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ABSTRACT

Linearization of attention using various kernel approximation and kernel learning
techniques has shown promise. Past methods use a subset of combinations of
component functions and weight matrices within the random features paradigm.
We identify the need for a systematic comparison of different combinations of
weight matrices and component functions for attention learning in Transformer.
In this work, we introduce Spectraformer, a unified framework for approximating
and learning the kernel function in linearized attention of the Transformer. We
experiment with broad classes of component functions and weight matrices for
three textual tasks in the LRA benchmark. Our empirical findings indicate that
different kernels are good at different tasks and that kernel choice is fundamental to
performant models. Our code is available at: https://anonymous.4open.
science/r/spectraformer-8A97.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized the landscape of natural language processing
(NLP) and forms the basis of almost all state-of-the-art language models. Its influence has reached
beyond NLP into computer vision (Han et al., 2023), speech processing (Lin et al., 2022) and other
fields. Compared to its precursors like the LSTMs, Transformer leverages parallelism since it is fully
based on the attention mechanism. Therefore, the performance of Transformer is tied to the effective
use of attention. Attention in the Original Transformer (referred to as ‘OT’ hereafter) uses the softmax
function which is quadratic in time complexity. However, softmax is not fundamental to attention.
The softmax serves the role of a compatibility function, which captures the degree of compatibility
between two tokens (see Equations 1 and 2). Extensive experiments with other compatibility functions
show that the softmax is not the only possibility, and that the ‘best’ compatibility function depends
on the task (Tsai et al., 2019).

Replacing the softmax formulation with alternatives may allow us to reduce the time complexity
of attention computation. In this paper, we focus on the subset of alternatives that employs kernel
functions. Kernel functions have been historically used in machine learning algorithms to simplify
the estimation of parameters (Hofmann et al., 2008). Tsai et al. (2019) show that attention can be
formulated using kernels and then be linearized (Katharopoulos et al., 2020), given the feature map
of the respective attention kernel. Random feature-based algorithms (Liu et al., 2022) are a family of
algorithms, inspired by spectral analysis, which provides the feature map associated with a kernel. A
random feature consists of three components: component function, weight matrix, and component
weight (see Section 3). Due to their robustness and flexibility, random features give rise to ‘random
feature Transformers’, the family of Transformers with linearized attention via random features
(hereby abbreviated as RF), first with the work by Choromanski et al. (2021). This is seen to lead to
three strands of research: (A) Optimization of weight matrices either by making the matrices have
lower time or space complexity, or by incorporating beneficial properties like orthogonality to reduce
variance (Yu et al., 2016; Choromanski et al., 2021; 2022; Reid et al., 2023); (B) Enhancement of
component functions by either: (i) finding a function with a tighter variance or approximation bound,
or (ii) be engineered to output with numerical stability and be bounded (Choromanski et al., 2021;
Likhosherstov et al., 2022; 2023); (C) Parameterization of weight matrices to perform kernel learning
instead of kernel approximation (Chowdhury et al., 2022). (A) and (B) seek to improve approximation
quality via approximation error and variance reduction. (C) dispenses with the approximation of
the attention kernel (typically the softmax), and makes the kernel itself learnable, to attain a better
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performance. However, the three have been explored separately, creating a situation where there
are different ways to construct the random features. Additionally, past works only explore certain
combinations of component functions and weight matrices, creating disjoint overlaps and gaps in the
literature. Finally, the weight matrices are often those explicitly designed in the context of kernelized
attention in the Transformer (Yu et al., 2016; Choromanski et al., 2021; 2022; Reid et al., 2023),
ignoring those which are popular in the kernel methods literature (e.g., Liu et al. (2022)). These
limitations necessitate a unified framework that allows the comparison of different combinations in
search of the best-performing one.

We introduce Spectraformer, a unified framework of random feature-based attention in Transformer.
It utilizes spectral analysis-inspired random features to construct linearized attention in Transform-
ers. Spectraformer allows for the experimentation of various combinations of weight matrices and
component functions. We will open-source our codebase upon acceptance. Through our benchmark-
ing experiments on three textual Long Range Arena (Tay et al., 2021) tasks and 18 combinations
of weight matrices and component functions, Spectraformer enables novel combinations of com-
ponent functions and weight matrices from the kernel literature to be experimented easily in the
Transformer setting. This process makes possible the discovery of combinations that outperform
existing random feature-based Transformers in terms of performance, training time, and peak mem-
ory consumption. Various novel Spectraformer combinations are more accurate than the previous
SOTA models, SADERF-ORF (a.k.a., FAVOR# (Likhosherstov et al., 2023)), OPRF-ORF (a.k.a.,
FAVOR++ (Likhosherstov et al., 2022)), PosRF-ORF (a.k.a., FAVOR+ (Choromanski et al., 2021)),
whilst significantly reducing training time and memory consumption over both. We hope that Spec-
traformer will enable the mechanism to benchmark more random feature-based Transformers for
these and other tasks. Our contributions are:

1. Our novel framework, Spectraformer, which generalizes over all past works in linearized
attention with kernel approximation and kernel learning.

2. We demonstrate how Spectraformer can discover novel SOTA models in the random feature
Transformer family for the LRA benchmark and that these models are more performant than
existing random feature Transformers.

3. We empirically identify the relationship between performant combinations and task charac-
teristics, aiding the right kernel choice when tackling a task.

4. Our code is currently available for review, but they will be publicly released upon acceptance.
We detail guide on how to incorporate future kernel works into Spectraformer. With
this work, every future kernel work that is introduced can easily be incorporated into the
transformer.

2 PRELIMINARIES

We first cover the theoretical foundations to this work. A list of commonly used acronyms is available
in Table 1.

Table 1: Table of acronyms

Acronym Description

OT (Vaswani et al., 2017) Original Transformer
RF (Rahimi & Recht, 2007) Random Feature method
RBF Radial Basis Function kernel (also called the Gaussian kernel)
TrigRF (Rahimi & Recht, 2007) Trigonometric RF (component function)
PosRF (Choromanski et al., 2021) Positive RF (component function)
OPRF (Likhosherstov et al., 2022) Optimized positive RF (component function)
SADERF (Likhosherstov et al., 2023) Simplified Asymmetric Dense-Exponential RF (component function)
ORF (Yu et al., 2016) Orthogonal RF (weight matrix)
SORF (Yu et al., 2016) Structural ORF (weight matrix)
QMC (Avron et al., 2016) Quasi- Monte Carlo (weight matrix)
MM (Shen et al., 2017) (Liu et al., 2022) Moment Matching (weight matrix)
SGQ (Dao et al., 2017) Sparse Grid Quadrature (weight matrix)
FastFoodL(Yang et al., 2015) FastFood Learnable (weight matrix)
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2.1 KERNELIZED ATTENTION

OT attention (Vaswani et al., 2017) can be defined using the unified attention model (Galassi et al.,
2021) as follows. Given a collection of inputs and a learning objective, attention mechanism learns
the attention matrix A which captures the associative information between pairs of tokens in a
sequence of length N , with each row Ai being the representation of a token i with every other token
j ∈ [1, N ]. This is done by creating three learnable representations of each token i called query (qi),
key (ki), and value (vi). The attention representation Ai is calculated as a weighted sum of value vj

given attention weights aj . The general equation for Ai is given as:

Ai =
∑N

j=1
f(qi,kj)∑
l f(qi,kl)

vj =
∑N

j=1 ajvj ; a = g(e); e = f(qi,kj) (1)

Attention weights are generated using a distribution function g applied on an energy score e. The
energy score is captured by applying a compatibility function on a query qi and a set of keys K, in
order to compute a score of a specific relationship between the pairs. The attention in the OT is called
the ‘scaled dot-product’ which defines the compatibility function f and the distribution function g as
follows:

f(qi,K) =
qT
i K√
dk

g(xj) =
exp(xj)∑
l exp(xl)

(2)

We can then have the attention matrix (with exp(.) being applied element-wise) as:

Ai =
∑N

j=1

exp(qik
T
j /

√
dk)∑

l exp(qikT
l /

√
dk)

vj A = softmax(QKT

√
dk

)V (3)

with Q,K,V being the matrix of queries, keys, and values respectively with each row being
qi,ki,vi.

