
OBJECTIVE-AGNOSTIC ENHANCEMENT OF MOLECULE PROPER-
TIES VIA MULTI-STAGE VAE

Anonymous authors
Paper under double-blind review

ABSTRACT

Variational autoencoder (VAE) is a popular method for drug discovery and various architectures and
pipelines have been proposed to improve its performance. However, VAE approaches are known to
suffer from poor manifold recovery when the data lie on a low-dimensional manifold embedded in a
higher dimensional ambient space (Dai and Wipf, 2019). The consequences of it in drug discovery
are somewhat under-explored. In this paper, we explore applying a multi-stage VAE approach, that
can improve manifold recovery on a synthetic dataset, to the field of drug discovery. We experimen-
tally evaluate our multi-stage VAE approach using the ChEMBL dataset and demonstrate its ability
to improve the property statistics of generated molecules substantially from pre-existing methods
without incorporating property predictors into the training pipeline. We further fine-tune our models
on two curated and much smaller molecule datasets that target different proteins. Our experiments
show an increase in the number of active molecules generated by the multi-stage VAE in compari-
son to their one-stage equivalence. For each of the two tasks, our baselines include methods that use
learned property predictors to incorporate target metrics directly into the training objective and we
discuss the complications that arise with this methodology.

1 INTRODUCTION

The use of generative models in the domain of drug discovery has recently seen rapid progress. These methods can
leverage large-scale molecule archives describing the structure of existing drugs to synthesize novel molecules with
similar properties as potential candidates for future drugs (Duvenaud et al., 2015; Liu et al., 2018; Segler et al., 2018;
You et al., 2018; Jin et al., 2018; 2020a; Polykovskiy et al., 2020; Jin et al., 2020b; Satorras et al., 2021; Maziarz et al.,
2021; Hoogeboom et al., 2022). There are two common ways of representing the structure of molecules: Simplified
Molecular Input Line Entry System (SMILES) (Weininger, 1988) and molecular graphs (Bonchev, 1991). Graph
neural networks can make effective use of the rich molecular graph representations by taking into account atoms,
edges, and other structural information. SMILES strings convey less information about the molecular structure, but
are more compatible with conventional sequence models (e.g., RNNs). Being able to generate valid molecules is the
first step to AI-driven drug discovery and various solutions have been proposed to this problem. For example, GNN
methods (Liu et al., 2018; Simonovsky and Komodakis, 2018; Jin et al., 2020a; Maziarz et al., 2021) can constrain the
output space based on the chemical rules and SMILES-based approaches (Gómez-Bombarelli et al., 2018; Blaschke
et al., 2018) can benefit from the abundant molecular data.

Besides structural validity, various chemical properties of the generated molecules, such as drug-likeness (QED) (Bick-
erton et al., 2012), Synthetic Accessibility (SA) (Ertl and Schuffenhauer, 2009) and molecular weight (MW) are critical
factors when deciding whether candidate molecules can be synthesized in a laboratory and if they can be effective in
real-world applications. A molecule’s activity level on protein targets, whether to inhibit or to activate, is another very
important property when treating specific diseases. A molecule that interacts successfully with the protein target is
considered active and an activity score is measured based on how effective it is either to activate or inhibit the protein
target’s biological function. Researchers collected large molecule datasets, such as ChEMBL (Mendez et al., 2019)
and ZINC (Irwin and Shoichet, 2005), that contain an array of bioactive molecules together with information about
their properties and protein targets. By training on a curated set of molecules, the generative models can learn to
generate new molecules that are similar in properties to those in the training set in order to produce novel drug can-
didates that satisfy multiple objectives, e.g. being drug-like and active against multiple protein targets. Benchmark
metrics (Polykovskiy et al., 2020; Brown et al., 2019) are created to measure how similar the generated molecules
are to the target dataset structurally and property-wise. The state-of-the-art results, however, show that there is still

1



room for improvements. Multi-objective generation by incorporating property predictors in the training pipeline (Jin
et al., 2020b; Maziarz et al., 2021) is a promising avenue to address this type of problems, but there are also potential
drawbacks. As Winter et al. (2019) summarized that, in drug discovery, the optimized objectives can be complex,
conflicting, ill-defined or evolving over time. This could lead to improving some objectives while degrading others.

In this paper, we introduce an objective-agnostic and easy-to-implement technique to improve existing VAE-based
molecule generation models – training additional stages of VAE’s to generate latent representations for the previous-
stage VAE. To show how this approach can enhance the manifold recovery of VAE models, we first study a simple MLP
model trained on a synthetic sphere dataset. We then evaluate our method in an unconstrained molecule generation
task and a fine-tuning task. In these experiments, we demonstrate the following claims:

• The multi-stage VAE is able to bring the properties of the generated molecules closer in distribution to the
testing set in experiments on the ChEMBL dataset for unconstrained molecule generation;

• Fine-tuning the multi-stage VAE on the curated active molecules of two protein targets results in substantially
more active outputs than fine-tuning only the first-stage model;

• In the tasks we described above, our method can achieve comparable or better results than specialized meth-
ods that directly optimize one or multiple target objectives using learned property predictors.

