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Abstract—This paper presents a material classification method using an off-the-shelf Time-of-Flight (ToF) camera. The proposed

method is built upon a key observation that the depth measurement by a ToF camera is distorted for objects with certain materials,

especially with translucent materials. We show that this distortion is due to the variation of time domain impulse responses across

materials and also due to the measurement mechanism of the ToF cameras. Specifically, we reveal that the amount of distortion varies

according to the modulation frequency of the ToF camera, the object material, and the distance between the camera and object. Our

method uses the depth distortion of ToF measurements as a feature for classification and achieves material classification of a scene.

Effectiveness of the proposed method is demonstrated by numerical evaluations and real-world experiments, showing its capability of

material classification, even for visually indistinguishable objects.

Index Terms—Alternative sensor, subsurface scattering, time-of-flight camera, temporal point spread functions

Ç

1 INTRODUCTION

MATERIAL classification plays an important role for
computer vision applications, such as semantic seg-

mentation and object recognition. One of the major chal-
lenges in material classification is that different materials
may yield very similar visual appearances. For example,
artificial plastic fruits and real fruits confronting a camera
produce visually similar RGB images that are difficult to
distinguish. One of the plausible strategies to distinguish
similar appearances is to use the optical responses of the tar-
get object such as spatial, angular, and temporal spreads
of the incident light. Because different materials may have
different optical responses due to their own subsurface scat-
tering and diffuse reflection properties, it is expected that a
more reliable material classification can be achieved using
such optical cues together with the RGB observations.

Recently, Heide et al. [1] have developed a method that
recovers transient images from observations by a low-cost
Time-of-Flight (ToF) camera, which is originally designed
for depth measurement. There are other related studies that
use ToF cameras for recovering ultra-fast light propagation,

e.g., impulse response, of the scene [2], [3], [4] with some
hardware modifications and computation. Motivated by
these previous approaches that exploit the temporal spread
of light, we aim to classify materials using an indirect tem-
poral cue that is obtained from an off-the-shelf ToF camera
without explicitly recovering the impulse response.

We develop a material classification method based on a
key observation that the measured depth of a translucent
object becomes greater than the actual depth as shown
in Fig. 1b, where the depth gap between the mayonnaise
glass bottle and paper label regions is obvious. We show
that this depth distortion is caused by the time delay due to
subsurface scattering and varies along with both the modu-
lation frequency of ToF camera and the distance between
the camera and target object. Using the depth distortions as
a feature that conveys the material information, we propose
an exemplar-based material classification method.

The chief contributions of this paper are twofold. First,
we demonstrate that the material classification is tractable
by an off-the-shelf ToF camera, e.g.., Xbox One Kinect. Our
method uses the distorted depth measurements as an indi-
rect temporal cue for material classification without explic-
itly recovering impulse responses; therefore it does not
require any modifications of hardware unlike [1], [2]. Sec-
ond, we show how the ToF measurements are distorted
inside materials and along with depths. By moving the tar-
get object along the depth direction, rich information about
the target can be obtained, which serves as important clue
for achieving material classification.

This paper extends its preliminary version [5] with the
following differences. Extensions have been made to (1) the
analysis of the proposed feature characteristics, (2) compari-
son with another method, (3) robustness evaluation against
the object’s color, and (4) analysis of the amplitude com-
ponents as well as depth components. In this manner, we
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assess the effectiveness of the proposed method from vari-
ous aspects.

The rest of this paper is organized as follows. Section 2
reviews related prior works. Section 3 describes the Time-
of-Flight measurement model for translucent objects and
the depth distortions along with the frequency and the
depth. Based on the model, we describe the proposed
method for classifying the material of translucent objects in
Section 4. Section 5 shows results and the accuracy of the
method using real-world objects. Finally, we conclude the
paper in Section 6.

2 RELATED WORK

Non-invasive and non-contact material classification is an
important research topic in computer vision and yet
remains a challenging task. There are several prior works
for material classification. The methods based on the visual
appearance, e.g., color, shape, and/or textures of the mate-
rial [6], [7], [8], [9], [10], typically only require a single RGB
image; thus, the setups are easy to realize. The major prob-
lem is that this approach suffers from similar appearances
of different materials, e.g., texture-less boards, resulting in a
lower accuracy due to the lack of information.

