two text prompts are represented as “[SOS] + Prompt A (B) + [EOS]A(B)”. For each pair, we switch
their [EOS] to construct the new text prompt pairs as “[SOS] + Prompt A (B) + [EOS]B(A)”.

We examine the generated images under these artificially constructed text prompts (namely
Switched-PromptSet (S-PromptSet)). We call A from PromptA as “source” and B from [EOS]B
as “target” for “[SOS] + Prompt A + [EOS]B”, and vice versa. For the generated images under
these prompts, we measure their alignments with the source and target prompts, respectively. The
used metrics are the three standard ones in measuring text-image alignment: CLIPScore [30, 10],
BLIP-VQA [18, 14], and MiniGPT4-CoT [51, 14] (details are in Appendix B).

The results are in Table 1. Surprisingly, the generated images under the constructed text prompts
are more likely to be aligned with the target prompt instead of the source prompt. That says, even
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Figure 5: Desnoising process under text prompt with switched [EOS] in [a, 50].

Table 1: The alignment of gen-
erated image with its source and
target prompts. The prompts are
constructed with switched [EOS].

Alignment
Prompt Source Target

Text-CLIPScore ↑ 0.2363 0.2758
BLIP-VQA↑ 0.3325 0.4441
MiniGPT-CoT↑ 0.6473 0.7213

Figure 6: Relative text-image
alignments (“current minus worst”
over “best minus worst”) with
source (or target) prompt under
switched [EOS] (substitution in
[Start Step, 50], Figure 5). Align-
ments with source and target
prompts are respectively solid
and dot lines.

with prefixed irrelevant semantic tokens, the information contained in [EOS] dominates the denoising
process (especially for overall shape) as in Figure 4. Thus, we conclude that the special tokens [EOS]
have a larger impact than semantic tokens in prompt during T2I generation. We have two speculations
about this phenomenon. 1): Owing to the auto-regressive encoded text prompt, unlike semantic
tokens, [EOS] contains complete textual information, so that it decides the pattern of the generated
image. 2): The number of [EOS] is usually larger than semantic tokens, as the prompt is enclosed by
[EOS] to length 76. An ablation study in Appendix C verifies this speculation.

In summary, our conclusion in this subsection can be summarized as: In T2I generation, the special
token [EOS] decides the overall information (especially shape) of the generated image.

Remark 1. For the generated images under S-PromptSet, we find some information in semantic
tokens is also conveyed, especially for the attribute information in it, e.g., “brown” color in the last
image of the first row in Figure 4. We explore this in Appendix D and explain this as: unlike noun
information, attributes in semantic tokens may not conflict with the contained information in [EOS]
(which quickly decides the overall shape of the generated image), so that has potential to be conveyed.

5.2 The Text Prompt Mainly Working on the First Stage

In Section 4.1, we have conclude that the denoising process is divided into two stages “first overall
shape then details”. Next, we explore the relationships between text prompts and the two stages. We
start with special tokens [EOS] which contain major information in T2I generation. During the whole
50 denoising steps of T2I generation under prompts from S-PromptSet, we vary the starting point
of substituting [EOS] i.e., the used text prompt is “[SOS] + Prompt A + [EOS]B (resp. [EOS]A) for
t ∈ [Start Step, 50] (resp. t ∈ [0,Start Step]) with “Start Step” ∈ [0, 50], i.e., Figure 5. We compare
the alignments of generated images with source / target prompts as in Figure 6.

In Figure 6, the alignment with the target prompt slightly decreases, until the “Start Step” of
substitution close to 50. This shows that the information in [EOS] has been conveyed during the first
few steps of the denoising, which is the overall shape reconstruction stage according to Section 4.

