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ABSTRACT

Domain-dependent data augmentation methods generate artificial samples using
transformations suited for the underlying data domain, such as rotations on images
and time warping on time series data. However, domain-independent approaches,
e.g. mixup, are applicable to various data modalities, and as such they are
general and versatile. While mixup-based techniques are used extensively in
classification problems, their effect on regression tasks is somewhat less explored.
To bridge this gap, we study the problem of domain-independent augmentation
for regression, and we introduce comfort-zone: a new data-driven domain-
independent data augmentation method. Essentially, our approach samples new
examples from the tangent planes of the train distribution. Augmenting data in
this way aligns with the network tendency towards capturing the dominant features
of its input signals. Evaluating comfort-zone on regression and time series
forecasting benchmarks, we show that it improves the generalization of several
neural architectures. We also find that mixup and noise injection are less effective
in comparison to comfort-zone.

1 INTRODUCTION

Classification and regression problems primarily differ in their output’s domain. In classification,
we have a finite set of labels, whereas in regression, the range is an infinite set of quantities—
either discrete or continuous (Goodfellow et al., 2016). In classical work (Devroye et al., 2013),
classification is argued to be “easier” than regression, but more generally, it is agreed by many
that classification and regression problems should be treated differently (Muthukumar et al., 2021).
Particularly, the differences between classification and regression are actively explored in the context
of regularization. Regularizing neural networks to improve their performance on new samples has
received a lot of attention in the past few years. One of the main reasons for this increased interest
is that most of the recent successful neural models are overparameterized. Namely, the amount of
learnable parameters is significantly larger than the number of available training samples (Allen-Zhu
et al., 2019a;b), and thus regularization is often necessary to alleviate overfitting issues. Recent
studies on overparameterized linear models identify conditions under which overfitting is “benign” in
regression (Bartlett et al., 2020), and uncover the relationship between the choice of loss functions in
classification and regression tasks (Muthukumar et al., 2021). Still, the regularization of deep neural
regression networks is not well understood.

In this work, we focus on a common regularization approach known as Data Augmentation (DA) in
which data samples are artificially generated and used during training. In general, DA techniques
can be categorized into domain-dependent (DD) methods and domain-independent (DI) approaches.
The former techniques are specific for a certain data modality such as images, whereas the latter
methods typically do not depend on the data modality. Numerous DD- and DI-DA approaches are
available for classification tasks (Shorten & Khoshgoftaar, 2019; Shorten et al., 2021), and many
of them consistently improve over non-augmented models. Unfortunately, DI-DA for regression
problems is a significantly less explored topic. Recent works on linear models study the connection
between the DA policy and optimization (Hanin & Sun, 2021), as well as the generalization effects of
linear DA transformations (Wu et al., 2020). We contribute to this line of work by proposing and
analyzing a new domain-independent data augmentation method for nonlinear deep regression, and
by extensively evaluating our approach in comparison to existing baselines.

Many strong data augmentation methods were proposed in the past few years. Particularly relevant
to our study is the family of mixup-based techniques that are commonly used in classification
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applications. The original method, mixup (Zhang et al., 2017), produces convex combinations
of training samples, promoting linear behavior for in-between samples. The method is domain-
independent and data-agnostic, and it was shown to solve the Vicinal Risk Minimization (VRM)
problem instead of the usual Empirical Risk Minimization (ERM) problem. In comparison, our
approach is domain-independent and data-driven, and it can also be viewed as solving a VRM
problem. Through extensive evaluations, we will show that mixup and noise injection are less
effective for regression.

Contribution. Challenged by the differences between classification and regression and motivated
by the success of domain-independent methods such as mixup, we propose a simple, domain-
independent and data-driven DA routine, termed comfort-zone (Sec. 3). Let X,Y be the input
and output mini-batch tensors, respectively, and let Zl = gl(X) be the hidden representation at layer
l (Verma et al., 2019). Essentially, our method produces new training samples Zl(λ), Y (λ) from the
given ones by scaling their small singular values by a random λ ∈ [0, 1]. At its core, comfort-zone
incorporates into training the assumption that data with similar dominant components of the train
set should be treated as true samples. We offer two simple implementations of comfort-zone; a
non-differentiable approach that can be used for input-level application, and a fully differentiable
pipeline which is applicable to any layer (App. A).

We analyze comfort-zone using perturbation theory, and we introduce its associated vicinal
risk minimization (Sec. 4). Our experimental evaluation focuses on benchmark regression tasks
(Sec. 5.1), and on time series forecasting tasks with small and large datasets (Sec. 5.2). The results
show that comfort-zone improves the test error on several neural architectures and datasets, and
in comparison to other DA baselines. We offer a potential explanation to the success of our method
(Sec. 3, App. B). Finally, an ablation study is performed, justifying our design choices (App. C).

2 RELATED WORK

Deep neural networks regularization is an established research topic with several existing works
(Goodfellow et al., 2016). Common regularization approaches include weight decay, dropout (Sri-
vastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015), and data augmentation (DA). In
what follows, we categorize DA techniques to be either domain-dependent or domain-independent.
Domain-dependent DA was shown to be effective for, e.g., image data (LeCun et al., 1998) and audio
signals (Park et al., 2019), among other domains. However, adapting these methods to new data
domains is typically challenging and often infeasible. In the past few years, an increased interest has
been drawn to domain-independent DA methods, allowing to regularize neural networks when only
basic data assumptions are allowed. We focus in what follows on domain-independent techniques
that were proposed in the context of classification and regression problems.

DA for classification. Recently, Zhang et al. (2017) proposed to convex mixing of input samples as
well as one-hot output labels during training. The new training procedure, named mixup, minimizes
the Vicinal Risk Minimization (VRM) problem instead of the typical Empirical Risk Minimization
(ERM). Many extensions of mixup were proposed, including mixing latent features (Verma et al.,
2019), same-class mixing (DeVries & Taylor, 2017), among others (Guo et al., 2019; Hendrycks
et al., 2019; Yun et al., 2019; Berthelot et al., 2019; Greenewald et al., 2021; Lim et al., 2021).