A class of approaches based on the optical properties,
such as BRDF [11], [12], shading [13], and spectrum [14], has
a capability of distinguishing visually similar objects with
higher accuracy because the optical properties convey richer
information about the material. However, constructing such
measurement system and building database of samples gen-
erally require extra effort in carefully controlled settings.
This class includes approaches based on other physical prop-
erties, e.g., elasticity [15], and water permeation and heat-
ing/cooling process [16]. Our method falls into this class
because we use a temporal response of the incident light,

which implicitly measures the optical and physical proper-
ties of target objects. However, unlike these methods, our
method uses an off-the-shelf ToF camera and needs only sin-
gle observation at minimum, hence the cost of constructing
the system is as low as the appearance-basedmethods.

In the context of material classification using a ToF cam-
era, Su et al.’s method [17] is closely related. They propose a
method that classifies a material from raw ToF measure-
ments by sweeping over several modulation frequencies
and phases. While the approach is shown effective, it
requires special hardware customization of a ToF camera
for obtaining the measurements. In contrast, our method
only uses an off-the-shelf ToF camera without hardware
modification. We show that the material classification can
be achieved by such a simple setup by exploiting the depth-
dependency of the measurements. In addition, while
Su et al.’s method requires calibration for building a correla-
tion matrix and post-processing of the data after measure-
ment, our method does not require either of them.

For a comprehensive overview of temporal light transport,
we refer the reader to the recent survey by Jarabo et al. [18].
A time domain impulse response of a scene, as known as
light-in-flight and transient imaging, can be obtained using
an interferometer [19], holography [20], [21], femtosecond-
pulsed laser [22], [23], [24], and single photon avalanche
diode sensor [25]. The time domain impulse response can be
also recovered using the ToF camera, with which the cost can
be significantly reduced while the temporal resolution
becomes lower. Because the ToF camera is able to measure
sub-nanosecond phenomena, it can be used for visualizing
the light propagation of the scene by frequency and phase
sweep [1], [4], [26], [27] and optical coding [2], [3], while it
requires customization of a ToF camera for these purposes.
These measurement methods may be applied to the task of
material classification [28], although they require careful and
expensive setups. On the other hand, our method bypasses
the exact recovery of the time domain impulse responses and
simply uses themeasured depth of a ToF camera.

When a ToF camera measures a multi-path scene, the
measured depth is distorted due to inter-reflections and
subsurface scattering, known as the multi-path interference.
Mitigating the multi-path interference and recovering the
correct depth is of broad interest, and it has been studied by
assuming two-bounce and simplified reflection model [29],
[30], [31], [32], parametric model [33], [34], K-sparsity [35],
[36], [37], consistency between ToF and stereo [38], simpli-
fied indirect reflections [39], and large-scale multi-path [40].
Instead of recovering the correct depth, we use a distorted
depth as a cue for the material classification. We show that,
once the material classification has been achieved, the classi-
fication result can then be used for correcting depths.

There are other scene analysis methods using ToF cam-
eras, e.g., recovering the shape of transparent and translu-
cent objects [41], [42], and measuring a slice of BRDF [43].
In addition, computational imaging methods using a ToF
camera, such as non-line-of-sight imaging [44], [45], [46],
separating direct and indirect light transport [3], [28], [47],
imaging the velocity of the object [48], [49], and imaging at a
specific depth [50] are proposed. Our method can also be
regarded as one of the scene analysis methods because it
aims at material classification of the scene.

