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Kinetics: Rethinking Test-Time Scaling Laws
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Abstract
We rethink test-time scaling laws from a practi-
cal efficiency perspective, revealing that the effec-
tiveness of smaller models is significantly over-
estimated. Prior work, grounded in compute-
optimality, overlooks critical memory access bot-
tlenecks introduced by inference-time strategies
(e.g., Best-of-N , long CoTs). Our holistic anal-
ysis, spanning models from 0.6B to 32B param-
eters, reveals a new Kinetics Scaling Law that
better guides resource allocation by incorporat-
ing both computation and memory access costs.
Kinetics Scaling Law suggests that test-time com-
pute is more effective when used on models above
a threshold (14B) than smaller ones. A key reason
is that in TTS, attention, rather than parameter
count, emerges as the dominant cost factor. Moti-
vated by this, we propose a new scaling paradigm
centered on sparse attention, which lowers per-
token cost and enables longer generations and
more parallel samples within the same resource
budget. Empirically, we show that sparse atten-
tion models consistently outperform dense coun-
terparts, achieving over 60 point gains in low-
cost regimes and over 5 point gains in high-cost
regimes for problem-solving accuracy on AIME
and LiveCodeBench. These results suggest that
sparse attention is essential for realizing the full
potential of test-time scaling because, unlike train-
ing, where parameter scaling saturates, test-time
accuracy continues to improve through increased
generation.

1. Introduction
Test-time scaling (TTS) has recently emerged as a power-
ful strategy (e.g., Best-of-N , Long-CoT (Wei et al., 2022))
for enhancing the reasoning capabilities of large language

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Under review by the Workshop on Long-Context Foundation Mod-
els (LCFM) at ICML 2025. Do not distribute.

models (LLMs) (Guo et al., 2025; Jaech et al., 2024; Team,
2025b), particularly in scenarios where agents interact with
complex environments, e.g., writing code, browsing the
web (Nakano et al., 2021; Yao et al., 2023b) or reinforce-
ment learning (RL) with LLMs-in-the-loop (Huang et al.,
2022; Driess et al., 2023; Chen et al., 2025a). These capa-
bilities, however, introduce substantial inference-time costs,
making it critical to understand performance scaling in this
new paradigm. Existing scaling law studies (Brown et al.,
2024; Snell et al., 2024; Wu et al., 2024) primarily focus
on floating-point operations (FLOPs) while ignoring mem-
ory access costs, which are often the dominant factor in
determining wall-clock latency in TTS regimes. As shown
in Figure 1a, this gap can lead to sub-optimal deployment
decisions.

In Section 3, we introduce the Kinetics Scaling Law for
TTS, derived from a novel cost model that explicitly incor-
porates memory access costs. This new perspective reveals
markedly different conclusions about Pareto-optimal strate-
gies for allocating test-time compute (Figure 1a). Specifi-
cally, we find that: (1) prior scaling laws consistently over-
estimate the effectiveness of small models enhanced with
inference-time strategies; and (2) computational resources
are best spent first on increasing model size - up to a critical
threshold (empirically around 14B parameters) - before in-
vesting in test-time strategies, such as Best-of-N sampling
or long CoTs. Guided by the Kinetics Scaling Law, our ap-
proach yields up to a 3× throughput improvement on B200
hardware.

Our roofline analysis across a suite of state-of-the-art rea-
soning models reveals that the shift in optimal test-time
compute strategies arises because test-time strategies (e.g.,
long CoTs, Best-of-N ) disproportionately increase attention
costs rather than parameter costs (Figure 2a). Our Iso-cost
analysis shows that the quadratic growth of attention with
generation length, combined with the disproportionate scal-
ing of KV memory relative to model parameters, drives
a preference for scaling up model size over generations.
This imbalance is further exacerbated by MoE architec-
tures (Shazeer et al., 2017; Du et al., 2021; Fedus et al.,
2022; AI@Meta, 2025; Dai et al., 2024; Jiang et al., 2024),
which reduce active parameter count without alleviating
attention overhead.
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Figure 1. (a): Pareto Frontier for Qwen3 series on AIME24. Previous test-time scaling laws (Brown et al., 2024; Snell et al., 2024; Wu
et al., 2024) focus solely on compute optimality, neglecting the significant bottleneck of memory access in long-sequence generation. This
leads to suboptimal resource utilization. By incorporating memory access, the Kinetics Scaling Law reduces resource demands by up to
3× to achieve the same accuracy. (b): Inspired by the Kinetics Scaling Law, we show that sparse attention models scale significantly
better than dense models, achieving over 50-point improvements in AIME24 in the low-cost regime and consistently outperforming dense
models in the high-cost regime, in addition to substantial efficiency gains. B200 second represents the amount of work performed by a
single B200 at full utilization for one second.
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Figure 2. (a) Attention dominates inference cost, exceeding parameter computation by 100 ∼ 1000×; sparse attention alleviates this
bottleneck. (b) Under equal resource constraints, sparse attention enables significantly more token generation, enhancing test-time scaling.
(c) Simple block-sparse attention delivers major gains—improving accuracy by 45 points in low-cost settings and matching dense accuracy
with 8.58× fewer resources.

Building on this analysis, in Section 4 we introduce a new
scaling paradigm, centered on sparse attention, which fun-
damentally reshapes the scaling law and significantly en-
hances the scalability of TTS (Figure 1b). According to our
Kinetics Sparse Scaling Law, computational resources are
best allocated to test-time strategies rather than reducing
sparsity. As more computing is invested at test time, lower
sparsity becomes increasingly critical to fully leveraging
the benefits of these strategies. Guided by this principle, it
increases problem-solving rates by up to 60 points in the
low-cost regime and over 5 points in the high-cost regime on
AIME24 and LiveCodeBench, through massive generated
tokens, which is unaffordable for dense counterparts.