We now discuss the intrinsic connection between kernel and attention. With the compatibility function
f as a kernel f(qi,kj) = K(qi,kj), Equation 1 can be rewritten as:

Ai =

N∑
j=1

K(qi,kj)∑
l K(qi,kl)

vj (4)

As shown in Tsai et al. (2019), this is indeed the Nadaraya-Watson Kernel Estimator, with
Ep(kj |qi)[vj |X = kj ] = Ai, li (kj) = p(kj |qi), Yi = vj :

Eli [Yi|X = u] =
∑N

i=1 li(u)Yi; li(u) =
K(

u−xi
h )∑n

j=1 K(
u−xj

h )
(5)

Specifically, the scaled dot-product attention in the OT in Equation 3 corresponds to the softmax
kernel (see Equation 6).

Ksoftmax(qi,kj) = exp(qT
i kj/

√
dk) (6)

2.2 LINEARIZING KERNELIZED ATTENTION VIA RANDOM FEATURES

Since a kernel is the inner product of two vectors in some space with respect to some feature map ϕ,
i.e., K(x,y) = ϕ(x)ϕ(y)T , then we can rewrite Equation 4 as:

Ai =
∑

j ϕ(qi)ϕ(kj)
T vj∑

l ϕ(qi)ϕ(kl)T
=

ϕ(qi)
∑

j ϕ(kj)⊗vj

ϕ(qi)
∑

l ϕ(kl)T
(7)

If we pre-compute
∑

j ϕ(kj)⊗ vj and
∑

l ϕ(kl)
T , the entire term becomes O(1) and we only need

to compute Equation 7 N times for each i, resulting in an attention matrix calculated in linear time
O(N). We now refer to Equation 7 as linearized attention (Katharopoulos et al., 2020).

All that is left is to retrieve the feature map ϕ, the process of which is called kernel approximation
(see Section 2.3), which corresponds to the kernels we specify. There are many popular kernels
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from which we can choose, but typically, we want to approximate the softmax kernel in Equation 6.
However, since the softmax relates to the KRBF (x,y) = exp(− ||x−y||2

2 ) via the following equation:

Ksoftmax(x,y) = exp(
||x||2

2
)KRBF (x,y) exp(

||y||2

2
) (8)

Approximating the RBF is easier than the softmax directly in the method we introduce in Section 2.3,
hence we approximate the softmax indirectly via the RBF in Equation 8.

Oftentimes, however, we might not want to specify a kernel, since kernel choice is indeed a hy-
perparameter and the softmax is by no means essential or necessary as shown in Tsai et al. (2019).
Then kernel learning would be a more suitable option, the detail of which is discussed in Section 2.4.
Notwithstanding, we first introduce the main kernel approximation technique: random features.

2.3 RANDOM FEATURES FOR KERNEL APPROXIMATION

Of the kernel approximation family of methods, the most successful and appropriate for linearized
attention in Transformer has been the random features approach (Rahimi & Recht, 2007). Estimating
kernels using random features relies on a fundamental insight from harmonic analysis called Bochner’s
theorem (Rudin, 1990) stated as follows:

A continuous shift-invariant kernel K(x,y) = K(x−y) on Rd is positive definite if and only if K(δ)
is the Fourier transform of a non-negative measure p(ω). If K(δ) is properly scaled, that is K(0) = 1
then the measure p(ω) is a proper probability distribution.

K(δ) =

∫
p(ω) exp(iωδ)dω (9)

When approximating the integration in this equation via Monte Carlo sampling with s samples,
ω ∼ p(ω), we can obtain the feature map:

K(δ) = E[ϕω(x)Tϕω(y)] ≈< ϕω(x), ϕω(y) >
ϕω(x) = 1√

s

[
exp(−iω⊤

1x), . . . , exp(−iω⊤
s x)]

⊤ (10)

2.4 RANDOM FEATURES FOR KERNEL LEARNING

Previous random feature techniques are robust in approximating kernels for specific learning problems.
However, kernels may be chosen using heuristics and by convention from a popular subset. The
kernel is very much a hyperparameter. This could pose a problem since there is no free lunch in
learning as much as in kernel choice (Schölkopf & Smola, 2018). Tsai et al. (2019) has shown
experimental results that this is also true in the context of attention in Transformer. Hence, instead
of picking a kernel for the attention, we could learn the kernel via kernel learning an established
kernel methods technique. Kernel learning has shown to be effective in general (Tompkins et al.,
2019; Wilson & Adams, 2013; Oliva et al., 2016) and in the case of attention via Gaussian Mixture
Model (GMM), learnable weight matrices (FastFood), deep generative model (DGM) (Chowdhury
et al., 2022). Kernel learning is achieved by making the weight matrix W learnable where ωi is the
output of a function parameterizing p(ω).

The kernelized attention via random features discussed here is a popular approach, however it is
by no means the only one. A more detailed discussion is offered in related work in Section A.2.
Specifically, Section A.2.1 provides alternative kernelized attention formulations and Section A.2.2
provides alternative kernel approximations to random features.

3 SPECTRAFORMER

Spectraformer is a unified random feature framework that allows for the combination of any weight
matrix with any component function to be used as kernelized attention in Transformer. The general
equation for random feature is shown in Equation 11, generalized from Equation 10, based on Liu
et al. (2022); Choromanski et al. (2021).

4
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ϕω(x) =
1√
s

[
a1f1(ω1,x), ..., asf1(ωs,x), ...,

a1fl(ω1,x), ..., asfl(ωs,x)]
⊤

W = [ω1, ...,ωs]
T ∈ Rs∗d

(11)

Spectraformer is shown in Figure 1. The attention of the OT (on the left-hand side) is replaced by the
attention of the Spectraformer which pre-computes the Hadamard (element-wise) product of values v
and transformed keys ϕ(k) scaled by ϕ(k), the product of which is multiplied with the transformed
queries ϕ(q). The linear map ϕ is composed from weight matrices and component functions. The
linear map has s components with a being the component weight (see Equation 11). The component
weight a can either be fixed (typically at a = 1) or learnable as proposed by various kernel works (Liu
et al., 2022). Due to the fact that the majority of random feature Transformers (e.g., Likhosherstov
et al. (2022)) have a = 1, we follow this setting for consistent comparison between combinations.

The figure and the equation together highlight the three strands of research as mentioned previously
in Section 1: (A) Weight matrix approximator: constructing W more effectively; (B) Weight matrix
learner: parameterizing W instead of sampling; (C) Component function: constructing fj more
effectively.

3.1 WEIGHT MATRICES

In Spectraformer, the weight matrix W which is either an approximator (from the families of (e.g.,
ORF and SORF (Yu et al., 2016)), Unit-cube (e.g., QMC (Avron et al., 2016), MM (Shen et al.,
2017)), Quadrature (e.g., SGQ (Dao et al., 2017)). or a learner (FastFoodL (Chowdhury et al., 2022)).
We term the matrix W as weight matrix instead of random matrix since although W acts like a

Figure 1: Spectraformer framework based on Equation 11

random matrix (ωi ∼ p(.), see Equation 10), it is not guaranteed to be one. In the case of weight
matrix approximator, they approximate a random matrix and in the case of weight matrix learner,
they parameterize a weight matrix, thereby implicitly learning a distribution p(.) associated with such
W . The weight matrix is given in Definition 3.1.

Definition 3.1. Provided that a matrix can substitute for a random matrix in Equation 11, and the
solution for this equation given such matrix and f as TrigRF being the solution for Equation 9, i.e.,
as an unbiased estimator of K, and TrigRF being f1 = fl = exp(−iωTx) (see Equation 10) then
such a matrix is a weight matrix.

It follows from Definition 3.1 that for any weight matrix W , f = TrigRF is a valid component
function. Spectraformer enables weight matrix approximation in terms of three families based on
how they solve the intractable integral in Equation 9:

• Monte Carlo sampling-based weight matrix involves approximating the integral of Equation 9
using Monte Carlo sampling with the solution given by Equation 10 (Rahimi & Recht, 2007) with
W being the ‘Base’ random matrix of p(.), ωi ∼ p(.). The random matrix W can be constructed
more efficiently (either reducing time or space complexity) with FastFood (Le et al., 2013). The
random matrix W can also be enforced to form geometrical couplings such as orthogonality to

5
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reduce approximation error with ORF, SORF (Yu et al., 2016). Both these methods produce valid
random matrices.

