
On the Tension between Byzantine Robustness and No-Attack Accuracy in
Distributed Learning

Yi-Rui Yang 1 Chang-Wei Shi 1 Wu-Jun Li 1

Abstract

Byzantine-robust distributed learning (BRDL),
which refers to distributed learning that can work
with potential faulty or malicious workers (also
known as Byzantine workers), has recently at-
tracted much research attention. Robust aggrega-
tors are widely used in existing BRDL methods
to obtain robustness against Byzantine workers.
However, Byzantine workers do not always exist
in applications. As far as we know, there is al-
most no existing work theoretically investigating
the effect of using robust aggregators when there
are no Byzantine workers. To bridge this knowl-
edge gap, we theoretically analyze the aggrega-
tion error for robust aggregators when there are
no Byzantine workers. Specifically, we show that
the worst-case aggregation error without Byzan-
tine workers increases with the increase of the
number of Byzantine workers that a robust aggre-
gator can tolerate. The theoretical result reveals
the tension between Byzantine robustness and no-
attack accuracy, which refers to accuracy without
faulty workers and malicious workers in this paper.
Furthermore, we provide lower bounds for the
convergence rate of gradient descent with robust
aggregators for non-convex objective functions
and objective functions that satisfy the Polyak-
Łojasiewicz (PL) condition, respectively. We also
prove the tightness of the lower bounds. The
lower bounds for convergence rate reveal simi-
lar tension between Byzantine robustness and no-
attack accuracy. Empirical results further support
our theoretical findings.
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1. Introduction
Distributed learning has been a hot research topic for
years (Haddadpour et al., 2019; Jaggi et al., 2014; Lee et al.,
2017; Lian et al., 2017; Ma et al., 2015; Shamir et al., 2014;
Sun et al., 2018; Yang, 2013; Yu et al., 2019a;b; Zhao et al.,
2017; 2018; Zhou et al., 2018; Zinkevich et al., 2010). Tra-
ditional distributed learning typically assumes no attack
or failure. However, in some real-world scenarios such
as federated learning (McMahan & Ramage, 2017), the
probability of attacks or failure greatly increases due to
the server’s weak control on workers (Baruch et al., 2019;
Kairouz et al., 2021; Xie et al., 2020a). The workers under
attack or failure are also called Byzantine workers (Lamport
et al., 1982). Byzantine-robust distributed learning (BRDL),
which refers to distributed learning that can work with poten-
tial Byzantine workers, has recently attracted much research
attention (Bernstein et al., 2019; Bulusu et al., 2021; Chen
et al., 2018; Damaskinos et al., 2018; Diakonikolas et al.,
2017; Diakonikolas & Kane, 2019; Konstantinidis & Ra-
mamoorthy, 2021; Rajput et al., 2019; Sohn et al., 2020; Wu
et al., 2020; Yang & Li, 2021; Yang et al., 2024; 2020; Yin
et al., 2019).

Robust aggregation is a widely used technique to obtain
Byzantine robustness in distributed learning. By replacing
the vanilla mean aggregator on the server with some robust
aggregators, the distributed learning method can be robust
against a certain number of Byzantine workers. There are
many robust aggregators proposed in existing works (Blan-
chard et al., 2017; Chen et al., 2017; Guerraoui et al., 2018;
Karimireddy et al., 2021; Yin et al., 2018). Meanwhile,
using robust aggregation will also inevitably introduce an
aggregation error, which is the square distance between the
aggregation result and the true mean value. Large aggrega-
tion error will lead to a decrease of model accuracy.

Existing analyses (Allouah et al., 2023; Karimireddy et al.,
2021; 2022) for the aggregation error of robust aggregators
typically assume that the number (or fraction) of Byzantine
workers is known in advance, while in real-world applica-
tions, the number of Byzantine workers is usually unavail-
able. It is advised in existing works (Karimireddy et al.,
2022; Yang & Li, 2023) to determine the maximum number
of Byzantine workers that the BRDL method can tolerate
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in advance and then set the robust aggregator accordingly.
However, Byzantine workers do not always exist in appli-
cations. When there are actually no Byzantine workers, the
aggregation error introduced by robust aggregators could
have a negative effect on the convergence of distributed
learning methods and degrade the model accuracy. As far
as we know, there is almost no existing work theoretically
investigating the performance of robust aggregators when
there are no Byzantine workers. To bridge this knowledge
gap, we mainly focus on the following question:

How large could the aggregation error be when there are
actually no Byzantine workers?

The main contributions of our work are listed as follows:

• To the best of our knowledge, this is the first work that
theoretically investigates the tension between Byzan-
tine robustness and no-attack accuracy in distributed
learning.

• We theoretically prove that the worst-case aggregation
error without Byzantine workers increases with the in-
crease of f , which is the number of Byzantine workers
that a robust aggregator can tolerate. The theoretical re-
sult reveals the tension between Byzantine robustness
and no-attack accuracy.

• Moreover, we provide lower bounds for the conver-
gence rate of gradient descent with robust aggrega-
tors for non-convex objective functions and objective
functions that satisfy the Polyak-Łojasiewicz (PL) con-
dition, respectively. We further show that the lower
bounds are tight and increase with the increase of f .

• We also provide empirical results, which further sup-
port our theoretical findings.

In addition, we would like to point out that existing works
on robust aggregators mainly explore the performance when
there exist Byzantine workers while we focus on the case
without Byzantine workers in this work.

2. Preliminary
Many distributed learning problems can be formulated as:

min
w∈Rd

F (w) =
1

n

n∑
i=1

Fi(w), (1)

where w is the model parameter, n is the number of workers
and Fi(w) is the loss function associated with the training
data on the i-th worker. Moreover, we mainly focus on the
Parameter Server (PS) framework, where there is an extra
server responsible for coordination. A widely used method

Algorithm 1 Byzantine-Robust Gradient Descent (ByzGD)

Input: iteration number T , learning rates {ηt}T−1
t=0 , ro-

bust aggregator Agg(·);
Initialization: model parameter w0;
for t = 0 to T − 1 do

Broadcast wt to all workers;
on worker i ∈ {1, . . . , n} in parallel do

Compute local gradient gi = ∇Fi(wt);
Send gi to the server;

end on worker
Compute: wt+1 = wt − ηt ·Agg(g1, . . . ,gn);

end for
Output: model parameter wT .

to solve the problem (1) is gradient descent as presented
below:

wt+1 = wt − ηt ·

[
1

n

n∑
i=1

gi

]
.

Specifically, at the t-th iteration, all the workers compute
local gradients g1, . . . ,gn in parallel and send them to the
server. Then, the server aggregates the gradients with vanilla
averaging and updates the model parameter with the aggre-
gated gradient. However, the averaging value is sensitive
to the outliers and not robust against Byzantine workers.
Therefore, robust aggregators such as Krum (Blanchard
et al., 2017), geometric median (Chen et al., 2017) and
coordinate-wise trimmed mean (Yin et al., 2018) are pro-
posed to replace vanilla averaging in BRDL. By replacing
the vanilla averaging with some robust aggregators, we
can obtain Byzantine-robust gradient descent (ByzGD). In
ByzGD, the model parameters are updated by:

wt+1 = wt − ηt ·Agg(g1, . . . ,gn),

where Agg(·) denotes a general robust aggregator. More
details about ByzGD are presented in Algorithm 1.

In existing works, there are several definitions of robust ag-
gregators that are used to analyze the aggregation error. The
definition of (δmax, c)-ARAgg (Karimireddy et al., 2022) is
proposed based on the expectation of the distances among
the vectors while the definition of (f, λ)-resilient averag-
ing (Farhadkhani et al., 2022) is proposed based on the
maximum distances among the vectors. In (Allouah et al.,
2023), the definition of (f, κ)-robust aggregator is further
proposed, which can unify many existing definitions of
robust aggregators including (δmax, c)-ARAgg and (f, λ)-
resilient averaging. Due to this reason, we mainly follow
the definition of (f, κ)-robust aggregator in this work. For
simplicity, we use the notation ∥·∥ to represent the L2-norm
in this paper.