While sparsity has traditionally been employed either
for regularization in small models (Tibshirani, 1996;
Molchanov et al., 2017) or to reduce computation in over-

parameterized networks (Mishra et al., 2021; Chen et al.,
2021; Hoefler et al., 2021; Dao et al., 2021; Frantar & Alis-
tarh, 2023; Liu et al., 2023), our work introduces a funda-
mentally different perspective: sparsity as a central enabler
of efficient and scalable test-time inference. In contrast to
pretraining – where scaling laws often exhibit diminishing
returns (Ilya) – TTS continues to benefit from increased
token generation and more optimized inference paths. We
hope this study can guide and encourage future co-design
of model architectures, inference-time strategies, and hard-
ware systems to fully unlock the next wave of scaling at
deployment.

2. Cost Model and eFLOPs
We propose a cost model that captures both compute and
memory access overhead during inference, focusing on re-
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alistic deployment settings (batch size≫ 1, model paral-
lelism, and shared prompt cache). Notation is in Table 1.

Computation and Memory. Following (Brown et al.,
2024), the compute cost combines linear layer operations
and self-attention:

Ccomp = 2PLout + r(2Lin + Lout)LoutD

Memory access includes both parameter loading and KV
cache reads:

Cmem = 2PLout + 2LinLoutD + L2
outD

In practice, parameter loading is amortized across large
batches (DeepSeek-AI, 2025), so we omit that term and
share prompt KV cache across N trials. The final per-task
compute and memory cost becomes:

Ccomp(N) = 2PNLout + 2rNLinLoutD + rNL2
outD (1)

Cmem(N) = 2LinLoutD +NL2
outD (2)

eFLOPs. We define eFLOPs (equivalent FLOPs) as a lin-
ear combination of compute and memory cost, scaled by
hardware intensity I to capture the memory and computa-
tional operations under the same scale:

eFLOPs = Ccomp + Cmem · I

We use I = 562.5 FLOPs·s/GB (for NVIDIA B200 (Tiru-
mala & Wong, 2024)).

2.1. Roofline Insight: Attention Bottleneck

Our eFLOPs calculation reveals that attention dominates
inference cost for long generations. The ratio of attention
to parameter cost,

Φ =
2rLinD + (rD + ID)Lout

2P
,

can exceed 100× for Lout > 4k (Figure 2a). This effect
is magnified in models with MoEs (AI@Meta, 2025; Dai
et al., 2024), which reduce linear FLOPs and further shift
the bottleneck to attention.

Scalability Implication. Given long-CoT usage, where
Lout ≫ Lin, inference cost is increasingly governed by the
quadratic term L2

outD, motivating our Kinetics Scaling Law,
akin to kinetic energy: Ek = 1

2mv2.

More details are in Appendix A.

2.2. Experimental Setup

We evaluate our cost model on three challenging reason-
ing tasks: AIME24, AIME25 (MAA, 2025), and Live-
CodeBench (Jain et al., 2024), using the Qwen3 (Yang
et al., 2025) model family. Our theoretical estimates as-
sume NVIDIA B200 hardware.

3. Rethinking Test-time Scaling Law
In this section, we study the scaling behavior of
Qwen3 (Yang et al., 2024a;b).

In the Long CoTs setting (single trial per question, NT = 1),
we vary generation length nT to evaluate performance
across cost levels. Results in Figure 3 reveal two key find-
ings of our Kinetics Scaling Law.

• Efficiency of small models is overestimated. As shown
in Figures 2b and 3 (a, c), smaller models like 4B and 8B
are outperformed by the 14B model even at low accuracy
levels (e.g., below 40%). The 0.6B model appears on
the Pareto frontier only when accuracy is negligible. In
contrast to prior scaling laws, which gave smaller models
more prominence, our results show they are often subop-
timal in practice.

• CoT length more effective than parameter size only
beyond a critical model scale (empirically, 14B). The
Kinetics Scaling Law shows that, under limited compute,
scaling up the model yields greater benefits than extend-
ing CoT length. As seen in Figure 3 (b, d), only the
14B and 32B models gain from CoTs longer than 10K
tokens. For smaller models (e.g., 1.7B and 4B), switching
to a larger model is more effective when Lout < 5K. This
suggests compute should primarily be allocated to increas-
ing model size, not generation length (Figure 3 (d)). In
contrast, previous scaling laws assumed longer CoTs con-
sistently improved performance across all model sizes and
only favored model scaling once those gains plateaued.

More details are in Appendix B.

4. Sparse Test-time Scaling Law
Based on our findings in Section 3, we propose a new scal-
ing paradigm centered on sparse attention. Sparse attention
fundamentally reshapes the Kinetics Scaling Law in Sec-
tion 3 and significantly enhances the scalability of TTS. We
present two important findings below.

Sparse attention significantly enhances problem-solving
performance. As shown in Figures 4a and 4b, compared
to dense baselines, for both of the inference strategies and
models of various sizes, sparse attention models improve
problem-solving rates by up to 60 points in the low-cost
regime and over 5 points in the high-cost regime. From an
efficiency perspective, dense models require over 10× more
eFLOPs to match the same solving rate. These findings
underscore sparse attention as a key enabler for unlocking
the full benefits of test-time scaling.

Sparse attention reshapes the Kinetics Scaling Law. As
shown in Section 4, applying sparse attention significantly
improves the efficiency of smaller models (0.6B, 1.7B, 4B),
allowing them to re-emerge on the Pareto frontier across a
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(a) (b)

(c) (d)

Figure 3. AIME Pareto Frontier (Long-CoTs). We first launch evaluations for Qwen3 series models. By controlling the maximum
allowed generation lengths, we control the incurred inference cost in eFLOPs (ab for our scaling law) or FLOPs (cd for previous scaling
law) and measure the accuracy (Pass@1) in AIME24. The optimal model is marked with different colors in (ac). The optimal generation
length is presented in (bd).
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Figure 4. Sparse Attention Boosts Test-Time Scaling. In (a) and
(c), we show that sparse attention models significantly improve the
cost-accuracy trade-off under both inference strategies.