2 RELATED WORK

We structure our discussing based on the type of molecular representation underlying the individual methods. Most
prior approaches fall into one of the following families – namely, the SMILES string approach, the molecular graph
approach and the 3D point set approach. Many approaches have been proposed to generate molecules as SMILES
strings (Segler et al., 2018; Gómez-Bombarelli et al., 2018). Kusner et al. (2017) and Dai et al. (2018) took advantage
of the syntax of the SMILES strings and constrained the output of the VAE model in order to improve the validity of the
generated molecules. Generative adversarial models have also been proposed to generate SMILES strings (Kadurin
et al., 2017; Prykhodko et al., 2019; Guimaraes et al., 2017). Molecular graphs carry more information about the
molecular structures than the SMILES string format, and GNN can effectively incorporate the additional information
into the learning process (Duvenaud et al., 2015; Liu et al., 2018; Maziarz et al., 2021). Jin et al. (2018) proposed
to generate molecular graphs in two steps – generate the tree-structured scaffolds first, and then combine these with
the substructures to form molecules. Jin et al. (2020a) improved upon this prior result and proposed to generate new
molecules via substructures in a coarse-to-fine manner to adapt to larger molecules, such as polymers. Satorras et al.
(2021) introduced an equivariant graph neural network that can operate on molecular graphs. 3D representations
of molecules are gaining traction in the research communities as they describe detailed spatial information of the
molecules (Gebauer et al., 2019; 2022; Luo et al., 2021; Hoogeboom et al., 2022). However, none of the methods
use the VAE framework. The goal of our paper is to improve upon the existing the VAE-based approaches. Other
generative approaches to drug discovery include generative adversarial models (Kadurin et al., 2017; Prykhodko et al.,
2019; Guimaraes et al., 2017) and diffusion models (Hoogeboom et al., 2022; Xu et al., 2022; Vignac et al., 2022).

3 METHOD

The VAE framework (Kingma and Welling, 2013) has enabled great success in the image generation domain and
more recently VAE-based approaches have become popular for addressing the molecule generation problem. Many
sophisticated architectures have been proposed to adapt it to molecular data (Kusner et al., 2017; Dai et al., 2018; Jin
et al., 2019; Satorras et al., 2021). However, perfecting the underlying neural architecture does not remedy VAE’s
learning deficiency in manifold recovery (Dai and Wipf, 2019; Koehler et al., 2021). The manifold hypothesis (Fef-
ferman et al., 2016) states that many high-dimensional real life data lie on low-dimensional manifolds embedded in
high-dimensional ambient spaces. Koehler et al. (2021) found that the VAE is not guaranteed to recover the low-
dimensional manifold where a nonlinear dataset lie. We show that a multi-stage VAE method can improve manifold
recovery as demonstrated in a synthetic experiment (Figure 2) and further enhance the performance of pre-existing
VAE models.
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Figure 1: Overview of multi-stage VAE. In the first stage, the VAE trains on the molecule data xi and obtains the latent variables
z1
i from xi. The later-stage VAE is trained on the latent variables of the previous-stage VAE. zs

i ’s from the s-th stage VAE become
the input to the s+1-th stage VAE during training. The later-stage VAE’s input dimension is equal to the output dimension. During
sampling, we sample z ∼ N (0, I) and obtain zs

i from the decoder. The output of a later-stage VAE decoder is used as the input
for the previous-stage VAE decoder until the latent variable is decoded into a new molecule x′

i in the first-stage.

3.1 VARIATIONAL AUTOENCODER

The variational inference framework assumes that the data x is generated from a latent variable z ∼ p(z). The
prior p(z) is assumed to be a multivariate standard normal distribution in the application of a VAE. Let ϕ be
the variational parameters and θ denotes the generative parameters, the VAE model consists of a tractable en-
coder qϕ(z|x) and a decoder pθ(x|z). A VAE model seeks to maximize the likelihood of the data, denoted as
log pθ(x) = log

∫
p(z)pθ(x|z)dz. However, the marginalization is intractable in practice due to the inherent com-

plexity of the generator, or the decoder, thus an approximation of the objective is needed. The encoder and the decoder
work together to approximate a lower bound to the log likelihood of the data. Ideally, by optimizing this lower bound
we aim to increase the likelihood. This approximation enables the efficient posterior inference of the latent variable z
given the input xi and for marginal inference of the output variable x. The objective function of VAE consists of a KL
divergence term DKL and a reconstruction term:

L(θ, ϕ;x) = −DKL(qϕ(z|x) || p(z)) + Eqϕ(z|x)[log pθ(x|z)] ≤ log pθ(x) (1)

For generation, latent representation zi is sampled from the prior p(z) which is a multivariate standard normal and the
decoder transforms zi into the output x′

i.