• Unit-cube sampling-based weight matrix transforms Equation 9 to an integral on the unit cube
[0, 1]d, then performs the approximation with uniform and independent points, thus reducing
variance. The first approach is QMC (Avron et al., 2016), where W : ωi = Φ−1(ti), Φ being the
cumulative distribution function (CDF) associated with p(.) and ti being a low discrepancy se-
quence. Φ−1(ti) ∼ p(.) whilst having a lower variance than direct sampling from p(.). MM (Shen
et al., 2017; Liu et al., 2022) improves over QMC by replacing Φ−1 with a moment matching
scheme Φ̃−1 on Φ−1.

• Quadrature-based weight matrix uses quadrature rules with non-uniform deterministic weights.
The main approach explored is SGQ (Dao et al., 2017) which uses one-dimensional Gaussian
quadrature rule by assuming K factorizes with respect to the dimensions. Smolyak rule is further
implemented to alleviate the curse of dimensionality.

Liu et al. (2022) show that in various kernel benchmark datasets (among combination with TrigRF),
QMC and ORF have consistently high performance. Due to the significant number of weight matrices
in random features literature, we decide to cover only the most prominent ones. Appendix A.3
provides the technical details of the approximators discussed here and those that we left out.

Spectraformer also allows to learn weight matrices by learning p(.) via parameterizing W . Yang
et al. (2015) introduce several of these parametrization schemes, which are then adapted into the
attention setting by Chowdhury et al. (2022). The best performing method is via making the
constituent matrices of FastFood learnable, which we term FastFoodL. In general, a weight matrix
learner is valid as long as it can implicitly model any distribution. In addition the TrigRF, PosRF
has also been applied on FastFoodL. Technical details and other learners we have not covered are
explored in Appendix A.4. We now explore existing works which have developed from Rahimi &
Recht (2007) (see Equation 9, 10) and how they lead to the development of Spectraformer.

3.2 COMPONENT FUNCTIONS

Spectraformer incorporates component functions f such as PosRF, OPRF, SADERF. Component
functions in Spectraformer combine each weight matrix row ωi with the input x. The base case of
the component function is TrigRF. Component function is given in Definition 3.2
Definition 3.2. A function of x with respect to ω is a valid component function if and only if
K ≈ ϕω(x)

Tϕω(y) given that ωi ∼ p(.) in Equation 10.

It follows that all component functions have provided theoretical guarantees given that W is a random
matrix. In addition, PosRF, OPRF, and SADERF have also been proven theoretically to approximate
KRBF given W being the ORF.

While TrigRF(Rahimi & Recht, 2007) is the base component function and guarantees K(δ) to be
close to ϕTrigRF (x) · ϕTrigRF (y) due to uniform convergence, it is typically evaluated using only
the real component of exp(−iωT

j x). This leads to cos and sin functions which can produce unstable
behavior, especially when K(δ) is close to 0, where variance is infinite (Choromanski et al., 2021;
Likhosherstov et al., 2022). Therefore, TrigRF is avoided in Spectraformer.

• PosRF (Choromanski et al., 2021) is introduced in Spectraformer as a simple modification over
TrigRF to counter this instability. PosRF guarantees positive function output and its variance
approaching 0 as K(δ) approaches 0. Likhosherstov et al. (2022) generalize TrigRF and PosRF to
GERF.

• OPRF (Likhosherstov et al., 2022) is one of the solution to the reduction of the variance equa-
tion of GERF. OPRF is both positive and bounded (whereas PosRF is positive and unbounded).
Likhosherstov et al. (2023) generalize GERF to dense matrix instead of scalar parameters leading
to DERF.

• SADERF (Likhosherstov et al., 2023) is one of the solutions to the reduction of the variance equa-
tion of DERF. Whilst DERF has many solutions, they all rely on operations which are incompatible
with many deep learning libraries on GPU and TPU like SVD and eigen decompositions. SADERF
is an extension of GERF with a tighter variance bound on DERF.
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The alternatives for component functions allow Spectraformer to approximate the RBF with p(.)
corresponding to the Gaussian. Likhosherstov et al. (2023) and Likhosherstov et al. (2022) show that
SADERF-ORF is the SOTA combination followed by OPRF-ORF and PosRF-ORF. Technical details
and other component function(s) not covered are explored in Appendix A.5.

Table 2: Summary of research gap in kernelized attention. Rows are the component functions,
columns are the weight matrices. For each cell, the top item is the cited work for this combination for
typical kernel tasks, while the bottom item is the cited work for Transformer-based tasks. × indicates
no prior work for the combination. Spectraformer explores all combinations listed here, excluding
‘Base’ due to exhaustive work as seen in the table.

TrigRF PosRF OPRF SADERF

Monte Carlo Base (Rahimi & Recht, 2007) (Choromanski et al., 2021) (Likhosherstov et al., 2022) (Likhosherstov et al., 2023)
(Choromanski et al., 2021) (Choromanski et al., 2021) (Likhosherstov et al., 2022) (Likhosherstov et al., 2023)

ORF (Yu et al., 2016) (Choromanski et al., 2021) (Likhosherstov et al., 2022) (Likhosherstov et al., 2023)
(Choromanski et al., 2021) (Choromanski et al., 2021) (Likhosherstov et al., 2022) (Likhosherstov et al., 2023)

SORF (Yu et al., 2016) × × ×
× × × ×

Unit-cube QMC (Avron et al., 2016) × × ×
× × × ×

MM (Shen et al., 2017) × × ×
× × × ×

Quadrature SGQ (Dao et al., 2017) × × ×
× × × ×

Learner FastFoodL (Yang et al., 2015) × × ×
(Chowdhury et al., 2022) (Chowdhury et al., 2022) × ×

3.3 UTILITY

There has been an unsystematic attempt at combining component functions and weight matrices. On
one hand, most component functions have had theoretical and experimental results in combining with
Base and ORF. On the other hand, most weight matrices have had results in combining with TrigRF
or PosRF. This means that a lot of potential combinations have not been studied previously. Table
2 shows the wide research gap across 14 combinations which have never been studied in either the
kernel or Transformer setting. Spectraformer highlights this research gap. Excluding TrigRF due to
its instability and Base due to its under-performance, we conduct experiments on 18 combinations.

Spectraformer is a generic random feature framework that allows for the combination of any weight
matrix with any component function provided that the weight matrix satisfies Definition 3.1 and the
component function satisfies Definition 3.2. We note that Spectraformer is an experimental rather
than a theoretical framework. Due to the large number of weight matrices and component functions, it
is infeasible for the time being to derive a general mathematical proof for the bounds and convergence
of Spectraformer. Therefore, we seek to validate its feasibility and show its ability to discover novel
and performant combination via experimental results.

3.4 ADDING NEW CODE TO SPECTRAFORMER

We now discuss how to add a new component function or weight matrix to the base code for further
implementation. New component functions need to satisfy Definition 3.2 and new weight matrices
need to satisfy Definition 3.1.

3.4.1 COMPONENT FUNCTION

1. Add the new component function f to src/models/component_functions.py, the
arguments should include data (the input), and other optional parameters.

2. Import f and add a new entry to FastAttention.comp_functions[f_name] =
f in src/models/attention_performer.py (line 176)

3.4.2 WEIGHT MATRIX

1. Add the new weight matrix w to src/models/weight_matrix_approx.py
or src/models/weight_matrix_learner.py, the arguments should include
nb_rows (number of rows), nb_cols (number of columns) and device.

7
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2. Import w and add the if clause and w function call in
src/models/attention_performer.py (line 208)

4 RESULTS

4.1 EXPERIMENT DETAILS

Table 3: Experimental results of Spectraformer variants on the LRA benchmark, over five seeds. We
report mean accuracy (on the test set), mean time (training time (hour)), and mean memory (peak
memory consumption (GB)). L: ListOps, T : Text, R: Retrieval, and µ for the average of the three.
Entries are ranked by µ accuracy. The previous RF SOTAs (SADERF-ORF (Likhosherstov et al.,
2023) and OPRF-ORF (Likhosherstov et al., 2022)) are in bold. We note that via Spectraformer, we
find various variants outperforming these previous RF SOTAs in terms of accuracy, with different
combinations offering different trade-off between accuracy, time, and memory. Entries are sorted by
mean accuracy.