Long-COT 
(Dense) 

Best-of-N 
(Sparse)  

Long-COT
(Sparse)   

Figure 5. Compared to the scaling law for the dense models (a),
small models (0.6B, 1.7B, 4B) are more effective with sparse
attention. In other words, they occupy more space in the Pareto
Frontier (Figure 4a).

broader range. Sparse attention reduces attention memory
access from a quadratic cost term (L2D) to a linear one
(LBD), making it negligible or comparable when compared
to the cost of computing with model parameters (LP ).

More details are in Appendices C and D.

5. Experimental Validation
Top-k attention is theoretically appealing but impractical.
We adopt block top-k attention as a tractable alternative
for two reasons: it exploits temporal locality to retrieve

relevant KV blocks (Sun et al., 2024a), and it integrates
efficiently with hardware-friendly paged attention (Kwon
et al., 2023). Each block is scored via averaged key vectors,
and importance scores are shared across heads via GQA.
The implementation details are provided in Appendix D.2.
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Figure 6. Task throughput improvement
with block top-k attention.

We evaluate task
throughput—the
number of correct
tasks completed
per second—as a
measure of test-
time efficiency.
On 8×H200
GPUs with batch
size 4096, block
top-k signifi-
cantly improves
throughput across models. For Qwen3-0.6B, throughput
improves 12.6× to 25× from 16k to 32k tokens (Figure 6).
Sparse attention mitigates dense attention’s inefficiencies
at longer contexts, restoring small model utility under
compute constraints.

6. Conclusion and Discussion
This work introduces the Kinetics Scaling Law, showing
that attention costs—not parameter counts—dominate test-
time inference. Sparse attention reshapes the scaling land-
scape, enabling longer generations and higher accuracy. We
view Kinetics Scaling as a foundation for guiding LLM
serving, agent systems, and RL environments, especially
as progress slows in pretraining. Though our analysis fo-
cuses on NVIDIA GPUs, the core insight—that memory
bandwidth is harder to scale than FLOPs—applies broadly.
Ultimately, our findings call for co-designing models, infer-
ence algorithms, and hardware to enable the next generation
of scalable LLMs.
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Appendix

Table 1. Notation Used throughout the Paper.

Symbol Description Symbol Description

T, T Task (set) Lout # Gen tokens
M Model N,NT Reasoning trials
C,CTTS(·) Cost function n, nT Max # tokens
A Algorithm B,BT KV budget
Lin Prompt length P Parameters
D KV size / token r GQA ratio

A. Cost Model
In this section, we delve into the cost models used in the Kinetics Scaling Law. We show empirically that adopting a max
cost model does not alter the scaling behavior and outline methods for calculating the cost of sparse attention models.

A.1. Full Formulations of Cost Model

We first calculate the inference cost for the cases where the batch size is 1, and then extend to a more general case in TTS.
Finally, we propose our cost model using equivalent FLOPs.

Computation. As discussed in (Brown et al., 2024), the computation consists of two parts: linear modules and self-attention,
which is (we assume the model is served in BFloat16.)

Ccomp = 2PLout︸ ︷︷ ︸
model parameters computation

+ r(2Lin + Lout)LoutD︸ ︷︷ ︸
self-attention

Memory Access. Memory access also consists of two parts: model parameters and KV cache.

Cmem = 2PLout︸ ︷︷ ︸
model parameter access

+ 2LinLoutD︸ ︷︷ ︸
prompt KV cache

+ L2
outD︸ ︷︷ ︸

decoding KV cache

In real serving scenarios, a large batch size will be used (DeepSeek-AI, 2025) with growing GPU VRAM (Tirumala &
Wong, 2024) and model parallelism (Pope et al., 2023). The access to the model parameter will be amortized across requests
in a batch shows parameter access time is negligible when the batch size is large). Thus, we only consider the second term
(i.e., KV cache loading) in our cost function. Furthermore, in the cases that we have N reasoning trials, the prompt cache
access (Juravsky et al., 2024; Zheng et al., 2024) is also shared across these N trials. Thus,

Ccomp(N) = 2PNLout + 2rNLinLoutD + rNL2
outD (3)

Cmem(N) = 2LinLoutD +NL2
outD (4)

eFLOPs. We propose eFLOPs (equivalent FLOPs) to capture both compute and memory access cost,

eFLOPs = Ccomp + Cmem × I (5)

where I is the arithmetic intensity of hardware, which reflects that modern accelerators usually have a much larger
computation capacity over memory bandwidth, and the gap is growing over the years (Sadhukhan et al., 2024). In this work,
we use I = 562.5 (unit: FLOPs × s / GB) from NVIDIA B200 (Tirumala & Wong, 2024).
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With Equations (3) to (5), we obtain the final cost model.

CTTS = 2NPLout︸ ︷︷ ︸
linear modules computation

+2rNLinDLout + rNDL2
out︸ ︷︷ ︸

self-attention computation

+2ILinDLout + INDL2
out︸ ︷︷ ︸

KV access

(6)

where P, r,D are hyper-parameters determined by model M 1.

A.2. Max Cost Model v.s. Additive Cost Model

Max cost model is widely used in performance modeling (Yuan et al., 2024). It assumes that computation and memory
operations can be fully overlapped with each other and only considers the bottleneck operation for cost measurement.