Definition 2.1 ((f, κ)-robustness (Allouah et al., 2023)).
Let f < n

2 and κ ≥ 0. An aggregator Agg : Rd×n → Rd is
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said to be (f, κ)-robust if for any n vectors x1, . . . ,xn ∈ Rd

and for any set S ⊆ {1, . . . , n} satisfying |S| = n− f , we
have

∥Agg(x1, . . . ,xn)− x̄S∥2 ≤ κ ·

[
1

|S|
∑
i∈S

∥xi − x̄S∥2
]
,

where x̄S = 1
|S|
∑

i∈S xi.

For an (f, κ)-robust aggregator, the square distance be-
tween the aggregated result Agg(x1, . . . ,xn) and the
mean value of non-Byzantine workers x̄S is bounded.
∥Agg(x1, . . . ,xn) − x̄S∥2 is also known as the aggrega-
tion error. Since the server cannot identify Byzantine work-
ers, the inequality should be satisfied for any set S with
|S| = n− f , where f is the number of Byzantine workers
that the aggregator can tolerate. Specifically, when there
are actually no Byzantine workers, the aggregation error is
∥Agg(x1, . . . ,xn)− 1

n

∑n
i=1 xi∥2. Thus, we propose the

definition of ϵ-accuracy in Definition 2.2, which measures
the aggregation error when there are no Byzantine workers.

Definition 2.2 (ϵ-accuracy). Let ϵ ≥ 0. An aggregator
Agg : Rd×n → Rd is said to be ϵ-accurate if for any n
vectors x1, . . . ,xn ∈ Rd, we have

∥Agg(x1, . . . ,xn)− x̄∥2 ≤ ϵ ·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
,

where x̄ = 1
n

∑n
i=1 xi.

Comparing Definition 2.1 and 2.2, we can find that ϵ-
accuracy is equivalent to (f, κ)-robustness when f = 0
and κ = ϵ. However, it is meaningless to say the robust-
ness of an aggregator that can tolerate at most 0 Byzantine
worker (f = 0). Thus, for better readability, we present
the definition of ϵ-accuracy alone, which is about the per-
formance of an aggregator in the case without Byzantine
workers.

3. Analysis of Aggregation Error
In this section, we theoretically analyze the aggregation
error of (f, κ)-robust aggregators in the case without Byzan-
tine workers. We only present the main results and proof
sketches in this section. Proof details are deferred to Ap-
pendix A in the supplementary material due to the limited
space.

To avoid confusion, we would like to clarify that f is the
number of Byzantine workers that the aggregator can toler-
ate and there are actually no Byzantine workers in the case
that we consider. Specifically, we will focus on how large ϵ
(please refer to Definition 2.2) could be in the case without
Byzantine workers.

3.1. General Lower Bound

Firstly, we provide a lower bound of ϵ for (f, κ)-robust
aggregators.

Theorem 3.1 (Lower Bound). If an (f, κ)-robust aggrega-
tor is ϵ-accurate, we have ϵ ≥ f

n−f .

The lower bound f
n−f in Theorem 3.1 is between 0 and 1

since f < n
2 . Moreover, when the total number of workers

n is fixed, the lower bound increases as f increases. In
other words, making the aggregator robust to more Byzan-
tine workers will inevitably introduce a larger worst-case
aggregation error. We will discuss more about this after
proving the tightness of the lower bound in Theorem 3.1.

3.2. General Upper Bound

Then we provide a general upper bound of ϵ for all (f, κ)-
robust aggregators in Theorem 3.2.

Theorem 3.2. Any (f, κ)-robust aggregator is κ-accurate.

The constant κ is dependent on f and differs for different
robust aggregators (Allouah et al., 2023). We present the
values of κ for three common (f, κ)-robust aggregators,
which are known as coordinate-wise trimmed mean (TM),
coordinate-wise median (CM) and geometric median (GM),
respectively, and the lower bound of κ in Table 1.

As we can see, the values of κ are much larger than the
lower bound f

n−f of ϵ. Specifically, for GM and CM, the

value of κ is larger than 4 while the lower bound f
n−f of ϵ

is always smaller than 1 when f < n
2 . Moreover, even the

lower bound f
n−2f of κ will be much larger than f

n−f when
f is close to n

2 since the denominator is close to 0. To obtain
tighter results, then we separately analyze the aggregation
error of each aggregator.

3.3. Analysis for Specific Aggregators

In this section, we analyze the value of ϵ for TM, CM,
and GM. Firstly, we present the definitions of these three
common (f, κ)-robust aggregators.

Definition 3.3 (coordinate-wise trimmed mean (Yin et al.,
2018)). Let vectors x1, . . . ,xn ∈ Rd. The coordinate-wise
trimmed mean TMf/n : Rd×n → Rd is defined as:

[TMf/n(x1, . . . ,xn)]j =
1

n− 2f

∑
x∈Xj

x,

where [·]j denotes the j-th coordinate of a vector and the set
Xj is obtained by removing the f largest and the f smallest
values of {[x1]j , . . . , [xn]j}.

Definition 3.4 (coordinate-wise median (Yin et al., 2018)).
Let x1, . . . ,xn ∈ Rd. The coordinate-wise median CM :
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Table 1. Values of κ for different robust aggregators (Allouah et al., 2023)

Aggregator TM CM GM Lower bound

κ 6f
n−2f (1 +

f
n−2f ) 4(1 + f

n−2f )
2 4(1 + f

n−2f )
2 f

n−2f

Table 2. Values of ϵ for different robust aggregators

Aggregator TMf/n CM GM Lower bound

ϵ f
n−f

⌊n−1
2 ⌋

n−⌊n−1
2 ⌋ 1 f

n−f

Rd×n → Rd is defined as:

[CM(x1, . . . ,xn)]j = Median([x1]j , . . . , [xn]j),

where Median(·) is the scalar median operator.

Definition 3.5 (geometric median). Let x1, . . . ,xn ∈ Rd.
The geometric median GM : Rd×n → Rd is defined as:

GM(x1, . . . ,xn) ∈ argmin
x∈Rd

n∑
i=1

∥x− xi∥. (2)

In other words, the geometric median is the vector that
minimizes the sum of L2-distances. When the vectors
x1, . . . ,xn are not collinear, the optimization problem in
the right-hand side of (2) has a unique solution (Vardit &
Zhang, 2000).

The values of ϵ for the three (f, κ)-robust aggregators are
summarized in Table 2. Due to the limited space, the
analysis details for TM, CM and GM are deferred to Ap-
pendix A.3, Appendix A.4 and Appendix A.5, respectively.
Moreover, please note that the value of ϵ for the coordinate-
wise trimmed mean TMf/n exactly meets the general lower
bound in Theorem 3.1. It indicates that the value of ϵ for
TMf/n and the general lower bound are both tight.

3.4. Conditions of the Worst Case

We have obtained that the value of ϵ can be up to f
n−f in the

worst case. Then we would like to focus on the following
question:

Under what conditions is the aggregation error largest?

To answer the question above, we would like to first present
the theoretical result and a proof sketch for the aggregation
error of TM in Theorem 3.6 below. The conditions of the
worst case can be derived based on the proof of Theorem 3.6.

Theorem 3.6. When f < n
2 , the coordinate-wise trimmed

mean TMf/n is f
n−f -accurate.

3.4.1. PROOF SKETCH OF THEOREM 3.6

We first consider the case where the dimension d = 1.
Let x1, . . . , xn be any n real numbers. Without loss of
generality, we assume that x1 ≤ x2 ≤ . . . ≤ xn since the
order does not affect the trimmed mean of the n values.
Furthermore, we let sets I− = {1, 2, . . . , f}, I0 = {f +
1, . . . , n− f} and I+ = {n− f + 1, . . . , n}, and define

x̄I− =
1

|I−|
∑
i∈I−

xi =
1

f

f∑
i=1

xi, (3)

x̄I0 =
1

|I0|
∑
i∈I0

xi =
1

n− 2f

n−f∑
i=f+1

xi, (4)

x̄I+ =
1

|I+|
∑
i∈I+

xi =
1

f

n∑
i=n−f+1

xi. (5)

According to the definition,

x̄ =
f

n
x̄I− +

n− 2f

n
x̄I0 +

f

n
x̄I+ ,

TMf/n(x1, . . . , xn) = x̄I0 .

