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Abstract
This paper investigates how to combine en-001
coders and decoders of different indepen-002
dently trained NMT models. Combining en-003
coders/decoders is not directly possible since004
the intermediate representations of any two in-005
dependent NMT models are different and can-006
not be combined without modification. To ad-007
dress this, firstly, a dimension adapter is added008
if the encoder and decoder have different em-009
bedding dimensionalities, and secondly, rep-010
resentation adapter layers are added to align011
the encoder’s representations for the decoder to012
process. As a proof of concept, this paper looks013
at many-to-Estonian translation and combines014
a massively multilingual encoder (NLLB) and015
a high-quality language-specific decoder. The016
paper successfully demonstrates that the sen-017
tence representations of two independent NMT018
models can be made compatible without chang-019
ing the pre-trained components while keeping020
translation quality from deteriorating. Results021
show significant improvements in both transla-022
tion quality and speed for many-to-one transla-023
tion over the baseline multilingual model.024

1 Introduction025

As the availability of pre-trained models continu-026

ously increases, there is a growing need to investi-027

gate how to use them efficiently. Previous works028

have looked at effectively using pre-trained neu-029

ral machine translation (NMT) models by effec-030

tive fine-tuning (Bapna and Firat, 2019; Zhu et al.,031

2021) as well as using pre-trained language models032

in NMT model training (Zhu et al., 2020; Rothe033

et al., 2020; Chen et al., 2021; Sun et al., 2021;034

Chen et al., 2022).035

This paper examines the feasibility of combining036

together components (like encoders and decoders)037

of independent pre-trained NMT models without038

any retraining or fine-tuning. We investigate how039

representations of independently trained models040

can be made compatible and evaluate the result-041

ing translation quality and efficiency. Surprisingly,042
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(from pre-trained

model A)

Decoder (from 
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model B)
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Representation
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Figure 1: The proposed mix-and-match architecture.
Dimension adapter is a component that takes input with
the dimensionality of model A output and outputs with
the dimensionality of model B (for example a linear
transformation). Adapter layers are transformer encoder
layers. Components from models A and B have frozen
parameters.

our evaluation shows that the resulting combined 043

model can surpass the original models in transla- 044

tion quality and speed. 045

Combining any pre-trained encoder and decoder 046

poses two problems. Firstly, their representation 047

spaces will not be compatible, as the models are 048

trained independently. Secondly, the embedding di- 049

mension of the representation can also differ across 050

any two pre-trained models. We propose a method 051

that solves both issues and allows the encoder and 052

decoder of any pre-trained NMT models to be com- 053

bined. Specifically, in our architecture (Figure 1), 054

we use a small adapter to convert the dimensional- 055

ity and representation space of the encoder to some- 056

thing the decoder is trained to process. In order for 057

the adapter to learn its weights, the whole pipeline 058

(Encoder A - adapter - Decoder B) is trained in an 059

end-to-end fashion, except both the encoder and 060

decoder are frozen. Thus, the only part changing 061
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the weights is the adapter itself while the original062