Following the revealed working stage of [EOS], we explore whether the whole text prompt also
works in this stage. If so, the T2I generation will only depends on ϵθ(t,xt, ∅) in (3) for small t.
To see this, we vary the w in (3) to control the injected information from the text prompt during
the denoising process. Concretely, for a as the starting step of removing text prompt, i.e., during
t ∈ [0, a), we use w = 7.5, and w = 0 for t ∈ [a, 50], where a ∈ [0, 50]. Then, the text prompt
only works for t ∈ [0, a). We generate target images x50

0 under PromptSet with standard denoising
process (a = 50), and compare them with the ones xa

0 generated under varied a ∈ [0, 50] (Figure 7).
The image-image alignments are measured by standard metrics CLIPScore and L1-distance [9]. To
eliminate magnitude, we report relative results, i.e., “current minus worst” over “best minus worst”.

The results are in Figure 8a. During generation, the text information is absence for t ∈ [a, 50], while
Figure 8a indicates that alignments between xa

0 and target x50
0 will quickly be small only for large a

(from 30 to 50). This shows that only if removing the textual information under large t, its influence
to generated image is removed. Therefore, we can conclude: The information of text prompt is
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Figure 7: Desnoising with text prompt injected in [0, a].
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(b) Norm/Dim of (Un)/Conditional Model

Figure 8: Figure 8a is the relative difference “current minus worst” over “best minus worst” under
different start step a of Denoising process Figure 7. The last two figures 8b are per-dimensional norm
of unconditional noise ϵθ(t,xt, ∅) and noise difference w (ϵθ(t,xt, C)− ϵθ(t,xt, ∅))

conveyed during the early stage of denoising process. Therefore, the overall shape of generated
image is mainly decided by the text prompt, while the its details are then reconstructed by itself.

Discussion. Next, let us explain the phenomenon. Technically, in (3), the ϵθ(t,xt, C, ∅) was
proposed to approximate ∇x log pt(xt | C)/

√
1− ᾱt with decomposition (pt is the density of xt)

∇x log pt(xt | C) = ∇x log pt(xt) +∇x log pt(C | xt). (8)

Comparing (3) and (8), it holds ϵθ(t,xt, ∅) ∝ ∇x log pt(xt)
† and w(ϵθ(t,xt, C)x−ϵθ(t,xt, ∅)) ∝

∇ log pt(C | xt). From [37], the denoising process (4) aims to maximize log-likelihood
log p0(x0 | C). Then, moving along the direction ∇x log pt(C | xt) (leads to large log pt(C | xt))
push xt to be aligned with the text prompt C during the decreasing of t. Adding such a moving
direction is standard in conditional generation [25, 36, 8, 24]. As shown in Figure 8b, during the
denoising process, xt will gradually to be consistent with C, so that ∇ log pt(C | xt) will decrease
with t. Thereafter, we observe the impact of text prompt conveyed by this term decreases with t → 0.
Notably, owing to the quickly reconstructed overall shape of image in Section 4, the generated xt

will quickly be consistent with C, so that explain the quickly decreasing ∇ log pt(C | xt).
Remark 2. In this section, we verify the injected textual information are all conveyed in the first stage
of diffusion process. In fact, this phenomenon is also generalized to the other types of information,
e.g., conditional image information in subject-driven generation [44, 50], we verify this in Appendix
H.

6 Application

Acceleration of Sampling. Since the information contained in text prompt is mainly conveyed by
the noise prediction with condition ϵθ(t,xt, C), we can consider removing the evaluation of after the
first few steps of denoising process. This is because the information in text prompt has been conveyed
in this stage, and the computational cost can be significantly reduced without evaluating ϵθ(t,xt, C).
Therefore, we substitute the noise prediction ϵθ(t,xt, C, ∅) as

ϵθ(t,xt, C, ∅) =
{
ϵθ(t,xt, ∅) + w (ϵθ(t,xt, C)− ϵθ(t,xt, ∅)) a ≤ t;

ϵθ(t,xt, ∅) 0 ≤ t < a.
(9)

†This can be verified by the training strategy of it in [31], where ϵθ(t,xt, ∅) is used to predict noise in noisy
data without condition injected.
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Figure 9: Desnoising under ϵθ (9). The text prompt is injected in [a, T ], instead of [0, a] in Figure 7.

Figure 10: The generated images with 25 steps DPM-Solver under ϵθ in (9) (Figure 9). The textual
information is removed during t ∈ [0, a]. With a → 25, the inference cost is decreased.