Fig. 1. Depth distortion of a ToF camera. (a) A mayonnaise bottle is mea-
sured by a Microsoft Kinect. (b) Measured depth in a 3D view. There is a
depth gap at the glass bottle and label boundary. We use this depth dis-
tortion for material classification. (c) Pixel-wise material classification.
(d) Application of material classification to depth correction. Depths are
corrected based on the segmentation result and the distortion database.
Depth gaps among materials are corrected and a faithful 3D shape is
recovered.
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3 TIME-OF-FLIGHT OBSERVATION

To begin with, we briefly review the measurements that are
obtained by a ToF camera. A correlation-based ToF camera
illuminates a scene by an amplitude modulated wave fvðtÞ
governed by the modulation frequency v and measures its
attenuated amplitude ~av 2 R andphase delay ~fv 2 R as illus-
trated in Fig. 2. From the phase delay and the speed of light c,
themeasured depth of the scene ~dv 2 R can be obtained as

~dv ¼ 4pv~fv

c
:

In general, a scene can have the multi-path effect due to
inter-reflections and subsurface scattering, which degrades
the depth estimation accuracy. The image formation process
and models that involve the multi-path effect have been
well understood thanks to the previous works [1], [2], [47];
hence, we briefly explain one of the models that we are
going to use in this paper. Following the phasor representa-
tion [47], the amplitude and phase of the returned wave can
be represented by a single complex value c 2 C, called pha-
sor, which is governed by the modulation frequency v. The
magnitude and argument of the phasor directly correspond
to the measured amplitude and phase as

arg cðvÞ ¼ �~fv;
cðvÞj j ¼ ~av;

�

where the function arg : C 7! R extracts the angle of the
complex number. Note that the sign of the phase is flipped
because the original definition of phasor is clock-wise rota-
tion while the standard complex is counter-clock-wise.

When the illumination wave is a sine wave, i.e., fvðtÞ ¼
sin ð2pvtÞ, the observed phasor can be represented as

cðvÞ ¼
Z 1

0

rðt� tÞe�2pivtdt; (1)

where tð> 0Þ is the time of flight toward the surface of the
object, rðtÞ is the impulse response, or a point spread func-
tion (PSF), of the object along with the time t, and i is the
imaginary unit. The impulse response is the summation of
all possible paths r 2 P; therefore, rðtÞ can be written as

rðtÞ ¼
Z
P
rrdð rj j � tÞdr;

where rr 2 R is the contribution of the path r, rj j 2 R is the
time traveled along the path r, dðtÞ is the Dirac delta func-
tion, and t ¼ 0 indicates the time when the impulse light
hits the surface of the object. Fig. 3b illustrates a phasor

representation of the multi-path ToF observation. The time
domain PSF rðt� tÞ is expanded onto the imaginary plane,
and the phasor depicted by a red arrow is the integration of
expanded PSF over the angle. Because the time domain PSF
rðtÞ is zero when t < 0, Eq. (1) is equivalent to the Fourier
transform as

cðvÞ ¼
Z 1

�1
rðt� tÞe�2pivtdt

¼ F rðt� tÞ½ �;
where F½�� represents the Fourier transform. This equation
expresses that ToF camera measures the Fourier coefficients
of the impulse response at the frequency of the light
modulation.

Frequency Dependent Depth Distortion

The principle of the ToF camera assumes that the impulse
response consists of the Dirac delta function as rðtÞ ¼ adðtÞ,
where a 2 R is the amplitude decay of the modulated light.
In this case, the measured depth ~dv 2 R becomes

~dv ¼ c

4pv
arg

Z 1

�1
adðt� tÞe�2pivtdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼2pvt

¼ ct

2
¼ d; (2)

Fig. 2. ToF cameras measure the attenuated amplitude and phase delay
of the amplitude modulated light, and then calculate the depth of the
object from the phase delay and the speed of light.

Fig. 3. Phasor representation of ToF observations. (a) Sinusoidal illumi-
nation, (b) Time domain PSF is expanded to the imaginary plane
(orange). (c) When the object is placed at different depths, the observa-
tion gets rotated but phase distortion remains the same as (b). (d)
Biased periodic illumination. This toy example adds 20 percent harmon-
ics to the sinusoid for biasing. (e) The unit ball of the phasor representa-
tion is distorted due to the biased illumination. (f) The object is placed at
the same depth as (c). The distortion of the phase becomes different
than (e) and (c).
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where d ¼ ct=2 is the ground truth depth of the object.
Eq. (2) represents that the accurate depth can be obtained
regardless of modulation frequency v, if the impulse
response of the scene is exactly the Dirac delta function.