DA for regression. Significantly less attention has been drawn to designing domain-independent
data augmentation for regression tasks. A recent survey (Wen et al., 2020) on DA for time series data
lists a few basic augmentation methods including noise injection. Incorporating noise in the data
can be used for regression tasks, and it can also be incorporated into other DA methods such as ours.
Dubost et al. (2019) propose to recombine samples for regression tasks with countable outputs, and
thus their method can not be directly extended to the uncountable regime. Recently, mixRL (Hwang
& Whang, 2021) developed a meta learning framework based on reinforcement learning for mixing
samples in their neighborhood.
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def scale_down(Z, lam, rho):
  U, s, Vt = numpy.linalg.svd(Z)
  cumperc = numpy.cumsum(s) / numpy.sum(s)
  s *= numpy.where(cumperc > rho, lam, 1.0)
  Z = U @ numpy.diag(s) @ Vt

# X, Y are in batch x feats
for (X, Y) in loader:
  lam = numpy.random.beta(alpha, alpha)
  Z = numpy.concatenate((X,Y), axis=1)
  Z = scale_down(Z, lam, rho)
  X, Y = Z[:, :m], Z[:, m:]
  optimizer.zero_grad()
  loss(net(X), Y).backward()
  optimizer.step()
  

Data additive noise

mixup comfort-zone

Figure 1: We show the pseudocode for comfort-zone at the input level, l = 0 (left). We
demonstrate the effect of a few DA methods on 2D data whose intrinsic dimension is one (right).

3 COMFORT ZONE

A learning task is typically described as a function which maps inputs to outputs. In this view, a
learning model is approximating that function using e.g., a neural network, and it is formulated via
f : X → Y , denoting the input and output domains by X and Y , respectively. A regression problem
is such that the output domain is (un)countable, e.g., Y ⊂ Nm or Y ⊂ Rm. For simplicity, we
consider the setting X ,Y ⊂ Rm, but our method is applicable to other cases. During training, the
learning model is provided with a training set D = {(xi, yi)}ni=1, sampled from (xi, yi) ∼ P . Our
method extends the training distribution by producing a new training set as we describe below.

To generate new samples, we consider the singular value decomposition (SVD) of a matrix A ∈
Rq×r, q ≥ r which is given by A = USV T . The matrices U, V are orthogonal, and S is a diagonal
matrix whose main diagonal consists of the singular values ordered by σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
SVD is intimately related to principal component analysis (PCA) which in turn is heavily studied
in manifold learning and dimensionality reduction (Ma & Fu, 2012). It is well-known that the
best rank k approximation of A is given by omitting the last (r − k) singular values, i.e., Ak =∑k

j=1 σjujv
T
j (Eckart & Young, 1936). The matrix Ak preserves the (k) dominant components in A,

and it discards the rest. The key insight in our approach is that scaling down the small singular values
should yield training samples that are in close proximity to the true distribution of the data P .

Let the input and output mini-batch tensors X ∈ Rb×m and Y ∈ Rb×m, respectively, where w.l.o.g
b ≥ 2m is the batch size. We denote the network by f(X) = fl(gl(X)), Zl := gl(X) where gl maps
inputs to latent representations Zl at layer l ∈ [0, L], and fl maps latent vectors to outputs (Verma
et al., 2019). Let λ ∼ Beta(α, α) for α ∈ (0,∞), and k ∈ [1, 2m] be the index of the singular value
after which we scale down. Then, the new artificial samples Zl(λ, k), Y (λ, k) are defined via

A := [Zl, Y ] = USV T ∈ Rb×2m ,

A(λ, k) := [Zl(λ, k), Y (λ, k)] = US(λ, k)V T ,

where [·, ·] concatenates along columns, and S(λ, k) is the diagonal matrix of scaled down singular
values. Namely, we compute S(λ, k) = diag(σ1, . . . , σk | λσk+1, . . . , λσ2m). The value k depends
on the hyper-parameter ρ ∈ [0, 1] that represents the “amount” of signal to keep unchanged, i.e.,

k = argmax
k̃

k̃∑
j=1

σj/
∑
j

σj ≤ ρ .

Similar to mixup (Zhang et al., 2017), our method recovers the original dataset D as α → 0, ∀ρ.

The loss function associated with comfort-zone is

L(f) = E(X,Y ) Eλ El c ((fl, 1) ◦ χ(gl(X), Y ;λ, k))) ,

s.t. (X,Y ) ∼ D, λ ∼ Beta(α, α), l ∼ [0, L] ,
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Figure 2: Evaluating a non-augmented model and a model trained with comfort-zone on train
data whose small singular values are scaled down for different values of λ (left). We show on the
right panel an example of a time series sample (black), and its modifications using λ = 0.5 (blue),
λ = 0.3 (orange), and λ = 0.0 (gray).

where c : Rb×m × Rb×m → [0,∞) is a cost function, typically mean squared error (MSE). The
transformation χ takes a pair of tensors gl(X), Y , and it scales down the last (2m−k) singular values
of their concatenation by λ. A key attribute of comfort-zone is that it is fully differentiable since
the singular value decomposition can be backpropagated (Ionescu et al., 2015). Importantly, when
comfort-zone is applied only at the input level (l = 0), a straightforward non-differentiable imple-
mentation is sufficient. We provide an example pyTorch pseudocode for input-level comfort-zone
in Fig. 1 (left), and we discuss in App. A a potential differentiable implementation. The computational
complexity of comfort-zone is governed by SVD calculation which has a complexity of SVD
is O(min(qr2, rq2)) for an q × r matrix. In comparison, mixup samples a scalar from a random
distribution, and it linearly blends two samples, whereas additive noise samples points from a random
distribution. Thus, mixup and additive noise have a complexity of O(qr).

Design choices. For certain λ values, the new sample Zl(λ, k), Y (λ, k) may be too far from P .
With this in mind, we explored the option of scaling down the loss function c(·, ·) by a parameter
µ(λ) in addition to modifying the singular values. However, we tested various profiles µ(λ) and
discovered the best models are obtained when no scaling of loss occurs, see App. C. Importantly,
this means that our approach adopts a different ansatz in comparison to mixup. While mixup
incorporates uncertainty into the model training using “in-between” samples and labels, our method
uses the new data as if it was sampled from the true distribution. An alternative option which would
be conceptually closer to mixup is to scale down the large singular values as well as the loss term.
We show in App. C that this choice is also inferior to comfort-zone.

The effect of comfort-zone on data and learning. We generated a 2D point cloud whose
intrinsic dimension is one (shown in blue, Fig. 1), and we applied different DA methods on this
data. The three panels in the figure show in orange the augmented data when using additive noise,
mixup, and comfort-zone with α = 1.0 over the original point cloud colored in light blue.
Injecting noise alters each point in its neighborhood, whereas mixup draws the points towards the
center of their convex hull. In contrast, comfort-zone aligns the new samples along the dominant
component of the original data. Notably, our approach may increase the span of training data, and
thus it can improve estimation in regression as was recently shown in (Wu et al., 2020).