Table 2: The difference between images generated under varied a with the ones of a = 0. The results
are averaged over 30K generated images, and saved latency is evaluated on one V100 GPU.

Start point a 0 (baseline) 10 20 30 40 50 0 (baseline) 5 10 15 20 25
Sampler / Backbone DDIM / SD v1.5 DPM-Solver / SD v1.5
Image-CLIPScore ↑ 1.000 0.998 0.996 0.971 0.838 0.539 1.000 0.999 0.994 0.956 0.798 0.533
L1-distance ↓ 0.000 0.011 0.022 0.043 0.087 0.195 0.000 0.015 0.027 0.050 0.100 0.188
Saved Latency ↑ 0.00% 7.84% 18.10% 27.18% 35.24% 48.47% 0.00% 8.36% 17.95% 26.11% 34.86% 47.60%
FID ↓ 13.772 13.770 13.805 14.012 15.048 19.296 14.297 14.286 14.725 14.985 15.860 19.758
Text-CLIPScore ↑ 31.040 31.001 30.894 30.493 28.172 16.682 30.992 30.891 30.772 30.205 26.843 16.721
Sampler / Backbone DDIM / SD v2.1 DPM-Solver / SD v2.1
Image-CLIPScore ↑ 1.000 0.999 0.998 0.986 0.902 0.550 1.000 0.999 0.998 0.988 0.901 0.543
L1-distance ↓ 0.000 0.017 0.041 0.077 0.152 0.386 0.000 0.026 0.046 0.083 0.160 0.369
Saved Latency ↑ 0.00% 8.68% 18.95% 28.16% 36.19% 47.99% 0.00% 8.75% 18.28% 26.24% 35.48% 47.75%
FID ↓ 13.014 13.011 13.046 13.247 14.242 18.472 13.507 13.500 13.914 14.159 15.015 18.983
Text-CLIPScore ↑ 31.413 31.405 31.362 31.113 29.717 16.706 31.339 31.326 31.292 31.045 29.653 16.639
Sampler / Backbone DDIM / Pixart-Alpha DPM-Solver / Pixart-Alpha
Image-CLIPScore ↑ 1.000 0.999 0.935 0.744 0.643 0.522 1.000 0.999 0.993 0.911 0.648 0.625
L1-distance ↓ 0.000 0.024 0.058 0.103 0.169 0.247 0.000 0.013 0.022 0.046 0.098 0.199
Saved Latency ↑ 0.00% 8.24% 17.98% 27.20% 34.95% 49.15% 0.00% 7.92% 15.77% 25.18% 33.80% 48.10%
FID ↓ 22.651 22.884 23.258 25.485 29.760 36.525 18.669 18.520 18.798 19.358 20.494 26.159
Text-CLIPScore ↑ 28.157 27.979 25.719 19.640 14.986 14.586 30.733 30.721 30.745 29.416 20.629 14.928

By varying a → T in (9), the inference cost is reduced as an evaluation of ϵθ(t,xt, C) is saved.

To evaluate the saved computational cost of using noise prediction (9) during inference and the quality
of generated data, we consider applying it on two standard samplers DDIM [36] and DPM-Solver
[22] on a benchmark dataset MS-COCO [20] in T2I generation. We consider backbone models
Stable-Diffusion (SD) v1.5-Base, SD v2.1-Base [31], and Pixart-Alpha [5]. Concretely, we apply
noise prediction (9) with varied a to generate 30K images from 30K text prompts in the test set
of MS-COCO, for each sampler and backbone model. We compare the difference (measured by
L1-distance and Image-Level CLIPScore) between the generated images under a > 0 and a = 0 (the
standard noise prediction). The results are in Table 2, where we also report the Frechet Inception
Distance (FID) score [11] under each a to evaluate the quality of generated images.