3.2 MULTI-STAGE VAE

Recovery of a low-dimensional data manifold embedded in a high-dimensional ambient space is a challenging task
for VAE to perform. This provides an explanation for the discrepancy in properties between the generated molecules
from existing VAE approaches and the testing dataset. Dai and Wipf (2019) hypothesized that training a continous
VAE with a fixed decoder variance could add additional noise to the output. While training a VAE with a tunable
decoder variance, they observed that the decoder variance has a tendency to approach zero and the diagonal entries
of the encoder covariance to converge to either 0 or 1. A second VAE trained on the encoded latent variables of the
first one with close to 0 decoder variance yields crisper and more realistic images than a one-stage VAE. By studying
synthetically generated data with feedforward neural network, Koehler et al. (2021) showed that when the data is not
linear, neither the manifold nor the density is guaranteed to be recovered by a one-stage VAE with tunable decoder
variance. Without limiting ourselves to only 2 stages of VAE, we demonstrate in the following synthetic experiment
that a multi-stage VAE can improve manifold recovery. We further apply the multi-stage VAE to the task of molecule
generation involving much more complex architecture such as graph neural network and show that it is able to improve
the distance between the property distribution of the test set and the generated set.

Synthetic Experiment We demonstrate that a multi-stage VAE setup improves the recovery of the manifold in a
synthetic experiment with data generated from a ground-truth manifold (Koehler et al., 2021). We generated data from
a 2-dimensional unit sphere such that the norms of all the generated data points are 1 (see Figure 2). The generated data
is 3 dimensional but lies on the 2-dimensional unit sphere surface. The vectors are then padded with 16 dimensions of
zeros to embed the data in an even higher-dimensional ambient space. The intrinsic dimension of the data is 2 and the
ambient dimension is 19. We trained on this data in 3 stages – meaning, the encoded latent variables from the previous
stage are used as input for training in the next stage. For the second and the third stage VAE, the latent dimension is set
to be the same as their input (Figure 1 right). The decoder variance is tunable for all stages and the decoder variance
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(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 2: Multi-stage VAE on synthetic data. The x-axis represents the norm of the data point and the y-axis represents the number
of data points that are of x distance away from the unit sphere center. The ground-truth data’s histogram should be a Dirac delta at
location 1. The figure for stage 1 shows that most of the generated points fall inside of the sphere instead. The sphere surface is
mostly recovered and improved starting from stage 2.

of the first stage approaches 0 upon convergence. During sampling, the output of the later stage decoder is used as the
input latent variable of the previous stage decoder. The last-stage VAE’s latent variables are sampled from a standard
normal distribution. We sample 1000 data points to visualize the results in the histograms. We observe that the VAE
in the first stage does not recover the manifold and many of the generated data points fall inside of the sphere, echoing
the finding by Koehler et al. (2021). In the second and third stage, we see that more data points fall close to the sphere,
indicating a better recovery of the manifold. The third-stage has slightly fewer points falling below the distance of
0.95 to the origin than the second in this experiment.

Application on Molecule Generation The synthetic experiment is run on continuous data with a simple feed-
forward architecture for both the decoder and the encoder. In this simple setting, two conditions on the first-stage VAE
are satisfied for improvements in the later stage to occur (Dai and Wipf, 2019): i) the decoder variance converges to 0;
and, ii) the entries in the diagonal of the encoder variance converge to either 0 or 1. The first condition can be applied
to VAE’s with multinomial setup common to molecule generation tasks and the decoder variance approaching zero is
equivalent to the output being deterministic given the same latent variable. The second condition can also be verified
because the latent space of the VAE models for molecule generation is generally continuous. However, the VAE
architectures used for molecule generation are much more complex. Molecular data is discrete and the architectures
for encoders and decoders can be hierarchical or sequential in their generation process. In Section 4, we examine how
well each of the models we tested on fulfills the two conditions outlined for the continuous model. We also provide
empirical studies on the suitability of a multi-stage VAE approach in the molecule generation domain by thorough
evaluations on the samples’ quality using structural and property statistics (Polykovskiy et al., 2020). We find that the
multi-stage VAE helps to generate molecules that are more similar in property to the test set. Below we present the
precise steps to train a multi-stage VAE (Figure 1):

1. Train a VAE on the molecular dataset {xi | i = 1, 2, . . . n}, and upon convergence, save the latent variables
z1 ∼ qϕ(z

1|x = xi) for all the molecules in the dataset;

2. With {z1
i | i = 1, 2, . . . n} as input, train additional stages of VAE with tunable decoder variance and the latent

variable at stage s is denoted as zs. We use feed-forward architectures for both the decoder pθs(zs|zs+1) and
the encoder qϕs(zs+1|zs). They both follow Gaussian distributions. The dimension of zs are the same across
different stages. Repeat this step until the final stage, and the last-stage latent variable is denoted as z.