We argue that training on samples created with our method encourages the inherent tendency of
the network to model the dominant parts of the data better. To demonstrate this phenomenon, we
trained an N-BEATS (Oreshkin et al., 2019) architecture with and without comfort-zone on the
Air Passengers dataset provided in DARTS (Herzen et al., 2022). The trained models are evaluated on
the dataset modified using a 100 varying λ ∈ [0, 1] values, see Fig. 2 (left). Namely, we modify the
singular values of every batch in the dataset using different λ, and feed the resulting data for inference.
Surprisingly, the non-augmented model (blue curve) performs better on the unseen modified samples,
yielding the minimum at λ ≈ 0.5. In comparison, the regularized network attains a qualitatively
similar plot, but the MSE is lower for all λ and the minimum is obtained for a lower value at λ ≈ 0.3.
This behavior was found to be consistent across several architectures and datasets, see App. B.
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Inspecting an example of the data and its modifications, reveals the differences between the samples
when select λ values are used. The original sample (black) shown in Fig. 2 (right) exhibits primary
extrema Sp at times t = 4, 7, 15 and secondary extrema Sq at times t = 9, 13 marked with black
dots. The blue curve (λ = 0.5) for which the non-augmented model attained the minimum loss,
maintains the primary extrema while significantly “flatenning” the secondary extrema. In comparison,
the orange curve (λ = 0.3) for which the augmented model achieves the minimum loss, flattens Sq

completely. Finally, we observe that the Sq data points are qualitatively different when λ = 0.0.
From the analysis above, we conclude the following. First, the network prefers data with less small
scale features; this finding is consistent with similar results on e.g., autoencoder models (Jain et al.,
2021). Second, our regularization encourages this tendency by providing the model with such data,
leading to improved MSE profiles. To the best of our knowledge, the above analysis is novel on deep
regression models.

Notably, while it may argued that the behavior in Fig. 2 (left) is natural and intuitive as the model
“simply” performs better on denoised signals, we argue differently. In particular, this plot somewhat
contradicts our understanding of overfitting which occurs in high probability for tiny datasets such
as Air Passengers (a single time series with 144 entries) using multiple weights network such as
N-BEATS. Specifically, since the data is highly likely to be overfit by the network, we expect the
MSE value to be lowest for λ = 1, and MSE value equal or higher for any λ < 1. Thus, we advocate
that the above analysis may reveal a characteristic feature of regression neural networks. Our analysis
is reinforced further as other datasets and architectures follow a similar pattern (App. B). Importantly,
we are unaware of a similar experiment in the literature of deep regression neural networks.

4 ANALYSIS

Relation to additive noise. In what follows, we would like to answer the following question: Does
applying comfort-zone is merely a variant of injecting additive noise? To this end, we analyze
comfort-zone from a perturbation theory viewpoint. Specifically, we would like to understand
how a random data perturbation affects the singular values of the data matrix A ∈ Rq×r, q ≥ r. We
denote by σ1 ≥ σ2 ≥ · · · ≥ σr the singular values of A. The perturbed matrix and its singular values
set are denoted by Ã = A + E and {σ̃j}rj=1, respectively. We write inf2(A) and |A|2 to denote
the smallest and largest singular values of any matrix A. The following classical result provides an
estimated bound for the perturbed singular values (Stewart, 1979; 1998).

Theorem 1. Let P be the orthogonal projection onto the column space of A. Let P⊥ = I − P . Then

σ̃2
j = (σj + γj)

2 + η2j , j = 1. . . . , r ,

where |γj | ≤ |P E|2 and inf2(P⊥E) ≤ ηj ≤ |P⊥E|2 .
Following Stewart (1979), we make two observations with respect to Thm. 1. First, if σj ≫ |E|2 then
it dominates the bound and we have σ̃j

∼= σj + γj . Second and more important to our setting, when
σj is of order |E|2, the term ηj will tend to dominate. Indeed, in these cases the term ηj increases
the singular value σj . We conclude that random perturbations to A tend to increase its small singular
values. In contrast, comfort-zone typically decreases the small singular values, while leaving
the large σj unchanged. Thus, comfort-zone is in effect a complementary approach to injecting
additive noise, allowing a finer control over the resulting new samples. Finally, we note that for a
certain choice of hyper-parameters, our approach can be viewed as injecting noise per the above
analysis. For example, taking ρ = 0.0 and λ ∼ Uniform(1.0, α) for α > 1.0 will increase all the
singular values of A by a factor of λ ∈ [1.0, α], where Uniform is the random uniform distribution.

comfort-zone as a Vicinal Risk Minimization (VRM). Given a cost function c : Y×Y → R+,
the learning problem aims at minimizing the expectation of the loss c(f(x), y) over the distribution
P(x, y), x ∈ X , y ∈ Y . A fundamental challenge, shared by most real-world scenarios, is that
the true distribution of the data is unfortunately unknown. The alternative is to minimize over the
empirical distribution of a train set {(xi, yi)}ni=1 given by

dPemp(x, y) =
1

n

∑
i

δxi
(x)δyi

(y) .
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The resulting scheme is the common training procedure of modern neural networks, formally known
as the Empirical Risk Minimization (ERM) (Vapnik, 1991).

While Pemp provides a basic approximation of the true P , it was suggested (Chapelle et al., 2001) that
other density estimates dPest that take into account the vicinity of (xi, yi) should be considered. The
recent mixup approach (Guo et al., 2019) exploits this idea by proposing a Vicinal Risk Minimization
(VRM) procedure that is based on the vicinal distribution estimate 1

n

∑
i,j δx̃ij(λ)(x)δỹij(λ)(y),

defined using convex combinations z̃ij(λ) = λzi + (1 − λ)zj for z ∈ {x, y} and λ ∼ Beta(α, α).
In this context, the main difference between comfort-zone and mixup is in the definition of
vicinity as we describe below.

We denote by T (x, y) the tangent plane of the data manifold M at the point (x, y) ∈ M ⊂ X × Y .
Namely, T (x, y) is the linear approximation of M at (x, y). For every pair (x, y), we define a new
density distribution Ptan which considers all pairs (a, b) in the tangent plane of (u, v) ∈ M. Formally,

dPtan(x, y) =

∫
M

∫
T (u,v)

δa(x)δb(y) d ab duv .