The Table 2 indicates that proper a in (9) significantly reduces the computation cost during the
inference stage without deteriorate the quality of generated images. For example, SD v1.5 with
a = 20 saves 27+% computational cost, but generates images close to the baseline method (a = 0).
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7 Conclusion

In this paper, we investigate the working mechanism of T2I diffusion model. By empirical and
theoretical (frequency) analysis, we conclude that the denoising process firstly constructs the overall
shape then details of the generated image. Next, we explore the working mechanism of text prompts.
We find its special token [EOS] has a significant impact on the overall shape in the first stage of the
denoising process, in which the information in the text prompt is conveyed. Then, the details of
images are mainly reconstructed by themselves in the latter stage of generation. Finally, we apply our
conclusion to accelerate the inference of T2I generation, and save 25%+ computational cost.
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A Proofs of Proposition 1

Proposition 1. For all u ∈ [M ], v ∈ [N ], with high probability, the complex number Fϵt(u, v)
satisfies

∥Fϵt(u, v)∥
2 ≈ O

(
1

MN

)
. (7)

Proof. Note that ϵklt (abbreviated as ϵkl) are i.i.d. Gaussian random variable for each of k, l. Thus
we have

Fϵ(u, v) =
1

MN

M−1∑
k=0

N−1∑
l=0

ϵkl exp

(
−2πi

(
ku

M
+

lv

N

))
=

1

MN

M−1∑
k=0

N−1∑
l=0

ϵkl exp
(
−iθkluv

)
, (10)

with θkluv is the (k, l)-th angle in complex value space, and we may simplify it as θkl for ease of
notations.

Next, we will show the proposition is a direct consequence of the concentration inequality of Gaussian
distribution. We prove our results under one-dimensional Fourier transformation under dimension M ,
where the proof can be easily generalized to a two-dimensional case. Owing to the definition of the
norm of complex value, for any specific u,

∥Fϵ(u)∥2 = Fϵ(u)Fϵ(u) =
1

M2
ϵ⊤Λ11⊤Λ̄ϵ̄, (11)

where Λ = diag(e−iθ0

, · · · , e−iθM−1

). Then let P = (
√
1/M1⊤, · · · , )⊤Λ̄, where

(
√
1/M1⊤, · · · , )⊤ is constructed by vector

√
1/M1 and its orthogonal complement. We can

verify that P is an orthogonal matrix. Then, let ϵ = P⊤y, so that y has the same distribution with ϵ.
Thus

1

M2
ϵ⊤Λ11⊤Λ̄ϵ =

1

M2
y⊤PΛ11⊤Λ̄P̄

⊤
ȳ =

1

M
e⊤
1 yȳ

⊤e1 =
1

M
(y1)2, (12)

where y1 is a standard Gaussian. Thus, by the Berstein’s inequality to sub-exponential random
variable i.e., χ2

1, we have

P (|Fϵ(u)− E [Fϵ(u)]| ≥ δ) = P
(∣∣∣(y1)2 − E

[(
y1)2]∣∣∣ ≥ δ

)
≤ 2 exp

(
−1

8
min

{
δ2, δ

})
. (13)

Since δ ∈ (0, 1). Thus with probability at least 1− δ/M , we have

1

M
− 1

M

√
8 log

2M

δ
≤ ∥Fϵ(u)∥2 ≤ 1

M
+

1

M

√
8 log

2M

δ
, (14)

which proves that the target ∥Fϵt(u, v)∥2 is of order O( 1
M ), so that verify our conclusion.

B Text-Image Alignment Metrics

In this paper, we mainly use three metrics as in [14] to measure the alignment between text prompt
condition and generated image. Next, we give a brief introduction to the these metrics.

CLIPScore (Text). After extracting the features of generated images and text prompt respectively
by CLIP encoder [30], CLIPScore (Text) is the cosine similarity between the two features. Similarly,
the CLIPScore (Image) is the cosine-similarity between two image features.

BLIP-VQA. To improve the limited details capturing capability of the CLIP encoder, [14] propose
BLIP-VQA which leverages the visual question answering (VQA) ability of BLIP model [18]. They
compare the generated with the target text prompt separately described by several questions. For
example, the prompt “A blue bird” can be separated into questions “a bird ?”, “a blue bird ?” etc.
Then BLIP-VQA outputs the probability of “Yes” when comparing generated images and these
questions.

