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Abstract—The Bamboo Forest Growth Optimization Algo-
rithm (BFGO) is an innovative and flexible meta-heuristic op-
timization algorithm inspired by the growth pattern of bamboo
forests, which first establish roots and extend before growing
freely. This algorithm has achieved good results in solving
optimization and engineering problems. However, it suffers from
insufficient global exploration capabilities and is prone to getting
stuck in local optima. Drawing on additional growth charac-
teristics of bamboo forests, this paper extends BFGO’s search
strategy, reconstructs the bamboo growth model, and designs
an elimination strategy to select elite individuals. Comparative
testing against several classical meta-heuristic algorithms and
their improved variants on the CEC2017 and CEC2013 test
set. The results demonstrate that the extended BFGO algorithm
achieve the best performance, fully demonstrates the effectiveness
and competitiveness of the improved strategy.

Index Terms—Bamboo forest growth optimization algorithm,
Swarm intelligence algorithm, Logistic growth model, Natural
selection strategy

I. INTRODUCTION

In recent years, research and applications related to meta-
heuristic algorithms [1]–[5] have developed rapidly [6] and
are widely used in various optimization problems [7], [8].
These algorithms are inspired by some real-life phenomena
or laws so as to obtain an approximate optimal solution to the
problem by iterative search within a given problem horizon.
Compared with the traditional mathematical methods which
are limited by strong constraints such as the differentiability
and continuity of the objective function, these algorithms

*Corresponding author.

can continuously search in non-convex, high-dimensional, or
discrete-continuous solution spaces by defining the fitness
function, and have the advantages of weak dependence on the
problem domain, high adaptability, scalability and robustness
to complex constraints, and thus they can deal with a wide
range of large-scale and complex problems. On the other hand,
bamboo forest growth optimization algorithms are inspired by
the physiological properties and growth process of bamboo
[9]. Bamboos, as herbaceous plants, can grow to the height of
trees, which is highly related to their unique growth pattern
[10], [11]. The “slow-fast-slow” growth cycle of bamboos
and their rapid stem elongation contribute to their ecological
dominance: bamboos first use their root system to grow and
spread in random directions over several kilometers above the
ground in order to continuously absorb nutrients from the soil
for optimal growth. Bamboo shoots emerging from the soil can
grow very long in a short period of time. Therefore, Feng et
al. [9] mathematically modeled the two phases of complete
extension of bamboo whips and rapid growth of bamboo
and mapped these two growth processes in an optimization
algorithm. In the bamboo whip extension stage, individuals
on each population move in different directions to facilitate
global exploration of the solution space; in the bamboo growth
stage, each individual is locally exploited according to the con-
structed growth model so as to update the position. This is the
overall framework of the bamboo forest growth optimization
algorithm.

The BFGO algorithm is different from the classical meta-
heuristic algorithm, it is inspired by this special growth law of



bamboo, and carries out global exploration and local search in
stages, which is innovative and performs well in the practice of
optimization problems with other algorithms for engineering
applications, which shows that it is quite competitive in dealing
with complex problems, but its performance on the CEC2017
test set [12] shows that that its Exploration and development
capabilities still needs to be improved.

This paper proposes an extended bamboo forest growth
optimization algorithm (E-BFGO), which aims to address the
limitations of BFGO. In the natural growth process of bamboo
forests, in addition to the unique growth characteristics of
bamboo forests themselves and the iterative law, it will be
accompanied by light, water, soil nutrients and other external
environmental factors that affect growth. Bamboo has a well-
developed root system, which is concentrated underground to
form a dense root network in the early stage. If the soil is
in deep and loose fertile sandy loam or light loam, it can
better satisfy the demand of its root system growth. After the
bamboo whip absorbs nutrients in the soil for months or even
years to form shoots, the bamboo shoots rely on light and
store nutrients to grow rapidly, produce branches and leaves,
and wait until the new shoots of the bamboo whip regenerate to
complete the population iteration. This paper draws inspiration
from this and adds and improves more strategies based on the
original algorithm. In BFGO, the study on bamboo growth is
not comprehensive enough. Accordingly, The original growth
scheme in the expansion scheme is replaced and improved,
with more growth factors being considered and incorporated
into the bamboo growth process. The algorithm structure
of BFGO is constructed and improved in accordance with
the ecology of bamboo forests in reality. The new strategy
designs local search methods in the whip extension stage and
bamboo growth stage to complement the natural replacement
mechanism of the population, which greatly helps the orig-
inal algorithm to go beyond the local optimal solution and
significantly improves the global exploration capability.