In reality, almost all materials except for the perfect mir-
ror surface yield various shapes of impulse responses due
to diffuse and subsurface scattering [28] that are different
from the Dirac delta function. When the target object exhib-
its a temporally broad shape of the impulse response, the
band-pass characteristic in the frequency domain becomes
unique to the object. Accordingly, ToF observation cðvÞ can
take an arbitrary value, because cðvÞ is a Fourier coefficient
of the impulse response rðtÞ at the frequency v. In such a
case, arg cðvÞ does not necessarily represent the correct
phase 2pvt, as a result, the measured depth ~dv becomes dis-
torted, and the distortion varies with the modulation fre-
quency v. This frequency-dependent depth distortion is one
of our key observations, and our method exploits this prop-
erty for the goal of material classification.

The shift in the time domain corresponds to the shift of
phase in the Fourier domain

F rðt� tÞ½ � ¼ e�2pivtF rðtÞ½ �
¼ e�2pivt r̂ðvÞ;

where r̂ðvÞ is the Fourier transform of the function rðtÞ. The
measured depth ~dv can then be described as

~dv ¼ c

4pv
arg e�2pivt r̂ vð Þ� �

¼ dþ c

4pv
arg r̂ðvÞ:

(3)

The second term c
4pv arg r̂ðvÞ is the depth distortion at fre-

quency v.
While a single observation of the depth distortion can be

the same among different materials by chance, multiple
observations using varying modulation frequencies can be
used for enriching the measurement. Such multiple obser-
vations can be obtained with negligible latency because the
ToF measurement is much faster than the ordinary video
frame intervals, e.g., 12 ToF measurements are achieved
within approximately 1=20 seconds [4]. However in prac-
tice, it is not straightforward to measure distortions using
many different frequencies by an off-the-shelf ToF camera.
For example, Kinect has only three modulation frequencies,
and the frequencies cannot be easily changed; hence, only
three distortion measurements are practically available,
which may be too few for reliable measurements of depth
distortions for the purpose of material classification. To
increase the information about the material in an alternative

and easy way, our method employs a strategy of changing
the distance between the camera and object. Now, we dis-
cuss the depth-dependency of the depth distortion.

Depth-Dependent Depth Distortion

When the target object is placed at a different depth dþ Dd,
the impulse response rðt� tÞ is shifted by Dt ¼ 2Dd=c in the
time domain. As a result, the measured depth ~d0v becomes

~d0v ¼ c

4pv
arg e�2pivðtþDtÞr̂ vð Þ

� �
¼ dþ Ddþ c

4pv
arg r̂ðvÞ:

The measured depth is just shifted by Dd, and the depth dis-
tortion c

4pv arg r̂ðvÞ remains the same as the one at the original
position as in Eq. (3). Fig. 3c illustrates the depth distortion at
different depth positions in a phasor representation. The
blue arrow, which represents the depth distortion, is the
same as that of the original position as illustrated in Fig. 3b.

So far, we have assumed that the illumination is a perfect
sinusoidal wave. In practice, because a high-frequency sinu-
soidal wave is difficult to generate, today’s ToF cameras
emit non-sinusoidal periodic waves that contain high-order
harmonics [51], [52]. When the illumination wave has har-
monics components as illustrated in Fig. 3d, the ToF obser-
vation exhibits depth-dependency as drawn in Figs. 3e and
3f. Let us suppose that the distorted sinusoidal wave is
biased as fvðtÞ ¼ bvð2pvtÞ sin ð2pvtÞ, where bvð2pvtÞ is a
periodic bias of the illumination wave due to harmonics.
The observed phasor can then be written as

cðvÞ ¼
Z 1

0

rðt� tÞbvð2pvtÞe�2pivtdt:

The above indicates that the observation cðvÞ is the Fourier
coefficient of rðt� tÞbvð2pvtÞ, where the impulse response
rðtÞ is distorted by the bias bvð2pvtÞ. Obviously, the biased
impulse response rðt� tÞbvð2pvtÞ varies along with t, i.e.,
the observation varies along with the depth.