Thus, we have

TMf/n(x1, . . . , xn)− x̄

=
f

n
(x̄I0 − x̄I−) +

f

n
(x̄I0 − x̄I+) =

f

n
∆− − f

n
∆+, (6)

where

∆− = x̄I0 − x̄I− ≥ 0, and ∆+ = x̄I+ − x̄I0 ≥ 0.

Moreover, we define the within-group variances

s2I− =
1

f

∑
i∈I−

(xi − x̄I−)
2, s2I0 =

1

f

∑
i∈I0

(xi − x̄I0)
2,

s2I+ =
1

f

∑
i∈I+

(xi − x̄I+)
2,

4
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and we have the following equation

1

n

n∑
i=1

(xi − x̄)2 =
n− f

f

[
TMf/n(x1, . . . , xn)− x̄

]2
+

2f

n
(∆−∆+) +

[
f

n
· s2I− +

n− 2f

n
· s2I0 +

f

n
· s2I+

]
.

(7)

For space saving, the proof details of (7) are deferred to
Appendix A.3. Noticing that s2I− ≥ 0, s2I0 ≥ 0, s2I+ ≥ 0,
∆− ≥ 0 and ∆+ ≥ 0, we have that 1

n

∑n
i=1(xi − x̄)2 ≥

n−f
f

[
TMf/n(x1, . . . , xn)− x̄

]2
, or, equivalently,

[
TMf/n(x1, . . . , xn)− x̄

]2 ≤ f

n− f
·

[
1

n

n∑
i=1

(xi − x̄)2

]
.

(8)
For general d-dimension cases, ∥TMf/n(x1, . . . ,xn)− x̄∥2
and ∥xi−x̄∥2 can be written as summations of square errors
on each dimension. Recursively using inequality (8) for 1-
dimension case above, we finally obtain that

∥TMf/n(x1, . . . ,xn)−x̄∥2 ≤ f

n− f
·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
.

(9)
It implies that TMf/n is f

n−f -accurate.

3.4.2. DISCUSSION ON THE WORST CASE

By comparing Equation (7) and Inequality (8), we can find
that the equation in (8) holds if and only if

2f

n
(∆−∆+) +

[
f

n
· s2I− +

n− 2f

n
· s2I0 +

f

n
· s2I+

]
= 0,

which is equivalent to that s2I− = s2I0 = s2I+ = 0 and
∆−∆+ = 0. Without loss of generality, we assume that
∆+ = 0. Recall that s2I− , s2I0 and s2I+ are the within-group
variances of {xi}i∈I− , {xi}i∈I0 and {xi}i∈I+ , respectively.
Therefore, we have

x1 = x2 = . . . = xf and xf+1 = . . . = xn. (10)

In summary, for 1-dimension case, in the case described
by Equation (10), the aggregation error is the largest. For
the general d-dimension case, the aggregation error is the
largest when Equation (10) holds for each dimension.

Moreover, please note that the condition described by Equa-
tion (10) indicates a large skewness among {x1, . . . , xn}.
Thus, our theoretical results show that a large data skewness
will lead to a large error of robust aggregation even if there
is actually no Byzantine workers.

3.5. More Discussion

3.5.1. ABOUT THE TIGHTNESS OF THE BOUNDS

As we can see, the value of ϵ for TMf/n exactly meets the
lower bound f

n−f . Thus, both the upper bound for TMf/n

and the lower bound are tight. Moreover, since coordinate-
wise median (CM) is robust against f = ⌊n−1

2 ⌋ Byzantine
workers, the value of ϵ for CM also meets the lower bound.

Then we show the tightness of the value of ϵ for GM. Con-
sider the case where n = 2n′ is an even number and the
dimension d = 1. Moreover, x1 = x2 = . . . = xn′ = 0
and xn′+1 = xn′+2 = . . . = x2n′ = 1. In this case, x̄ = 1

2
and 1

n

∑n
i=1 ∥x̄− xi∥2 = 1

n

(∑n
i=1

1
4

)
= 1

4 . The geomet-
ric median xGM can be any value in [0, 1]. When xGM = 0
or 1, we have that ∥xGM − x̄∥2 = 1

4 . Therefore, in this case,

∥xGM − x̄∥2 =
1

4
= 1 ·

[
1

n

n∑
i=1

∥x̄− xi∥2
]
.

Therefore, the value ϵ = 1 for GM in Table 2 is tight. More-
over, the value of ϵ for GM asymptotically meets the lower
bound since GM is robust against f = ⌊n−1

2 ⌋ Byzantine
workers and limn→∞⌊n−1

2 ⌋/(n− ⌊n−1
2 ⌋) = 1.

3.5.2. ABOUT DATA HETEROGENEITY

Due to the tightness of the lower bound, the aggregation
error in the worst case is proportional to 1

n

∑n
i=1 ∥xi− x̄∥2,

which could be large when the probability distributions of
xi’s are heterogeneous. Therefore, the aggregation error
could be larger when data distribution are more heteroge-
neous. There are some existing techniques to reduce the
gradient (or momentum) heterogeneity in BRDL such as
bucketing (Karimireddy et al., 2022) and nearest neighbour
mixing (NNM) (Allouah et al., 2023). However, both of the
two techniques requires the prior knowledge of the maxi-
mum number of Byzantine workers to mix the input vectors.
Less Byzantine workers can be tolerated if we want to make
the vectors more homogeneous after mixing.

From another perspective, an aggregator combined with
NNM (or bucketing) can be considered as a new aggregator
that can resist fewer Byzantine workers but have less aggre-
gation error. Therefore, when using NNM or bucketing, we
actually use the prior knowledge of the Byzantine worker
number to make a better trade-off between robustness and
accuracy. Please see Section 5 for the empirical results,
which will further support the theoretical findings in this
section.

3.5.3. SUMMARY OF THEORETICAL RESULTS

In this section, we theoretically show that for any (f, κ)-
robust aggregator, when there are no Byzantine workers, it
is inevitably to have an aggregation error in the order of
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O( f
n−f ) in the worst case. Moreover, the value of f

n−f
increases as f increases. It shows that to obtain robust-
ness against more Byzantine workers, the worst-case per-
formance in no-attack cases is inevitably degraded, which
we deem as the tension between Byzantine robustness and
no-attack accuracy.

4. Convergence
In this section, we theoretically analyze the convergence of
ByzGD with (f, κ)-robust aggregators when there are actu-
ally no Byzantine workers. Firstly, we list the assumptions
below.

Assumption 4.1 (Bounded loss). ∃F ∗ ∈ R such that ∀w ∈
Rd, F (w) ≥ F ∗.

Assumption 4.2 (L-smoothness). ∀w,w′ ∈ Rd,
∥∇F (w)−∇F (w′)∥ ≤ L∥w −w′∥.

Assumption 4.3 (Bounded heterogeneity). There exists
G ≥ 0 such that ∀w ∈ Rd,

1

n

n∑
i=1

∥∇Fi(w)−∇F (w)∥2 ≤ G2.

Assumption 4.4 (Polyak-Łojasiewicz (PL) condition). Let
F ∗ denote the lower bound of F (w). ∃µ > 0 such that
∀w ∈ Rd, F (w)− F ∗ ≤ 1

2µ∥∇F (w)∥2.

The four assumptions above are common in distributed learn-
ing (Allouah et al., 2023; Blanchard et al., 2017; Farhad-
khani et al., 2022; Karimireddy et al., 2021; 2022; Xie et al.,
2019; 2020b). Specifically, the value of G measures the
heterogeneity of local gradients on workers. A larger G typ-
ically makes the distributed learning task more challenging.
Under the assumptions, we have the following convergence
result for ByzGD.