Then, comfort-zone approximates the latter expression by generating an estimate of the tangent
plane Test via SVD, yielding the following vicinal estimate

dPest(x, y) =
1

n

∑
i

1

ki

∑
j

δxj
(x)δyj

(y) ,

(xj , yj) ∈ Test(xi, yi) , ki = |Test(xi, yi)| .

5 EXPERIMENTS

5.1 REGRESSION BENCHMARK DATASETS

While there is extensive work on deep regression in the vision community for e.g., object detection
(Szegedy et al., 2013) and human pose estimation (Li & Chan, 2014), we aimed for an evaluation
setting where data modalities different from images and text are being considered. To this end, we
evaluate comfort-zone on regression benchmark datasets that frequently appear in the literature,
see e.g., Hernández-Lobato & Adams (2015). The datasets include Diabetes listing 442 patients with
10 feature variables (Efron et al., 2004); Concrete describes 1030 instances of the actual concrete
strength using 8 features (Yeh, 1998); Energy details the energy efficiency of 768 building shapes
using 8 variables (Tsanas & Xifara, 2012); and Wine which consists of 1599 red wine instances with
11 features (Cortez et al., 2009). The output of Diabetes, Concrete and Wine has one feature, whereas
Energy has two features. We perform min-max normalization to all datasets, and we remove it during
model testing.

The baseline architecture we consider is a residual network (ResNet) (He et al., 2016). ResNet
models are typically overparameterized, and thus they serve as a good baseline to explore DA
effects. We use fully connected layers in the residual block instead of convolutions, employing 18
(ResNet18) and 34 (ResNet34) residual layers followed by a linear layer. During training, data is
split to 70%, 10% and 20% for the train, validation and test sets, respectively. Each model is trained
20 times with random splits, and it is trained for 40 epochs using a hidden size of 100 and a batch size
of 16. We employ an Adam optimizer, with 0.0001 weight decay and an initial learning rate of 0.001,
and we reduce it by half with a patience of 3 based on the validation loss. The loss is MSE, and we
infer over the models which yield the best loss on the validation set when averaged over 20 runs.

We compare the baseline (ERM) to mixup (Guo et al., 2019), additive uniform noise (UN), and
comfort-zone (CZ). The results are detailed in Tab. 1 using the metrics: root MSE (RMSE),
mean absolute percentage error (MAPE), and R2 (Makridakis & Hibon, 2000). In mixup, we follow
the authors guidelines and use α ∈ [0.1, 0.4], and with the additive noise we use a scale of 0.1. We
apply comfort-zone at the input level, and we perform a grid search over α ∈ {0.5, 1.0, 2.0}, and
ρ ∈ {0.97, 0.98}. Our results show that more depth yields inferior results, which may be related to
the network size w.r.t dataset size. Injecting uniform noise to the data generally under-performs w.r.t
the baseline. In contrast, mixup improves ResNet18 generalization, and its results on ResNet34
are not as effective. Our approach always yields improved test errors, except for Concrete with
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Table 1: Test errors on regression benchmarks using ResNet18 and ResNet34 architectures.
Diabetes, ResNet18 Diabetes, ResNet34

RMSE ↓ MAPE ↓ R2 ↑ RMSE ↓ MAPE ↓ R2 ↑
ERM 76.00± 9.28 56.00± 7.64 −0.11± 0.27 82.24± 9.26 61.16± 10.64 −0.29± 0.29
mixup 73.76± 8.88 53.55± 8.71 −0.04± 0.25 81.12± 8.63 58.53± 7.64 −0.26± 0.27
UN 76.88± 6.53 58.19± 4.75 −0.12± 0.19 86.14± 18.69 61.14± 8.26 −0.47± 0.79
CZ 71.79± 5.26 51.80± 7.09 0.02± 0.14 77.69± 5.58 56.63± 6.23 −0.15± 0.17

Concrete, ResNet18 Concrete, ResNet34

ERM 10.58± 1.72 29.52± 3.51 0.55± 0.17 11.87± 0.74 36.65± 3.50 0.45± 0.07
mixup 10.21± 0.77 31.14± 2.68 0.59± 0.06 12.41± 1.27 36.68± 4.27 0.40± 0.12
UN 11.19± 0.85 35.65± 4.07 0.51± 0.08 14.33± 4.00 45.25± 11.87 0.14± 0.60
CZ 9.87± 0.61 28.35± 3.47 0.62± 0.05 11.91± 0.74 35.85± 3.64 0.45± 0.07

Energy, ResNet18 Energy, ResNet34

ERM 3.70± 0.29 12.93± 1.33 0.86± 0.02 4.35± 0.30 15.75± 1.68 0.81± 0.03
mixup 3.78± 0.27 12.88± 0.95 0.86± 0.02 4.72± 0.39 17.08± 1.69 0.78± 0.04
UN 3.83± 0.24 13.69± 1.03 0.85± 0.02 5.98± 3.09 22.85± 12.41 0.55± 0.58
CZ 3.61± 0.16 12.25± 0.70 0.87± 0.01 4.29± 0.33 15.23± 1.50 0.81± 0.03

Wine, ResNet18 Wine, ResNet34

ERM 0.68± 0.03 9.89± 0.49 0.28± 0.05 0.75± 0.09 10.66± 0.82 0.13± 0.26
mixup 0.67± 0.04 9.52± 0.53 0.31± 0.08 0.74± 0.05 10.48± 0.59 0.16± 0.12
UN 0.69± 0.03 9.96± 0.51 0.28± 0.05 0.73± 0.03 10.58± 0.55 0.18± 0.07
CZ 0.65± 0.03 9.33± 0.42 0.34± 0.06 0.72± 0.05 10.27± 0.71 0.20± 0.11

34 layers by a small RMSE margin. Further, our method achieves the best results on all datasets
in comparison to all other DA baselines. We also find that comfort-zone reduces the standard
deviation for almost all datasets and metrics.

5.2 TIME SERIES FORECASTING (TSF)

Small-scale TSF. Forecasting time series data is one of the fundamental regression tasks in machine
learning. We test comfort-zone using the DARTS (Herzen et al., 2022) time series forecast-
ing framework, which supports several TSF methods and datasets. Specifically, we consider the
DARTS implementations of RNN, TCN (Bai et al., 2018), TRANSFORMER (Vaswani et al., 2017), and
N-BEATS (Oreshkin et al., 2019). The datasets are mostly univariate, i.e., the time series samples
are one-dimensional. In our experiments, we perform a min-max normalization to the data, and
we convert it to a single-precision floating point representation. Importantly, DARTS datasets are
small, ranging from ≈ 100 samples to ≈ 3000 samples in total. This regime of small training sets is
expected to benefit the most from DA techniques such as ours.