Cmax-cost = max(Ccomp, Cmem × I)

where Ccomp denotes the compute cost, Cmem the memory cost per access, and I the memory intensity.

In this section, we analyze the Kinetics Scaling Law using the max cost model. For clarity, we refer to the cost model
Ccomp + Cmem × I , which is used in the main paper, as the additive cost model.

We draw two conclusions from empirical results under the max cost model:

(a) (b)

(c) (d)

Figure 7. AIME Pareto Frontier (Long-CoTs) with Max Cost Models. (a)(b) is the original plot with the additive cost model. (c)(d) is
the corresponding plot using max cost models. Compared to the original plots, the overall trend is similar except that larger models span a
slightly broader region on the Pareto frontier. For example, the 14B model now consistently outperforms the 4B model with a noticeable
gap around accuracy 0.3 and maintains dominance thereafter. In contrast, under the additive cost model in Figure 3(a), the two models
alternate in performance until accuracy exceeds 0.4. This suggests that, when evaluated using a max cost model, larger models appear
slightly more efficient relative to their performance under additive cost models.

• Kinetics scaling law for dense models still holds. We re-plot Figure 3(a)(b) and Figure 10a under the measurement of
max cost models in Figures 7 and 8. We find except that in Long-CoTs scenarios, large models become slightly more
effective in low-cost regime (with accuracy∼0.3), the overall trends are very close to the plots with additive cost models.

• Sparse attention solves problems more cost-effectively. We re-plot Figures 4a and 4b in Figures 9a and 9b. Under the
max cost models, in Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21× to 52.8 points
and 15.71×, respectively. In Best-of-N , the gaps widen from 65 points and 10.67× to 69.4 points and 19.64×. These
results indicate that under the max cost model, our claim that sparse attention can enhance problem-solving performance
is strengthen. Compared to dense attention models, sparse attention models tend to have more balanced memory and
compute costs. Thus omitting one of them via a max cost model will favor sparse attention models.

1Since Lout might differ across reasoning trials, we take the expectation for E[Lout] and E[L2
out].
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Figure 8. AIME Pareto Frontier (Best-of-N ) with Max Cost Models. We re-plot Figure 10a using max cost models. The Pareto
Frontier is very similar under different cost models.
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Figure 9. Sparse attention scales significantly better under max cost models. We re-plot Figures 4a and 4b using max cost models.
Compared to the original plots, the performance and efficiency gaps between sparse attention models and dense models become more
pronounced. In Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21× to 52.8 points and 15.71×,
respectively. In Best-of-N , the gaps widen from 65 points and 10.67× to 69.4 points and 19.64×.

A.3. Details about Sparse Attention Cost Model

Sparse attention models follow different cost functions due to the sparsification of KV memory access. In this paper, we
focus on algorithms that impose a uniform KV budget (denoted as B) per attention head for each decoded token. We
consider Lin ≥ B for the sake of simplicity. Under this setting, the cost model for sparse attention is given by:

Csparse = 2NPLout + 2rNDBLout︸ ︷︷ ︸
compute

+2INDBLout︸ ︷︷ ︸
memory

. (7)

In practical implementations, we must also account for the overhead associated with retrieving or searching KV memory,
denoted as Csearch, which depends on the specific sparse attention algorithm A. For example, in block top-k selection, the
search cost is:

Csearch =
2NLinDLout + rNDL2

out

2Block-Size︸ ︷︷ ︸
compute

+
2ILinDLout + INDL2

out

2Block-Size︸ ︷︷ ︸
memory

. (8)

In our work, we choose the Block-Size in such a way that Csparse and Csearch are roughly balanced, so that the sparse attention
cost increases sub-linearly with generation length.

For local attention and oracle top-k attention, we assume no search overhead, i.e., Csearch = 0.

Many sparse attention algorithms skip the first layer (Tang et al., 2024; Chen et al., 2024; Zhang et al., 2023), resulting in
only a minor increase in total cost. For the Qwen3 series, this additional overhead is bounded by 3.57% for the 0.6B model
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Figure 10. AIME24 Score Curve Envelope (Best-of-N ). We control the incurred inference cost in eFLOPs (a) or FLOPs (b) and measure
the solving rate (Coverage) in AIME24 for various models by varying the maximum allowed number of reasoning trials. By taking the
curve envelopes, we can project the optimal models in (c).

and by 1.56% for the 32B model.

B. Dense Scaling Law
In this section, we further verify Kinetics Scaling Law for dense models proposed in Section 3 with Iso-Cost analysis and
extended experimental results of different benchmarks and model series.

B.1. Best-of-N AIME24

In the Best-of-N setting, we fix the maximum number of generated tokens at nT , and vary the number of reasoning trials N
to evaluate the problem-solving rate (i.e., the probability that at least one trial produces a correct answer). We have similar
observations in Figures 10a to 10c. Under the previous scaling laws (Figure 10b), the most cost-effective strategy to achieve
high accuracy is to apply repeated sampling using smaller models. Kinetics Scaling Law Figure 10a reveals that deploying a
14B model with fewer reasoning trials is more efficient. We also observe a critical size of 14B. For models smaller than 14B,
increasing compute is best allocated toward model scaling rather than additional trials. For models at or above 14B, however,
further computation is more effectively spent on increasing the number of reasoning trials, up to diminishing returns.

B.2. Iso-Cost Study
We attribute the above divergence between Kinetics and previous scaling laws to two reasons.

Disproportionation between KV memory size D and model parameters P . Smaller models tend to require significantly
more KV cache relative to their parameter size. For example, Qwen3-0.6B demands 3.5GB of KV cache to store 32K tokens,
despite the model itself occupying only 1.2GB. In contrast, Qwen3-32B uses just 8GB of KV cache for the same sequence
length. Empirically, doubling model parameters results in only a 1.18× increase in KV cache size. As shown in Figure 11a,
this phenomenon is consistently observed across model families such as OPT (Zhang et al., 2022) (1.55×), Qwen2.5 (Yang
et al., 2024b) (1.46×), and LLaMA3 (Grattafiori et al., 2024) (1.27×).