Theorem 4.5 (Lower bound). For ByzGD (Algo-
rithm 1) with any (f, κ)-robust aggregator, there exist
n loss functions F1(w), . . . , Fn(w) satisfying Assump-
tions 4.1, 4.2, 4.3 and 4.4, and satisfying the following
condition: For any initial point w0, any positive constant
learning rate ηt = η > 0, any constant C1 < f

n−fG
2 and

any positive integer K > 0, there exists an integer T > K
such that

1

T

T−1∑
t=0

∥∇F (wt)∥2 > C1,

and
F (wT )− F ∗ >

C1

2µ
.

Due to the limited space, we only provide a proof sketch of
Theorem 4.5 here. Consider the 1-dimension case where

F1(w) = . . . = Ff (w) =
nG

2
√
f(n− f)

w2

and

Ff+1(w) = . . . = Fn(w) =
nG

2
√
f(n− f)

(w2 − 2w).

It can be verified that F (w) = 1
n

∑n
i=1 Fi(w) has the

unique global mimimum point w∗ = n−f
n and satisfies

Assumptions 4.1, 4.2, 4.3 and 4.4. Moreover, the updating
rule of ByzGD for this case can be written as:

wt+1 − 1 =

[
1− nGη√

f(n− f)

]
(wt − 1).

By separately analyzing the three cases where (i) 0 < η <
2
√

f(n−f)

nG ; (ii) η =
2
√

f(n−f)

nG ; and (iii) η >
2
√

f(n−f)

nG ,
we can finally obtain the desired results. Please refer to
Appendix A for more proof details.

Theorem 4.5 indicates that whatever the initial point
w0, the learning rate η and the iteration number T are,
ByzGD with a (f, κ)-robust aggregator cannot guarantee
1
T

∑T−1
t=0 ∥∇F (wt)∥2 to be smaller than f

n−fG
2 for gen-

eral non-convex loss functions that satisfy Assumptions 4.1,
4.2 and 4.3. Similarly, [F (wT )− F ∗] cannot be guaranteed
to be smaller than f

n−f · G2

2µ for loss functions that satisfy
Assumptions 4.1, 4.2, 4.3 and 4.4.

In general cases where ∇Fi(w)’s are not all the same, we
have G > 0. Theorem 4.5 indicates that ByzGD with a
(f, κ)-robust aggregator cannot guarantee the convergence
to 0. Moreover, the term f

n−f increases with the increase of
f , where f is the number of Byzantine workers that can be
tolerated. Therefore, the convergence lower bound will be
larger if more Byzantine workers can be tolerated, which we
consider as the tension between Byzantine robustness and
no-attack accuracy. Then we show that the constant terms
f

n−fG
2 and f

n−f · G2

2µ are optimal and cannot be improved.

Theorem 4.6 (Upper bound). For ByzGD (Algorithm 1),
under Assumption 4.1, Assumption 4.2 and Assumption 4.3,
when ηt =

1
L and Agg(·) is ϵ-accurate, we have that

1

T

T−1∑
t=0

∥∇F (wt)∥2 ≤ 2L[F ∗ − F (wT )]

T
+ ϵG2.

Furthermore, when F (w) also satisfies the PL condition
(Assumption 4.4), we have that

F (wT )− F ∗ ≤
(
1− µ

L

)T
[F (w0)− F ∗] +

ϵG2

2µ
.

The terms 2L[F∗−F (wT )]
T and (1 − µ

L )
T [F (w0) − F ∗] in

Theorem 4.6 approach 0 when T → ∞, while the constant
terms ϵG2 and ϵG2

2µ remain. Please note that ϵ ≥ f
n−f (Theo-

rem 3.1) and that TMf/n is both (f, κ)-robust and ϵ-accurate
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with ϵ = f
n−f . It indicates that the lower bound f

n−fG
2

for C1 in Theorem 4.5 cannot be improved. Therefore, the
constant terms in Theorem 4.5 and those in Theorem 4.6 are
both tight.

In this section, we mainly analyze the convergence of
ByzGD. In some large-scale problems, the computation
of local gradients is time-consuming. Some variants such as
Byzantine-robust stochastic gradient descent (ByzSGD) has
a much lower computation cost of each iteration and is more
widely used. We would like to point out that the lower bound
in Theorem 4.5 can be directly applied to ByzSGD since
ByzGD can be considered as a special case of ByzSGD with
a zero variance. Local momentum (Allouah et al., 2023;
Farhadkhani et al., 2022; Karimireddy et al., 2021) is also
proposed to reduce the variance of stochastic gradients in
ByzSGD. However, the constant terms ϵG2 and ϵG2

2µ are
related to the aggregation accuracy ϵ and the heterogeneity
degree G while using stochastic gradients or local momen-
tums does not help to reduce ϵ or G. Stochastic gradients
can reduce the computation cost of each iteration, but do
not have a better worst-case convergence guarantee. There-
fore, for these variants, there are similar tensions between
Byzantine robustness and no-attack accuracy, which we will
verify by empirical results.

In real-world applications, the number of Byzantine workers
is usually unknown, and it is typically required to determine
in advance the number f of Byzantine workers that the dis-
tributed learning system can tolerate. A too small f will
make the BRDL method easy to be foiled by Byzantine
workers. However, a too large f may also lead to a large ag-
gregation error, and thus degrade the model accuracy, even if
there are actually no Byzantine workers. Thus, f should be
carefully estimated before designing the distributed learning
system in real-world applications.

5. Experiment
In this section, we will empirically test the effect of using
robust aggregator when there are no Byzantine workers.
Specifically, we use ByzSGD with various robust aggrega-
tors to train a ResNet-20 (He et al., 2016) deep learning
model on the CIFAR-10 dataset (Krizhevsky et al., 2009)
for 160 epochs without attacks. All the experiments are
conducted on a distributed platform with 16 Docker con-
tainers serving as workers and an extra Docker container as
the server. Each Docker container is bound to an NVIDIA
TITAN Xp GPU. We test the performance of each method
when the training instances are randomly distributed to the
workers according to the Dirichlet distribution with hyper-
parameters α = 0.1, 1.0 and 10.0, respectively. A smaller
α will lead to a more heterogeneous data distribution. More-
over, the batch normalization (BN) layers in the ResNet-20
model are replaced with group normalization layers since

BN layers have a poor performance with heterogeneous
data across workers (Wu & He, 2018). All algorithms are
implemented with PyTorch 1.3.

We use cross-entropy as the loss function, set the batch size
on each worker to 16, and use the cosine annealing learning
rates (Loshchilov & Hutter, 2017). Specifically, the learning
rate at the p-th epoch is ηp = 1+cos(pπ/160)

2 η0 for p =
0, 1, . . . , 159. The initial learning rate η0 is selected from
{0.1, 0.2, 0.5, 1.0}, and the best final top-1 test accuracy is
used as the final metrics. Local momentum is used with
momentum hyper-parameter set to 0.9. We first test the
performance of using multi-Krum (Blanchard et al., 2017)
and coordinate-wise trimmed mean (Yin et al., 2018) when
hyper-parameter f , which is the number of the Byzantine
workers that can be tolerated, ranges from 0 to 7. It takes
about 1.5 hours to run each method for 160 epochs.

As the results in Table 3 and Table 4 show, for both multi-
Krum and coordinate-wise trimmed mean, the final top-1
test accuracy decreases as f increases. In other words, to
make the BRDL method robust to more Byzantine workers,
the model accuracy under no attack will decrease. Further-
more, the final top-1 test accuracy decreases more rapidly
with a smaller α. Please note that α is the hyper-parameter
related to the data distribution. A smaller α indicates a more
heterogeneous data distribution and a larger G (please refer
to Assumption 4.3). Thus, the final top-1 test accuracy de-
creases more rapidly when G is larger, which is consistent
with the theoretical results in Theorem 4.5 and Theorem 4.6.

We also test the performance of multi-Krum and
coordinate-wise trimmed mean with nearest neighbour mix-
ing (NNM) (Allouah et al., 2023). The NNM technique
can reduce the heterogeneity of vectors. Specifically, we
fix f = 7 (the maximum number of Byzantine workers that
can be tolerated) for both of the two robust aggregators and
let the hyper-parameter fNNM range from 1 to 7 for NNM.
A smaller fNNM makes the vectors after mixing more ho-
mogeneous but will also decrease the number of Byzantine
workers that the whole BRDL method can tolerate. Specifi-
cally, the whole BRDL method is robust to min{f, fNNM}
Byzantine workers. When fNNM = 0, the output vectors of
NNM will be all the same and equal the mean of the input
vectors. Thus, when fNNM = 0, robust aggregator combined
with NNM is equivalent to vanilla mean aggregator.