Accuracy (%) ↑ Time (hour) ↓ Memory (GB) ↓
L T R µ L T R µ L T R µ

OPRF-FastFoodL 37.55 (0.48) 64.41 (0.62) 77.70 (0.33) 59.89 1.07 2.07 2.12 1.75 0.86 1.72 1.68 1.42
OPRF-MM 38.08 (0.53) 60.40 (0.85) 81.09 (0.18) 59.86 0.68 1.26 1.24 1.06 1.36 2.71 2.56 2.21
PosRF-MM 37.06 (0.37) 61.87 (1.79) 80.58 (0.53) 59.84 0.56 1.05 1.06 0.89 1.17 2.31 2.10 1.86
OPRF-ORF 38.34 (0.22) 60.16 (0.79) 80.88 (0.17) 59.80 0.68 1.26 1.25 1.06 1.36 2.71 2.56 2.21
SADERF-QMC 37.37 (0.38) 61.14 (1.48) 80.84 (0.11) 59.78 0.68 1.25 1.29 1.07 1.44 2.86 2.69 2.33
PosRF-QMC 37.11 (0.09) 61.69 (0.96) 80.55 (0.13) 59.78 0.56 1.05 1.05 0.89 1.17 2.31 2.10 1.86
SADERF-MM 37.10 (0.22) 60.68 (1.88) 81.13 (0.17) 59.64 0.68 1.25 1.29 1.07 1.44 2.86 2.69 2.33
SADERF-ORF 37.10 (0.19) 60.39 (2.08) 81.05 (0.22) 59.51 0.68 1.25 1.28 1.07 1.44 2.86 2.69 2.33
OPRF-QMC 37.69 (0.62) 59.94 (0.59) 80.38 (0.49) 59.34 0.68 1.26 1.26 1.07 1.36 2.71 2.56 2.21
SADERF-SGQ 37.11 (0.21) 62.46 (0.54) 78.38 (0.25) 59.32 0.68 1.25 1.27 1.07 1.44 2.86 2.69 2.33
SADERF-FastFoodL 36.02 (1.38) 64.63 (0.18) 76.99 (0.61) 59.21 1.07 2.08 2.16 1.77 0.92 1.84 1.80 1.52
OPRF-SGQ 37.10 (0.23) 61.25 (0.54) 78.69 (0.54) 59.01 0.67 1.26 1.25 1.06 1.36 2.71 2.56 2.21
PosRF-ORF 34.35 (5.96) 60.30 (0.97) 80.45 (0.22) 58.37 0.56 1.05 1.06 0.89 1.17 2.31 2.10 1.86
PosRF-FastFoodL 33.46 (3.70) 64.65 (0.36) 76.95 (0.48) 58.35 1.02 1.98 2.03 1.68 0.79 1.57 1.53 1.30
SADERF-SORF 33.30 (0.98) 64.70 (0.36) 74.71 (1.90) 57.57 0.68 1.24 1.28 1.07 1.44 2.86 2.69 2.33
PosRF-SGQ 28.64 (7.54) 62.38 (0.53) 78.28 (0.20) 56.43 0.56 1.05 1.05 0.89 1.17 2.31 2.10 1.86
OPRF-SORF 27.91 (3.26) 64.76 (0.66) 75.92 (1.74) 56.20 0.67 1.26 1.24 1.06 1.36 2.71 2.56 2.21
PosRF-SORF 21.27 (6.65) 62.99 (0.40) 67.10 (1.11) 50.45 0.56 1.05 1.05 0.89 1.17 2.31 2.10 1.86

The LRA covers tasks of different sequence lengths, difficulty, and objective and it is designed to
evaluate efficient Transformers, of which Spectraformer belongs to. Specifically, we evaluate the
models on three textual LRA tasks: ListOps (Nangia & Bowman, 2018), Text (Byte-Level Text
Classification, using the IMDb review dataset) (Howard & Ruder, 2018), and Retrieval (Byte-Level
Document Retrieval, using the ACL Anthology Network dataset) (Radev et al., 2013). We discuss
the task characteristics in greater details in Section 4.2. All our models are experimented on NVIDIA
V100 and 12 CPU with 20GB of memory. Our codebase is based on and includes the adapted
or original implementation from Chen et al. (2021); Chowdhury et al. (2022); Liu et al. (2022);
Choromanski et al. (2021); Likhosherstov et al. (2022; 2023); Wang et al. (2020); Xiong et al. (2021),
Kitaev et al. (2020); Thomas et al. (2018); Zhou et al. (2021) (Apache License, Version 2.0).

We run our experiments on 5 different seeds due to computational limitation. The parameters are
identical to Chen et al. (2021) and chosen to limit the parameter count to account for the marked
training time of multiple models. All the parameters for Spectraformer variants are kept identical
for fair comparison, with the only difference being their random feature component. Our code is
implemented in Python 3.12 and Pytorch, we use the Transformer base from Chen et al. (2021).
Our hyperparameters are available in Table 8. The model name convention is [component function]-
[weight matrix] (e.g., OPRF-FastFoodL).

Our result in Table 3 shows that the top mean accuracy models, ranked in descending order, are:
OPRF-FastFoodL, OPRF-MM, PosRF-MM, OPRF-ORF, SADERF-QMC. Our mean accuracy result
indicates that novel Spectraformer combinations have outperformed the highlighted previous SOTA,
i.e., OPRF-ORF and SADERF-ORF. However, we are aware that mean accuracy is insufficient in
offering a comprehensive picture. Therefore, we first proceed with analyzing the statistics of the tasks
before analyzing the significance of these results.
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4.2 TASK CHARACTERISTICS

We first analyze the characteristics of the three textual classification LRA (Tay et al., 2021) tasks:
ListOps (Nangia & Bowman, 2018), Text (Byte-Level Text Classification, using the IMDb review
dataset) (Howard & Ruder, 2018), and Retrieval (Byte-Level Document Retrieval, using the ACL An-
thology Network dataset) (Radev et al., 2013). We take into consideration three main characteristics:

• Number of output classes. ListOps is a task which inputs a sequence containing brackets
and simple mathematical operators, with the output being a integer between 1 and 10, hence
it has 10 classes. Text is a sentiment classification task on an IMDb review dataset with the
class being either negative or positive, hence it has 2 classes. Retrieval inputs two sequences
and the output is either False (meaning the sequences are not of the same document) or True
(meaning the sequences are of the same document).

• Maximum sequence size. ListOps is 2K; Text is 4K; whilst Retrieval requires the processing
of two sequences each of 4K length making the total maximum sequence size being 8K.

• Required attention span. This is the ‘mean distance between the query token and the
attended tokens, scaled by attention weights’. The average values for required attention span
calculated by Tay et al. (2021) is: ListOps being 0.8, Text being 0.3, and Retrieval being 1.3.

Table 4: Mean Pearson correlation between model performance statistics and each task character-
istic across weight matrices and component functions. Model performance statistics include ‘acc’
(accuracy), ‘time’ (training time), ‘mem’ (peak memory consumption). Task characteristics are
‘size’ (maximum sequence size), ‘span’ (required attention span), and ‘classes’ (number of output
classes). Correlation is calculated for each weight matrix or component function and the average
value over weight matrix or component function respectively displayed. Left is weight matrix W ,
right is component function f .

W acc time mem

size 0.93 0.74 0.64
span 0.37 0.02 -0.10
classes -0.91 -0.96 -0.94

f acc time mem

size 0.93 0.56 0.60
span 0.36 0.02 -0.10
classes -0.91 -0.72 -0.89

We then calculate Pearson correlation of accuracy, training time, and memory consumption against
these characteristics. Our result is shown in Table 4. The table indicates that: (1) contrary to intuition,
longer sequence size gives higher accuracy but this is not because of increasing required attention
span and they somewhat increase training time and peak memory consumption; (2) increasing the
number of classes decreases accuracy, training time, and peak memory consumption.

4.3 ANALYSIS OF COMBINATIONS

Table 5: Mean statistics across weight matrices for each task. Task is denoted on the top left cell of
each table. Mean statistics include ‘acc’ (accuracy (%)), ‘time’ (training time (hour)), and ‘mem’
(peak memory consumption (GB)).