components remain intact.063

As a proof of concept, we investigate combin-064

ing encoders and decoders of multiple different065

pre-trained NMT models, focusing on an output066

language-specific scenario. In other words, a highly067

multilingual encoder is combined with a monolin-068

gual decoder, tuned to high performance on a single069

language. Since highly multilingual models often070

suffer from the capacity bottleneck (Johnson et al.,071

2017; Tan et al., 2019; Arivazhagan et al., 2019),072

we hypothesize that adding a high-quality language-073

specific decoder can improve the translation quality074

to the language of the decoder. Furthermore, trans-075

lation to one language requires less capacity than076

many-to-many scenarios and thus would potentially077

require fewer parameters, resulting in faster trans-078

lation.079

Using NLLB (NLLB Team, 2022) as the multi-080

lingual model and MTee (Tättar et al., 2022) as the081

language-specific Estonian model, we demonstrate082

significant improvements in translation quality over083

the baseline NMT model for many-to-Estonian084

translation and show competitive results to pivoting085

and fine-tuning. Our method is not only effective086

to train compared to traditional fine-tuning but also087

provides a reduction in running costs of the trans-088

lation model thanks to the number of parameters089

being reduced by 40% compared to the baseline090

NLLB model.091

The main contributions of this work are:092

• a novel method for combining pre-trained093

NMT models, which improves translation094

quality, is effective to train, and reduces the095

model’s parameters (Section 3);096

• a detailed ablation of the proposed method,097

exploring the effect of freezing or unfreez-098

ing different involved components, comparing099

simpler and more complicated adapter archi-100

tectures, and involving more source languages101

in training (Section 4);102

• an open-source implementation of our pro-103

posed method (see subsection 3.5).104

2 Related Work105

To the best of our knowledge, creating new NMT106

models by connecting encoders and decoders of107

different pre-trained NMT models has not been ex-108

plored yet. Similar approaches have been tested in109

speech translation (Li et al., 2021; Gállego et al., 110

2021). Similarity between independently learned 111

representations has been explored between linguis- 112

tic, image representations as well as brain waves 113

(Søgaard, 2023; Li et al., 2023), however we at- 114

tempt direct conversion and exploitation of these 115

representations. 116

2.1 Pre-trained NMT models 117

There are many pre-trained NMT models already 118

openly available for use. OpusMT provides over 119

1000 NMT models, most of which are bilingual, but 120

some also multilingual (Tiedemann and Thottingal, 121

2020). Rothe et al. (2020) published NMT models 122

which were initialized from BERT and trained on 123

the NMT task. M2M-100 is a series of NMT mod- 124

els (varying in size) which were trained on 7.5B 125

sentence pairs and support translation between 100 126

languages (Fan et al., 2020). The NLLB-200 NMT 127

model further improves it and extends support to 128

200 languages with a training dataset of 18B sen- 129

tence pairs (NLLB Team, 2022). Both M2M-100 130

and NLLB-200 are strong baselines in NMT re- 131

search regarding translation quality. MTee provides 132

an Estonian-centric (Estonian to/from English, Ger- 133

man, Russian) NMT model with language-specific 134

encoders-decoders (Tättar et al., 2022). The most 135

recent contribution to massively multilingual mod- 136

els is MADLAD-400 (Kudugunta et al., 2023), 137

with both decoder-only as well as sequence-to- 138

sequence models with both the encoder and de- 139

coder released. Finally, large multilingual language 140

models like GPT-3 and GPT-4 have demonstrated 141

an ability to translate (Brown et al., 2020; Bubeck 142

et al., 2023), however they only demonstrate highly 143

competitive quality for high-resource languages. 144

2.2 Multilingual NMT 145

Recently, there have been numerous advancements 146

in multilingual NMT. One of the most widely 147

followed approaches is demonstrated by Johnson 148

et al. (2017), where they use a single (universal) 149

model with shared vocabulary for multilingual 150

NMT, which enables transfer learning and zero- 151

shot translation. Massively multilingual training 152

has since been successfully demonstrated (Aha- 153

roni et al., 2019; Arivazhagan et al., 2019; Zhang 154

et al., 2020). Additionally, fine-tuning methods 155

of NMT models have been investigated, including 156

lightweight fine-tuning methods such as adapters 157

(Bapna and Firat, 2019; Zhu et al., 2021). In ad- 158

dition to universal models, there has been success- 159
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ful research into modular multilingual NMT using160