As the results in Table 5 and Table 6 show, using NNM
alleviates the degrade of final top-1 test accuracy for both
multi-Krum and coordinate-wise trimmed mean. Moreover,
using a smaller fNNM can lead to a higher final top-1 test
accuracy, but will also make the distributed learning method
robust to less Byzantine workers. Therefore, there is also a
tension between Byzantine robustness and no-attack accu-
racy when using the NNM technique.
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Table 3. The final top-1 test accuracy of using multi-Krum with various hyper-parameter f to train the model for 160 epochs under
different data distributions when there are no Byzantine workers. Both of the two aggregators are equivalent to vanilla mean when f = 0.
The values in the parentheses are the differences compared to the case of f = 0.

f
Multi-Krum (Blanchard et al., 2017)

α = 0.1 α = 1.0 α = 10.0

0 (=mean) 89.42% 89.36% 89.55%
1 88.05% (-1.37%) 87.50% (-1.86%) 88.36% (-1.19 %)
3 83.50% (-5.92%) 84.49% (-4.87%) 87.02% (-2.53%)
5 69.86% (-19.56%) 80.40% (-8.96%) 84.64% (-4.91%)
7 40.31% (-49.11%) 68.54% (-20.82%) 73.69% (-15.86%)

Table 4. The final top-1 test accuracy of using coordinate-wise trimmed mean with various hyper-parameter f to train the model for 160
epochs under different data distributions when there are no Byzantine workers. Both of the two aggregators are equivalent to vanilla mean
when f = 0. The values in the parentheses are the differences compared to the case of f = 0.

f
Coordinate-wise trimmed mean (Yin et al., 2018)
α = 0.1 α = 1.0 α = 10.0

0 (=mean) 89.42% 89.36% 89.55%
1 50.13% (-39.29%) 66.18% (-23.18%) 88.71% (-0.84%)
3 24.95% (-64.47%) 48.32% (-41.04%) 87.51% (-2.04%)
5 10.00% (-79.42%) 42.86% (-46.50%) 86.68% (-2.87%)
7 10.00% (-79.42%) 40.54% (-48.82%) 83.15% (-6.40%)

Table 5. The final top-1 test accuracy of using multi-Krum with NNM to train the model for 160 epochs under different data distributions
when there are no Byzantine workers. Both of the two robust aggregators combined with NNM are equivalent to vanilla mean when
fNNM = 0. The values in the parentheses are the differences compared to the case of fNNM = 0.

fNNM
Multi-Krum (Blanchard et al., 2017) with f = 7

α = 0.1 α = 1.0 α = 10.0

0 (=mean) 89.42% 89.36% 89.55%
1 88.81% (-0.61%) 88.39% (-0.97%) 89.49% (-0.06%)
3 87.61% (-1.81%) 86.56% (-2.80%) 88.93% (-0.62%)
5 83.16% (-6.26%) 84.63% (-4.73%) 87.99% (-1.56%)
7 75.03% (-14.39%) 83.88% (-5.48%) 86.94% (-2.61%)

without NNM 40.31% (-49.11%) 68.54% (-20.82%) 73.69% (-15.86%)

Table 6. The final top-1 test accuracy of using coordinate-wise trimmed mean with NNM to train the model for 160 epochs under different
data distributions when there are no Byzantine workers. Both of the two robust aggregators combined with NNM are equivalent to vanilla
mean when fNNM = 0. The values in the parentheses are the differences compared to the case of fNNM = 0.

fNNM
Coordinate-wise trimmed mean (Yin et al., 2018) with f = 7

α = 0.1 α = 1.0 α = 10.0

0 (=mean) 89.42% 89.36% 89.55%
1 86.61% (-2.81%) 88.59% (-0.77%) 88.57% (-0.98%)
3 83.83% (-5.59%) 87.57% (-1.79%) 88.53% (-1.02%)
5 81.50% (-7.92%) 86.03% (-3.33%) 88.06% (-1.49%)
7 61.09% (-28.33%) 82.77% (-6.59%) 87.79% (-1.76%)

without NNM 10.00% (-79.42%) 40.54% (-48.82%) 83.15% (-6.40%)
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6. Conclusion
To the best of our knowledge, this is the first work that
theoretically investigates the tension between Byzantine ro-
bustness and no-attack accuracy in distributed learning. We
theoretically analyze the aggregation error of robust aggrega-
tors and the convergence rate of using gradient descent with
robust aggregators. The theoretical results show that making
the distributed learning method robust to more Byzantine
workers will degrade the worst-case performance under no
attack. Our theoretical findings are further supported by the
empirical results.
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A. Proof Details
A.1. Proof of Theorem 3.1

Proof. Let Agg(·) be a (f, κ)-robust aggregator. Assume that Agg(·) is ϵ-accurate. We consider the case where x1 =
. . . = xn−f = 0 and xn−f+1 = . . . = xn = A > 0. We have

x̄ =
1

n

n∑
i=1

xi =
f

n
·A, (11)

and
1

n

n∑
i=1

∥xi − x̄∥2 =
1

n

[
(n− f) ·

(
f

n
·A
)2

+ f ·
(
A− f

n
·A
)2
]
=

f(n− f)

n2
·A2. (12)

Let set S′ = {1, . . . , n− f}. We have

x̄S′ =
1

|S′|
∑
i∈S′

xi = 0,

and
1

|S′|
∑
i∈S′

∥xi − x̄S′∥2 = 0.

According to the definition of (f, κ)-robustness, we have

∥Agg(x1, . . . ,xn)− x̄S′∥2 ≤ κ ·

[
1

|S′|
∑
i∈S′

∥xi − x̄S′∥2
]
= 0,

which implies that
Agg(x1, . . . ,xn) = x̄S′ = 0. (13)

According to equations (11), (12) and (13),

∥Agg(x1, . . . ,xn)− x̄∥2 =

(
0− f

n
·A
)2

=
f2

n2
·A2 =

f

n− f
·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
.

In addition, according to the definition of ϵ-accuracy,

∥Agg(x1, . . . ,xn)− x̄∥2 ≤ ϵ ·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
.

Therefore,

ϵ ·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
≥ ∥Agg(x1, . . . ,xn)− x̄∥2 =

f

n− f
·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
.

Consequently, it is obtained that

ϵ ≥ f

n− f
.

A.2. Proof of Theorem 3.2

Proof. Suppose that Agg(·) is an (f, κ)-robust aggregator. Let set

U = {S|S ⊆ {1, . . . , n}, |S| = n− f}.

Therefore, we have

|U| =
(

n

n− f

)
=

n!

f !(n− f)!
.
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For any S ∈ U and any n vectors x1, . . . ,xn ∈ Rd, we have∑
i∈S

∥xi − x̄S∥2 =
∑
i∈S

(
∥xi∥2 − 2xi · x̄S + ∥x̄S∥2

)
=
∑
i∈S

∥xi∥2 − 2|S|x̄S · x̄S + |S|∥x̄S∥2

=
∑
i∈S

∥xi∥2 − |S|∥x̄S∥2

=
∑
i∈S

∥xi∥2 −
1

|S|

∥∥∥∥∥∑
i∈S

xi

∥∥∥∥∥
2

=
∑
i∈S

∥xi∥2 −
1

|S|
∑
i∈S

∥xi∥2 −
2

|S|
∑

i∈S,j∈S,i<j

xi · xj

Notice that |S| = n− f for all S ∈ U . Therefore,∑
i∈S

∥xi − x̄S∥2 =
n− f − 1

n− f

∑
i∈S

∥xi∥2 −
2

n− f

∑
i,j∈S,i<j

xi · xj . (14)

Take summation over all S ∈ U for both sides of (14), it is obtained that

∑
S∈U

(∑
i∈S

∥xi − x̄S∥2
)

=
n− f − 1

n− f

∑
S∈U

(∑
i∈S

∥xi∥2
)

− 2

n− f

∑
S∈U

 ∑
i,j∈S,i<j

xi · xj

 .