Shift from linear to quadratic cost model. Under this revised model, increasing generation length incurs a substantially
higher cost than scaling model size; consequently, the tradeoff between model capacity and token budget shifts meaningfully.
For instance, under the linear LP model, the cost of generating 8K tokens with a 14B model (which is usually insufficient
to solve complex tasks) is treated as equivalent to generating 24K tokens with a 4B model (sufficient to complete most
tasks). However, under the L2D model, the same 14B@8K generation is only comparable in cost to a 4B@9K generation.
This tighter bound makes it much harder for smaller models to compensate for their limited capacity through extended
generation alone. Thus, only if the gap in model capacities is small enough (e.g., 32B only improves the accuracy by 3% on
AIME24 compared to 14B), the benefits of extending generation length might be more effective than directly enlarging
model parameters.

Figures 11b and 11c show an Iso-Cost analysis comparing two cost models. Under Kinetics Scaling Law, the cost grows
quadratically with Lout, while the KV cache scales sublinearly with model parameters P . As a result, when total budget
is low, the Iso-eFLOPs contours tend to stretch horizontally, favoring larger model sizes over longer generation lengths.
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Figure 11. Explanation of the New Scaling Law. Left: Analysis across four LLM families reveals a consistent trend of disproportionately
slower KV memory growth relative to model size. For the Qwen3 series in particular, doubling model parameters results in only a 1.18×
increase in KV cache size. Middle and Right: We compare the Iso-Cost landscapes under the proposed cost model (b) and the traditional
model (c).

Figure 12. AIME25 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3.

This implies that increasing model size is a more efficient use of resources than generating longer outputs. In contrast, the
traditional FLOPs-based model leads to steeply vertical contours, encouraging longer generation before increasing model
size.

B.3. Additional Benchmarks

We evaluate on AIME25 in Figures 12 and 13a to 13c and LiveCodeBench2in Figures 14 and 15a to 15c (excluding the 0.6B
model), following the setting described in Section 3. The empirical results support the Kinetics Scaling Law: across both
benchmarks, the 0.6B and 1.7B models are consistently less effective, and the Pareto frontier is almost always dominated by
the 14B models.

B.4. Additional Reasoning Models

In Figures 16 and 17a to 17c, we evaluate DeepSeek-R1 Distilled Qwen models (abbreviated as DS models) (Guo
et al., 2025) on AIME24. The DeepSeek series models further demonstrate that previous scaling laws—those based on
FLOPs—significantly overestimate the effectiveness of the 1.5B model. As predicted by the Kinetics Scaling Law, increasing

2For LiveCodeBench dataset, we have sampled 50 examples from the v5 subset consisting 167 examples. Our subset comprises 24
hard, 16 medium and 10 easy examples respectively.
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Figure 13. AIME25 Score Curve (Best-of-N ). We conduct the same experiments as Figures 10a to 10c.

Figure 14. LiveCodeBench Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3.
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Figure 15. LiveCodeBench Score Curve (Best-of-N ). We conduct the same experiments as Figures 10a to 10c.
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Figure 16. AIME24 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3 on DeepSeek Distilled Qwen series.
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Figure 17. AIME24 Score Curve Envelope (Best-of-N ). We conduct the same experiments as Figures 10a to 10c on DeepSeek Distilled
Qwen series.

the number of generated tokens for the 1.5B model is less effective than scaling up the model size, such as using the 7B or
larger variants.

Interestingly, we observe a shift in the emerging model size: unlike Qwen3, where the 14B model dominates, the 7B model
becomes the dominant choice in the DeepSeek series. In Figures 16, 17a and 17c, the 7B model spans most of the Pareto
frontier, and Figure 16 shows that 7B models with long CoTs are more efficient and effective than 14B models with short
generations. We attribute this to an architectural outlier in the DeepSeek-R1 (Qwen2.5) model series. As shown in Table 2,
the DeepSeek-R1 7B model is significantly more KV memory-efficient than the Qwen3-8B model. Unlike most model series
illustrated in Figure 11a, where KV cache size typically grows sublinearly with respect to model parameters, DeepSeek-R1
shows a deviation from this trend: the 14B model has approximately 3.4× more KV memory than the 7B model, while
having only 2× more parameters.

Table 2. KV memory Size for Qwen3 and DeepSeek-R1 Distilled models (per 32K tokens, unit: GB).

Qwen3 Qwen3-1.7B Qwen3-8B Qwen3-14B Qwen3-32B
3.5 4.5 6 8

DeepSeek DS-1.5B DS-7B DS-14B DS-32B
0.875 1.75 6 8

This finding highlights the importance of concrete model architecture design, rather than focusing solely on the number of
model parameters. Whether KV memory size is directly related to reasoning performance remains an open question, which
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we leave for future investigation.
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(d) Long-CoTs Scaling Comparison
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(h) Best-of-N Scaling (Medium)
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Figure 18. LiveCodeBench Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-k and block-top-k
attention on the LiveCodeBench dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT
TTS settings. (b)(e) show cost-accuracy trade-offs for top-k attention. (c)(f) show trade-offs for block-top-k attention. (g)(h)(i) compare
the oracle top-k scaling for easy, medium and hard difficulty questions.

C. Sparse Scaling Law
We present how we find the Pareto frontier of sparse attention models through an optimal resource allocation, which
demonstrates the upper bound of scalability of a certain sparse attention algorithms. Then we present additional results
supporting the kinetics sparse scaling law across multiple tasks and demonstrate how these insights enable scalable test-time
scaling with sparse attention.