II. BFGO

This section will detail the Bamboo Forest optimization
algorithm, the inspiration for the expansion strategy, and their
mathematical models.

The core of the BFGO algorithm lies in referencing the
common growth habits of bamboo plants, including the ex-
ploration of underground stem extension and rapid growth of
above ground parts, and then analyzing its mathematical model
to transform it into a search strategy in the algorithm, with two
distinct phases: breadth exploration and local search.

During the bamboo whip extension stage, the individuals
of each cluster move in the main direction with three bench-
marks for breadth exploration: the group cognitive term, the
group memory term and the group center term. The specific
movement equations are shown as:

Xt+1 =


XG +Q× (σ ×XG −Xt)× cosα, r1 < 0.4

XP (k) +Q× (σ ×XP (k)−Xt)× cosβ, 0.4 ≤ r1 < 0.7
C (k) +Q× (σ × C (k)−Xt)× cosγ, else

(1)

cosα =
Xt ·XG

|Xt| × |XG|
(2)

cosβ =
Xt ·XP (k)

|Xt| × |XG|
(3)

cosγ =
Xt · C (k)

|Xt| × |XG|
(4)

Q = 2− t

T
(5)

Where XG represents the individual with the best fitness
among all individuals, XP (k) represents the individual with
the best fitness within the k-th bamboo whip cluster, and
C(k) represents the central position of the k-th bamboo whip
cluster, typically calculated as the average of the positions
of all individuals within the cluster. α, β, and γ denote the
three extension directions of the rhizome system, namely, the
direction of the current individual moving towards the global
optimal solution, the population optimal solution, and the
center of the population. In addition, σ is a random number
between 1 and 2. In (5), Q denotes the moving step size that
decreases from 2 to 1 as the number of iterations t increases.
BFGO simulates the behavior of bamboo whips randomly
lengthening and expanding their territories underground on
this stage, and guides the population to explore extensively
in the solution space through a multi-directional and large-
scale search mechanism to avoid the algorithm from falling
into local optimal solutions. During the bamboo shoot growth
stage, a temporary population is defined to replace the original
population, which is defined by the following equations:

XD = 1−
∣∣∣∣ Xt − C (k) + 1

XG − C (k) + 1

∣∣∣∣ (6)

q (t) = XG × e−d × e
b

φ×tφ (7)

∆H =
q (t)− q (t− 1)

XG −Xt
(8)

Xtemp =

{
Xt +XD ×∆H
Xt −XD ×∆H

(9)

Where XD denotes the relationship between the distance of
the particle to the population center position and the distance
of the best individual of the population to the population
center position, q(t) denotes the cumulative growth of the t-
th iteration, and ∆H denotes the incremental increase of one
iteration. d is a parameter in the range of (-1, 1), and both b
and φ are fixed parameters representing the site conditions of
the bamboo.



Equation (7) is derived using the differential equation for
the variation of bamboo height with growth [13] derived by
Sloboda [14] and the integral form and its simplified equation
to give, which can be expressed as follow:

dy

dt
=

m× y

tlln
(

n
y

) (10)

y = n× e−C × e
m

(l−1)×t(l−1) (11)

y = SI × e
m

k×tk (12)

Where l, m, n are the parameters of the growth model, and
ensure that l >1, m >0, n >0, t represents the growth time,
y is the growth height of bamboo shoots. C is an integral
constants. SI represents the maximum achievable bamboo
height, which varies with changes in site conditions, and k
is the alternative parameter after model simplification.

In this stage, BFGO emulates the process of bamboo shoots
breaking out of the ground and growing randomly to become
bamboos, and utilizes the height growth model to randomly
update the location for individuals to enhance exploitation.
However, the model is not applicable, the moving direction is
blind, and the algorithm’s local exploitation ability is deficient
from the experimental results.