For any element i ∈ {1, . . . , n}, there are totally
(

n−1
n−f−1

)
sets S in U that contain i. Moreover, for any two different

elements i, j ∈ {1, . . . , n}, there are totally
(

n−2
n−f−2

)
sets S in U that contain both i and j. Therefore,

∑
S∈U

(∑
i∈S

∥xi − x̄S∥2
)

=
n− f − 1

n− f

(
n− 1

n− f − 1

) n∑
i=1

∥xi∥2 −
2

n− f

(
n− 2

n− f − 2

) n−1∑
i=1

n∑
j=i+1

xi · xj

=
(n− f − 1)(n− 1)!

(n− f)f !(n− f − 1)!

n∑
i=1

∥xi∥2 −
2(n− 2)!

(n− f)f !(n− f − 2)!

n−1∑
i=1

n∑
j=i+1

xi · xj

=
(n− f − 1)(n− 1)!

(n− f)!f !

n∑
i=1

∥xi∥2 −
2(n− 2)!(n− f − 1)

(n− f)!f !

n−1∑
i=1

n∑
j=i+1

xi · xj

=
n!

f !(n− f)!
· n− f − 1

n− 1

n− 1

n

n∑
i=1

∥xi∥2 −
2

n

n−1∑
i=1

n∑
j=i+1

xi · xj

 .

In (14), let S = {1, . . . , n}, and we have

n∑
i=1

∥xi − x̄∥2 =
n− 1

n

n∑
i=1

∥xi∥2 −
2

n

n−1∑
i=1

n∑
j=i+1

xi · xj , (15)

where x̄ = 1
n

∑n
i=1 xi. Therefore,

∑
S∈U

(∑
i∈S

∥xi − x̄S∥2
)

=
n!

f !(n− f)!
· n− f − 1

n− 1

n∑
i=1

∥xi − x̄∥2.

13
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Since |U| = n!
f !(n−f)! and |S| = n− f for all S ∈ U , it is obtained that

1

|U|
∑
S∈U

(
1

|S|
∑
i∈S

∥xi − x̄S∥2
)

=
(n− f − 1)n

(n− f)(n− 1)

(
1

n

n∑
i=1

∥xi − x̄∥2
)

=
n2 − nf − n

n2 − nf − n+ f

(
1

n

n∑
i=1

∥xi − x̄∥2
)
.

Therefore,
1

|U|
∑
S∈U

(
1

|S|
∑
i∈S

∥xi − x̄S∥2
)

≤ 1

n

n∑
i=1

∥xi − x̄∥2. (16)

Meanwhile, by using Cauchy’s inequality and the fact that x̄ = 1
|U|
∑

S∈U x̄S , we have

∥Agg(x1, . . . ,xn)− x̄∥2 =

∥∥∥∥∥ 1

|U|
∑
S∈U

[Agg(x1, . . . ,xn)− x̄S ]

∥∥∥∥∥
2

≤ 1

|U|
∑
S∈U

∥Agg(x1, . . . ,xn)− x̄S∥2.

According to the definition of (f, κ)-robustness,

∥Agg(x1, . . . ,xn)− x̄S∥2 ≤ κ ·

[
1

|S|
∑
i∈S

∥xi − x̄S∥2
]
,

Therefore,

∥Agg(x1, . . . ,xn)− x̄∥2 ≤ κ · 1

|U|
∑
S∈U

(
1

|S|
∑
i∈S

∥xi − x̄S∥2
)
.

Using inequality (16), we finally obtained that

∥Agg(x1, . . . ,xn)− x̄∥2 ≤ κ ·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
, (17)

which implies that Agg(·) is κ-accurate.

A.3. Analysis for Coordinate-wise Trimmed Mean

Proof. We first proof the theorem for the case where the dimension d = 1. Let x1, . . . , xn be any n real numbers. Without
loss of generality, we assume that x1 ≤ x2 ≤ . . . ≤ xn since the order does not affect the trimmed mean of the n values,
and the trimmed mean can be written as

TMf/n(x1, . . . , xn) =
1

n− 2f

n−f∑
i=f+1

xi.

Therefore,

TMf/n(x1, . . . , xn)− x̄

=
1

n− 2f

n−f∑
i=f+1

xi −
1

n

n∑
i=1

xi

=

(
1

n− 2f
− 1

n

) n−f∑
i=f+1

xi

− 1

n

[
f∑

i=1

xi

]
− 1

n

 n∑
i=n−f+1

xi


14
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=
2f

n

 1

n− 2f

n−f∑
i=f+1

xi

− f

n

[
1

f

f∑
i=1

xi

]
− f

n

 1

f

n∑
i=n−f+1

xi


=

f

n

 1

n− 2f

n−f∑
i=f+1

xi −
1

f

f∑
i=1

xi

+
f

n

 1

n− 2f

n−f∑
i=f+1

xi −
1

f

n∑
i=n−f+1

xi

 .

Let sets I− = {1, 2, . . . , f}, I0 = {f + 1, . . . , n− f} and I+ = {n− f + 1, . . . , n}. We define

x̄I− =
1

|I−|
∑
i∈I−

xi =
1

f

f∑
i=1

xi,

x̄I0 =
1

|I0|
∑
i∈I0

xi =
1

n− 2f

n−f∑
i=f+1

xi,

and

x̄I+ =
1

|I+|
∑
i∈I+

xi =
1

f

n∑
i=n−f+1

xi.

Therefore, we have

TMf/n(x1, . . . , xn)− x̄ =
f

n
(x̄I0 − x̄I−) +

f

n
(x̄I0 − x̄I+). (18)

Meanwhile,

1

n

n∑
i=1

(xi − x̄)2 =
1

n

∑
i∈I−

(xi − x̄)2 +
1

n

∑
i∈I0

(xi − x̄)2 +
1

n

∑
i∈I+

(xi − x̄)2

=
1

n

∑
i∈I−

[(xi − x̄I−) + (x̄I− − x̄)]2

+
1

n

∑
i∈I0

[(xi − x̄I0) + (x̄I0 − x̄)]2

+
1

n

∑
i∈I+

[(xi − x̄I+) + (x̄I+ − x̄)]2. (19)

Notice that

1

n

∑
i∈I−

[(xi − x̄I−) + (x̄I− − x̄)]2

=
1

n

∑
i∈I−

[(xi − x̄I−)
2 + (x̄I− − x̄)2 + 2(xi − x̄I−)(x̄I− − x̄)]

=
1

n

∑
i∈I−

(xi − x̄I−)
2 +

1

n

∑
i∈I−

(x̄I− − x̄)2 +
1

n

∑
i∈I−

[2(xi − x̄I−)(x̄I− − x̄)]

=
f

n

 1

f

∑
i∈I−

(xi − x̄I−)
2

+
f

n
(x̄I− − x̄)2 +

2(x̄I− − x̄)

n

∑
i∈I−

(xi − x̄I−).

Since
∑

i∈I−
(xi − x̄I−) = 0, we have

1

n

∑
i∈I−

[(xi − x̄I−) + (x̄I− − x̄)]2 =
f

n
· [s2I− + (x̄I− − x̄)2], (20)

15
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where s2I− = 1
f

∑
i∈I−

(xi − x̄I−)
2. Similarly,

1

n

∑
i∈I0

[(xi − x̄I0) + (x̄I0 − x̄)]2 =
n− 2f

n
· [s2I0 + (x̄I0 − x̄)2], (21)

1

n

∑
i∈I+

[(xi − x̄I+) + (x̄I+ − x̄)]2 =
f

n
· [s2I+ + (x̄I+ − x̄)2], (22)

where s2I0 = 1
n−2f

∑
i∈I0

(xi − x̄I0)
2 and s2I+ = 1

f

∑
i∈I+

(xi − x̄I+)
2. Substituting (20), (21) and (22) into (19), we have

1

n

n∑
i=1

(xi − x̄)2 =

[
f

n
· s2I− +

n− 2f

n
· s2I0 +

f

n
· s2I+

]
+

f

n
· (x̄I− − x̄)2 +

n− 2f

n
· (x̄I0 − x̄)2 +

f

n
· (x̄I+ − x̄)2.