3. During the sampling process, sample the latent representation of the last stage VAE, z ∼ N (0, I). Obtain
the output from the stage-s decoder zs ∼ pθs(zs|zs+1 = z′s+1

i ) as the input to the stage-(s − 1) decoder.
Repeat until we reach the first stage VAE and get the new molecule sample x′

i from the first stage decoder
via x ∼ pθ(x|z1 = z′1

i ).

We observe in our experiments that, for each additional stage of VAE we train, the decoder variance converges to a
larger value than the previous one (details in Appendix B). And when the new stage’s decoder variance converges
to 1, the improvements become minimal. One way to interpret this method is that while the first-stage VAE learns
a deterministic mapping between the latent representations and the molecular output, the later-stage VAEs learn to
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map standard normal distribution to the distribution of the latent representation of the first-stage VAE. This is because
the latent variables of the first-stage VAE do not necessarily follow the standard normal distribution as is generally
assumed (Dai and Wipf, 2019). In the next section, we experiment on three pre-existing VAE models for general
molecule generation task. We verify if they meet the two conditions outlined for the continuous synthetic setting
earlier. And the models that do are able to generate molecules more similar to the test set by training additional
stages of VAE. We also show that the multi-stage VAE can increase the number of active molecules generated when
fine-tuned for a protein target.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our methods on two generation tasks. First, our algorithm learns
to generate molecules by training on a large molecular database (i.e., ChEMBL), and we show that training additional
stages of VAE is able to generate molecules more similar to the test set in properties than training only a single stage.
Our baselines include a model (Maziarz et al., 2021) that minimizes the losses between the true property values of the
input molecules and the predicted property values of the output molecules for multiple targets during training and our
method shows more consistent improvements across different properties. Second, our algorithm is fine-tuned on two
curated molecular datasets that are active against two different protein targets (JAK2 and EGFR), and the multi-stage
VAE improves the activity rate among the generated molecules. In this experiment, we compare our method against an
RL algorithm (Jin et al., 2020b) using activity predictor as the reward function and show that we can achieve equivalent
or better results in much shorter time.

4.1 UNCONSTRAINED GENERATION

We adopt three existing VAE model as our first-stage VAE – hierarchical GNN (Jin et al., 2020a), MoLeR (Maziarz
et al., 2021), and character-level RNN (Polykovskiy et al., 2020) – to compare the effects of multi-stage VAE on
different model architectures. We also adopt a GAN-based model (Prykhodko et al., 2019) as an additional comparison.
We conduct experiments on the ChEMBL (Mendez et al., 2019) dataset – it consists of 1,799,433 bioactive molecules
with drug-like properties. It is split into training, testing, validation datasets containing 1463k, 81k, and 81k molecules
respectively. Details on our evaluation metrics are in Appendix A. Below we introduce the details of the models used
in this study:

Hierarchical GNN: This method first extracts chemically valid motifs, or substructures, from the molecular graphs
such that the union of these motifs covers the entire ChEMBL space. The model consists of a fine-to-coarse encoder
that encodes from atoms to motifs and a coarse-to-fine decoder that selects motifs to create the molecules while
deciding the attachment point between the motif and the emerging molecule. We use the configuration from the
original model. The latent dimension of the VAE is 20 and we use 0.1 as the KL coefficient.

MoLeR GNN: Similarly to the hierarchical GNN, this method also extracts motifs in order to generate molecules
piece by piece. The method’s objective includes a regression term to match the true properties of the molecules
and the predicted molecule properties from the latent variables. We implement our multi-stage method without such
term and compare the property metrics of the generate molecules from our method to directly matching them in the
training objective as "MoLeR + prop" in Table 1. We reduce the latent dimensions to 64 and use all the other original
configuration.

Vanilla RNN: The inputs to the model are SMILES strings and the vocabulary consists of the low-level symbols in the
SMILES strings. The encoder is a 1-layer GRU and the decoder is a 3-layer GRU. The latent dimension of the VAE is
128. We use the original configuration except a reduced KL coefficient of 0.01.