The data is split to approximately 80% for training and 20% for testing. Unless otherwise noted,
covariates such as hour-of-day are not used (Salinas et al., 2020). We train for 300 epochs, using a
batch size of 32 and an Adam optimizer with a learning rate 0.001 and no scheduling. In all cases, the
training loss is mean squared error (MSE). The specific input and output tensor sizes depend on the
dataset, and we provide this information in App. D. For reproducibility and to reduce variability, we
train each model on the same hundred seeds {0, . . . , 99}. During inference, we evaluate the trained
models using the root mean square error (RMSE), mean absolute percentage error (MAPE), and R2
measures, see e.g., (Makridakis & Hibon, 2000). We report the average measures and their standard
deviation over the seed set. In our experiments, we compared the effect of comfort-zone in
relation to the baseline model (ERM), and to the baseline augmented with the DA approaches mixup,
additive noise (UN), and comfort-zone (CZ). Following the evaluation protocol proposed in the
original mixup paper (Zhang et al., 2017), we evaluate the dependence of different DA methods
on the choice of hyper-parameters. To this end, we fix the hyper-parameters for all DA baselines.
We used α = 0.4 for mixup, a scale of 0.1 for UN, and α = 0.2 and ρ = 0.9 for CZ in all cases.
For comfort-zone, we take the best result out of the original data and noise-injected data. The
hyper-parameters were chosen using a basic grid test, taking the parameters which yield the best
average error across DARTS datasets.
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Table 2: Test errors of small-scale time series forecasting datasets from DARTS. Each dataset is
trained on generic N-BEATS, and it is augmented using comfort-zone and other DA approaches.

Air Passengers Australia Beer
RMSE ↓×10−2 MAPE ↓ R2 ↑ RMSE ↓×10−2 MAPE ↓ R2 ↑

ERM 5.66± 1.2 8.30± 1.8 0.49± 0.2 3.27± 0.8 4.79± 1.2 0.91± 0.0
mixup 5.24± 1.1 7.73± 1.6 0.57± 0.2 2.97± 0.6 4.60± 1.0 0.92± 0.0
UN 3.64± 1.0 5.54± 1.6 0.78± 0.1 3.72± 0.9 5.24± 1.4 0.88± 0.1
CZ 3.56± 0.9 5.43± 1.4 0.79± 0.1 2.96± 0.6 4.51± 0.9 0.92± 0.0

US Gasoline Sunspots
RMSE ↓×10−2 MAPE ↓ R2 ↑ RMSE ↓×10−2 MAPE ↓ R2 ↑

ERM 6.33± 0.5 6.64± 0.5 −0.11± 0.2 6.17± 0.9 27.45± 3.2 −0.68± 0.5
mixup 6.40± 0.5 6.73± 0.5 −0.13± 0.2 6.05± 0.8 26.17± 2.7 −0.61± 0.4
UN 6.49± 0.6 6.68± 0.6 −0.16± 0.2 6.02± 0.7 27.59± 3.5 −0.59± 0.4
CZ 6.25± 0.6 6.59± 0.6 −0.08± 0.2 6.09± 0.9 27.20± 3.4 −0.64± 0.5

Tab. 2 shows the statistics and results for the univariate datasets Air Passengers, Australia Beer, US
Gasoline and Sunspots provided in DARTS. These datasets are trained on the baseline N-BEATS
architecture whose time series forecasting capabilities are considered state-of-the-art (Oreshkin
et al., 2019), and then trained again on baseline with DA. We observe a consistent behavior where
comfort-zone improves the generalization error compared to ERM and usually reduces the
standard deviation for all datasets. Further, comfort-zone beats all other methods, except on
Sunspots where the best results for MAPE are attained by mixup, and for RMSE and R2 by additive
noise. In addition to Tab. 2, we show in Tab. 9 an extended evaluation, showing the results on DARTS
datasets on the baseline architectures RNN, TCN and TRANSFORMER, and on their DA augmented
versions. In this extended setting, we observe that TCN and TRANSFORMER benefit from our DA for
all datasets, whereas RNN yields mixed results with comfort-zone. Furthermore, the standard
deviation typically becomes smaller with our DA in comparison to the baseline. Additive noise and
mixup somewhat depend on the architecture and dataset, where in some cases the generalization
improves and in others, deteriorates. Notably, the best overall results (marked in blue) for each dataset
were almost always obtained with comfort-zone. The only exception was for RMSE and R2
metrics for US Gasoline, where comfort-zone yields the best MAPE results, and second best
RMSE and R2 (marked in red). Finally, we note that while our CZ on Sunspot with N-BEATS in
Tab. 2 did not yield the best estimates in comparison to other DA techniques, the setting of TCN with
CZ attains the best overall results for Sunspots, see Tab. 9.

Large-scale TSF. To further evaluate our approach in the context of forecasting, we consider
larger-scale benchmark datasets. Electricity contains the hourly electricity consumption of 370
customers for a total of ≈ 9.7M samples, and Traffic includes the hourly occupancy rate of 963
car lanes of San Francisco bay area freeways for a total of ≈ 10.1M samples. Both datasets
appear frequently in the forecasting literature, e.g., (Salinas et al., 2020; Oreshkin et al., 2019). We
incorporate our comfort-zone into the N-BEATS framework which includes ensembling during
inference. Following Oreshkin et al. (2019), we train the generic and interpretable models with
and without DA, and we use a total of 180 models for evaluation. These models arise from using
different metrics, different horizon lengths, and different initialization. Finally, different data splits
are considered. Using the original code repository of the authors, we approximately recover their
results. We refer to (Oreshkin et al., 2019) for the full details regarding the evaluation protocol and
testing setup. We perform a grid search over α ∈ {0.1, . . . , 1.0} and ρ ∈ {0.8, 0.85, 0.9} yielding a
total of 30 models per dataset, architecture and split. Many hyper-parameter combinations lead to an
improvement in the normalized deviation (ND) test error. Tab. 3 shows the ensemble median results of
the generic (N-BEATS-G) and interpretable (N-BEATS-I) baselines, as well as our results. While
comfort-zone improves both datasets, we observe that the generic net benefits relatively more
from our DA in comparison to its interpretable version.

We further extend our evaluation on large-scale TSF tasks where we consider the datasets ETTm2,
Exchange, weather and ILI in the challenging setting of long horizon forecasting benchmark including
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Table 3: Test errors for N-BEATS architectures generic (G) and interpretable (I) trained with and
without comfort-zone on Electricity and Traffic datasets for different train-test splits.