Usually, this depth-dependent variation is unwanted;
therefore, previousworks attempted to eliminate it. For exam-
ple, Su et al. [17] remove the depth-dependent variation using
a correlation matrix. In contrast, we use the depth-dependent
distortion as an important cue for material classification as it
contains rich information about the target’s response.

4 MATERIAL CLASSIFICATION

Our method uses either or both of the frequency- and
depth-dependent depth distortions of ToF observations for
the purpose of material classification. We assume that the
depths are measured multiple times by changing the modu-
lation frequency and/or the distance of the object as illus-
trated in Fig. 4. This section describes the feature and
classifier that are used in our method.

4.1 Feature

For describing the use of depth distortions as features for
material classification, we begin with the case where the
actual depth is known and later describe a more general
case where such an assumption is eliminated. When the

Fig. 4. Measurement setup. The target object is measured by changing
the modulation frequency and its distance to the camera.
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target object is placed at a known depth location, the depth
distortion with respect to the actual depth is directly mea-
surable. Let us suppose that the target object is measured by
nð� 1Þ modulation frequencies and mð� 1Þ positions. The
absolute depth distortion vvi;dj can be obtained by

vvi;dj ¼ dj � ~dvi;j;

where ~dvi;j is the measured depth at the ith modulation fre-
quency vi ði 2 f1; . . . ; ngÞ and the jth position
ðj 2 f1; . . . ;mgÞ, and dj is the actual depth at the jth posi-
tion. By aligning these distortions, an mn-length vector
v 2 Rmn can be formed as a feature vector of the object as

v ¼ vv1;d1 � � � vvn;dm
� 	T

:

Because the actual depth of the target object is not gener-
ally accessible, we develop a feature that does not require
the knowledge of the actual depth. Although we cannot
directly obtain the depth distortion in this case, the relative
depth distortions among multiple frequencies and/or mul-
tiple depths can be alternatively used. When multiple mod-
ulation frequencies are available, i.e., n � 2 case, the relative
depth distortion v0vi;dj can be computed by regarding the
measurement of one of the modulation frequencies, say the
nth modulation frequency, as the reference measurement.
The relative depth distortions can be obtained by taking dif-
ferences from the reference measurement as

v0vi;dj ¼ vvi;dj � vvn;dj ¼ ~dvn;j � ~dvi;j; (4)

where i ranges from 1 to n� 1. We can then setup an
mðn� 1Þ-length vector v 2 Rmðn�1Þ by aligning the relative
depth distortions, and it can be used as a feature vector for
material classification. Although the reference measurement
~dvn;j may be distorted depending on the material, the fea-
ture vector v encapsulating the relative distortions conveys
discriminative cues for classifying materials.

In a similar manner, for the case where a single modula-
tion frequency and multiple depth locations is available,
i.e., n ¼ 1 and m � 2, the relative depth distortions among
depth locations v00v1;dj can be obtained by regarding the mea-
surement of the mth depth position as the reference mea-
surement as

v00v1;dj ¼ vv1;dj � vv1;dm ¼ ~dv1;m � ~dv1;j þ Ddj; (5)

where Ddj is the amount of movement from the base posi-
tion, which should be measured.

In summary, for the feature vector generation, we need at
least either a single ToF measurement plus the actual depth
or multiple ToF observation changing the modulation fre-
quency or the actual depth. A vector aligning the differences
of such observations describes the feature of the material.

4.2 Classifier

We assume that we have a database of materials that con-
sists of the feature vectors measured using predefined mod-
ulation frequencies and depth locations in a certain range
beforehand. For classification, the target object is measured
with the full or partial set of the predefined modulation fre-
quencies and depth locations. Once we obtain the feature

vector of the target object as a query, we use the material
database to look up the closest material.

While any arbitrary classifiers can also be alternatively
used, it is desired for classifiers to have the following two
properties. First, since the feature vectors tend to be high-
dimensional while the number of materials and measure-
ments in the database may be small, it is preferred that the
classifier uses a model with a small number of parameters,
or non-parametric like our choice. Second, a capability of
handling missing elements in the feature vector is practi-
cally important, because the measurement is sometimes
missing due to specular reflection on the object surface, or
becomes saturated by near-distant reflectances.