MiniGPT4-CoT. The MiniGPT4-CoT [14] combines a strong multi-modality question answering
model MiniGPT-4 [51] and Chain-of-Thought [43]. The metric is computed by feeding the generated
images to MiniGPT-4, then sequentially asking the model two questions “describe the image” and
“predict the image-text alignment score”. By constructing such CoT, the multi-modal model will not
ignore the details in generated images.
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C Ablation Study on Number of [EOS]
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Figure 11: Relative BLIP-VQA Combine color and texture add complex, CLIP score, MiniGPT-CoT
with source (or target) prompt under different number of [EOS]. Here the y-axis is the current BLIP-
VQA, CLIP, MiniGPT-CoT over the maximum ones, which is used to alleviate the bias brought by
the metric itself.

In this section, we conduct an ablation on the number of [EOS]. Concretely, for each text prompt
in S-PromptSet, we repeat the semantic tokens in the text prompt e.g., “[SOS] + a yellow cat a
yellow ... + [EOS]”, so that the number of [EOS] is reduced in these constructed text prompts. Then,
we generate images under these reconstructed text prompts and compare the text-image alignments
between generated images and source or target prompts.

The results are in Figure 11. As can be seen, with the increasing of semantic tokens (so that decreasing
of [EOS]), the generated images tend to be consistent with the source prompt, instead of the target
prompt. Therefore, we speculate that the domination of [EOS] may be partially originated from
its larger number, compared with semantic tokens. On the other hand, we observe that [EOS] in
the forward positions have larger impacts compared to the latter ones, as the alignments between
generated images with target prompts significantly decreased along the x-axis from right to left, in
Figure 11. This trends further indicate that the [EOS] may contain more information compared with
the latter ones, which indicates the domination of [EOS] originates from their larger number, but also
the more information in the first few [EOS].

D Conveyed Information in Semantic Tokens

During our discussion in Section 5, we conclude that the [EOS] has a larger impact than the ones of
semantic tokens during T2I generation. However, as observed in Figure 4, under text prompt with
switched [EOS], some information in semantic tokens are still conveyed in the generated images, e.g.,
blue color in the last image of the first row in Figure 4. Therefore, we explore how this information is
conveyed in this section, which also reveals the working mechanism of text prompt.

Firstly, in Figure 12, we visualize the cross-attention map of each tokens under text prompt from
S-PromptSet, similar to Figure 1b. Surprisingly, we find that in cross-attention map of semantic
tokens and [EOS] are all visually similar to the shape of the final generated images. The similarity is
reasonable for [EOS] as it contains the overall information, so that it is perceptible and transfer their
information according to constructed cross-attention map.

On the other hand, when semantic tokens convey their information according to the similar cross-
attention, for attributes (color or texture), unlike object information, they are potentially not contradict
to overall shape decided by [EOS]. Thus, the information of attributes is more likely to be conveyed
in its corresponding pixels. However, this does hold for object/noun tokens whose information is
very likely related to shape, which has already been decided by [EOS].

This discussion explains the phenomenon of information in semantic tokens are appeared in the
generated images under prompt from S-PromptSet. Combining the observations to the working
stage of text prompt in Section 5, we can conclude that the semantic tokens also work in the T2I
generation, though it has less impact compared to [EOS].
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Figure 12: The visualization of cross-attention map under text prompt with switched [EOS] from
S-PromptSet. The pixels corresponding to semantic tokens are in the shape of the final generated
data as in text prompt B provide [EOS]. For example, the token “chair” corresponds to pixels in the
shape of paint, so its information can not be conveyed, while this phenomenon does exist in the
attribute token “leather”.

Figure 13: Generated images with prompts only contain information from [SOS] or [EOS].