Electricity Traffic
2014-09-01 2014-03-31 last 7 days 2008-06-15 2008-01-14 last 7 days

N-BEATS-G 0.065 0.066 0.179 0.129 0.231 0.115
N-BEATS-G + CZ 0.062 0.062 0.166 0.118 0.231 0.116

N-BEATS-I 0.072 0.071 0.179 0.122 0.234 0.118
N-BEATS-I + CZ 0.070 0.068 0.174 0.12 0.231 0.116

forecasts of lengths 96, 192 and 336. We refer the reader to Wu et al. (2021) where the datasets
are described as well as the benchmark setting. For a baseline, we consider the generic version of
N-BEATS, trained in ERM and augmented with CZ. We performed a grid search for comfort-zone
using ρ ∈ {0.85, 0.90, 0.95}, and α ∈ {0.1, . . . , 1.0}. Many hyper-parameter combinations lead to
improved results over the baseline, and we report the best results of our approach per horizon. Tab. 4
reports the MSE and mean absolute error (MAE) metrics of this experiment. In all cases except for
ETTm2 with horizon 96, CZ improves generalization and yields better error metrics.

Table 4: Long horizon time series forecasting results.
ETTm2 Exchange Weather ILI

96 192 336 96 192 336 96 192 336 96 192 336

E
R
M MSE 0.173 0.250 0.301 0.101 0.157 0.320 0.169 0.220 0.284 1.830 2.074 2.329

MAE 0.257 0.312 0.354 0.216 0.288 0.423 0.205 0.250 0.302 0.883 0.961 1.062

C
Z MSE 0.175 0.242 0.297 0.078 0.156 0.298 0.164 0.217 0.275 1.798 1.997 2.306

MAE 0.259 0.310 0.349 0.195 0.287 0.401 0.201 0.247 0.293 0.854 0.939 1.039

6 DISCUSSION

We have proposed comfort-zone, a data-driven method for data augmentation of regression
tasks. We showed that comfort-zone supports the network tendency of representing dominant
components of its input signals by creating virtual examples sampled from the tangent planes of
the original train set. Implementing comfort-zone is straightforward, and it admits a fully
differentiable as well as a simpler non-differentiable versions. Throughout an extensive evaluation,
we have shown that comfort-zone improves the generalization error of neural models on time
series forecasting datasets and regression benchmarks. In addition, comfort-zone obtains better
results when compared to a few data augmentation baselines, while reducing the standard deviation
of the model ensemble.

When inspecting the effect of the hyper-parameters α and ρ, we observe that for small datasets
the results improve as α increases, and for medium datasets the results are stable or deteriorate for
increasing α. Further, larger neural models (ResNet34) were less affected by changes in α in
comparison to smaller models (ResNet18). We identify that choosing the value of ρ depends on
the intrinsic features of the dataset. In general, higher ρ is preferable when the intrinsic dimension of
the data is higher. However, our understanding of the interplay between the hyper-parameters and
model behavior is still somewhat limited. The time complexity of comfort-zone is governed by
the SVD calculation, which may be restrictive for large train batches.

There are several exciting avenues for future exploration. First, is there a fundamental link between
the vicinal distribution employed and the learned representation? While several existing works
suggest that linearity yields better models, the model dependency on the specific definition of vicinity
is still not well understood. Second, can similar methods be useful in classification tasks? The
adaptation of comfort-zone to classification is straightforward, however, several design choices
which were tuned for regression may require change in a classification setting.
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A A FULLY DIFFERENTIABLE COMFORT-ZONE

In Sec. 3 and Fig. 1 we discuss a potential implementation of our method at the input level, i.e., for
l = 0. However, this approach is not suitable for the latent version. Indeed, identifying the indices of
singular values which should be scaled by λ as was proposed in Sec. 3 is not a differentiable action.
Specifically, the use of numpy.where() does not allow for end-to-end learning, and it should be
replaced. Fortunately, PyTorch allows for differentiable index selecting from a tensor, thus by using
this feature we can separate the singular values we wish to scale from those we wish to keep as is.
We separate the s, the singular values vector, into two vectors, scale the desired singular values and
then concatenate the vectors, a differentiable operation in itself, to recreate s. For completeness, we
provide the pseudocode for the fully differentiable scale_down function in Fig. 3.

def scale_down(Z, lam, rho):
  U, s, Vt = torch.linalg.svd(Z)
  cumperc = torch.cumsum(s) / torch.sum(s)
  Jts = torch.nonzero(cumperc > rho, True)[0]
  Jbs = torch.nonzero(cumperc <= rho, True)[0]
  ts = s.index_select(dim=0, index=Jts)
  bs = s.index_select(dim=0, index=Jbs)
  s = torch.cat((ts, bs * lam))
  Z = U @ torch.diag(s) @ Vt
  

Figure 3: A differentiable version of the scale_down function.

B SEQUENTIAL MODELS CAPTURE DOMINANT COMPONENTS OF DATA
BETTER

Following the discussion in Sec. 3, we verify empirically that neural networks model the dominant
parts of their data better. We repeat the experiment in Fig. 2 in the main text using several datasets
and architectures. Every pair of dataset and architecture are evaluated on the dataset whose singular
values are modified using varying values of λ. The results are presented in Fig. 4 where solid lines
represent the non-regularized version, and dashed lines are associated with models trained with our
DA. In all cases we observe a similar qualitative behavior as we reported in Sec. 3. In particular, the
highest MSE values are obtained for both the baseline and regularized models for λ = 1, i.e., when
the data is unchanged. Further, the model attain improved error measures as λ decreases, where the
error profile is similar for the baseline and regularized models. Based on these results, we deduce
that sequential models prefer to represent and compute the dominant components of data.

Figure 4: We reproduce Fig. 2 for several architectures and datasets. In all cases the models achieve
better error measures for the modified data, whether it appeared during training or not.
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C ABLATION STUDY

To motivate the specific design choices in comfort-zone, we run an ablation study over different
design settings. The first hyper-parameter we consider is µ(λ) which is used to scale the cost function
during training. Our experiments show that µ(λ) = 1, i.e., no scaling, leads to the best results, and
we report for profiles µ(λ) ∈ {1, λ, λ2}. The second hyper-parameter marks whether to scale down
the small or large singular values. In comfort-zone we always scale the small singular values.
The third hyper-parameter deals with modifying the samples at the input level or in the latent space.
The results are given in Tab. 5. The ablation study is performed on the Concrete regression dataset
using ResNet18 architecture, and Australia Beer dataset using N-BEATS architecture. For both
datasets, scaling down the singular values at the input level and with no scaling to the loss function
leads to the best test measures. Further, the latent version of comfort-zone yields the second
best results. Finally, scaling down the large singular values and the loss function was beneficial for
Australia Beer, but resulted in poor measures on Concrete.