For these reasons, we adopt a simple nearest neighbor
classifier, which assesses the euclidean distance (‘2-norm)
for look-up. To deal with the missing or uninformative satu-
rated observations, we remove such elements in the feature
vector when evaluating the distance. The distance �p
between the feature vector v of the target object and the train-
ing vector vp of the object p in the dataset can be computed as

�p ¼ 1

N

Xnm
k¼1

0 vk ¼ N=A
ðvk � vpkÞ2 otherwise;

�
(6)

where N is the number of valid elements, and vk and vpk are
kth element of vectors v and vp, respectively. Using this dis-
tance, we can classify the object by searching the nearest
class p̂ as

p̂ ¼ argmin
p

�p:

Throughout the evaluation in this paper, we use this simple
nearest neighbor classifier to assess the effectiveness of the
depth distortion features for material classification.

5 EXPERIMENTS

We evaluate the proposed method using a setup with a ToF
camera and a linear translation stage shown in Fig. 5. We use
Microsoft Kinect v2 for the ToF camera,which has threemod-
ulation frequencies (n ¼ 3), and an OptoSigma’s translation
stage (SGSP46-800). Because the official Kinect API does not
support an access to depth measurements of each frequency,
we have slightly altered an open-source software libfree-
nect2

1 to obtain the frequency-wise depthmeasurements.2

Fig. 5. Experimental setup. We use Kinect as a ToF camera, and the tar-
get object is placed on a linear translation stage.

1. https://github.com/OpenKinect/libfreenect2
2. The source code is publicly available on our website.
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The translation stage and the ToF camera are roughly
aligned so that approximately the same surface point is
measured. Specifically, the camera pose is adjusted with

changing the position of a target surface from near to far
such that the center of the target is always projected to the
center of the image plane. In our setting, only the center pixel
is used for the evaluation. Because the target objects are
homogeneous and planar, very accurate alignment is
unneeded.

First, we measure the depth distortion data of 24 materi-
als including metal, wood, plastic, fabric, and so on, as sum-
marized in Fig. 6 and examine their differences across
materials. The target object is placed on the linear transla-
tion stage and measured by changing the depth from 600
mm to 1280 mm (m ¼ 1700) at varying orientations several
times. The ground truth depth is obtained from the position
of the translation stage, which is only used for the purpose
of evaluating the depth distortions but not for the material
classification. Fig. 7 shows the depth distortion of three
materials; white acrylic board, polystyrene board, and opal
diffusion glass. They are visually similar objects (white,
planer, and no texture); hence, appearance-based methods
have difficulty in distinguishing them. On the other hand,
depth distortions of ToF observations show significant dif-
ferences across materials, and the trend is consistent over
measurement sessions indicating that the depth distortion
feature is stable.

Feature Characteristics

Here we analyze the statistics of the measured depth distor-
tions. The mean and standard deviation within each class
are shown as a box plot in Fig. 8, in which the euclidean dis-
tance to the mean of its own class is assessed. The blue point
represent the upper bound of classification, that corre-
sponds to the shortest distance from the class mean to the
mean of any of other classes. Most of the blue points show

Fig. 6. All materials of our database. All images are captured by the
same camera parameters, e.g., ISO, f-number, shutter speed, and focal
length. The center part of each material is measured.

Fig. 7. Measured depth distortions using Kinect for three objects. The ground truth depth is obtained via a linear translation stage. The top row shows
photographs of the target objects. Measurements shown in the second and third rows are different in terms of the surface orientation (5 and 25
degrees). Depth distortion of each frequency varies along with the actual depth and material. Depth distortion is similar for the same material regard-
less of the surface orientation, but largely distinct in different materials. This frequency- and depth-dependent depth distortion is our key observation
for material classification.
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greater distances than upper quartiles (i.e., located above
the boxes), hence the depth distortion feature is discrimina-
tive. The standard deviation of translucent materials
becomes larger than that of diffusive materials, which
implies that the translucent materials are more sensitive to
the environmental factors. However, because their upper
bounds are also large, the translucent classes can also be
well classified.