Notice that x̄ = f
n x̄I− + n−2f

n x̄I0 +
f
n x̄I+ , and we have

1

n

n∑
i=1

(xi − x̄)2 =

[
f

n
· s2I− +

n− 2f

n
· s2I0 +

f

n
· s2I+

]

+
f

n
·
[
n− 2f

n
(x̄I− − x̄I0) +

f

n
(x̄I− − x̄I+)

]2
+

n− 2f

n
·
[
f

n
(x̄I0 − x̄I−) +

f

n
(x̄I0 − x̄I+)

]2
+

f

n
·
[
f

n
(x̄I+ − x̄I−) +

n− 2f

n
(x̄I+ − x̄I0)

]2
.

For simplicity, we let

s̃2 =
f

n
· s2I− +

n− 2f

n
· s2I0 +

f

n
· s2I+ ≥ 0,

∆− = x̄I0 − x̄I− ≥ 0, and ∆+ = x̄I+ − x̄I0 ≥ 0.

Therefore, we have

1

n

n∑
i=1

(xi − x̄)2 = s̃2 +
f

n
·
[
n− 2f

n
(−∆−) +

f

n
(−∆− −∆+)

]2
+

n− 2f

n
·
[
f

n
(∆−) +

f

n
(−∆+)

]2
+

f

n
·
[
f

n
(∆− +∆+) +

n− 2f

n
(∆+)

]2
.

By expanding the square terms, it is obtained that

1

n

n∑
i=1

(xi − x̄)2

=
f

n

(
n− f

n
∆− +

f

n
∆+

)2

+
n− 2f

n

(
f

n
∆− − f

n
∆+

)2

+
f

n

(
f

n
∆− +

n− f

n
∆+

)2

+ s̃2

=

(
f(n− f)2

n3
+

f2(n− 2f)

n3
+

f3

n3

)
(∆−)

2 +

(
f3

n3
+

f2(n− 2f)

n3
+

f(n− f)2

n3

)
(∆+)

2

+

(
2f2(n− f)

n3
− 2f2(n− 2f)

n3
+

2f2(n− f)

n3

)
(∆−∆+) + s̃2

16
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=
f(n− f)

n2
(∆−)

2 +
f(n− f)

n2
(∆+)

2 +
2f2

n2
(∆−∆+) + s̃2

=
n− f

f

(
f

n
∆− − f

n
∆+

)2

+
2f

n
(∆−∆+) + s̃2.

Meanwhile, according to (18) and the definition of ∆− and ∆+, we have

f

n
∆− − f

n
∆+ = TMf/n(x1, . . . , xn)− x̄.

Therefore,
1

n

n∑
i=1

(xi − x̄)2 =
n− f

f

[
TMf/n(x1, . . . , xn)− x̄

]2
+

2f

n
(∆−∆+) + s̃2.

Notice that s̃2 ≥ 0,∆− ≥ 0 and ∆+ ≥ 0, and we finally obtain that

1

n

n∑
i=1

(xi − x̄)2 ≥ n− f

f

[
TMf/n(x1, . . . , xn)− x̄

]2
,

or, equivalently, [
TMf/n(x1, . . . , xn)− x̄

]2 ≤ f

n− f
·

[
1

n

n∑
i=1

(xi − x̄)2

]
. (23)

Moreover, the equality in (23) holds if and only if s̃2 = 0 and ∆−∆+ = 0, which is equivalent to that s2I− = s2I0 = s2I+ = 0
and ∆−∆+ = 0.

We have finished the proof for the 1-dimension case. For the general d-dimension case,

∥TMf/n(x1, . . . ,xn)− x̄∥2 =

d∑
j=1

(
[TMf/n(x1, . . . ,xn)− x̄]j

)2
=

d∑
j=1

(
[TMf/n(x1, . . . ,xn)]j − [x̄]j

)2
=

d∑
j=1

(
TMf/n([x1]j , . . . , [xn]j)−

1

n

n∑
i=1

[xi]j

)2

(by (23))
≤

d∑
j=1

(
f

n− f
· 1
n

n∑
i=1

([xi]j − [x̄]j)
2

)

=

d∑
j=1

(
f

n− f
· 1
n

n∑
i=1

[xi − x̄]2j

)

=
f

n− f
· 1
n

n∑
i=1

∥xi − x̄∥2.

Namely,

∥TMf/n(x1, . . . ,xn)− x̄∥2 ≤ f

n− f
·

[
1

n

n∑
i=1

∥xi − x̄∥2
]
.

A.4. Analysis for Coordinate-wise Median

Theorem A.1. Coordinate-wise median is ϵn-accurate where ϵn =
⌊n−1

2 ⌋
n−⌊n−1

2 ⌋ .

Proof. Notice that coordinate-wise median can be deemed as ⌊n−1
2 ⌋
n -TM. The desired result can be directly obtained by

applying Theorem 3.6.

17
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A.5. Analysis for Geometric Median

Theorem A.2. The geometric median is 1-accurate.

Proof. We use xGM to denote the geometric median of x1, . . . ,xn. According to the definition, we have the following
inequality:

n∑
i=1

∥xGM − xi∥ ≤
n∑

i=1

∥x̄− xi∥. (24)

According to the Triangle Inequality,

∥xGM − x̄∥2 =

∥∥∥∥∥xGM − 1

n

n∑
i=1

xi

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(xGM − xi)

∥∥∥∥∥
2

≤

[
1

n

n∑
i=1

∥xGM − xi∥

]2
. (25)

Combining (24) and (25), we have

∥xGM − x̄∥2 ≤

[
1

n

n∑
i=1

∥x̄− xi∥

]2
=

1

n2

[
n∑

i=1

∥x̄− xi∥

]2
. (26)

According to Cauchy-Schwarz inequality, we have(
n∑

i=1

12

)
·

(
n∑

i=1

∥x̄− xi∥2
)

≥

(
n∑

i=1

1 · ∥x̄− xi∥

)2

,

Namely, [
n∑

i=1

∥x̄− xi∥

]2
≤ n ·

n∑
i=1

∥x̄− xi∥2. (27)

Combining (26) and (27), we finally obtain that

∥xGM − x̄∥2 ≤ 1

n2

[
n ·

n∑
i=1

∥x̄− xi∥2
]
= 1 ·

[
1

n

n∑
i=1

∥x̄− xi∥2
]
.

It implies that geometric median is 1-accurate.

A.6. Proof of Theorem 4.5

Proof. We first consider the 1-dimension case where

F1(w) = . . . = Ff (w) =
nG

2
√
f(n− f)

w2

and
Ff+1(w) = . . . = Fn(w) =

nG

2
√

f(n− f)
w2 − nG√

f(n− f)
w.

Therefore,

F (w) =
1

n

n∑
i=1

Fi(w) =
f

n
× nG

2
√
f(n− f)

w2 +
n− f

n
×

[
nG

2
√

f(n− f)
w2 − nG√

f(n− f)
w

]

=
nG

2
√
f(n− f)

w2 −
√
n− f√
f

Gw

=
nG

2
√
f(n− f)

(
w − n− f

n

)2

− (n− f)
3
2G

2n
√
f

,

18
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which indicates that F (w) satisfies Assumptions 4.1 and 4.2 and has the unique global mimimum point

w∗ =
n− f

n
.

Moreover,

1

n

n∑
i=1

[F ′
i (w)− F ′(w)]2 =

f

n
×
(√

n− f√
f

G

)2

+
n− f

n
×

(
nG√

f(n− f)
−

√
n− f√
f

G

)2

=
n− f

n
G2 +

f

n
G2

= G2.

Therefore, F (w) satisfies Assumptions 4.3. Furthermore, F (w) also satisfies Assumption 4.4 with µ = nG√
f(n−f)

since

F (w) is a quadratic function. Let the set S = {f + 1, . . . , n} and

F ′
S(w) =

1

|S|
∑
i∈S

F ′
i (w) =

nG√
f(n− f)

(w − 1).