language-specific encoders and decoders (Escolano161

et al., 2021; Lyu et al., 2020). As an alternative162

to supporting all directions in the models, pivot-163

ing (translating through a pivot language) has also164

been used as a method for achieving higher quality165

multilingual translation (Habash and Hu, 2009).166

2.3 Pre-trained Language Models for NMT167

With many pre-trained language models (LMs) be-168

coming available, making use of them in NMT has169

become an important topic.170

The first line of works takes the approach of171

pre-training an encoder-decoder model for seq2seq172

tasks and then fine-tuning the model for MT, for173

example, mBART (Liu et al., 2020), and MASS174

(Song et al., 2019).175

In the second approach, the encoder or the de-176

coder can be trained independently and later used177

in an NMT model. Zhu et al. (2020) incorporates178

input sentence representations into an NMT model.179

Rothe et al. (2020) initializes NMT model’s en-180

coder and/or decoder weights from pre-trained lan-181

guage models. SixT (Chen et al., 2021) used XLM-182

R as the pre-trained encoder in combination with a183

randomly initialized decoder, trained using 2-stage184

training where first the decoder is trained (rest of185

the model frozen) and secondly, the rest of the186

model is tuned. This was further improved and187

expanded in SixT+ (Chen et al., 2022). Sun et al.188

(2021) combined a BERT-like encoder and a GPT-189

like decoder into a single model by adding extra190

layers to both the encoder and decoder.191

Ma et al. (2021) uses aspects of both approaches192

by initializing an encoder-decoder model from an193

encoder-only language model and pre-training on194

seq2seq tasks before fine-tuning for MT.195

Li et al. (2021) combines a pre-trained audio en-196

coder and pre-trained decoder from mBART to cre-197

ate a speech translation model through fine-tuning.198

3 Approach and Setup199

3.1 Methodology200

Our approach combines two pre-trained NMT mod-201

els using an adapter placed “between” the encoder202

and decoder: see Figure 1). The adapter consists of203

a dimension adapter and representation adapter.204

The dimension adapter is a linear transforma-205

tion (feed-forward layer) with input dimensionality206

equal to the encoder embedding dimension and the207

output dimensionality to the decoder embedding di- 208

mension. We place the dimension adapter directly 209

after the pre-trained encoder. 210

Representation adapter layers are implemented 211

as randomly initialized transformer layers. They 212

have the same embedding dimension as the decoder. 213

We do not modify the decoder by adding extra lay- 214

ers or other parameters; thus it is kept lightweight, 215

leading to fast translation using beam search since 216

encoder embeddings are calculated once for a sen- 217

tence, but the decoder is used repeatedly. 218

Training: when training the model, the adapter 219

learns with the rest of the components in an end-to- 220

end fashion. Training examples are passed through 221

the whole pipeline (encoder, then adapter, then 222

decoder), however both the encoder and decoder 223

remain frozen. Thus the only weights that are al- 224

lowed to change are the parts of the adapter. 225

We also perform reverse-ablation and compare 226

our original approach of freezing all but the adapter 227

to less efficient alternatives of also letting the de- 228

coder tune itself during training, randomly initializ- 229

ing the decoder as well as tuning the whole model. 230

A combination of the originally proposed approach 231

(tuning only the adapter) and then continuing train- 232

ing the adapter and an unfrozed pre-initialized de- 233

coder will be referred to as the 2-stage approach. 234

3.2 Translation models 235

We rely on NLLB-1B-distilled as the pre-trained 236

model for encoders in our experiments (referred 237

to in the further text as NLLB-1B or NLLB); Sec- 238

tion 4.3.3 also includes a comparison to NLLB- 239

600M-distilled as the base model. For the decoder, 240

we use the Estonian decoder from MTee (Tättar 241

et al., 2022) – a modular model with language- 242

specific encoders and decoders (encoders/decoders 243

follow transformer base architecture (Vaswani 244

et al., 2017)). 245

The pre-trained NLLB-1B encoder has 24 lay- 246

ers with an embedding dimension of 1024 and a 247

feed-forward dimension of 8192. In the main ex- 248

periments, we add a linear dimension adapter that 249

transforms the embedding dimension from 1024 to 250

512 and 4 adapter layers with the same embedding 251

and feed-forward dimension as the decoder (512 252

and 2048 respectively) to the encoder. 253

3.3 Dataset 254

We use English-Estonian (22M, sentence pairs), 255

German-Estonian (12.5M sentence pairs), French- 256

Estonian (11.7M sentence pairs), and Polish- 257
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Estonian (7M sentence pairs) directions from CC-258