III. E-BFGO

A. Initialization

E-BFGO introduces the attribute of age for each individual
in the initialization phase, and its value will be increased
by 1 at the end of each iteration, in addition to which, all
individuals will move independently in the extension and
growth phases as a bamboo whip individual and a bamboo
shoot individual, respectively, instead of participating in the
extension and growth phases uniformly. Subsequently, each of
the two types of individuals will be divided into K clusters,
and the initial values of the individuals are mapped into the
solution space by generating chaotic sequences successively
from the Logistic mapping equations [15], [16], the form of the
equations as well as the population initialization are designed
as shown in (13) and (14):

wn+1 = r × wn × (1− wn) (13)

xn = xmin + wn × (xmax − xmin) (14)

Where r is a control parameter, wn denotes the n-th
chaotic sequence value, and xn is the initial value of the n-th
individual; with this initialization method the population can
be made more uniformly distributed in the solution space with
higher randomness.

B. Extended Bamboo Whip Extension Stage

As the underground stem system of bamboo, the surface of
bamboo whip is densely covered with absorbing roots that can
absorb water and mineral nutrients from the soil for supporting
its own faster extension. Accordingly, the soil nutrient index
SN is included in the extension stage in (15):

SN = BN × e−0.5 t
T (15)

Where BN is the soil base nutrient, which decreases with
increasing time. The equation for the movement of bamboo
whips is subsequently rewritten as:

Xt+1 =


XG +Q× S × (XG −Xt)× cosα, r1 < 0.4

XP (k) +Q× S × (XP (k)−Xt)× cosβ, 0.4 ≤ r2 < 0.7
C (k) +Q× S × (C (k)−Xt)× cosγ, else

(16)

S = (0.7× SN + 0.3× Ts

Lt
)Q (17)

Where S is the length of the new moving step, Ts and Lt

denote the age of bamboo shoots breaking the soil and the age
of individuals, respectively. This implies that the movement
of individual bamboo shoots is affected by soil conditions as
well as growth time, and that individuals at the early stage of
growth are the fastest to extend in all directions.

At the end of the extension phase, a small randomized per-
turbation is applied to each individual, replacing the original
individual with a new, better one, as a way to enhance the
algorithm’s local search ability in the bamboo whip extension
stage, Its form is shown in (18):

XWt
′ = XWt+δ, δ ∈

[
Xmin

5× (Xmax −Xmin)
,

Xmax

5× (Xmax −Xmin)

]
(18)

C. Extended Bamboo Shoot Growth Stage

Due to the limited optimization effect of the original growth
strategy, the original strategy is replaced with new growth
strategy. When the age of the individual bamboo whip reaches
Ts, the individual will break through the soil layer and become
a bamboo shoot, growing gradually active.

Shi et al. [13] used the growth data of 90 typical Moso
bamboo samples to give the measured growth curve of bamboo
shoots, as shown in Fig. 1.

We can find from the figure that the growth of this Moso
bamboo shoot span a total of 57 days, and can be divided into
three distinct stages: an initial phase of slow growth, followed
by a stage of explosive growth, and finally a third stage where
growth stabilizes. If modeled using (12), the growth pattern
of the third stage cannot be accurately captured; instead, the
model predicts continued growth. Logistic growth model [16]
is one of the most widely used models to describe the changes
in biomass and body length data of plants and animals, and it
is highly compatible with the “S-shaped growth curve” of the



Fig. 1. Bamboo Shoots Growth Curve

individual height of bamboo shoot, which shows a “slow-fast-
slow” trend [17]. Fig. 2 compares our Logistic growth model
and the original model, both constructed through fitting based
on data from Fig. 1. By extending the growth period to 80
days, a clear differentiation between them is demonstrated.

Fig. 2. Logistic Growth Model vs Original Model

Clearly, the Logistic growth model is more appropriate for
capturing the growth traits of bamboo. Therefore, Sloboda’s
bamboo height growth model is replaced in this paper with
a logistic model, whose differential form and equation for
bamboo shoot individual growth are as follows:

dh

dt
= r × h× Hmax − h

Hmax
(19)

XSt+1 = XSt + (0.5× LN + 0.5× SN)×(
XG −XSt

∥XG −XSt∥
⊙ |XSt − C(k)|

)
× ∥XG −XSt∥

∥XG − C(k)∥
(20)

In (19), r represents the growth rate, h denotes the current
height of the individual bamboo plant, and Hmax is the
maximum achievable height. r × h indicates the individual’s

current growth capacity, while Hmax−h
Hmax

reflects the degree of
growth resistance encountered.