C.1. Optimal Resource Allocation with Sparse Attention Models

Problem statement. Let A denote the corresponding sparsity patterns (e.g., top-k, block sparse and local. Our goal is
to explore the optimal tradeoff among three factors: model M , KV budget B, and number of trials, and the maximum
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(c) Best-of-N Block Top-K Scaling
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Figure 19. AIME25 Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-k and block-top-k attention
on the AIME25 dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT settings. (b)(e)
show cost-accuracy trade-offs for oracle top-k attention. (c)(f) show trade-offs for block-top-k attention.

generation length (N,n). Specifically,

(N,n)∗,M∗, B∗ = arg max
(N,n),M,B

Acc(N,n,B,A,M ;T )

s.t. CTTS(N,n,B,A,M ;T ) ≤ C (9)

C.2. Greedy Algorithm for Optimal Resource Allocation

We present a method to optimally schedule generation parameters (N,n) and the KV budget B for each task, establishing
an upper bound on achievable performance and enabling analysis of the core tradeoff between TTS strategies and sparsity.
We begin by solving the subproblem for each individual task T 3:

max Acc(NT , nT , BT ,A,M ;T ) s.t. CTTS(NT , nT , BT ,A,M ;T ) ≤ C (10)

Empirically, we discretize the searching space. For instance, in Best-of-N , we discretize the space of N and B by producing
a search grid:

G = {N0, N1, . . . , Ni} ⊗ {B0, B1, . . . , Bj}
For each pair (Na, Bb) ∈ G, we compute the corresponding cost CT,(a,b) and accuracy AccT,(a,b). We use (NT , BT ) ∈ G
which maximizes the accuracy under the cost constraint C as an approximation for Equation (10). By combining the optimal
configurations (NT , BT ) for all tasks T , we obtain a solution to the overall problem in Equation (9). Similar discretizations
also applies for Long-CoTs. Thus we find the optimal resource allocation.

We describe the procedure for identifying optimal resource allocations and establishing the Pareto frontier for sparse attention
models in Algorithms 1 and 2, as a supplement to Appendix C.1. Given a fixed cost constraint C, we perform a grid search
over key parameters: KV budgets and either reasoning trials or maximum generation lengths.

Empirically, we sweep over KV budgets {32, 64, 128, 256, 512, 1024}; reasoning trials {1, 2, 4, 8, 16, 32} (with a reduced
upper limit for the 14B and 32B models to save computation time); and generation lengths {2k, 4k, 6k, 8k, 10k, 12k, 14k,
16k, 18k, 20k, 22k, 24k, 26k, 28k, 30k, 32k}.

3For fairness, we do not schedule resources across tasks, but consider a resource upper bound for all the tasks.
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It is important to note that we do not consider inter-request resource scheduling strategies, such as early stopping or dynamic
reallocation across requests (Fu et al., 2024), since we aim to ensure fairness across all inputs. Instead, the cost constraint C
is interpreted as the maximum allowable cost per request (not the average), even if some requests achieve saturated accuracy
below that threshold.

Algorithm 1 Best-of-N optimal resource allocation under cost C
Data: Tasks T , KV budgets {B1, . . . , Bj}, trial counts {N1, . . . , Ni}, cost limit C
Result: Average of maximum accuracy per task under cost C

1 AccumBestAcc← 0 Count← 0 for task T in T do
2 for KV budget Bb do
3 Generate S ≥ max{N1, .., Ni} responses using Bb for task T for trial count Na do
4 compute cost c(T )

b,a if c(T )
b,a ≤ C then

5 Compute accuracy Acc(T )
b,a = Pass@Na;

if Acc(T )
b,a > BestAcc then

6 BestAcc← Acc(T )
b,a ;

7 end if
8 end if
9 end for

10 end for
11 AccumBestAcc += BestAcc; Count += 1;
12 end for
13 AvgBestAcc = AccumBestAcc/Count return AvgBestAcc

Algorithm 2 Long-CoTs optimal resource allocation under cost C
Data: Tasks T , KV budgets {B1, . . . , Bj}, gen. lengths {n1, . . . , ni}, samples S, cost limit C
Result: Average of maximum accuracy per task under cost C

14 AccumBestAcc← 0 Count← 0 for task T in T do
15 BestAcc← 0 for gen. length na do
16 for KV budget Bb do
17 Generate S responses using (Bb, na); compute cost c(T )

b,a if c(T )
b,a ≤ C then

18 Compute accuracy Acc(T )
b,a = Pass@1;

if Acc(T )
b,a > BestAcc then

19 BestAcc← Acc(T )
b,a ;

20 end if
21 end if
22 end for
23 end for
24 AccumBestAcc += BestAcc; Count += 1;
25 end for
26 AvgBestAcc = AccumBestAcc/Count return AvgBestAcc

C.3. Additional Benchmarks

Beyond AIME24, we evaluate our approach on LiveCodeBench (Jain et al., 2024) and AIME25 (MAA, 2025). Live-
CodeBench features complex programming problems from recent coding contests, while AIME25 consists of challenging
math problems. In both cases, sparse attention—particularly oracle top-k—consistently outperforms dense attention. Block
top-k attention, a tractable alternative, closely matches the performance of the oracle.

For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium, 10 easy). As shown in Figure 18,
oracle top-k attention can achieve ∼ 10× speedup in high-accuracy regimes and improves coverage by 40–50% in low-cost
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(c) LiveCodeBench Gen.
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(d) LiveCodeBench Budget

Figure 20. Tradeoff Between Generated Tokens and KV Budget. We empirically characterize the tradeoff between increasing generation
length and allocating a larger KV cache budget using Qwen3-8B. For AIME25 ((a)(b)) and LiveCodeBench ((c)(d)), we identify the
optimal KV budget and generated tokens (defined as number of reasoning trials times the average generated tokens per trial) to achieve
the highest problem-solving rate under every cost constraint C.

regimes. Conversely, the tractable alternative, Block top-k yields 5–6× speedup and 30–40% coverage gains. We further
show how the benefits of sparse attention scale with problem difficulty (Figures 18g to 18i).