Matrix (Schwenk et al., 2019). In Ablation Sec-259

tion 4.3.3 we use Europarl (Tiedemann, 2012).260

We use SentencePiece (SP) (Kudo and Richard-261

son, 2018) models from the respective pre-trained262

NMT models for segmenting the data. For example263

when we use NLLB encoder and MTee decoder,264

we use NLLB SP model for processing the source265

and MTee SP model for processing the target.266

The models are evaluated using FLORES-200267

(NLLB Team, 2022) devtest as the test set and268

dev as the validation set. The same directions the269

model is trained on are used for validation. The270

best checkpoint, according to the validation loss,271

is used for test set evaluation. Test set evaluation272

is carried out on all 201 many-to-Estonian direc-273

tions. We confirmed that the test set was not present274

in the training data of MTee and also trust that275

since FLORES-200 was the main test set of NLLB276

(NLLB Team, 2022), it would be properly cleaned277

from their training dataset.278

3.4 Evaluation279

For evaluation we mainly rely on chrF++1280

(Popović, 2017), but also report chrF2 (Popović,281

2015) for comparison with previous research. We282

use the sacreBLEU (Post, 2018) implementation.283

Although BLEU (Papineni et al., 2002) is a284

widely adopted metric, several evaluation cam-285

paigns (Barrault et al., 2021; Koehn et al., 2022)286

have shown its weaker correlation with human287

judgements of translation quality compared to288

chrF/chrF++ and neural metrics like COMET (Rei289

et al., 2020). However, we still include BLEU290

scores for comparison in Appendix A. Addition-291

ally, we provide COMET scores (Rei et al., 2020)292

for a selection of languages in Appendix B.293

For the main experiments, we conduct 5 random294

restarts for each model and report the mean score295

with a confidence interval (p = 0.01, t-distribution).296

We also report the Win Rate with Significance297

(WRS) – the percentage of language pairs where298

the model outperforms the baseline (NLLB-1B)299

with significance p = 0.01. The significance is300

tested using a one-sample one-tailed t-test for ex-301

periments with 5 seeds. Additionally, we report302

WRS based on a single seed with significance cal-303

culated with paired bootstrap resampling (PBR)304

1sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:2|space:no|version:2.3.1

2sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.3.1

(Koehn, 2004). 305

3.5 Implementation and training 306

We use Fairseq (Ott et al., 2019) for implement- 307

ing training. Additionally, we made our specific 308

implementation of training and models public3. 309

For the main experiments, all models are trained 310

for a total of 100k updates. If 2-stage training is 311

used, the first stage is trained for 50k updates and 312

the second stage for 50k updates. The learning rate 313

used is 0.0005 for the first stage and 0.0001 for the 314

second stage. We use Adam optimizer (Kingma 315

and Ba, 2015). An inverse square root learning rate 316

scheduler with 4000 warm-up steps is used for all 317

experiments. We use dropout and attention dropout 318

of 0.1. Models are trained with mixed precision 319

(fp16). All translations are acquired using beam 320

search with beam size 4. 321

The models were trained on 8 GPUs for the main 322

experiments. The batch size was 4096 tokens per 323

GPU. The training was performed on the LUMI 324

supercomputer4, utilizing 4 AMD Instinct MI250X 325

128GB HBM2e (each acting as 2 GPUs). 326

4 Results 327

4.1 Main Results 328

The main results are reported in Table 1. NLLB- 329

1B-distilled is used as a baseline. Additionally, re- 330

sults of the largest publicly available NLLB model 331

(NLLB-MoE) with 54.5B parameters reported by 332

NLLB Team (2022) are used for comparison. The 333

table lists average chrF++ scores over all many- 334

to-Estonian translation directions and all official 335

EU languages5. The EU language averages are 336

reported to highlight the translation quality for lan- 337

guages more closely related to Estonian and also 338

more frequently translated from. We analyze the 339

quantitative results of pivoting, fine-tuning, and our 340

mixing and matching approach of combining the 341

encoder and the decoder of different pre-trained 342

models. 343

4.1.1 Pivoting 344

NLLB-1B English pivoting for many-to-Estonian 345

translation results in an average 1.2 chrF++ point 346

3https://anonymous.4open.science/r/mix-and-match-nmt
4https://www.lumi-supercomputer.eu/
5Bulgarian, Croatian, Czech, Danish, Dutch, English, Es-

tonian, Finnish, French, German, Greek, Hungarian, Irish,
Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Ro-
manian, Slovak, Slovenian, Spanish, and Swedish

4

https://anonymous.4open.science/r/mix-and-match-nmt
https://www.lumi-supercomputer.eu/


Model Parameters Train. average chrF++ ↑ WRS (%) ↑

train total eff. time full EU t-test PBR

(1) NLLB-1B - 1.37B 1.37B - 40.2 46.7 - -
(2) NLLB-MoE† - 54.5B 54.5B - 43.0 49.6 - 99.5

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B - 1.37B 2.74B - 41.4 47.5 - 84.6
(4) en2et: MTee - 1.42B 1.42B - 43.4 50.2 - 100.0

Fine-tune NLLB-1B
(5) - 1.37B 1.37B 1.37B 22.3 42.5 ± 0.1 50.1 ± 0.3 91.0 86.6
(6) freeze enc 604M 1.37B 1.37B 15.0 43.0 ± 0.1 50.3 ± 0.2 98.0 98.5

Ours: NLLB-1B enc +
(7) rand dec 51M 817M 817M 4.4 42.6 ± 0.3 50.2 ± 0.3 93.5 97.5
(8) MTee dec 13M 817M 817M 3.9 42.5 ± 0.1 50.4 ± 0.1 92.0 89.1
(9) MTee dec, 2-stage 51M 817M 817M 4.1 43.1 ± 0.1 50.9 ± 0.1 93.0 96.5

Table 1: Many-to-Estonian translation average chrF++ scores. Additionally model training, total and effective
parameters and training time (hours) is reported. Effective parameter count represents the number of parameters
used during translation. For experiments involving model training, the average of 5 random seeds is reported with
confidence intervals (p = 0.01). Average chrF++ is reported for all directions and official EU languages separately.
WRS (Win Rate with significance, p = 0.01) reports what percentage of directions outperform the baseline with
both significance based on t-test on 5 seeds and significance based on paired bootstrap resampling t-test (PBR). † -
Scores reported by (NLLB Team, 2022).