ListOps acc time mem

SORF 27.49 0.64 1.32
SGQ 34.28 0.64 1.32
FastFoodL 35.68 1.05 0.86

ORF 36.59 0.64 1.32
QMC 37.39 0.64 1.32
MM 37.41 0.64 1.32

Text acc time mem

ORF 60.28 1.19 2.63
QMC 60.92 1.19 2.63
MM 60.98 1.19 2.63

SGQ 62.03 1.19 2.63
SORF 64.15 1.18 2.63
FastFoodL 64.56 2.04 1.71

Retrieval acc time mem

SORF 72.58 1.19 2.45
FastFoodL 77.22 2.10 1.67
SGQ 78.45 1.19 2.45

QMC 80.59 1.20 2.45
ORF 80.79 1.20 2.45
MM 80.93 1.20 2.45

We now explore the suitability of weight matrices and component functions depending on task
characteristics. Table 5 shows the mean statistics across weight matrices for each task. We notice that
weight matrices form two different groups which align with the required attention span differences.
ListOps and Retrieval are tasks with high required attention span, ListOps being 0.8 and Retrieval
being 1.3. In both these tasks, we observe that ORF, QMC, and MM perform comparatively against
each other and a lot better against SORF, SGQ, and FastFoodL. However, the Text task, which has
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a much lower required attention span of 0.3, has much higher performance from the SORF-SGQ-
FastFoodL group, whilst ORF, QMC, and MM perform much poorly on this task. Based on this
observation, we can conclude that ORF, QMC, and MM are suited for high required attention span;
whilst SORF, SGQ, and FastFoodL are suited for low required attention span. Analyzing mean
statistics per task across component functions do not show any task-specific trend (refer to Table 9
for more information).

Table 6: Summary statistics of component functions f (top) and weight matrices W (bottom) in
mean accuracy (on the test set), mean time (training time (hour)), and mean memory (peak memory
consumption (GB)). f and W entries are sorted by mean accuracy respectively.

Accuracy (%) ↑ Time (hour) ↓ Memory (GB) ↓
f SADERF 59.17 1.19 2.19
f OPRF 59.02 1.18 2.08
f PosRF 57.20 1.02 1.77

W MM 59.78 1.01 2.13
W QMC 59.63 1.01 2.13
W ORF 59.22 1.01 2.13
W FastFoodL 59.15 1.73 1.41
W SGQ 58.25 1.01 2.13
W SORF 54.74 1.00 2.13

In analyzing efficiency, we follow the definition of efficient Transformers in Tay et al. (2022) in
terms of memory and computation, the latter interpreted as computational cost. The overall trend
of accuracy, time, and memory of component functions is that they increase linearly from PosRF,
OPRF, to SADERF (see Table 6). Hence, when limited computational resource is a concern, PosRF
is a better option. Training time and peak memory consumption relies more heavily on component
functions than weight matrices, with the exception of FastFoodL. FastFoodL takes significantly less
memory consumption at the expense of training time. The accuracy trend for weight matrices is as
described above. Table 6 also shows that whilst FastFoodL generally does not work as well due to its
low required attention span, its high performance in the task of Text which is low in required attention
span and the anomalously performant OPRF-FastFoodL leads to a data skew in the final ranking in
Table 3.

Comparing between combinations, we find that for ListOps, OPRF-ORF is the most accurate
(38.34%), followed by OPRF-MM (38.08%) and OPRF-QMC (37.69%). OPRF-ORF, being the
previous SOTA, is undoubtedly the best choice here since other models maintain the same training
time and peak memory consumption with lower accuracy. For Text, the most accurate model is OPRF-
SORF (64.76%), followed by SADERF-SORF (64.70%) and PosRF-FastFoodL (64.65%). These
all outperform the previous SOTAs (OPRF-ORF and SADERF-ORF) by 4%+ whilst maintaining a
diversity of training time and peak memory consumption options. Both OPRF-SORF and SADERF-
SORF maintain the same level of training time and peak memory consumption as the SOTAs,
PosRF-FastFoodL offers much less peak memory consumption at the expense of longer training time.
For Retrieval, the most accurate model is SADERF-MM (81.13%), followed by OPRF-MM (81.09%)
and SADERF-ORF (81.05%). Whilst these models only perform slightly better than the SOTA
SADERF-ORF, OPRF-MM offers less peak memory consumption compared to SADERF-ORF.

5 CONCLUSION

We present Spectraformer, a framework for approximating and learning the attention kernel in the
Transformer. Our paper generalizes past works and presents empirical findings on different component
function and weight matrix combinations. We experiment with 18 combinations, of which 14 are
novel. Novel combinations perform competitively against, if not more performant than the previous
SOTA in the family for LRA textual tasks. We show empirically that the choice of performant weight
matrix depends on the required attention span of the task. Our results and the extensibility of our
work shows the viability of Spectraformer as a unifying random feature framework of Transformer.
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A APPENDIX

A.1 FUTURE WORK, LIMITATIONS, AND BROADER IMPACT

Spectraformer provides an experimental framework for random features in the Transformer. However,
we have not provided formal mathematical proofs for the bounds the these combinations due to the
number of combinations discussed. We hope Spectraformer inspires future work to generalizes the
proof in such a framework.

Spectraformer has covered a significant number of combinations, however, we have not covered all
weight matrices and component functions in the literature. Spectraformer can serve as a foundation
for further random feature Transformer research using the techiques not yet experimented with but
covered in Appendices A.3, A.4, A.5.

Due to the significant number of experimented models, we are unable to perform hyper-parameter
fine-tuning. Future work can benefit from extending the scope of the current research to other tasks,
i.e., other non-textual LRA tasks (image classification, path-finder, and path-x) and short-context
datasets/ tasks such as GLUE (Linzen et al., 2018). Transformer-based architecture can also benefit
from Spectraformer. Past random feature Transformer works (Likhosherstov et al., 2022; 2023) have
experimented with conformer and vision Transformer with ViT. Jeevan & Sethi (2022) provides
a good foundation to extend our work. Spectraformer, although currently experimented in the
Transformer setting, can also extend to non-parametric kernel classification. It could also benefit
from ablation studies like the comparison variance in Chowdhury et al. (2022) or in Yao et al. (2023)

Given the complex nature of language models in the ethical, energy, and societal domains, our work
should be used responsibly (Weidinger et al., 2021).s

A.2 RELATED WORK

Spectraformer is based on several theoretical assumptions and choice of mathematical framework
and approach. This section discusses alternatives to the choices of Spectraformer. Specifically, Ap-
pendix A.2.1 discusses alternative kernelized formulations to Section 2.1; Appendix A.2.2 discusses
alternative kernel approximation techniques to random features in Section A.2.2. There are also some
component functions and weight matrices which are not covered in the experiments. We introduce
them in the related work section in Appendices A.3, A.4, A.5.

A.2.1 ALTERNATIVE KERNELIZED ATTENTIONS

In addition to the kernelized formulation of attention as shown in Section 2.1, based on our literature
survey, we have identified the following three alternative kernel-based formulations of attention.

Nadaraya-Watson kernel estimator in integration form (Nguyen et al., 2022): Given the Gaussian
kernel, where the probability of a single variable and the joint probability of two variables are
estimated using kernel density estimation with the Gaussian kernel, then we have Equation 12,
leading to the formulation of FourierFormer.

ϕ(δ) = exp(−||δ||2/2σ2)

r̂n(k) =
∫ vp(v,k)

p(k) dv =
∑N

j=1 v̂jϕ(k−kj)∑N
j=1 ϕ(k−kj)

r̂n(qi) =
∑N

j=1 softmax(q
T
i kj/σ

2)v̂j

(12)

Gaussian decomposition (Song et al., 2021): the attention mechanism can also be decomposed into
the Gaussian kernel directly from Equation 4 without appealing to the use of kernel estimator (Song
et al., 2021). Equation 13 leads to Implicit Kernel Attention (IKA).

Ai =

N∑
j=1

1

Zl(qi,K)
exp(

−||qi − kj ||22
2
√
dk

)exp(
||qi||2p=2 + ||kj ||2p=2

2
√
dk

)vj (13)

Non-local operation (Wang et al., 2018) is popular decomposition of attention in computer vision.
This is the basis for Vision Transformer and related work. Non-local operation itself a generalisation
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of the non-local means used in image denoising (Buades et al., 2005). Non-local operation is
essentially an operation that operates on the entire input range, instead of a specific window which is
characteristic of convolutional operations (see Equation 14). Indeed, the attention vector output y
can be defined using f which is the softmax (see Equation 15) in the non-local operation.

yi =
1

C(x)

∑
∀j

f(xi,xj)g(xj) (14)

y = softmax(xTW T
θ Wθx)g(x) (15)

We will show that the non-local operation in Equation 14 is a generalisation of the Nadaraya-Watson
kernel estimator. Specifically, when defining C(x) =

∑
l K(qi,kl), f = K(qi,kl), g = vj , then

we obtain the original Nadaraya-Watson kernel estimator in Equation 4. The variety of kernel
decompositions of attention demonstrate the robustness of the kernel interpretation of attention and
hence opening up an alley in attention improvement through the lens of kernel.