Table 5: Ablation study of comfort-zone over different loss scaling profiles µ(λ), scaling down
the small or large singular values, and modifying data at the input or latent levels.
Data #samples #feats mode µ(λ) scale RMSE ↓ MAPE ↓ R2 ↑

Concrete 1030 8

input 1 small 9.87± 0.61 28.35± 3.47 0.62± 0.05
input λ small 10.60± 1.04 31.35± 3.20 0.56± 0.09
input λ2 small 11.29± 0.80 33.17± 3.05 0.50± 0.07
input λ large 22.89± 4.33 61.62± 13.97 −1.10± 0.78
latent 1 small 10.20± 0.71 30.56± 3.56 0.59± 0.06

Australia Beer 176 1

input 1 small 0.030± 0.006 4.510± 0.927 0.924± 0.031
input λ small 0.034± 0.009 4.989± 1.427 0.899± 0.050
input λ2 small 0.035± 0.008 5.150± 1.314 0.890± 0.051
input λ large 0.031± 0.005 4.799± 0.892 0.918± 0.028
latent 1 small 0.032± 0.009 4.732± 1.324 0.908± 0.050

D TIME SERIES FORECASTING EVALUATION DETAILS

Tab. 6 shows several training parameters related to the time series forecasting experiments on DARTS
datasets reported in Sec. 5. The split column specifies the point in time from which we split the
data to train and test sets. Then #in and #out represent the series length for the input and output,
respectively. Finally, #pred is the length of series predicted during model evaluation.

Table 6: Training parameters of DARTS datasets.
Data split #in #out #pred
Air Passengers 1958-12-01 12 6 6
Australia Beer 2002-06-01 12 6 6
US Gasoline 2015-01-01 125 18 18
Sunspots 1940-10-01 125 18 18

E EFFECTS OF ADDITIVE NOISE IN COMBINATION WITH COMFORT-ZONE

In our experiments, we tested DARTS time series datasets using comfort-zone (CZ) and additive
noise UN, together and separately. We reported the results achieving the best metrics with or without
UN. For the sake of completeness, we add in Tab. 7 a comparison of the results for each of our
DARTS datasets, when training with CZ with and without UN. Typically, there is some improvement
when using UN alongside CZ, but this is not always the case, e.g., for Australia Beer and N-BEATS
where CZ alone had better results. For each dataset and architecture we also add the baseline without
any DA, which shows that generally CZ improves on the baseline with our without UN. We believe
additive noise is helpful in this test scenario since the DARTS datasets are extremely small, and thus
our data augmentation does not necessarily span a wide enough regime.
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Table 7: Test errors on several sequential neural architectures on the small-scale time series forecasting
datasets from DARTS. Each architecture is trained with comfort-zone and either with (CZ+UN)
or without additive uniform noise (CZ).
Data #samples Method RMSE ↓ ×10−2 MAPE ↓ R2 ↑

Air Passengers 144

N-BEATS 5.66± 1.2 8.30± 1.8 0.49± 0.2
N-BEATS + CZ 4.78± 1.0 7.18± 1.7 0.64± 0.1
N-BEATS + CZ + UN 3.63± 0.9 5.57± 1.5 0.79± 0.1
TRANSFORMER 5.23± 1.0 7.25± 1.8 0.59± 0.2
TRANSFORMER + CZ 5.02± 1.2 6.96± 1.8 0.60± 0.2
TRANSFORMER + CZ + UN 4.35± 1.0 6.20± 1.5 0.70± 0.2

Australia Beer 176

N-BEATS 3.27± 0.8 4.79± 1.2 0.91± 0.03
N-BEATS + CZ 2.90± 0.7 4.46± 1.0 0.92± 0.03
N-BEATS + CZ + UN 3.21± 0.7 4.66± 1.1 0.91± 0.04
TRANSFORMER 4.94± 0.9 6.51± 1.4 0.80± 0.08
TRANSFORMER + CZ 5.27± 1.2 7.07± 2.0 0.76± 0.11
TRANSFORMER + CZ + UN 4.55± 1.0 5.94± 1.4 0.82± 0.08

US Gasoline 1578

N-BEATS 6.33± 0.5 6.64± 0.5 −0.11± 0.2
N-BEATS + CZ 6.30± 0.6 6.65± 0.6 −0.10± 0.2
N-BEATS + CZ + UN 6.35± 0.6 6.61± 0.6 −0.12± 0.2
TRANSFORMER 6.07± 0.4 6.48± 0.4 −0.01± 0.1
TRANSFORMER + CZ 6.15± 0.4 6.52± 0.4 −0.04± 0.2
TRANSFORMER + CZ + UN 6.15± 0.4 6.44± 0.4 −0.04± 0.2

Sunspots 2820

N-BEATS 6.17± 0.9 27.45± 3.2 −0.68± 0.5
N-BEATS + CZ 6.61± 0.9 27.51± 3.5 −0.68± 0.5
N-BEATS + CZ + UN 6.03± 0.7 27.71± 3.5 −0.60± 0.4
TRANSFORMER 6.40± 0.9 27.16± 2.6 −0.81± 0.6
TRANSFORMER + CZ 6.38± 0.6 27.07± 2.6 −0.79± 0.5
TRANSFORMER + CZ + UN 5.88± 0.6 26.86± 2.5 −0.51± 0.3

F TIME CONSUMPTION OF APPLYING COMFORT-ZONE

We add in Tab. 8 the timings of applying CZ on a batch of the different time series datasets. We
measured these timings by applying CZ on the batch 1000 times, measuring the entire time length
then dividing the total time by 1000 to get the average time of a single application.