Latent GAN: This is also a 2-stage method. The first stage is a heteroencoder that takes SMILES strings as input
while the second stage is a Wasserstein GAN with gradient penalty (WGAN-GP) that trains on the latent variables
of the first stage encoder. The heteroencoder consists of an encoder and a decoder like an autoencoder and is trained
with categorical cross-entropy loss. Afterwards, the GAN is trained to generate latent variables for the decoder of the
heteroencoder. We use the original parameters for training.

We sample 10,000 molecules from each model to generate the results in Table 1. We include sample quality, structural
and property statistics. The entries in the property statistics section are the Wasserstein distances between the property
distribution of the test set and the generated set. A lower value in these statistics signals increased similarity to the test
set in these properties. The results in the tables are averaged over 6 sets of samples generated with different random
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Sample Quality Structural Statistics Property Statistics
Stage # Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

HGNN#1 1.0 1.0 0.99 5.1 0.42 0.97 0.46 0.920.016 0.0704.3e−3 0.0249.5e−4 68.80.83

HGNN#2 1.0 1.0 0.99 1.1 0.41 1.0 0.43 0.0950.019 0.0695.8e−3 0.00671.0e−3 5.00.72

HGNN#3 1.0 1.0 1.0 1.2 0.41 1.0 0.46 0.0594.5e−3 0.0696.3e−3 0.0161.6e−3 7.70.42

MoLeR#1 1.0 1.0 0.99 2.1 0.41 0.96 0.48 0.166.78e−3 0.0281.96e−3 0.0472.78e−3 9.60.70
MoLeR #2 1.0 1.0 0.99 2.2 0.42 0.96 0.53 0.126.13e−3 0.0414.31e−3 0.0369.25e−4 6.80.71
MoLeR #3 1.0 1.0 0.99 1.8 0.42 0.96 0.49 0.0876.16e−03 0.0312.81e−03 0.0282.31e−03 8.24.0e−01

MoLeR + prop 1.0 1.0 0.99 2.1 0.43 0.97 0.49 0.111.03e−02 0.132.51e−03 0.0338.65e−04 6.64.80e−01

RNN#1 0.86 1.0 1.0 1.84 0.38 1.0 0.38 0.0887.8e−3 0.25 7.8e−3 0.00881.6e−3 3.20.55

RNN#2 0.87 1.0 1.0 1.86 0.38 1.0 0.36 0.0995.5e−3 0.277.7e−3 0.00991.5 e−3 2.80.29

LatentGan 0.77 0.98 0.99 17.3 0.34 0.68 0.21 0.690.019 0.637.3e−3 0.0472.0e−3 27.20.88

Table 1: Properties of the generated molecules trained on the ChEMBL dataset.

seeds from the model. We include the standard deviations for the property statistics but eliminated the rest as those are
below 0.01. Stage #1 results are from the original models.

The HGNN#2 improves upon the first stage by many folds on property statistics. The most notable improvement
from the ChEMBL dataset is the QED (from 0.024 to 0.0067), MW (from 68.8 to 5.0) and LogP (0.92 to 0.059).
HGNN#3 does not show consistent improvement from HGNN#2. Structural statistics generally did not change a lot
in the second and the third stage. The performance on these metrics of the later stages models may be bottle-necked
by the first-stage graph decoder.

We trained three stages of the MoLeR model. The MoLeR#2 improves upon the MoLeR#1 in three (LogP, QED and
MW) out of four metrics, while MoLeR#3 further improves upon MoLeR#2 in three (LogP, SA and QED) out of
four metrics. Overall, MoLeR #3 improves upon MoLeR #1 in all property metrics except SA (from 0.028 to 0.031,
only slightly higher). In LogP and QED, the metric goes down almost a half from 0.16 to 0.087 and from 0.047 to
0.028. The regression term in the "MoLeR + prop" optimizes over LogP, SA and MW. For two of these three metrics,
"MoLeR + prop" reaches lower statistics than MoLeR#1, where such regression term is left out of the objective, but
the SA metric of "MoLeR + prop" is more than four times higher than without the regression term. This highlights
the challenges of directly matching multiple statistics at once during training – the objectives could be conflicting with
each other and lead to unexpected results. Eventually, the MoLeR#3 reaches lower property statistics than "MoLeR +
prop" in three (LogP, SA and QED) out of four metrics. For the only property metric (MW) our algorithm was worse
(or bigger distance) in, it is only 24% worse than "MoLeR+prop" while for metric such as SA, our outputs are more
than 300% better than "MoLeR+prop".