In (20), the global optimum position XG guides individual
movement, then XG−C(k) represents Hmax and XS −C(k)
represents h. By establishing the growth model in (19) as the
baseline increment, both the light index LN and soil nutrient
index SN serve as movement increments for this stage while
coordinating growth rates. Just as light and nutrients play
a central regulatory role in plant growth, having sufficient
light and nutrients can promote the accumulation of organic
substances such as sugars and provide an energy base for the
bamboo shoots to sprout and thrive. The calculation of LN is
as (21):

LN(k) = GL× rank(k)

K
(21)

Where GL represents the global light index, which is taken
randomly at each iteration. rank(k) is the fitness ranking of
the k-th cluster where an individual is located among the K
clusters, and clusters with better fitness values receive more
suitable light ,thereby growing more rapidly.

In addition, Wang et al. modeled bamboo according to
its natural morphological structure using fractal graphic tech-
niques [18], and they found that bamboo has typical fractal
features, the ratio of the angle between most bamboo branches
and the growth axis to the right angle approximates the
golden section ratio, and they constructed the rotation matrix
of the branches in three dimensions. A fractal model for
individual bamboo shoots is accordingly designed to simulate
the branching during the growth of bamboo joints in (22) –
(25):

XS
′
t =



XSt + randn×R×

[
bl

0

]
, r2 < 0.3

XSt + randn×R×

[
0

bl

]
, 0.3 ≤ r2 < 0.6

XSt, else

(22)

R =

[
cosθ −sinθ
sinθ cosθ

]
(23)

θ = 34.14× π

180
(24)

bl = µ×
∥∥∥∥ XSt

XStmax

∥∥∥∥ (25)

Where R is the rotation matrix, θ is the rotation angle,
bl represents the modal length of bamboo branches, and µ
is a parameter in the range of (0,1). The growing bamboo
shoot individuals will have a higher probability of growing
branches in multiple random two-dimensional directions, and
the excellent individuals with bamboo branches will replace
the normal ones, while there will also exist some bamboo
shoot individuals without bamboo branches.



D. Natural Selection Mechanism

The Forest Optimization Algorithm (FOA) developed a
selection mechanism for population renewal and elite retention
[19], which ranked candidate solutions from best to worst
in terms of fitness, removed trees exceeding the age limit
and selects superior solutions. By referring to this, at the
end of each iteration, natural selection is performed on the
whole population. The individuals in each cluster are sorted
by fitness value, and a certain number of weak individuals
are proportionally eliminated within the cluster based on a set
elimination rate. In addition, individuals whose age reaches a
set number of years are eliminated.If the eliminated individuals
have already grown bamboo shoots, they will be replaced by
new individuals, and the generation of new individuals will
follow the initialization method. In this way, a natural replace-
ment is accomplished, retaining the young elite individuals
and avoiding a certain amount of poor quality solutions that
continue to occupy resources. The clearer steps can be viewed
from the pseudo-code.

E. Algorithmic Procedure

The pseudo-code of the E-BFGO algorithm as shown in
Algorithm 1.

IV. EXPERIMENT AND ANALYSIS

This section will provide a comprehensive evaluation of
the optimization performance of the E-BFGO algorithm and
compare it with the original algorithm and some classical and
improved algorithms, including PSO [20], VPPSO [21], SCA
[22], EDOLSCA [23], GA [24], ALO [25], DE [26].

In the comparative experiment, a total of 30 benchmark
functions from CEC2017 and 28 benchmark functions from
CEC2013 [27] are employed for testing, which contain various
types of single-peak, basic multimodal, hybrid, and com-
binatorial functions with different levels of difficulty and
characteristics to comprehensively calibrate the algorithm’s
ability to deal with complex problems.

The search range of all test functions is [-100,100], the
search dimensions is set to 50 dimensions, the population size
is set to 30, and each algorithm is independently experimented
20 times. To ensure the test results are fair, the maximum
number of evaluations for all algorithms is set to 15000.

Table I show the means of each algorithm on the CEC2017
test set, and table II show the means of each algorithm on
the CEC2013 test set, respectively. Where the optimal results
are bolded, the number of times E-BFGO outperforms other
algorithms on all test functions is denoted by win.