To further assess the depth distortion features, we show
the distance matrix and feature space visualization in Fig. 9.
In the distance matrix (Fig. 9 left), the average distance
between every pair of materials in the feature space is
visualized (darker the nearer). The materials are manually
sorted based on their apparent optical properties from
translucent to diffusive. It shows that materials with similar
optical properties exhibit feature similarity, which are seen
as dark block-diagonal components in the distance matrix.
It indicates that the material’s optical property information
is well conveyed in the depth distortion feature. We also
use the t-distributed stochastic neighbor embedding
(t-SNE) [53] for the feature space visualization. In this visu-
alization as well, it shows meaningful clusters, which sup-
ports the applicability of the depth distortion feature to
material classification.

Feature Variation w.r.t. Surface Orientation

Although we measure a certain object orientation, the time-
domain impulse response may vary when the surface orien-
tation of the target object varies. To observe the effect of
surface orientations on the depth distortion, we measure a
planar material (material “wood” in this case) by changing
its orientations. When the rotation axis of the object and the
optical axis of the camera intersect, the rotational change
does not vary the ground-truth depth of the object. Fig. 10
shows the variation of the shortest euclidean distance from
the center of the wood class in the feature space along with
the surface orientation of the target object. The red line indi-
cates the upper-bound distance from the wood class, under
which the query feature vector is correctly classified as
wood. In other words, once the distance from the wood
class to the query feature exceeds this upper-bound dis-
tance, it will be misclassified. The feature is stable under
around 70 degrees, which indicates that the depth distortion
feature is reliable for a confronting surface in practice but
may break down for a steep-slanted surface, e.g., near the
edges of a round shaped object.

Feature Variation w.r.t. Shape

As observed above, the depth distortion feature may vary
with the shape of the target object. In particular, for a con-
cave shape where significant inter-reflections occur and for
largely distorted shape where the strength of subsurface
scattering varies, the effect becomes more significant. To
observe the effect of shape on depth distortions, we set up a
scene of a folded cardboard with varying opening angles.
We measure the area around the cardboard’s folding edge
with changing the opening angle from the small angle
(closed), via 180 degrees (flat), to large angle (protruded) as
shown in Fig. 11a. When the opening angle changes, the
ground-truth depth of the object is shifted accordingly. This
offset is geometrically compensated in the measuring pro-
cess. The euclidean distances of feature vectors between the
folded and flat cardboards are plotted in the blue line in
Fig. 11b. The red line represents the upper-bound of the flat
cardboard class, under which the target is correctly classi-
fied as a flat cardboard. It shows the moderate robustness
against the shape variations, but also indicates that the fea-
ture is affected by target’s shape.

Quantitative Evaluation of Material Classification

Using this depth distortion measurements, we assess the
accuracy of material classification by a nearest neighbor

Fig. 8. Statistics of measured depth distortions. Mean and standard devi-
ation within each class are visualized as a box plot. Plus marks and blue
points are outliers and the shortest distance to other class mean,
respectively.

Fig. 9. Distance matrix and t-SNE visualization of measured depth dis-
tortion features. Left: The matrix represents the distance among classes,
where the value increases from black to white. Materials with similar
optical properties, e.g., optically thin, moderately translucent, and diffu-
sive objects, show their similarity as seen in the dark block diagonal
components. Right: t-SNE visualization. It shows well-defined groups,
which indicates the discriminative power of the features.