RNN#2 performs worse than RNN#1 in three out of four metrics. The RNN VAE’s training process does not follow
a standard VAE training procedure – the SMILES strings are input to both the encoder and decoder. This allows
the decoder to rely less on the latent variables during the decoding process and the model exhibits signs of posterior
collapse (Razavi et al., 2019; Fu et al., 2019) during training. Our hypothesis for the poor performance of the multi-
stage VAE with the RNN model as the first-stage is that the variance of the first-stage decoder did not fulfill the
condition of approaching 0 upon convergence and we will discuss more on that next.

Verification on the Encoder and Decoder Variance Conditions We investigate how well each of the three first-
stage models fulfill the original conditions in a continuous setting for improvements in the later stages to occur. The
examination can also help explain the different behaviors from them. We present our findings in Table 2.

1. The decoder variance of the first-stage model converges to zero. Variance in a discrete generation setting is not
easy to measure, but we can substitute variance calculation with a simple experiment – input the same latent
variable to the trained decoder for 1000 times, the number of distinct molecules the model generates can give
us an indication if the decoder variance is approaching zero. We observe that for both of the GNN models,
all 1000 identical latent variables generate 1000 identical molecules (Table 2 column "Decoder Diversity").
We can consider both models to have zero decoder variance. In contrast, the RNN model generates 1000
distinctive SMILES strings. Thus, its decoder variance did not approach 0 and our earlier hypothesis is
verified.

2. Each entry of the encoder variance diagonal either converges to 0 or 1. We allow for 0.1 of tolerance around
0 and 1 and we find the following: The HGNN model’s 20-dimensional encoder variance diagonal has all
converged to 0; RNN’s 128-dimensional encoder variance diagonal have converged to 111 of 1’s, 15 of 0’s;
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and MoLeR’s 64 dimensions of encoder variance diagonal have converged to 45 of 1’s, 6 of 0’s. The rest of
the dimensions fall somewhere in between 0.1 and 0.9 as in Table 2’s first three columns.

Stage 1 Model x < 0.1 0.1 ≤ x ≤ 0.9 x > 0.9 Decoder Diversity
HGNN 20 0 0 1
MoLeR 6 13 45 1

RNN 15 2 111 1000

Table 2: The first three columns document the number of encoder variance diagonal value x that fall into either of the three
categories: x < 0.1, 0.1 ≤ x ≤ 0.9 and x > 0.9, and the last column document the number of unique SMILES by inputting 1000
identical latent vectors.

Overall, we see that the HGNN conforms to the conditions set for the simple continuous settings and the multi-stage
VAE with HGNN as first-stage is able to improve significantly on the second stage and improve slightly in certain
metrics on the third. MoLeR model is able to partially fulfill the conditions and the multi-stage VAE is still able to
yield better results than the first-stage. The RNN model does not fulfill any of the two conditions and the outcomes
from training the multi-stage VAE with RNN as the first-stage do not follow the synthetic experiment (Figure 2) that
shows improvements in later stages.

4.2 GENERATION FOR A PROTEIN TARGET

In addition to unconstrained generation of molecules, we also explore generating molecules that target a specific
protein. We pretrain the MoLeR model and two additional stages of VAE (with MoLeR as the first-stage) on the
ChEMBL dataset and fine-tune them on two curated, and much smaller, datasets (Korshunova et al., 2022) consisting
of molecules that are active inhibitors of Janus Kinas 2 (JAK2) and inhibitors of the Epidermal Growth Factor (EGFR).
For each of the protein target, the regression dataset contains the molecules and their corresponding activity scores
(from 0 to 10). A score above 6 is considered active. The dataset size is around 19k for JAK2, in which around 15.6k
are active, and around 15k for EGFR, in which around 7.8k are active. The full dataset is used to train a regressor
of the activity score while only the active molecules are used to fine-tune the VAE. We divide each dataset by 80%,
10% and 10% for training, validation and testing purposes for both the VAE and the predictor. In addition, there is a
separate classification dataset for each protein target – 60k for JAK2 and 50k for EGFR – containing only the binary
activity information of each molecule. 10% of the dataset is used for testing the classifiers.

Metrics We evaluate our method and baseline methods in three general categories: activity, diversity and novelty
(Table 3 and 4). All evaluations are reported with means and standard deviations across 5 random seeds used to
generate 5 datasets with 1000 molecules each. Particularly for activity scores, we report both the mean score and
percentage of active molecules (6 as the cutoff point) in a dataset from two different regressors – a Chemprop (CPR)
(Yang et al., 2019) model, and a Random Forest (RFR) model with Morgan fingerprint features (Rogers and Hahn,
2010). Both regressors reach an RMSE of 0.5 for the JAK2 dataset and 0.6 for the EGFR dataset. In addition to the
regressors, we also train two classifiers using Chemprop (CPC) and Random Forest (RFC) with Morgan fingerprint
features on the classification dataset and we report the percentage of active molecules in the generated set by the
classifiers as well. All predictors’ performances on the active test set split are included in Table 3 and 4 as a reference.
Novelty is defined as the fraction of molecules with its nearest neighbor similarity in the active training set lower than
0.4. Diversity is calculated based on the pairwise molecular distance sim(X,Y ) within the generated datset. The
function sim(·, ·) is defined as the Tanimoto distance over Morgan fingerprints of two molecules. We define the two
metrics as follows (Jin et al., 2020b):