According to the results, it can be seen that E-BFGO
achieves the most optimal number of times, which shows
that E-BFGO has strong competitiveness. Compared with the
original algorithm, the performance of E-BFGO has been
effectively improved in all kinds of test functions, and its
global exploration and local development ability has also been
improved, which makes it more adaptable to face complex
problems.

Algorithm 1: Pseudocode of E-BFGO
Input: N :population size, D:dimension, It:the number

of function iterations, [lb, ub]:problem boundary
Output: the best solution X G

1 Initialize number of clusters K, base soil nutrition
BN , age of bamboo Ln, time of growing into
bamboo shoot Ts, time of death Tend, elimination
rate α.

2 Initialize the bamboo whip position X Wt and the
bamboo shoot position X St using Equations
(13)–(14), then divide the bamboo whip population
into K clusters in alternating order based on fitness
and replicate them to the bamboo shoot population

3 while t <It do
4 if XG not updated then
5 select some elite individuals and poor

individuals to update X Wt, X St, and
update X P , X G.

6 end if
7 if X P not updated then
8 redivide the population in alternating order.
9 end if

10 Set soil nutrition SN based on Equation (15).
11 Update X Wt according to Equations (16)–(17),

and add disturbance to X Wt based on Equation
(18).

12 Update X P and X G.
13 if Ln ≥ Ts then
14 Sort bamboo shoot clusters according to the

average fitness, set global light GL.
15 Update X St according to Equations (20)–(21).
16 while d ≤ D do
17 using Equations (22)–(25) to make X St

grow branches.
18 d = d + 2.
19 end while
20 if r3 <0.8 then
21 Select X St with branches.
22 else
23 Select X St without branches.
24 end if
25 end if
26 Sort individuals within cluster accoring to their

fitness, and elimitate α×N poor individuals.
27 Eliminate individuals with Ln greater than or equal

to Tend.
28 Generate new individuals using Equations

(13)–(14) to replace eliminated individuals.
29 Update X P and X G.
30 t = t + 1, Ln = Ln + 1, and redivide the

population into K clusters in alternating order
based on fitness.

31 end while



TABLE I
COMPARISON OF TEST RESULTS OF VARIOUS ALGORITHMS ON 50 DIMENSIONS OF CEC2017

Test function PSO VPPSO SCA EDOLSCA GA ALO DE BFGO E-BFGO
Mean Mean Mean Mean Mean Mean Mean Mean Mean

F1 3.861E+10 2.682E+09 6.707E+10 3.903E+10 6.582E+10 1.824E+09 6.210E+09 2.475E+10 9.232E+08
F2 1.008E+68 1.123E+51 6.029E+69 7.080E+66 1.541E+71 2.452E+53 5.563E+58 1.885E+65 1.351E+50
F3 3.012E+05 1.742E+05 2.236E+05 2.598E+05 1.616E+05 3.516E+05 4.787E+05 2.698E+05 1.069E+05
F4 4.251E+03 1.117E+03 1.436E+04 6.010E+03 1.680E+04 9.927E+02 1.414E+03 4.428E+03 8.889E+02
F5 1.074E+03 8.253E+02 1.131E+03 1.089E+03 1.076E+03 8.874E+02 9.578E+02 9.660E+02 8.208E+02
F6 6.612E+02 6.608E+02 6.820E+02 6.760E+02 6.880E+02 6.596E+02 6.177E+02 6.769E+02 6.472E+02
F7 2.812E+03 1.521E+03 1.870E+03 1.905E+03 1.726E+03 1.746E+03 1.334E+03 1.662E+03 1.233E+03
F8 1.370E+03 1.143E+03 1.463E+03 1.391E+03 1.396E+03 1.169E+03 1.258E+03 1.316E+03 1.134E+03
F9 1.900E+04 1.156E+04 3.334E+04 3.533E+04 2.977E+04 1.540E+04 8.868E+03 2.684E+04 1.175E+04