Table 8: Running times of a single application of our method for several datasets.
Data Data Size Method timing×10−4 (ms)

Air Passengers 32× 18 5.168
Australia Beer 32× 18 5.122
US Gasoline 32× 143 7.210
Sunspots 32× 143 7.426

G ADDITIONAL TIME SERIES RESULTS

In addition to the results in Tab. 2, we evaluate our method on three architectures (RNN, TCN and
TRANSFORMER), using ERM and mixup, UN and CZ for DA approaches. We report the results
in Tab. 9, where we highlight in blue the best method and in red the second-best. Overall, CZ
achieves the best results in all cases and RMSE, MAPE and R2 metrics, except of US Gasoline where
TRANSFORMER yields better RMSE and R2 estimates.
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Table 9: Test errors of several sequential neural models on the time series forecasting datasets from
DARTS. Each architecture is also trained with: mixup, additive noise, and comfort-zone.
Data #samples Method RMSE ↓ ×10−2 MAPE ↓ R2 ↑

Air Passengers 144

RNN 9.117± 1.64 14.403± 2.84 −0.304± 0.49
RNN + mixup 9.269± 1.81 14.643± 3.18 −0.355± 0.53
RNN + UN 8.805± 1.60 14.000± 2.80 −0.217± 0.41
RNN + CZ 8.773± 1.28 13.918± 2.27 −0.194± 0.34
TCN 9.710± 4.43 15.304± 7.75 −0.731± 2.40
TCN + mixup 9.634± 3.72 14.901± 6.28 −0.620± 1.62
TCN + UN 8.857± 2.43 13.686± 3.75 −0.281± 0.72
TCN + CZ 9.141± 3.63 14.225± 6.32 −0.469± 2.00
TRANSFORMER 5.234± 1.02 7.245± 1.75 0.568± 0.17
TRANSFORMER + mixup 6.321± 1.64 8.876± 2.70 0.352± 0.34
TRANSFORMER + UN 4.507± 1.10 6.456± 1.72 0.673± 0.17
TRANSFORMER + CZ 4.352± 0.99 6.197± 1.52 0.697± 0.15

Australia Beer 176

RNN 4.392± 1.46 6.169± 2.08 0.822± 0.16
RNN + mixup 5.682± 2.38 8.096± 3.49 0.684± 0.28
RNN + UN 6.416± 1.77 9.109± 2.67 0.631± 0.23
RNN + CZ 4.522± 1.71 6.385± 2.48 0.806± 0.20
TCN 4.058± 1.85 5.939± 2.51 0.834± 0.21
TCN + mixup 4.040± 2.05 5.775± 2.74 0.829± 0.25
TCN + UN 4.798± 2.01 7.220± 3.05 0.775± 0.22
TCN + CZ 3.757± 1.73 5.522± 2.34 0.858± 0.19
TRANSFORMER 4.939± 0.89 6.507± 1.44 0.790± 0.08
TRANSFORMER + mixup 4.113± 0.99 5.776± 1.53 0.851± 0.07
TRANSFORMER + UN 5.914± 1.47 7.963± 2.25 0.691± 0.15
TRANSFORMER + CZ 4.431± 0.88 5.730± 1.26 0.830± 0.07

US Gasoline 1578

RNN 7.146± 0.48 7.996± 0.67 −0.406± 0.19
RNN + mixup 7.170± 0.50 8.014± 0.74 −0.416± 0.20
RNN + UN 7.322± 0.47 8.230± 0.62 −0.475± 0.19
RNN + CZ 7.329± 0.58 8.244± 0.78 −0.481± 0.23
TCN 6.943± 0.40 7.649± 0.44 −0.325± 0.15
TCN + mixup 6.903± 0.40 7.611± 0.42 −0.310± 0.15
TCN + UN 6.606± 0.34 7.233± 0.37 −0.199± 0.12
TCN + CZ 6.737± 0.37 7.399± 0.43 −0.248± 0.14
TRANSFORMER 6.066± 0.38 6.478± 0.36 −0.012± 0.13
TRANSFORMER + mixup 6.254± 0.46 6.517± 0.42 −0.078± 0.17
TRANSFORMER + UN 6.187± 0.43 6.461± 0.40 −0.054± 0.15
TRANSFORMER + CZ 6.153± 0.44 6.443± 0.38 −0.043± 0.15

Sunspots 2820

RNN 5.773± 0.24 28.259± 1.45 −0.443± 0.12
RNN + mixup 5.797± 0.25 28.842± 1.44 −0.455± 0.13
RNN + UN 5.953± 0.33 30.169± 1.94 −0.537± 0.17
RNN + CZ 5.759± 0.26 28.262± 1.58 −0.436± 0.13
TCN 5.901± 0.66 25.455± 2.06 −0.524± 0.35
TCN + UN 6.277± 0.66 28.336± 2.83 −0.722± 0.36
TCN + mixup 5.936± 0.52 26.062± 1.88 −0.535± 0.28
TCN + CZ 5.785± 0.63 25.287± 2.35 −0.464± 0.32
TRANSFORMER 6.399± 0.94 27.161± 2.57 −0.808± 0.55
TRANSFORMER + mixup 6.230± 0.83 26.653± 2.54 −0.707± 0.48
TRANSFORMER + UN 5.899± 0.61 26.121± 2.31 −0.520± 0.32
TRANSFORMER + CZ 5.902± 0.47 26.890± 2.44 −0.515± 0.25
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H RESULTS OF CZ ON CIFAR DATASETS

In Tab. 10 we demonstrate the results of applying CZ to image datasets, as well as a comparison to
application of mixup and a baseline with no DA. The results were produced using the aforementioned
DA methods in their manifold setup on preact-resnet18 model and CIFAR datasets, each run
with three different seeds then averaged. For the manifold-mixup and baseline code we used the
repository in (Lim et al., 2021), and we added the manifold CZ version mentioned in Sec. 3 on top
of it. When using CZ, we applied it on the data alone, and did not incorporate the labels into the
augmentation. That is, after applying CZ to a sample, its target stayed the same. The results are
unfavorable towards CZ, but it’s worth pointing out that mixup was designed with classification
in mind, and it augments the data using the targets as well as the input data. In contrast, CZ was
designed originally for regression tasks, and even though it incorporates the targets into the DA in
those setups, it is less obvious to realize how to do so with the type of targets used in classification.
As mentioned, the naive way we tried did not use the targets as part of the augmentation, and we
think this is the main reason for the deficit in the results. We leave further exploration of this research
direction to future work.

Table 10: Accuracy results on image (CIFAR) datasets.
Data Method Mean Accuracy (%)

CIFAR10
Baseline 94.673± 0.071

mixup (α = 1.0) 95.507± 0.076
CZ (α = 1.0, ρ = 0.95) 94.623± 0.119

CIFAR100
Baseline 76.130± 0.164

mixup (α = 1.0) 77.943± 0.039
CZ (α = 1.0, ρ = 0.99) 75.747± 0.135
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