Figure 19 confirms similar trends for AIME25, with substantial gains in both accuracy and efficiency under sparse attention.

C.4. Additional Analysis

Fixing a model (e.g., Qwen3-8B), we investigate the tradeoff between generating more tokens through Best-of-N and
increasing the KV budget in Figures 20a to 20d. As the figures suggest, on AIME25, each doubling of total compute cost
increases the optimal KV budget by 1.13×, while generated tokens grow by 1.67×; on LiveCodeBench, these factors are
1.14× and 1.89×, respectively. We find that although the concrete numbers depend on the types of tasks, the overall results
confirm our suggestions in the main paper that allocating compute toward generating more responses is generally more
effective than expanding KV budget, highlighting the scalability of sparse attention.

D. Experimental Details
In this section, we explain the details about our experiments.

D.1. Estimate Cost, Accuracy and Solving Rate

When empirically measuring cost, one major challenge is the difficulty of controlling the actual generation length. Although
it is possible to set an upper bound on the number of generated tokens, there is no guarantee that the model will utilize the
full budget. For instance, in our Best-of-N experiments, we set the maximum number of generated tokens to 32,768, yet the
average generation length was only 14K–16K tokens.

Furthermore, it is important to model the relationship between actual inference cost and performance metrics, such as
accuracy in Long-CoTs or solving rate in Best-of-N . Relying solely on the maximum allowed generation length to estimate
cost can substantially underestimate the efficiency of models that solve problems with much shorter responses—an ability
that may reflect higher capability.

To address this challenge, we first sample S independent reasoning traces r1, r2, . . . , rS from model M on task T , with the
maximum allowed number of tokens set to n. We slightly generalize Equation (6) as:

CTTS = 2NPE[Lout] + 2rNLinDE[Lout] + rNDE[L2
out]

+ 2ILinDE[Lout] + INDE[L2
out]

= aE[Lout] + bE[L2
out] + c, (11)

where a, b, and c are constants determined by the model architecture and test-time strategies (e.g., the value of n). The
expectations are estimated from the sampled traces, whose distribution is influenced by the model M , the token limit n, and
the task T .

For Long-CoTs, we fix N = 1 in Equation (11) and vary n. From the sampled traces, we estimate the accuracy (Pass@1),
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and compute the corresponding cost by substituting the empirical values of E[Lout] and E[L2
out] measured under each n.

For Best-of-N , we fix n = 32,768, and estimate the solving rate (Pass@K) following the methodology of Brown et al.
(2024). The corresponding cost is then computed by substituting N = K into Equation (11).

Similarly, we can estimate the cost for sparse attention models using Equations (7) and (8).

Advanced control of generation lengths is an active area of research (Yang et al., 2025; Muennighoff et al., 2025; Ma et al.,
2025a), but it is beyond the scope of this paper.

D.2. Top-K Attention and Block Top-K Attention

In this section, we explain the sparse attention algorithms discussed in the main paper, namely Top-K Attention and Block
Top-K Attention.

During the decoding phase of a large language model (LLM), the self-attention mechanism computes a weighted average of
past values as follows:

o = Softmax

(
qK⊤
√
d

)
V = wV, q ∈ R1×d, K, V ∈ Rn×d, w ∈ R1×n, (12)

where d is the head dimension and n is the context length. The key and value matrices are given by K = [k1, k2, . . . , kn],
V = [v1, v2, . . . , vn], where each ki, vi ∈ R1×d are cached from previous decoding steps.

Top-K Attention. Top-K Attention is a sparsification method where only the K most relevant tokens (i.e., those with the
highest attention scores) are selected to compute the output. Formally, instead of computing the full softmax, we define a
sparse attention weight vector:

wi =

{
exp(si)∑

j∈IK
exp(sj)

if i ∈ IK ,

0 otherwise,
where si =

qk⊤i√
d
, IK = TopKK(s), (13)

Here, IK denotes the indices of the top K attention scores si. By masking out the less important positions, this approach
reduces the computational and memory cost of attention from O(n) to O(K), where K ≪ n.

Block Top-K. Block Top-K Attention is a block-level sparse attention mechanism. Instead of selecting individual tokens
based on attention scores, this method selects entire blocks of tokens, thereby reducing the number of attention computations.

Specifically, assume the full sequence of n keys is divided into m = n
BLOCK SIZE consecutive blocks, each of size

BLOCK SIZE:
K = [k1, . . . , kn]→ {K1,K2, . . . ,Km}, Ki ∈ RBLOCK SIZE×d

For each block Ki, we first compute the average key vector:

k̄i =
1

BLOCK SIZE

BLOCK SIZE∑
j=1

ki,j

Next, we compute the attention score between the query q and each block’s average key:

si =
qk̄⊤i√

d
, for i = 1, 2, . . . ,m

We then select the top K ′ = K
BLOCK SIZE blocks based on the scores si, denoted by the index set JK′ = TopKK′(s).

Attention is computed only over the tokens within the selected blocks. The sparse attention weights are defined as:

wi =

{
exp(si)∑

j∈IK
exp(sj)

if i ∈ IK ⊆ tokens in selected blocks,

0 otherwise
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For both algorithms, K is the KV budget. For GQA, we conduct an average pooling across all the query heads in a group,
ensuring that the total number of retrieved key-value vectors does not exceed the allocated KV budget.