E [SOS] Contains no Textual Information

As mentioned in Section 5.1, the special token [SOS] is supposed to contain no textual information,
due to the auto-regressive textual prompt encoder. To further verify this, we conduct the following
two types of prompts. 1): all 77 tokens are [SOS] from the given text prompt, 2) except the first
[SOS] token, all other 76 tokens are [EOS] from the given text prompt. Then, we generate images
under these prompts with SD v1.5. The generated images as in Figure 13. As can be seen, for the first
type of prompt, no textual information is conveyed, while the phenomenon disappears in the second
type of prompt. This observation verifies our conclusion that [SOS] contains no textual information.
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a red sunset

a plastic plate

a white bench

Figure 14: Generated images with zero or random vectors substitution.

Table 3: The alignment of generated results image under different constructed text prompt sets. Here
“Sem + EOS” is the original text prompt, and serves as baseline here. Besides that, the CLIPScore
(Image) is the image-level alignment of generated images with the ones under “Sem + EOS”.

Text Prompt CLIPScore (Text)↑ CLIPScore (Image)↑ BLIP-VQA↑ MiniGPT4-CoT↑
Sem + Zero 0.2407 0.6732 0.5392 0.6757
Sem + Rand 0.2153 0.6038 0.3606 0.5428
Zero + EOS 0.2999 0.8887 0.7467 0.6982
Rand + EOS 0.3008 0.8791 0.7669 0.7000
Sem + EOS 0.3110 1.0000 0.8999 0.7412

F More Evidences on [EOS] Contains More Information

In this section, we further verify that the impact of [EOS] is larger than the ones of semantic tokens in
T2I generation. To further verify this conclusion, under the text prompts with the format of “[SOS]
+ Sem + [EOS]” from our dataset PromptSet, we substitute all semantic tokens or [EOS] with zero
vectors or random Gaussian noise. As a result, we get the 4 sets of text prompts, i.e., “[SOS] + Sem
+ Zero” (abbrev Sem + Zero), “[SOS] + Sem + Random” (Sem + Rand), “[SOS] + Zero + [EOS]”
(Zero + EOS), and “[SOS] + Random + [EOS]” (Rand + EOS). These constructed text prompts ideally
contain complete semantic information, and we verify the alignment of the generated images with
the corresponding text prompt conditions. The alignments are measured by text-image alignment
metrics: CLIPScore [30, 10], BLIP-VQA [18, 14], and MiniGPT4-CoT [51, 14].

The results are summarized in Table 3. As can be seen, as expected for baseline combination “Sem +
EOS”, the alignments under text prompts with “EOS” preserved are significantly better than the ones
with “Sem” preserved. Thus, the observations further verify our conclusion that the [EOS] has larger
influences than semantic tokens during the denoising process.

Moreover, we find the generation is somehow robust, as involving random noise in text prompts still
generates semantic meaningful images. We visualize some generated images under constructed text-
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Table 4: The alignment of generated image with its source and target prompts, under switched [EOS]
on Key or Value substitution. Here KV -Sub is the complete substitution as in Section 5, which serves
as a baseline here.

Alignment
Attribute K-Sub V -Sub KV -Sub

Source Target Source Target Source Target
CLIPScore (Text)↑ 0.3132 0.1875 0.2538 0.2628 0.2363 0.2758
BLIP-VQA↑ 0.7127 0.2379 0.3724 0.3984 0.3325 0.4441
MiniGPT-CoT↑ 0.8025 0.6215 0.6749 0.7071 0.6473 0.7213

prompts from Table 3 in Figure 14, which indicates the images under “Zero + EOS” indeed visually
have the best quality in alignment, so that consist with Table 3. Besides that, the other combinations
generate semantic meaningful images as well, expected for “Sem + Rand” Thus semantic tokens do
not contain enough information for generation.

G Key or Value Dominates the Influence?

Prompt A Prompt B Prompt A + K-[EOS]B

A: a brown car B: a blue giraffe

Prompt A + V-[EOS] B Prompt B + K-[EOS]A Prompt B + V-[EOS]A

A: a brown backpack B: a blue horse

A: a fabric bag B: a leather shoes

A: a leather jacket B: a glass jar

Figure 15: Generated examples of Key or Value substitution.