F10 1.534E+04 8.328E+03 1.552E+04 1.382E+04 1.410E+04 8.987E+03 1.578E+04 1.190E+04 8.885E+03
F11 1.082E+04 3.216E+03 1.276E+04 1.202E+04 1.598E+04 3.818E+03 4.625E+03 7.653E+03 2.058E+03
F12 8.454E+09 2.716E+08 2.208E+10 9.682E+09 4.195E+10 2.399E+08 3.862E+08 7.233E+09 3.234E+08
F13 2.790E+09 1.085E+05 6.227E+09 2.848E+09 1.830E+10 1.013E+05 7.443E+06 1.977E+09 2.065E+05
F14 3.706E+06 7.841E+05 7.945E+06 3.288E+06 2.296E+07 9.054E+05 4.671E+05 6.396E+06 3.241E+05
F15 8.646E+08 3.340E+04 1.247E+09 2.671E+08 1.636E+09 5.432E+04 3.455E+04 5.816E+07 4.446E+04
F16 6.024E+03 3.897E+03 6.326E+03 5.028E+03 7.306E+03 4.373E+03 5.409E+03 6.091E+03 3.666E+03
F17 5.697E+03 3.621E+03 5.098E+03 4.075E+03 4.483E+03 3.796E+03 4.254E+03 3.916E+03 3.423E+03
F18 3.603E+07 5.742E+06 5.660E+07 2.534E+07 4.626E+07 5.331E+06 2.941E+06 1.170E+07 2.975E+06
F19 4.468E+08 1.558E+06 7.273E+08 2.870E+08 5.770E+08 3.535E+06 4.960E+05 2.085E+07 5.580E+04
F20 4.275E+03 3.286E+03 4.289E+03 3.942E+03 3.786E+03 3.473E+03 4.329E+03 3.665E+03 3.281E+03
F21 2.857E+03 2.647E+03 2.947E+03 2.861E+03 3.082E+03 2.638E+03 2.756E+03 2.907E+03 2.634E+03
F22 1.690E+04 1.036E+04 1.731E+04 1.557E+04 1.591E+04 1.110E+04 1.728E+04 1.444E+04 1.035E+04
F23 3.295E+03 3.187E+03 3.724E+03 3.744E+03 4.346E+03 3.300E+03 3.248E+03 4.087E+03 3.157E+03
F24 3.384E+03 3.329E+03 3.918E+03 4.003E+03 4.689E+03 3.430E+03 3.448E+03 4.228E+03 3.371E+03
F25 6.944E+03 3.514E+03 8.816E+03 6.853E+03 9.305E+03 3.512E+03 3.573E+03 5.630E+03 3.347E+03
F26 9.646E+03 1.024E+04 1.348E+04 1.258E+04 1.430E+04 9.910E+03 8.973E+03 1.282E+04 7.991E+03
F27 3.971E+03 3.948E+03 4.931E+03 4.855E+03 6.468E+03 4.369E+03 3.200E+03 3.747E+03 3.942E+03
F28 6.413E+03 4.279E+03 8.776E+03 7.213E+03 8.971E+03 4.445E+03 3.313E+03 5.789E+03 3.755E+03
F29 7.164E+03 6.184E+03 8.916E+03 6.963E+03 1.486E+04 7.022E+03 5.785E+03 8.687E+03 5.533E+03
F30 7.887E+08 1.390E+08 1.414E+09 4.332E+08 1.648E+09 1.412E+08 6.791E+04 2.723E+08 4.125E+07
Win 30 24 30 30 30 28 23 29 -

TABLE II
COMPARISON OF TEST RESULTS OF VARIOUS ALGORITHMS ON 50 DIMENSIONS OF CEC2013

Test function PSO VPPSO SCA EDOLSCA GA ALO DE BFGO E-BFGO
Mean Mean Mean Mean Mean Mean Mean Mean Mean