Diversity = 1− 2

n(n− 1)

∑
X,Y

sim(X,Y ) Novelty =
1

n

∑
G

1[sim(G,GSNN ) < 0.4] (2)

Methods We compare the generated molecules from the fine-tuned multi-stage MoLeR model to the fine-tuned one-
stage MoLeR model. We include RationaleRL (Jin et al., 2020b) as a reinforcement learning-based baseline. We
obtained the multi-stage MoLeR from training on the full ChEMBL dataset as described in Section 3.2. The first-
stage (also the original) MoLeR model was fine-tuned on the curated active molecules dataset after pretraining on the
full ChEMBL dataset. The second and third-stage VAEs are initialized with the parameters from the corresponding
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stage of the pretrained multi-stage MoLeR and fine-tuned on the encoded latent variables of the curated dataset from
the fine-tuned previous-stage VAE. We fine-tuned the later-stage VAE’s in three ways: fine-tuning the entire model,
fine-tuning only the two inner-layers connecting to the latent sampling layer, and fine-tuning only the two outer-layers
connecting to the input and output. We visually compare the distributions of the activity scores for EGFR as predicted
by the Chemprop model from the three types of fine-tuning methods and baselines in Figure 3. The quantitative metrics
are shown in Table 3 and 4. Each evaluation reports metrics for the active test set as a reference.

Model Type Activity (CPC) Activity (CPR) Mean (CPR) Activity (RFC) Activity (RFR) Mean (RFR) Diversity Novelty(0.4) Time 1

Active Test set 0.93 0.92 7.4 0.98 0.89 7.1 0.85 0.016 -
MoLeR 0.441.18 e−02 0.571.21 e−02 6.32.94 e−02 0.411.14 e−02 0.601.46 e−02 6.32.16 e−02 0.872.26 e−03 0.631.81 e−02 4 min

RationaleRL 0.797.94 e−03 0.841.45 e−02 6.81.56 e−02 0.881.23 e−02 0.944.50 e−03 6.71.42 e−02 0.791.38 e−03 0.0555.24 e−03 4.5 d
Whole-Model 0.536.43 e−03 0.636.65 e−03 6.43.18 e−02 0.501.38 e−02 0.694.31 e−03 6.51.91 e−02 0.859.95 e−04 0.549.65 e−03 1.5 h
Inner-Layer 0.791.61 e−02 0.871.31 e−02 7.43.92 e−02 0.881.27 e−02 0.908.40 e−03 7.02.04 e−02 0.714.41 e−03 0.172.03 e−02 1.25 h
Outer-Layer 0.851.30 e−02 0.895.31 e−03 7.23.17 e−02 0.861.75 e−02 0.891.17 e−02 6.92.61 e−02 0.715.30 e−03 0.228.78 e−03 1.5 h

Table 3: Evaluation of the generated molecules targeting EGFR by three multi-stage VAE fine-tuning methods: fine-tuning the
whole model, fine-tuning only the inner-layers and fine-tuning the outer-layers. They are compared against baseline models such
as fine-tuned one-stage MoLeR and RationaleRL. The evaluation metrics include percentage of active molecules, mean activity
scores, diversity and novelty.

Model Type Activity (CPC) Activity (CPR) Mean (CPR) Activity (RFC) Activity (RFR) Mean (RFR) Diversity Novelty(0.4) Time1

Active Test set 0.97 0.97 7.5 0.99 0.98 7.4 0.88 0.016 -
MoLeR 0.521.15e−02 0.746.89e−03 6.51.17e−02 0.441.73e−02 0.891.24e−02 6.72.44e−02 0.905.62e−04 0.856.71e−03 7 min

RationaleRL 0.858.96e−03 0.791.67e−02 6.62.93e−02 0.924.93e−03 0.967.26e−03 6.81.67e−02 0.872.58e−03 0.247.42e−03 8.5 d
Whole-Model 0.548.31e−03 0.781.02e−02 6.62.22e−02 0.461.13e−02 0.915.90e−03 6.71.16e−02 0.894.47e−04 0.827.80e−03 2.8 h
Inner-Layer 0.667.58e−03 0.881.11e−02 6.91.01e−02 0.566.68e−03 0.942.28e−03 6.81.36e−02 0.888.39e−04 0.786.29e−03 2.8 h
Outer-Layer 0.622.27e−02 0.898.37e−03 6.93.72e−02 0.651.23e−02 0.951.96e−03 6.91.53e−02 0.861.29e−03 0.695.37e−03 2.8 h