Implementation. Here we provide details of our block top-k attention implementation. We build our inference backend on
Flashinfer (Ye et al., 2025), incorporating support for paged attention (Kwon et al., 2023) and continuous batching (Yu et al.,
2022). Alongside the paged KV cache, we introduce an auxiliary data structure to store block-level average key vectors.
The KV block size is chosen such that the memory load from the block-average vectors and the selected top-k KV blocks
remains balanced. This design enables sub-quadratic KV loading cost as the number of reasoning tokens increases.

E. Related Work
Efficient Attention. Sparse attention (Kitaev et al., 2020; Zandieh et al., 2023; Chen et al., 2021; 2024; Zhang et al.,
2023; Xiao et al., 2024; Yuan et al., 2025; Nawrot et al., 2025; Child et al., 2019; Li et al., 2024; Cai et al., 2024) has
been comprehensively studied to reduce the attention cost when processing long sequeces. In parallel, approaches like
FlashAttention (Dao et al., 2022; Dao, 2023) accelerate attention by maximizing hardware efficiency. To address the
quadratic complexity of standard attention, researchers have also explored linear attention architectures (Gu & Dao, 2023;
Gu et al., 2022; Katharopoulos et al., 2020; Choromanski et al., 2020). Additionally, quantization and low-precision
methods (Liu et al., 2024; Hooper et al., 2024; Lin et al., 2024b) have been broadly applied for improving inference
efficiency.

Efficient Inference. Orca (Yu et al., 2022), vLLM (Kwon et al., 2023), and SGLang (Zheng et al., 2024) are widely adopted
to enhance the efficiency of LLM serving. Our analysis builds on the practical designs and implementations of these systems.
In parallel, speculative decoding (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2023; Sadhukhan et al., 2024) has
been proposed to mitigate the memory-bandwidth bottleneck during LLM decoding. Additionally, model compression
and offloading (Dettmers et al., 2022; Lin et al., 2024a; Svirschevski et al., 2024; Sheng et al., 2023; Frantar et al., 2022)
techniques are playing a crucial role in democratizing LLM deployment.

Efficient Test-time Strategies. Optimizing reasoning models to generate fewer tokens has been shown to directly reduce
inference-time cost (Team, 2025a; Arora & Zanette; Ma et al., 2025b). Recent work such as CoCoNut (Hao et al., 2024) and
CoCoMix (Tack et al., 2025) explores conducting reasoning in a latent space, thereby reducing decoding time. Methods like
ParScale (Chen et al., 2025b), Tree-of-Thoughts (Yao et al., 2023a), and Skeleton-of-Thoughts (Ning et al., 2023) aim to
improve efficiency by enabling parallel reasoning. Architectural innovations such as CoTFormer (Mohtashami et al., 2023)
further enhance efficiency by adaptively allocating computational resources across tokens. Efficient reward-model-based (Wu
et al., 2024; Snell et al., 2024; Sun et al., 2024b) test-time scaling algorithms are also comprehensively studied.
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Figure 21. Correlation between Generation Length and Number of Trials. Longer generations correlate strongly with the optimal
number of trials (Nopt), serving as a proxy for problem difficulty. (a) shows this trend for top-k and block top-k attention on the AIME24
dataset using the Qwen3-8B model.
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F. Limitations, Future Scope, and Broader Impact
Limitations. Our experiments primarily focus on Qwen3 (Yang et al., 2025) and DeepSeek-R1-Distilled-Qwen (Guo
et al., 2025), two state-of-the-art pretrained reasoning model series, evaluated from the inference perspective. However,
the effects of training and post-training strategies are not fully explored and may influence the performance gaps and
robustness to sparse attention mechanisms. In addition, our cost analysis assumes a cloud-based serving environment, where
computational resources are typically sufficient and large batch sizes are feasible. In contrast, local deployment scenarios,
such as those using Ollama4, often face limited VRAM where access to model parameters can dominate inference costs.
Smaller models may be more appropriate in such settings, and our findings may not fully extend to these use cases.

Future Scope. Our sparse scaling law offers valuable insights for enriching the applications of sparse attention algorithms
and the design space of test-time scaling strategies. On one hand, except for top-k, currently we only discuss a simple
variant, i.e., block top-k, and have already demonstrated strong scalability. More advanced sparse attention algorithms (Tang
et al., 2024; Chen et al., 2024; Yuan et al., 2025; Lin et al., 2025) are emerging these days. We do believe they can eventually
push the scalability of test-time scaling to a much higher boundary. On the other hand, test-time scaling algorithms are
proposed to adaptively allocate computation to tasks, or even to tokens (Arora & Zanette; Mohtashami et al., 2023; Ma et al.,
2025b;a). Extending them towards to new resource allocation problems in sparse attention is critical to reach the limit of
Kinetics sparse scaling law. For instance, since generation length strongly correlates with the optimal number of trials under
sparse attention (as shown in Figure 21), it can be used as a dynamic signal to adjust the number of trials and KV budget.
Moreover, sparse attention drastically reduces inference cost, enabling more reasoning trials and longer generations. This
unlocks greater flexibility in configuring TTS strategies within a fixed resource budget.

Broader Impact. This work aims to contribute to the understanding of efficiency and scalability challenges in the test-time
scaling era, spanning model architecture, system-level implementation, and hardware design. We highlight the central role
of sparsity in addressing these challenges. Our study is algorithmic in nature and does not target specific applications. While
large language models can be misused in harmful ways, this work does not introduce new capabilities or risks beyond those
already present in existing systems. Test-time scaling can consume a substantial amount of energy, raising concerns about
the environmental sustainability of widespread deployment. By promoting sparse attention, our work hopes to help to reduce
the carbon footprint and energy consumption of inference systems and support the broader goal of sustainable AI.

4https://github.com/ollama/ollama
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