improvement across all directions, significantly out-347

performing the baseline NLLB-1B model on 84.6%348

of directions (see (3) in Table 1). When NLLB-1B349

is used to translate to English and MTee is used for350

English-to-Estonian translation (see (4) in Table 1),351

the translation quality is improved by 3.2 chrF++352

points on average compared to the baseline (1), sig-353

nificantly outperforming it on all directions. These354

results demonstrate that pivoting can enhance trans-355

lation quality without additional training. How-356

ever, pivoting requires passing through two models,357

which increases the time required for translation358

and reduces long-term cost efficiency.359

4.1.2 Fine-tuning360

We experimented with two different fine-tuning361

strategies: full fine-tuning (5) and fine-tuning only362

the decoder of the baseline NLLB model with the363

encoder frozen (6). We found that both approaches364

lead to significant improvements over the baseline:365

2.3 and 2.8 chrF++ points, respectively. Moreover,366

fine-tuning exhibited superior performance com-367

pared to the baseline across more language pairs,368

as confirmed by the t-test WRS scores: 98.0% for369

the frozen encoder method vs. 91.0% for full fine-370

tuning.371

4.1.3 Mixing and Matching372

When NLLB encoder and MTee decoder are com-373

bined with adapter layers, by only training the374

adapter (13M parameters) and freezing the pre-375

trained components, the resulting model (NLLB 376

enc + MTee dec model (8)) significantly outper- 377

forms the baseline on 92.0% of the directions ac- 378

cording to the t-test (89.1% according to PBR), 379

with an average improvement of 2.3 chrF++ points. 380

The 2-stage training approach (9) – training the 381

adapter first (13M parameters), followed by train- 382

ing the adapter with the decoder (51M parameters) 383

– achieved the best results. This method (9) outper- 384

forms the baseline by 2.9 chrF++ points on average 385

across all directions and achieves similar average 386

chrF++ scores to the 54B parameter NLLB model. 387

It is only slightly behind the best-performing piv- 388

oting model in terms of average chrF++ scores. 389

Additionally, we observed that the 2-stage train- 390

ing approach significantly outperforms the baseline 391

on 93% of the language pairs according to the t- 392

test (96.5% according to the PBR). However, the 393

fine-tuning method with a frozen encoder showed 394

significant improvements over the baseline in 5% 395

more directions than our approach. 396

We also evaluated a decoder that was randomly 397

initialized with the same architecture and vocabu- 398

lary as MTee (7), and trained in a single stage with 399

a frozen encoder, only training the adapter and de- 400

coder. It outperformed the baseline by 2.4 chrF++ 401

points on average. This method performs similarly 402

to the initialized model with no decoder training. 403

Although it is still slightly outperformed by the 404

2-stage model with the pre-initialized decoder in 405
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Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 52.6 48.5 46.6 40.2 45.8
NLLB-MoE† 56.1 51.8 49.5 43.8 49.1
MTee 56.9 52.2 49.9 - -

Pivot, m2en: NLLB-1B
en2et NLLB-1B 52.6 48.7 47.2 42.4 46.8
en2et: MTee 56.9 52.4 49.8 45.5 49.5

Fine-tune NLLB-1B
- 56.6 ± 0.3 52.3 ± 0.5 50.1 ± 0.2 44.5 ± 0.2 48.8 ± 0.2
freeze enc 56.2 ± 0.4 52.3 ± 0.3 50.1 ± 0.2 44.6 ± 0.2 48.8 ± 0.2

Ours: NLLB-1B enc +
rand dec 56.1 ± 0.4 52.0 ± 0.5 49.8 ± 0.5 44.1 ± 0.3 48.6 ± 0.3
MTee dec 56.7 ± 0.5 52.4 ± 0.4 49.9 ± 0.3 43.5 ± 0.3 48.6 ± 0.2
MTee dec 2-stage 57.3 ± 0.3 52.8 ± 0.2 50.4 ± 0.3 44.6 ± 0.4 49.1 ± 0.3

Table 2: Many-to-Estonian translation chrF++ scores for selected directions. Confidence intervals are based on 5
random seeds. † - Scores reported by NLLB Team (2022). Language abbreviations following NLLB Team (2022).