Table 4: Evaluation of the generated molecules targeting JAK2 by by three multi-stage VAE fine-tuning methods: fine-tuning the
whole model, fine-tuning only the inner-layers and fine-tuning the outer-layers. They are compared against baseline models such
as fine-tuned one-stage MoLeR and RationaleRL. The evaluation metrics include percentage of active molecules, mean activity
scores, diversity and novelty.
For both of the protein targets, fine-tuning the multi-stage VAE in either of the three ways produces more active
molecules of the protein targets than fine-tuning only the first-stage VAE (Table 3 and 4) with all predictors con-
sidered. The improvement is especially pronounced on the EGFR dataset, which is about half of the JAK2 dataset
size. Particularly, fine-tuning only the inner-layers or outer-layers produces more active molecules than fine-tuning
the whole model. Their activity score distributions are also more similar to the test set’s (Figure 3). The peak of the
activity score distribution around 7 is well-captured by the two fine-tuning methods of the VAE in Figure 3a and 3b.
Fine-tuning only two layers reduces the number of parameters to be trained with the same amount of data, thus leads
to better results.

RationaleRL model is initialized with a generative model trained on the ChEMBL dataset and then fine-tuned with an
RL algorithm. The Random-Forest classifier with Morgan fingerprint features is used as its reward signal (Jin et al.,
2020b) in the fine-tuning process. RationaleRL generally has higher percentage of active molecules when predicted
by the two Random Forest models than Chemprop, a sign of possible overfitting. No such pattern is observed for our
methods that did not involve property predictors in the fine-tuning process. On the EGFR dataset, RationaleRL reaches
higher level of activity than fine-tuned multi-stage VAE as predicted by Random Forest models but lower level of
activity when predicted by Chemprop. On the JAK2 dataset, our methods have lower activity level than RationaleRL
as predicted by both classifiers but both regressors have predicted similar or slightly higher activity levels on the
generated molecules from our methods than RationaleRL. Fine-tuned multi-stage VAE is similar to RationaleRL on
diversity but higher on novelty metric. Our method reaches slightly higher mean activity scores than RationaleRL on
both datasets predicted by both regressors. In addition, RationaleRL is much more computationally intensive to train.

Multiple factors could contribute to the large discrepancy between regressors and classifiers’ predictions on the dataset
generated by our method for JAK2. It could be that the classifiers are more adept at identifying negative samples due
to the larger training set, which also includes more negative examples. Another reason could be that the predictors
fail to generalize to an out-of-distribution dataset, such as the generated one, despite performing well on the ground-
truth data. This is evidenced by the high novelty scores from the generated sets of fine-tuned MoLeR and its multi-
stage versions in Table 4. These differing results highlight the ambiguity in drawing conclusions based on property
predictors, which further complicates the optimization process.

1Training on a single "NVIDIA GeForce RTX 2080 Ti" GPU.
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(a) Inner-Layer Fine-tuning
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(b) Outer-Layer Fine-tuning
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(c) Whole Model Fine-tuning
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(d) Test set
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(e) MoLeR Fine-tuning
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(f) RationaleRL

Figure 3: The distributions of the generated molecules’ activity scores on the EGFR protein predicted by the Chemprop model. We
include 5 sets of molecules generated by different methods as well as the ground-truth test set. Additional activity score histograms
can be found in Appendix D

5 DISCUSSION

In this paper, we present a novel multi-stage VAE model that enhances the properties of the generated molecules from
pre-existing VAE models. It achieves the goal in an objective-agnostic way, meaning, our method does not optimize
over any particular property objectives during training. Yet, it is able to achieve comparable, and sometimes better
outcomes than specialized approaches that directly optimizes over one or multiple property objectives with the help
of property predictors. We demonstrate this in two experiments: 1) an unconstrained generation experiment trained
on ChEMBL dataset in which we compare against MoLeR (Maziarz et al., 2021) that includes regression terms in
the VAE objective to match the true property values of the input molecules with the predicted propertiy values of
the output molecules; and 2) a generation for protein target experiment where our multi-stage VAE is fine-tuned on
two active molecule datasets against two protein targets. We compare our method to RationaleRL (Jin et al., 2020b),
which uses an activity predictor as the reward function. Our findings also bring up the complications in using property
predictors for multi-objective generation, e.g. overfitting, conflicting objectives, and differing prediction results from
different predictors. Addressing these issues is an important direction for future research.
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