Since Agg(·) is (f, κ)-robust and F ′
f+1(w) = . . . = F ′

n(w), we have

[Agg(F ′
1(w), . . . , F

′
n(w))− F ′

S(w)]
2 ≤ κ ·

[
1

|S|
∑
i∈S

(F ′
i (w)− F ′

S(w))
2

]
= 0.

Therefore, we have

Agg(F ′
1(w), . . . , F

′
n(w)) =

nG√
f(n− f)

(w − 1).

Let {wt}∞t=0 be the sequence obtained by ByzGD (Algorithm 1) with initial point w0 ∈ R and learning rate ηt = η > 0. We
have

wt+1 = wt − η ·Agg(F ′
1(wt), . . . , F

′
n(wt)) = wt −

nGη√
f(n− f)

(wt − 1).

Therefore,

wt+1 − 1 =

[
1− nGη√

f(n− f)

]
(wt − 1).

Then we consider the following three cases.

• Case (i). When 0 < η <
2
√

f(n−f)

nG , we have 1− nGη√
f(n−f)

∈ (−1, 1).

Thus, wt − 1 =

[
1− nGη√

f(n−f)

]t
(w0 − 1) converges to 0. Consequently, wt converges to 1. Since F (w) is L-smooth,

[F ′(wt)]
2 converges to [F ′(1)]2 =

[
nG√

f(n−f)
(1− n−f

n )

]2
= f

n−fG
2. Thus, for any C1 < f

n−fG
2 and any positive

K, there exists T1 > K such that
1

T1

T1−1∑
t=0

[F ′(wt)]
2 > C1.

Similarly, we have that [F (wt)− F (w∗)] converges to

F (1)− F (w∗) =
nG

2
√
f(n− f)

(
1− n− f

n

)2

=
f2G

2n
√
f(n− f)

=
f

n− f
· G

2

2µ

19
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by noticing that µ = nG√
f(n−f)

. Thus, for any C1 < f
n−fG

2 and any positive K, there exists T2 > K such that

F (wT2
)− F (w∗) >

C1

2µ
.

Let T = max{T1, T2} and we obtain the desired result.

• Case (ii). When η =
2
√

f(n−f)

nG , we have 1− nGη√
f(n−f)

= −1. Thus, wt+1 − 1 = −(wt − 1). For any positive K, we

have that w⌊K⌋+2 − 1 = −(w⌊K⌋+2 − 1), which is equivalent to that w⌊K⌋+1 + w⌊K⌋+2 = 2. Let

T1 = argmax
t∈{⌊K⌋+1,⌊K⌋+2}

wt.

We have that wT1
= max{w⌊K⌋+1, w⌊K⌋+2} ≥ 1. Since F (w) is monotonically increasing when w ≥ 1, we have that

F (wT1
)− F (w∗) ≥ F (1)− F (w∗) =

f

n− f
· G

2

2µ
>

C1

2µ
.

Let H = 1
T1

∑T1−1
t=0 [F ′(wt)]

2. If H > C1, we directly obtain the desired result by letting T = T1. If H ≤ C1, let

T = T1 + 2

⌊
(n− f)(TC1 − T1H)

2fG2
+ 1

⌋
,

where ⌊·⌋ is the floor function. Therefore,

wT − 1 = (wT1 − 1)× (−1)
2
⌊

(n−f)(TC1−T1H)

2fG2 +1
⌋
= wT1 − 1.

Namely, wT = wT1
. Therefore,

F (wT )− F (w∗) = F (wT1)− F (w∗) >
C1

2µ
.

Moreover, using the equation that wt + wt+1 = 2 and the inequality that x2 + y2 ≥ (x+y)2

2 ,

[F ′(wt)]
2 + [F ′(wt+1)]

2

=

[
nG√

f(n− f)

(
wt −

n− f

n

)]2
+

[
nG√

f(n− f)

(
wt+1 −

n− f

n

)]2

=
n2G2

f(n− f)

[(
wt −

n− f

n

)2

+

(
wt+1 −

n− f

n

)2
]

≥ n2G2

2f(n− f)

(
wt + wt+1 −

2(n− f)

n

)2

=
2n2G2

f(n− f)

(
1− n− f

n

)2

=
2f

n− f
G2.

Thus,

1

T

T−1∑
t=0

[F ′(wt)]
2 =

1

T

T1−1∑
t=0

[F ′(wt)]
2 +

1

T

T−1∑
t=T1

[F ′(wt)]
2

=
T1

T
·H +

1

T
· T − T1

2
· 2f

n− f
G2
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=
T1H

T
+

1

T
·
⌊
(n− f)(TC1 − T1H)

2fG2
+ 1

⌋
2f

n− f
G2

>
T1H

T
+

1

T
· (n− f)(TC1 − T1H)

2fG2
· 2f

n− f
G2

=
T1H

T
+

TC1 − T1H

T
= C1.

Therefore, the positive integer T ≥ T1 > K satisfies the two desired conditions.

• Case (iii). When η >
2
√

f(n−f)

nG , we have 1− nGη√
f(n−f)

< −1. In this case, wt → ∞. Since F (w) is L-smooth, and

both [F ′(w)]2 and F (w) diverge to +∞ when w → ∞. We can directly obtain the desired result.

In summary, the desired result can be obtained in all of the three cases, and the proof for the 1-dimension case is finished.

For general d-dimension cases where w ∈ Rd, we can simply choose Fi(w) = F̃i(w[1]) for all i ∈ {1, 2, . . . , n} where
w[1] is the first coordinate of vector w. Thus, we have that ∥∇F (w)∥2 = [F̃ ′(w[1])]

2. Therefore, we can use the result for
the 1-dimension case above, and obtain the desired result for general d-dimension cases.

A.7. Proof of Theorem 4.6

Proof. Let Gt = Agg(∇F1(wt), . . . ,∇Fn(wt)). Since F (w) is L-smooth,

F (wt+1) =F (wt − ηtGt)

≤F (wt)− ηt∇F (wt)
TGt +

L(ηt)
2

2
∥Gt∥2

=F (wt)−
ηt
2
∥∇F (wt)∥2 +

ηt
2
∥Gt −∇F (wt)∥2 −

ηt(1− Lηt)

2
∥Gt∥2, (28)

where the last equation can be quickly checked by expanding the squares. Moreover, using Assumption 4.3 and that Agg(·)
is ϵ-accurate, we have that

∥Gt −∇F (wt)∥2 ≤ ϵ ·

[
1

n

n∑
i=1

∥∇Fi(w)−∇F (w)∥2
]
≤ ϵG2. (29)

Since ηt =
1
L , we have that 1− Lηt = 0. Substituting (29) into (28), we have that

F (wt+1)− F (wt) ≤ −ηt
2
∥∇F (wt)∥2 +

ηt
2
ϵG2 = − 1

2L
∥∇F (wt)∥2 +

1

2L
ϵG2. (30)

Taking summation over t, it is obtained that

1

T

T−1∑
t=0

∥∇F (wt)∥2 ≤ 2L[F (w0)− F (wT )]

T
+ ϵG2.

According to Assumption 4.1, we have that F (wT ) ≥ F ∗ and obtain the first desired result. Furthermore, when F (w)
satisfies the PL condition, we have that

∥∇F (wt)∥2 ≥ 2µ[F (wt)− F ∗]. (31)

Substituting (31) into (30), we have that

F (wt+1)− F (wt) ≤ −µ

L
[F (wt)− F ∗] +

ϵG2

2L
,

which is equivalent to that [
F (wt+1)− F ∗ − ϵG2

2µ

]
≤
(
1− µ

L

)[
F (wt)− F ∗ − ϵG2

2µ

]
.
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Recursively using the inequality, we have that

F (wT )− F ∗ − ϵG2

2µ
≤
(
1− µ

L

)T [
F (w0)− F ∗ − ϵG2

2µ

]
.

Therefore, we finally obtain that

F (wT )− F ∗ ≤
(
1− µ

L

)T
[F (w0)− F ∗] +

ϵG2

2µ
.
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