terms of the average chrF++ score, it can be useful406

when a high-quality pre-trained decoder model is407

unavailable.408

Average BLEU scores are presented in Ap-409

pendix A Table 6, since they support the same410

conclusions as the chrF++ scores.411

For EU languages, NLLB-enc+MTee-dec, 2-412

stage (9) achieves the highest average chrF++ score413

and outperforms the baseline by 4.2 chrF++ points.414

This shows that our method achieves the best result415

for more closely related languages, whereas the416

pivoting approach of combining two models was417

better for more distant languages. A possible expla-418

nation could be the training data being composed419

of EU languages. Furthermore, the pre-trained de-420

coder was also trained with two EU languages and421

Russian as input, which could contribute to the422

high performance on translating EU languages.423

In Table 2, we present the chrF++ scores for424

translations from a selection of languages to Es-425

tonian, serving as an example. It also shows the426

comparison with the MTee model for the languages427

supported by the pre-trained MTee model. The428

mix-and-match models (ours) perform similarly to429

the MTee model, with the 2-stage model outper-430

forming MTee slightly. It can also be seen that431

for Chinese and Arabic, our approach is outper-432

formed by pivoting with NLLB and MTee. This433

further suggests that our method produces better434

translation quality for closer related languages. We435

also provide COMET scores for these directions436

in Appendix B, which support mostly the same437

conclusions, except for NLLB-MoE scores, which438

rank the highest among the models.439

4.1.4 Efficiency 440

The mix-and-match method (NLLB-1B enc. + 441

MTee dec.) reduces the number of parameters by 442

40% compared to the baseline model and the de- 443

fault fine-tuning approach. Even though we add 444

13M trainable parameters to the encoder (adapter 445

layers), we use a significantly smaller decoder than 446

NLLB-1B, leading to fewer trained and total param- 447

eters. This makes the training time of our method 448

(4.1 hours for NLLB-enc+MTee-dec, 2-stage) 5.4 449

times faster than the full fine-tuning (22.3 hours). 450

Furthermore, the inference with NLLB-enc+MTee- 451

dec is approximately 6.5 times faster than with 452

NLLB-1B. This demonstrates that our approach 453

offers an efficient and cost-effective alternative to 454

fine-tuning and pivoting that delivers comparable 455

or better translation quality, with the added benefit 456

of faster training (compared to fine-tuning), fewer 457

parameters, and faster inference. 458

4.2 Ukrainian-Estonian Translation 459

Model chrF ↑

NLLB-1B 50.9
NLLB-MoE† 54.0

NLLB-MTee EN pivot 54.5

NLLB-enc+MTee-dec 54.6 ± 0.2
NLLB-enc+MTee-dec, 2-stage 55.0 ± 0.1

Bergmanis and Pinnis (2022) 53.5

Table 3: Ukrainian (Cyrillic) to Estonian (Latin) trans-
lation chrF scores on FLORES-101 devtest. NLLB-1B
model was used for all experiments, except for NLLB-
MoE (54B). † - calculated from translations reported by
(NLLB Team, 2022).
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With many Ukrainian-speaking refugees re-460

cently arriving to Estonia, Ukrainian-Estonian461

has become an important translation direction.462

We demonstrate that without needing Ukrainian-463

Estonian data, we can rapidly create a model with464

competitive translation quality. We compare scores465

of our best model with work by Bergmanis and Pin-466

nis (2022) and report chrF to be compatible with467

their evaluation. We can see that our best model468

(NLLB-enc+MTee-dec, 2-stage) outperforms their469

Ukrainian to Estonian model by 1.5 chrF points470

(see Table 3). It also outperforms the NLLB-1B471

baseline by 4.1 chrF points and achieves a slightly472

higher score than NLLB-MoE and pivoting with473

NLLB-1B and MTee.474

4.3 Ablation475

4.3.1 Effect of multi-stage training476

We look at additional training strategies in addition477

to training adapter or adapter and decoder. It can478

be seen in Table 4 that training only the adapter479

and decoder yields the best results both in single-480

stage and multi-stage training strategies. Strategies481

involving encoder training take longer to train due482

to more trained parameters and do not yield any483

visible benefit. We can hypothesize that it is be-484

cause the encoder is already trained for the domain485

of the test set. We can see that the 2-stage training,486

which trains the adapter in the first stage and the487

adapter and decoder in the second stage, produces488

the best scoring model and is also the second fastest489

behind the single-stage model, which trains only490

the adapter. While encoder training did not yield491

improvements for the current pre-trained models,492

training and test datasets, it might yield different493

results if these elements differ. For example, when494

pre-trained models are trained for a domain differ-495

ent from the training and test datasets, fine-tuning496

the encoder might be necessary.497

4.3.2 Effect of the pre-trained decoder498

Since we saw that using a pre-trained decoder had499

a result close to using a randomly initialized de-500

coder, we investigated further how fast the models501

converge and how the results would compare using502

less training data.503

From Figure 2, we can see that surprisingly for504

the first 2500 updates the model with a pre-trained505

encoder and decoder, which trains only the adapter506

converges the slowest, even being behind the ran-507

domly initialized decoder. However, when the de-508

coder is not frozen, we can see that it converges509

Training setup Trained Time chrF++
dec. init. stage params (hrs) avg

single
random A+D 51M 4.3 42.8
MTee A+D 51M 4.4 42.9
MTee A 13M 3.8 42.4

I II
random A+D E+A+D 817M 5.5 42.7
MTee A A+D 51M 4.0 43.2
MTee A E+A 779M 7.5 42.1
MTee A E+A+D 817M 7.2 42.8