As mentioned in Section 3, the information from [EOS] is conveyed by the cross-attention module.
More concretely, the Key (K) and Value (V ) in it, respectively decide the weights and features in the
output of the cross-attention module (a weighted sum of features). Next, we explore their individual
influence for [EOS] to further reveal the working mechanism of it.

Concretely, as in Section 5, we generate images under the constructed text prompt set S-PromptSet.
However, the substitution of [EOS] is only conducted on computing Key or Values in cross-attention
module, which are respectively denoted as K-Substitution (Sub) and V -Sub. For such two substitu-
tions, similar to Table 1, we compare the image-text alignment of generated images with source and
target prompts.
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Figure 16: The averaged KL-divergence over pixels and layers.

Figure 17: We implement our sampling strategy on subject-driven generation model, AnyDoor [44].
We remove the condition image from different time steps (denote as a) during denoising process. The
generated images still preserve the specific details as baseline model (start point a = 0) when start
removing time steps is set to 20.

Figure 18: We implement our sampling strategy on human face generation model, PhotoMaker. We
remove the condition (text prompts and reference face) from different time steps (denote as a) during
denoising process. The generated images and faces still preserve the specific details as baseline model
(start point a = 0) when start removing time steps is set to 20.

The results are summarized in Table 4. As can be seen, substituting the [EOS] in V has a larger
influence than the substitutions in K. To explain this, as we have observed in Figure 3, the weights
on semantic tokens and [EOS] are significantly smaller than the ones on [SOS]. However, the K of
[EOS] is only related to these small weights, which have limited influence. In contrast to K, the V of
[EOS] contains information on features, which can be directly conveyed in generated images. So that
we can conclude the value of [EOS] dominates the influence in generation as observed in Table 4. We
present some generated images under text prompts from S-PromptSet, but with only Key or Value
substituted as in Table 4. The generated images are in Figure 15.
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Figure 19: More generated examples under tokens from S-PromptSet.

We further verify the variation of the cross-attention map after substituting [EOS]. For each pixel,
the cross-attention map of it is a discrete probability distribution. Thus, we compute the KL-
divergence [41] between probability distributions under substituted/unsubstituted K. The averaged
KL-divergence over pixels and layers in models under different denoising steps is presented in
Figure 16, where we add the KL-divergence of cross-attention map distribution between a uniform
distribution as a baseline. The result shows that even with substituted [EOS], the cross-attention map
does not vary much. We speculate that this is because as in Figure 3, the weights in [SOS] dominate
the cross-attention map. Thus, in the cross-attention module, altering K has a slighter influence
compared with altering V .

H Firstly Conveyed Information for Subject-Driven Generation

As mentioned in Section 5.1, the injected textual information is conveyed in the first stage of diffusion
model. Since the information is conveyed in the cross-attention module of model, we speculate
this phenomenon may be generalized to the other conditional generation task, e.g., subject-driven
generation with an extra image as condition.
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To see this, we conduct experiments under two tasks: zero-shot subject-driven generation and human
face generation. For such two tasks, there is extra reference image (given subject and human face)
used as condition to guide image generation. We use the sampling strategy as in Figure 10 for the two
tasks, respectively follow the backbone methods AnyDoor [44] and Photomaker [50]. The results are
in Figures 17 and 18, respectively.

As can be seen, the generation results verify the conclusion that for conditional information from in
the other modality than text, they will be also firstly conveyed in during the diffusion process.

I More Generated Images

I.1 [EOS] Substitution

In this subsection, we first present the generated images under text prompts from S-PromptSet in
Figure 19. As can be seen, most overall shape of generated images are consistent with the ones
conveyed by [EOS].

I.2 Generated Images in Paragraph “Acceleration of Sampling” of Section 6

Next, we present more generated images under noise prediction (9) with varied a in Figure 20 and 21.

Figure 20: The generated images with 50 steps DDIM under ϵθ in (9), where the textual information
are C removed during time steps t ∈ [0, a]. With a → 50, the inference cost is decreased.

21



Figure 21: More generated images with 25 steps DPM-Solver under ϵθ in (9), where the textual
information are C removed during time steps t ∈ [0, a]. With a → 25, the inference cost is decreased.
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