F1 2.801E+04 -3.359E+02 4.463E+04 2.465E+04 4.467E+04 -4.735E+02 2.308E+03 1.608E+04 -1.043E+03
F2 5.455E+08 6.384E+07 8.525E+08 3.202E+08 9.093E+08 6.942E+07 7.099E+07 2.203E+08 5.909E+07
F3 1.078E+11 4.025E+10 5.938E+11 2.872E+11 1.360E+12 6.668E+10 6.040E+10 1.115E+11 2.837E+10
F4 1.579E+05 8.413E+04 1.126E+05 1.383E+05 8.193E+04 1.608E+05 2.223E+05 1.164E+05 5.935E+04
F5 9.724E+03 -4.204E+02 5.893E+03 2.440E+03 5.841E+03 -2.911E+02 6.338E+02 1.815E+03 -5.268E+02
F6 8.142E+02 -5.298E+02 2.566E+03 4.850E+02 3.197E+03 -6.202E+02 -5.372E+02 1.739E+02 -6.244E+02
F7 -5.671E+02 -6.562E+02 -3.913E+02 -5.421E+02 6.367E+01 -2.433E+02 -6.057E+02 -2.381E+02 -6.575E+02
F8 -6.788E+02 -6.788E+02 -6.788E+02 -6.787E+02 -6.788E+02 -6.787E+02 -6.787E+02 -6.787E+02 -6.788E+02
F9 -5.247E+02 -5.423E+02 -5.225E+02 -5.330E+02 -5.292E+02 -5.374E+02 -5.220E+02 -5.296E+02 -5.364E+02
F10 4.032E+03 1.136E+02 5.796E+03 2.788E+03 6.020E+03 1.889E+01 3.907E+02 1.687E+03 -9.598E+01
F11 4.416E+02 1.214E+02 4.763E+02 3.835E+02 5.214E+02 2.505E+02 8.867E+00 4.249E+02 -3.169E+01
F12 5.125E+02 2.776E+02 5.930E+02 5.007E+02 7.003E+02 3.202E+02 2.515E+02 5.300E+02 1.561E+02
F13 6.187E+02 5.775E+02 7.282E+02 7.290E+02 7.721E+02 6.273E+02 3.656E+02 6.873E+02 4.008E+02
F14 1.481E+04 7.019E+03 1.446E+04 1.324E+04 1.354E+04 7.900E+03 1.491E+04 1.097E+04 5.138E+03
F15 1.521E+04 8.295E+03 1.542E+04 1.449E+04 1.460E+04 9.545E+03 1.546E+04 1.308E+04 9.745E+03
F16 2.044E+02 2.010E+02 2.044E+02 2.047E+02 2.040E+02 2.016E+02 2.046E+02 2.041E+02 2.025E+02
F17 2.359E+03 1.094E+03 1.506E+03 1.487E+03 1.382E+03 1.503E+03 9.300E+02 1.392E+03 8.417E+02
F18 2.511E+03 1.202E+03 1.620E+03 1.613E+03 1.484E+03 1.583E+03 1.076E+03 1.300E+03 9.812E+02
F19 2.674E+04 6.681E+02 2.829E+05 7.947E+04 2.048E+05 6.092E+02 1.430E+04 3.146E+04 5.820E+02
F20 6.247E+02 6.240E+02 6.247E+02 6.245E+02 6.247E+02 6.245E+02 6.239E+02 6.245E+02 6.236E+02
F21 4.441E+03 3.337E+03 4.977E+03 4.493E+03 4.614E+03 2.541E+03 3.335E+03 4.131E+03 2.237E+03
F22 1.602E+04 1.012E+04 1.645E+04 1.531E+04 1.639E+04 1.151E+04 1.613E+04 1.388E+04 7.111E+03
F23 1.641E+04 1.148E+04 1.692E+04 1.576E+04 1.695E+04 1.282E+04 1.693E+04 1.539E+04 1.179E+04
F24 1.399E+03 1.369E+03 1.442E+03 1.428E+03 1.592E+03 1.396E+03 1.397E+03 1.388E+03 1.381E+03
F25 1.539E+03 1.504E+03 1.567E+03 1.613E+03 1.685E+03 1.639E+03 1.495E+03 1.485E+03 1.523E+03
F26 1.662E+03 1.612E+03 1.700E+03 1.616E+03 1.652E+03 1.657E+03 1.697E+03 1.684E+03 1.609E+03
F27 3.532E+03 3.204E+03 3.747E+03 3.588E+03 4.033E+03 3.359E+03 3.560E+03 3.550E+03 3.322E+03
F28 5.718E+03 6.105E+03 8.233E+03 6.930E+03 9.614E+03 7.015E+03 4.465E+03 8.640E+03 2.910E+03
Win 28 20 27 28 27 25 26 27 -



V. CONCLUSION

In this paper, inspired by the growth characteristics and
natural laws of bamboo forests, the original BFGO algorithm
is expanded and replaced with more innovative strategies,
while retaining some of the original algorithm’s excellent
mechanisms. The improved algorithm significantly enhances
the performance of the original algorithm in terms of global
search and local exploration. Its performance is compared with
BFGO and some classical meta-heuristics and variants in two
test sets, CEC2017 and CEC2013, and the test results show
that the E-BFGO algorithm is highly competitive.
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