Table 4: Comparison of training strategies. chrF++
scores as calculated on FLORES200 devtest. All models
listed have 817M total parameters. Trained parameters
are based on the last stage and models follow the NLLB-
1B+MTee mix-and-match model structure. The stage
column describes which parameters are trained. A - dim.
adapter and adapter layers, D - decoder, E - encoder. The
results are based on a single seed.
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Figure 2: Average test chrF++ score for NLLB+MTee
models for first 10,000 training updates (evaluated every
1250 updates). Decoder and adapter (dimensional and
layers) are trained, with the rest of the encoder frozen,
unless specified with frozen.

faster than with an uninitialized decoder. 510

For the dataset size, we can see on Figure 3 that 511

the model with pre-trained encoder and decoder 512

models is less affected by the dataset size, com- 513

pared to the model that only uses a pre-trained 514

encoder. 515

4.3.3 Effect of adapter structure and the 516

number of languages 517

Experiments in this section are performed on the 518

Europarl dataset with results reported in Table 5. 519

The models are trained for 20 epochs on 1 GPU. 520

It can be seen that using only a dimension 521

adapter without any added layers does not yield 522

as good results and adding layers significantly in- 523

creases the chrF++ score (see experiments 1–6 in 524
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Figure 3: Average test chrF++ score for NLLB+MTee
models for three dataset sizes: 500k sentence pairs per
direction (2M in total), 1M per direction (4M in total)
and the whole dataset (53M in total) trained for 100k
updates. For MTee Dec model only dimensional adapter
and adapter layers are trained, while the decoder and
encoder remain frozen.

Table 5). Additionally, we see that using the MLP525

dimension adapter instead of linear yields better526

results when only using the dimension adapter, but527

when adding layers it is less stable, resulting in528

higher variance in average chrF++ scores and lower529

scores in general.530

We can also see that changing the position of the531

dimension adapter in relation to the adapter layers532

(to the middle or to the end) does not result in any533

benefit (see experiments 7 – 9 vs 6).534

Using 4 languages results in slightly higher535

scores than 2 languages (experiments 8 vs 9), how-536

ever, there is no significant difference when using537

6 languages compared to 4 (experiments 9 vs 10).538

The increase in chrF++ scores could also be caused539

by the larger dataset and not require different lan-540

guages to be achieved.541

Using 4 layers yields the best result, although542

the difference in chrF++ scores is small and might543

not be significant when compared to other numbers544

of layers (see experiments 11 – 13).545

5 Conclusion546

We have demonstrated that different pre-trained547

models can be successfully combined even if they548

have different architectures that wouldn’t be di-549

rectly compatible. With our method, the pre-trained550

models can remain unchanged while the added di-551

mension adapter and adapter layers align the em-552

beddings. However, in our experiments, the best553

results were obtained by continuing decoder train-554

ing after initial adapter training. This might dif-555

Model chrF++↑

NLLB-600M baseline 36.6

NLLB-600M + MTee
adapter config DA type src langs

(1) DA MLP 2 35.7 ± 0.2
(2) DA linear 2 34.6 ± 0.3

(3) DA + AL MLP 2 35.7 ± 2.3
(4) DA + AL linear 2 38.2 ± 0.3

(5) DA + 2 AL MLP 2 38.0 ± 1.9
(6) DA + 2 AL linear 2 38.7 ± 0.3

(7) 2 AL + DA linear 2 38.3 ± 0.9
(8) AL + DA + AL linear 2 38.5 ± 0.2

(9) DA + 2 AL linear 4 38.9 ± 0.1
(10) DA + 2 AL linear 6 38.9 ± 0.1

(11) DA + 3 AL linear 4 39.0 ± 0.1
(12) DA + 4 AL linear 4 39.1 ± 0.1
(13) DA + 5 AL linear 4 39.0 ± 0.2

Table 5: Many-to-Estonian translation average chrF++
scores of ablation models trained on Europarl evaluated
on FLORES200 devtest. DA - dimension adapter, AL
- adapter layer, DA + n AL means dimension adapter
followed by n adapter layers. Training set source lan-
guages used are EN, DE, FR, PL, LV, FI, added in the
same order when number of languages is increased.

fer in other scenarios depending on the dataset, 556

pre-trained models, and desired translation domain. 557

Our method allowed for a 40% reduction in pa- 558

rameters, efficient training, fast translation, and in- 559

creased translation quality compared to the original 560

models. With this in mind, we can think of pre- 561

trained translation model encoders and decoders as 562

modules that can be combined depending on the 563

desired outcome. 564

6 Future Works 565

Our focus is on many-to-one translation. However, 566

it should also be investigated how the mix-and- 567

match approach could be used in one-to-many or 568

many-to-many (or many-to-few) scenarios. The 569

proposed method should also be investigated for 570

other more specific domains and other languages 571

apart from Estonian. Additionally, it should be in- 572

vestigated how other parameter-efficient methods 573

compare to this approach and how they could be in- 574

corporated into this method. Further comparisons 575

with pre-trained language models and a combina- 576

tion of using LM and NMT models need exploring 577

as well. Finally, this approach of making sequence 578

representations compatible is not limited to NMT 579

and could be applied to other tasks and modalities. 580
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7 Limitations581