A.2.2 KERNEL APPROXIMATION BEYOND RANDOM FEATURES

Kernel approximation is presented in Section 2.3 through the use of random features. However, there
has been other kernel approximation techniques outside of random features. These include greedy
basis selection (Smola & Schökopf, 2000), divide and conquer (Hsieh et al., 2014; Zhang et al., 2013),
and nyström methods (Williams & Seeger, 2000) (which led to the development of Skyformer (Chen
et al., 2021) and Nyströmformer (Xiong et al., 2021)).

Figure 2: Spectraformer weight matrices. Red tick denotes techniques which have been explored
in the literature. Green tick denotes techniques which are explored in this work. Please refer to
Appendix A.3 for references.

A.3 TECHNICAL DETAILS OF WEIGHT APPROXIMATORS

Spectraformer weight matrices are shown in Figure 2. Weight matrices are either approximators or
learners. There are three approaches to approximators: Monte Carlo sampling, Unit-cube sampling,
and quadrature. We have discussed these approaches in detail in Section 3.1. Here we provide a more
specific classification schemes for each method.

• Monte Carlo sampling-based weight matrices are improvements over Base and subdivided
into two types: structural and geometric methods. Structural methods decompose the
Base random matrices P into smaller matrices which reduce time and/ or space complexity.
Structural matrices includes FastFoodF, SCRF and P-Model. Among these, we have explored
the learner variant FastFoodL of FastFood. Geometric methods enforce certain geometrical
couplings along some dimensions in the construction of random matrices to reduce the
approximation error. Geometric methods include: ROM (ORF, SORF) and SimRF. Among
these, we have explored the main ROM variants - ORF and SORF.

• Unit-cube sampling-based weight matrices reformulate the Bochner integral in Equation 9
as Equation A.3 with uniform and independent points. This approach includes QMC, MM,
and SSF. We have not covered SSF in our experiments.
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• Quadrature-based weight matrices estimates the intractable integral using non-uniform
weights with deterministic rules. There are two approaches: SGQ and SSR. We have not
covered SSR in our experiments.

We now explore these weight matrices in the order specified above.

Base (Rahimi & Recht, 2007) is the direct sampling from a distribution Pij ∼ p, corresponding to
the kernel K without any additional adjustment, and in approximating the RBF, P = G where G is
the normal distribution.

WBase =
1

σ
P (16)

FastFoodF (Le et al., 2013) makes use of Hadamard and diagonal matrices to speed up Gaussian
matrices G constructions for RFF in O(n log d) (100 times faster) with O(n) space (1000 times less
space) given n ≥ d against Base. However, FastFoodF increases variance and approximation error
and decreases the concentration bound.

WFastFoodL
=

1

σ
SHGΠHB (17)

where H is the Walsh-Hadamard matrix, Π ∈ {0, 1}d∗d is a permutation matrix, and S,G,B are
diagonal random matrices, with the diagonal entries being {+− 1} entries on B, random Gaussian
entries on G, and a random scaling matrix on S, Sii = si||G||−1/2

Frob , si ∼ (2π)
−d
2 A−1

d−1r
d−1e−

r2

2 .

SCRF (Signed Circulant Matrix Projection) (Feng et al., 2015) maintains a high matrix construction
speed and O(s) space (s = t ∗ d) whilst maintaining the variance of Base, an improvement over
FastFoodF. It does this by making use of circulant matrices.

WSCRF = [P (1),P (2), ...,P (t)], t = d|D (18)

where P (i) is a signed circulant Gaussian matrix, with the first column of circulant random matrix
C(i)[d] of P (i) drawn randomly from a Gaussian distribution N (0, I/σ2). The circulant matrix via
Discrete Fourier Transform can be defined as:

C = 1
mF ∗diag(Fc)F

F = [ei
2π
m kn]m−1

k,n=0

(19)

P-Model (Choromanski & Sindhwani, 2016) generalizes over both circulant matrices (including
SCRF), FastFoodF, along with other Gaussian and semi-Gaussian structured matrix methods.

WPmodel
= [gTP1, g

TP2, ..., g
TPs]

T (20)

where g ∈ Ra is a Gaussian vector and a sequence of m Pi ∈ Ra∗d matrices with L2 norm columns,
where Pi represents a P-model. Semi-Gaussian structured matrices including Toeplitz, Hankel, and
other Toeplitz-like matrices are an open area of research for random matrices.

ORF (Orthogonal RF) (Yu et al., 2016) decreases the approximation error significantly compared
to Base. This is done via replacing G with a properly scaled random orthogonal matrix. However,
generating orthogonal matrices become costly quickly as the number of dimensions increases.

WORF =
1

σ
SQ (21)

where Q is a uniformly distributed random orthogonal matrix (on the Stiefel manifold) obtained from
the QR decomposition of G, the set of rows of Q forming a basis in Rd, and S is a diagonal matrix
with entries sampled i.i.d from the χ-distribution with d degrees of freedom, thus making the rows of
SQ and G identically distributed.

SORF (Structured ORF) (Yu et al., 2016) decreases time and space complexity of ORF (from O(d2)
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to O(d log d) with almost no extra memory cost) by imposing structure on the orthogonal matrices,
inspired by structural methods. SORF is unbiased with large d. We replace S with

√
d and Q with

structured matrix HD1HD2HD3

WSORF =

√
d

σ
HD1HD2HD3 (22)

where Di ∈ Rd∗d, i = 1, 2, 3 is diagonal ’sign-flipping‘ matrices with diagonal entries sampled from
the Rademacher distribution, H is the normalized Walsh-Hadamard matrix.

ROM (Random Orthogonal Embeddings) (Choromanski et al., 2017) generalizes SORF (t = 3) to:

WROM =

√
d

σ

t∏
i=1

SDi (23)

where S is a class of L2-normalized versions of Kronecker product matrices, of which the Hadamard
H is a representative of, and D being independent diagonal matrices. When S = H and t = 3,
we obtain SORF used in our experiments. Another ROM variant is S-Hybrid, which we do not
experiment with, given as

WSHybrid
= SD

(U)
k

k−1∏
i=1

SD
(R)
i (24)

where D
(U)
k is a diagonal matrix with i.i.d. Unif(S1) on the unit circle of C. When being used in

the component function, instead of calculating ϕ(x)Tϕ(y) in Equation 10. We model the equation as

Real(ϕ(x)
T
ϕ(y)).

SimRF (Simplex RF) (Reid et al., 2023) is developed to be a positive RF with the most optimal
solution, the MSE of which is the lowest in the geometric methods. This is an alternative to the ROM-
based geometric methods. Two variants of SimRF are: weight-independent and weight-dependent.
SimRF is defined as:

Wsimp = DSR (25)
where D ∈ Rd∗d = diag(ωi),R ∈ Rd∗d being a random orthogonal matrix drawn from Haar
measure on O(d) and S ∈ Rd∗d with row si:

si =

{√
d

d−1ei −
√
d+1

(d−1)3/2
(1, ..., 1, 0)T 1 ≤ i < d

1√
d−1

(1, 1, ..., 1, 0)T i = d
(26)

being unit vectors which are manifestly normalized and subtend obtuse angles. SimRF variants are
defined based on how ωi is constructed. For SimRFindep, ωi ∼ χd. For Simdep, we permit the random
vector direction {ω̂i} to be correlated with norms {ωi}:

ωi = −
∑

j ̸=i ωj

||
∑

j ̸=i ωj ||2
ωi, i = 1, ..., d (27)

QMC (Quasi-Monte Carlo) (Avron et al., 2016) evaluates on a low discrepancy sequence (e.g.,
Halton, Sobol’ Faure, and Niederreiter) of points instead of random points in Monte Carlo. Although
the approximation error is only reduced minimally, QMC has been shown to perform better than
MC in high dimensions and does not have undesirable clustering effect. To calculate QMC, we
first assume that p(x) =

∏d
j=1 pj(xj) factorizes with respect to the dimensions with pj(.) being a

univariate density function. Then we define:

Φ−1(t) =
(
Φ−1

1 (t1) , . . . ,Φ
−1
d (td)

)
∈ Rd (28)

where Φj being the cumulative distribution function of pj , t1, t2, ..., ts ∈ [0, 1]d being a low discrep-
ancy sequence, and ωi = Φ−1(ti). We can thus transform the integral on Rd in Equation 9 to an
integral on the unit cube [0, 1]d as

K(x− x′) =

∫
[0,1]d

exp
(
i(x− x′)⊤Φ−1(t)

)
dt
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The weight matrix then can be defined as:

WQMC = [Φ−1(t1),Φ
−1(t2), . . . ,Φ

−1(ts)]
⊤ ∈ Rs×d .