One potential limiting factor of the proposed ap-582

proach is the evaluation process. To ensure accurate583

and fair evaluation of the models, it is necessary584

to possess knowledge of the data on which the585

model was trained to avoid issues with leaky test586

data. The evaluation of our results relied primarily587

on automatic metrics, and we mainly utilized the588

FLORES-200 devtest due to the limited availability589

of test sets for Estonian and non-English languages.590

Additionally, we were unable to confirm that other591

available test sets were not part of the original mod-592

els’ training data, so we could not use them for a593

fair evaluation.594

Moreover, the applicability of the mix-and-595

match method is dependent on the availability of596

pre-trained models in the target language. For in-597

stance, while Estonian models were readily avail-598

able, other languages may not have such models,599

rendering the proposed method inapplicable. How-600

ever, as an alternative, we proposed training the601

decoder from scratch and demonstrated its compet-602

itive performance.603

It should also be noted that the translation qual-604

ity results for Estonian cannot be generalized to all605

other languages. For example, English already ex-606

hibits high translation quality in most multilingual607

pre-trained NMT models, hence our method may608

not significantly improve performance as it would609

for Estonian. However, this limitation does not610

detract from other positive aspects of our method,611

including reduced parameter count and efficient612

training.613

Ethics Statement614

From an environmental standpoint, our method re-615

duces the training time, giving a significant one-616

time reduction. Since our scenario also created a617

smaller model with faster translation, it reduces618

long-term computation costs.619

From the social standpoint, the resulting models620

might still be suffering from the same kind of biases621

as the original models and this aspect is yet to be622

evaluated. However, with our methods, we can623

make the use of pre-trained models accessible to624

more people in terms of computational costs.625
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Maja Popović. 2015. chrF: character n-gram F-score829
for automatic MT evaluation. In Proceedings of the830
Tenth Workshop on Statistical Machine Translation,831
pages 392–395, Lisbon, Portugal. Association for832
Computational Linguistics.833
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A BLEU Scores915

Average BLEU scores are presented in Table 6916

B COMET Scores for Selected Directions917

COMET scores of selected directions are displayed918

in Table 7.919

920
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Model average BLEU ↑

full EU

(1) NLLB-1B 12.8 16.9
(2) NLLB-MoE† 15.5 20.1

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B 13.5 17.3
(4) en2et: MTee 15.7 20.4

Fine-tune NLLB-1B
(5) - 15.4 ± 0.1 20.8 ± 0.2
(6) freeze enc 15.5 ± 0.1 20.8 ± 0.1

Ours: NLLB-1B enc +
(7) rand dec 14.5 ± 0.1 19.8 ± 0.1
(8) MTee dec 15.1 ± 0.1 20.6 ± 0.2
(9) MTee dec, 2-stage 15.6 ± 0.1 21.3 ± 0.1

Table 6: Many-to-Estonian translation average BLEU scores. For experiments involving model training, the average
of 5 random seeds are reported with confidence intervals (p = 0.01). † - Scores reported by (NLLB Team, 2022).

Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 0.8967 0.8805 0.8700 0.8435 0.8492
NLLB-MoE† 0.9144 0.9031 0.8904 0.8826 0.8781
MTee 0.8916 0.8908 0.8819 - -

Pivot, m2en NLLB-1B
en2et NLLB-1B 0.8967 0.8808 0.8705 0.8673 0.8583
en2et MTee 0.8916 0.8899 0.8782 0.8788 0.8615

Fine-tune NLLB-1B
- 0.8954 0.8878 0.8825 0.8775 0.8631
freeze enc 0.8974 0.8912 0.8812 0.8772 0.8552

Ours: NLLB-1B enc +
rand dec 0.9001 0.8902 0.8793 0.8688 0.8561
MTee dec 0.9049 0.8953 0.8831 0.8659 0.8586
MTee dec 2-stage 0.9060 0.8929 0.8857 0.8724 0.8607

Table 7: Many-to-Estonian translation COMET scores for selected directions. Underlined results indicate a
significant gain over the baseline NLLB-1B with p = 0.01 according to Paired Bootstrap Resampling t-test. †
- Scores calculated from translations reported by NLLB Team (2022). Language abbreviations are following
NLLB Team (2022).
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