QMC can be further improved by a sub-grouped based rank-one lattice construction which improved
complexity (Lyu et al., 2020).

MM (Moment Matching) (Shen et al., 2017; Liu et al., 2022) improves over QMC by removing the
undesirable clustering effect and having the same approximation error with less features. This is done
by replacing Φ−1 with a moment matching scheme Φ̃−1:

WMM = [Φ̃−1(t1), Φ̃
−1(t2), . . . , Φ̃

−1(ts)]
⊤ ∈ Rs×d

where Φ̃−1(ti) = Ã−1(Φ−1(ti) − µ̃) can be constructed using moment matching with sample
mean µ̃ = 1

s

∑s
i=1 Φ

−1(ti) and the square root of the sample covariance matrix Ã satisfying
ÃÃ⊤ = Cov(Φ−1(ti)− µ̃).

SSF (Spherical Structured Features) (Lyu, 2017) improves over QMC by including rotation-invariant
kernel as well as in terms of complexity. Rotation-invariant property suggests the construction of
feature maps using spherical equal weight approximation using Riesz s-energy on a d-dimensional
sphere Sd := {x ∈ Rd+1|||x||2 = 1}. Specifically, we construct {vi}si=1 asymptotically uniformly
distributed on the sphere and obtain V := [v1,v2, . . . ,vs] ∈ S(d×s, that Φ−1(t) uses the one-
dimensional QMC point, we have the weight matrix:

WSSF = [Φ−1(t)v1,Φ
−1(t)v2, . . . ,Φ

−1(t)vs]
⊤ ∈ Rs×(d+1),

SGQ (Sparse Grid Quadrature) (Dao et al., 2017) evolves from GQ. GQ (Gaussian Quadrature) (Dao
et al., 2017) assumes that the kernel k factorizes with respect to the dimensions and thus can be
approximated by a one-dimensional Gaussian quadrature rule. However the total number of points s
scale exponentially with the dimensions. However GQ suffers form the curse of dimensionality. This
is alleviated using Smolyak rule resulting in SGQ. Assuming the third-degree SGQ using symmetric
univariate quadrature points {−p̂1, 0, p̂1} with weights (â1, â0, â1), then we have:

WSGQ=[0d, p̂1e1, . . . , p̂1ed,−p̂1e1, . . . ,−p̂1ed]⊤∈R(2d+1)×d

given that i is the d-dimensional standard basis vector with the ith element being 1.

SSR (Spherical-Radial Rules) (Munkhoeva et al., 2018) transforms Equation 10 into a double integral
over a hyper-sphere and the real line. This leads to the following approximation:

WSSR = ϑ⊗
[
(QV )⊤

−(QV )⊤

]
∈ R(2d+1)×d,

where ϑ = [ϑ1, ϑ2, . . . , ϑs], V = [v1,v2, . . . ,vd+1], ϑ ∼ χ(d+ 2) and {vi}d+1
i=1 being vertices of a

unit regular d-simplex randomly rotated by Q (a random orthogonal matrix).

A.4 TECHNICAL DETAILS OF WEIGHT LEARNERS

We give a non-mathematical definition of weight matrix learner in Section 3.1: weight matrix
learner is any function which parameterize distributions. This allows for the discovery and future
experimentation with other potential weight matrix learners in Spectraformer and random feature
method in general. Weight matrix learner comes from a long line of work in kernel methods, namely,
kernel learning via random features. Typically, a component function f is chosen and a weight
matrix W is produced via kernel approximation, providing us with the feature map ϕ. ϕ can then be
combined with input x and weight v to fit the learning objective. Kernel learning, however, imposes
an additional objective: learning the weight matrix W .

The approach to the dual objectives separates the kernel learning methods into two-stage and one-
stage methods (Liu et al., 2022). Two-stage methods (e.g., Yu et al. (2015); Wilson & Adams (2013);
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Bullins et al. (2018)) solves the dual objective separately: W is typically first learned via a kernel
alignment scheme (Wang et al., 2015), then we solve for v. One-stage methods (e.g., Chowdhury
et al. (2022); Tompkins et al. (2019)), on the other hand, solves the dual objective in parallel: p(.)
corresponding to W is parameterized then v is solved typically. It is not plausible to apply kernel
alignment (Wang et al., 2015) on Transformer architectures. Therefore, only one-stage methods
can be considered in the context of weight matrix learner. Two kernel learning methods, GMM and
FastFoodL, have been experimented in the non-Transformer setting (Yang et al., 2015), then adapted
into the Transformer setting (Chowdhury et al., 2022). DGM (Deep Generative Model) has also been
effective in modeling distributions (Kingma & Welling, 2013). It too has been adapted by Chowdhury
et al. (2022) for the Transformer setting. Due to the superior performance of FastFoodL with this
technique, we have only experimented with this technique. We now explore them.

FastFoodL (see Equation 17) is proposed to be learnable by Yang et al. (2015) with two variations:
FSARD (scaling matrix S previously sampled from chi-squared is made learnable) and FSGBARD
(optimizes the marginal likelihood with respect to the diagonal matrices G and B). It is further
adapted by Chowdhury et al. (2022) to make S or S,G,B learnable parameters. In our experiments,
we maintain this set up.

GMM (Gaussian Mixture Model) (Wilson & Adams, 2013; Oliva et al., 2016) is a known universal
approximator of probability distribution. Specifically, we can consider WGMM being composed
of s components, with each component c (with C total components) being a Gaussian with mean
vector µc and covariance matrix Σc and component weight πc. p(ω) can then be approximated as
p(ω) =

∑C
c=1 πcN (µc,Σc) (Chowdhury et al., 2022). Assuming πc = 1

C , the weight matrix with
learnable weights Σ and µ can be parameterized as:

WGMM = [Σ1n+ µ1, ...,ΣCn+ µC ]
T , n ∼ N (0, I) (29)

Another formulation of GMM is proposed in Yang et al. (2015) in combination with FastFood, albeit
it extends beyond constructing the weight matrix.

DGM (Deep Generative Model) (Kingma & Welling, 2013) allows for a generic distribution modeling
using neural network. DGM is initially proposed to make differentiating sampling processes possible
via the reparametrization trick, where the generator g creates samples from the target distribution
ωm = g(nm) via transforming from a noise distribution nm ∼ p0(.).

In addition to the techniques discussed above, there are also some other prominent one-stage methods
(e.g., INN, BBQ). INN (Invertible Neural Network) (Xu et al., 2021) is another universal approximator
of probability distribution, consisting of invertible operations transforming samples from a known
distribution to a different more complex distribution. BBQ (Black Box Quantile) (Tompkins et al.,
2019) follows the QMC scheme and models Φ−1 using parameterized quantile function.

A.5 TECHNICAL DETAILS OF COMPONENT FUNCTIONS

Component functions discussed in Section 3.2 all belong to CDERF. However, there are other
component functions including DIRF and HRF (see Figure 3) which we do not explore in our
experiments. We now investigate the theoretical details of these component functions, the CDERF
family is introduced in their order of discovery.

CDERF (Complex dense exponential random feature) is given in Equation 30, where ω,x ∈ Rd,
p = N (0, 1)d, k ∈ {1, 2} and Sdc being a set of d ∗ d complex symmetric matrices. The parameters
and constraints of different CDERF functions are specified in Table 7:

f
(k)
DE(ω,x) = Real(D exp(ωTAω + ωTB(k)x+ xTC(k)x)) (30)

TrigRF (Trigonometric RF) (Rahimi & Recht, 2007) is the base RFF implementation.

f
(1)
TrigRF (ω,x) =

√
2 cos(ωTx+ b)

f
(2)
TrigRF (ω,y) =

√
2 sin(ωTy + b)

b ∼ Uniform(0, 2π)

(31)
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Figure 3: Spectraformer component functions. Red tick denotes techniques which have been explored
in the literature. Green tick denotes techniques which are explored in this work. Please refer to
Appendix A.5 for references.

Table 7: CDERF component functions

A B(1) B(2) C(1) C(2) D x y

CDERF SdC
Cd∗d Cd∗d R x y

DERF (Likhosherstov et al., 2023) Sd Rd∗d Rd∗d R x y
SADERF (Likhosherstov et al., 2023) AGEId BGEId CGEId DGE Ψx Ψ−1y

GERF (Likhosherstov et al., 2022) AGEId B
(1)
GEId B

(2)
GEId CGEId DGE x y

TrigRF (Rahimi & Recht, 2007) 0Id iId −iId 0Id 1 x y
PosRF (Choromanski et al., 2021) 0Id 1Id −1Id 1 x y
OPRF (Likhosherstov et al., 2022) 0Id 1Id −1Id 1 x y

The use of the trigonometric sine and cosine functions leads to unstable behavior when the inputs
have negative dimension-values. This can be further exacerbated when the values TrigRF try to
approximate are close to 0 (since most values are of low significance). This causes the variance to
approach infinity (Choromanski et al., 2021; Likhosherstov et al., 2022). Therefore, we do not want
to use TrigRF to perform kernel approximation in attention.

PosRF (Positive RF) (Choromanski et al., 2021) fixes the problem of TrigRF by enforcing positive
component function output in the softmax. The variance of PosRF (in contrast to the variance
of TrigRF approaching infinity) approaches 0 as the approximated value of the Softmax kernel
approaches 0. PosRF has two forms: Positive RF Base (PosRF-B) (see Equation 32) and Positive RF
Hyperbolic (PosRF-Hyp), which is multi-component, i.e., Equation 11: l = 2, (see Equation 33).

fPosRFB
(ω,x) = exp(ωTx− ||x||2

2 ) (32)

f1,PosRFHyp
(ω,x) = exp(ωTx− ||x||2)

f2,PosRFHyp
(ω,x) = exp(−ωTx− ||x||2) (33)

We only use PosRF-B in our experiments.

GERF (Generalized exponential RF) (Likhosherstov et al., 2022) generalizes both TrigRF and PosRF
with Equation 34.

f
(1)
GERF (ω,x) = D exp(A||ω||2 +BωTx+C||x||2)

f
(2)
GERF (ω,y) = D exp(A||ω||2 + sBωTy +C||y||2)

Re(1− 4A) > 0,B =
√
s(1− 4A)

C = −(s+ 1)/2, D = ( 4
√
1− 4A)d

A ∈ C, s ∈ {−1,+1}

(34)

where √
. and n

√
. denoting a principal root with a complex argument
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OPRF (Optimized positive RF) (Likhosherstov et al., 2022) is the solution to the minimization of the
variance of GERF. Specifically it is defined as Equation 34 with s = +1, ||x+ y||2 > 0, and A ∈ R
defined in terms of p∗ as:

A = (1− 1/p∗)/8

p∗ = (
√

(2||x+ y||2 + d)2 + 8d||x+ y||2 − 2||x+ y||2 − d)
/(4||x+ y||2)

(35)

Whilst PosRF is not bounded, OPRF is. OPRF can provide e60 × variance reduction in estimating
the Softmax compared to TrigRF.

DERF (Dense-exponential random features) (Likhosherstov et al., 2023) extends GERF and replace
A,B,C with dense matrices. DERF is CDERF when B, C are in the real instead of the complex
plane. Minimizing the variance of DERF leads to two approaches: ADERF and SDERF. However
both these approaches rely on SVD and eigen decompositions which are not extensively supported
on GPU and deep learning libraries. Therefore SADERF is proposed.

SADERF (simplified ADERF) (Likhosherstov et al., 2023) is a special case of ADERF and extends
GERF, requiring only basic unary operations in addition.

f
(1)
SADE(ω,x) = f

(1)
GE(ω,Ψx), f

(2)
SADE(ω,y) = f

(2)
GE(ω,Ψ

−1y)

Ψ∗
l,l = (

∑
j(y

(i)
l )2/

∑
i(x

(i)
l )2)1/4

(36)

DIRF (Discretely-induced random features) (Likhosherstov et al., 2022) are based on the assumption
of p(ω) being a discrete distribution with ω1, ...,ωd being i.i.d., P(ωl = k) = pk,

∑∞
k=0 pk = 1,

pk > 0, k ∈ {0} ∪ N. By making use of the Taylor series, we can define DIRF as:

fDI(ω,x) = exp(−||x||2

2
)

d∏
l=1

xωl
i (ωl!)

−1
2 p

−1
2

ωl (37)

DIRF has two variations: PoisRF (Poisson RF) which requires p(.) to be the Poisson distribution
and GeomRF (Geometric RF) which requires p(.) to be the geometric distribution. Since the many
weight matrices introduced in Section 3.1 do not readily approximate these distributions, we decide
to leave DIRF out of the paper.

HRF (Hybrid RF) (Choromanski et al., 2022) combines multiple base estimators, similar to multiple
kernel learning methods (Bach et al., 2004), in order to provide the most accurate approximation
in regions of interest. Choromanski et al. on solving softmax approximation using HRF. HRF is
constructed using a weighted combination ϵ of p+ 1 base estimators ˆSM

k
(x,y) and λ-coefficients,

Λ p binary estimators λk : Rd × Rd → [0, 1], both constructed independently:

ˆSM
ϵ,Λ

=

p∑
k=1

λ̂k(x,y) ˆSM
k
(x,y) + (1−

p∑
k=1

λ̂k(x,y)) ˆSM
p+1

(x,y) (38)

Since HRF requires the base estimators SM(x,y) to be unbiased, the easiest solution is the complex
exponential ˆSM

cexp

m which can be derived directly from the expectation of the softmax as follows:

ˆSM
cexp

m (x,y) = ψm
A (x)Tψm

(AT )−1(y)

ψm
M (u) = 1√

m
exp(− (Mu)2

2 )

(exp(ωT
i Mu), ..., exp(ωT

mMu))T ,ωi ∼ N (0, Id)

(39)

To construct λ-coefficients, three methods are proposed: simultaneous accurate approximation of
both small and large values, Gaussian Lambda Coefficients, and adaption to data admitting clustering
structure.

A.6 EXPERIMENTAL DETAILS IN SPECTRAFORMER
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Table 8: Hyper-parameters for Spectraformer, following the setting from Chen et al. (2021) due to
limited computational power. L stands for ListOps, T for Text, and R for Retrieval. The seed that
can be used to reproduce our experiments is 42.

L T R
Embedding dim. 64 64 64
Transformer dim 64 64 64
Hidden dim 128 128 128
Head dim 32 32 32
Num. heads 2 2 2
Num. layers 2 2 2
Vocabulary size 32 512 512
Sequence length 2000 4000 4000
Dropout rate 0.1 0.1 0.1
Att. dropout rate 0.1 0.1 0.1
Pooling mode mean
Batch size 32 32 16
Learning rate 0.0001 0.0001 0.0002
Warmup steps 1000 80 800
Learning rate decay linear
Weight decay 0 0 0
Evaluation freq. 500 500 1000
Num. epochs 50k 50K 50k
Num. init steps 1k 3K 3k
Num. eval steps 62 200 300
Patience 10 10 10
Num. features 128 128 128

Table 9: Mean statistics across component functions for each task. Task is denoted on the top left
cell of each table. Mean statistics include ‘acc’ (accuracy), ‘time’ (training time), and ‘mem’ (peak
memory consumption).

ListOps acc time mem
PosRF 31.98 0.63 1.10
OPRF 36.11 0.74 1.28

SADERF 36.33 0.75 1.35

Text acc time mem
OPRF 61.82 1.40 2.54
PosRF 62.31 1.21 2.19

SADERF 62.33 1.39 2.69

Retrieval acc time mem
PosRF 77.32 1.22 2.01

SADERF 78.85 1.43 2.54
OPRF 79.11 1.39 2.41
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