Fig. 10. Feature vector variation over surface orientation. We change the
orientation of the target object, and plot the distance of features along
with the orientation. The feature is stable under around 70 degrees, and
shows large deviation at steep-slant orientation. Red line indicates the
upper-bound distance for the correct classification.
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classifier. The dataset consists of 24 materials as shown in
Fig. 6, each measured at 13 orientations to enable the classi-
fier to deal with diverse orientations of the target objects.
We evaluate the classification accuracy using three different
features: (1) frequency-dependent distortion, (2) depth-
dependent distortion, and (3) a combination of them. With
the frequency-dependent distortion features (n ¼ 3 and
m ¼ 1), the accuracy is limited only to 55.0 percent, as
shown in the form of confusion matrix in Fig. 12a. This low
accuracy is due to the limited availability of the number of
frequency channels. In this test, measurements at 925 mm
are extracted from the database and the depth measure-
ments at frequency #3 are used as the reference. Using the
depth-dependent distortion features (n ¼ 1, m ¼ 1700, and
using Eq. (5)), the accuracy is improved to 80.3 percent as
shown in Fig. 12b. For this test, the depth measurements at
frequency #3 are used, and the depth at 925mm is selected
as the reference. The amount of movement Ddj is obtained
from the position of the translation stage. Finally, with the
combination of frequency- and depth-dependent distortion
features (n ¼ 3 and m ¼ 1700), the accuracy is further
improved to 89.9 percent. The confusion matrix is shown in
Fig. 12c. While many materials are correctly classified, some

materials are difficult to classify. For example, plaster and
paper, or expanded and rigid polyvinyl chlorides have simi-
lar impulse responses due to similar scattering properties,
resulting in more frequent misclassification.

Comparison with Su et al. [17]

While Su et al.’s method requires hardware modification to
obtain rich raw data, our method only uses the depth data
that can be acquired by a commodity device with retaining
the accuracy of material classification. When the experiment
is conducted by reducing the number of depth variations m
to 10, the accuracy of our method becomes 85.8 percent.
Although it is difficult to directly compare the two methods,
they are at a similar level of the accuracy; Su et al.’s
paper [17] reports that the accuracy is 80.5 percent for a 4-
material classification task using rich raw observations that
consist of 8 frequencies and 8 phases of illumination (our
case is 24-material classes using depths of 3 frequency chan-
nels). The result is summarized in Table 1.

Simultaneous Classification of the Material and Color

We examine the proposed method’s robustness against
object’s color variations. In this experiment, 12 colorful
boards made of three different plastic materials shown in
Fig. 13a are measured for material classification. The materi-
als are well classified regardless of the surface color as
shown in the right of Fig. 13b in the form of a confusion
matrix with an accuracy of 91.7 percent. While the impulse
responses may vary with the pigment, the method shows a
stability against the little variations. Moreover, the classifi-
cation of material-and-color can also be achieved by our

Fig. 11. Shape dependency of the feature vector. We measure a card-
board with folding from 60 to 240 degrees. By folding cardboard less than
180 degrees, the scene exhibits strong inter-reflections. Red indicates
the upper-bound distance for the correct classification, and blue indicates
the distance of features along with the folding angles.

Fig. 12. Confusion matrices of material classification. Red indicates the higher value and it appears on the diagonal. (a) Only frequency-dependent
distortion is used. The accuracy is 55.0 percent. (b) Only depth-dependent distortion is used. The accuracy is 80.3 percent. (c) Both of them are
used. Overall accuracy is 89.9 percent.

TABLE 1
Comparison with Su et al. [17]

Method Observations #Material Accuracy (Ref.)

Su et al. [17] Raw data 4 80.5%
Ours Depth distortion 24 85.8%

The number of frequencies and depth variations are the same. Although the
accuracy cannot be directly compared due to the difference in settings, they are
at a similar level of accuracy.
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method, capturing the subtle differences in the measured
impulse responses as shown in the left of Fig. 13b. The over-
all accuracy of the material-and-color classification is 75.3
percent, without using the RGB information for classifica-
tion. While some objects made from polystyrene (PS) are
confused by the color, they are still recognized as the same
material. The reason for the misclassification may be that
some color pigments more drastically vary the impulse
response of the material. Other objects are clearly classified
without being confused by their colors, e.g., blue boards
made by E-PVC are not confused by the blue boards made
by R-PVC. Overall, the results indicate that our method is
capable of classifying objects without being confused by
their colors, and also that it can be further applied classify
materials with different pigments.

5.1 Applications

We now show a few applications of the proposed method;
material segmentation, real-time classification system,
enhanced 3D recovery that takes into account the depth dis-
tortions, and thickness classification.

Material Segmentation

Our method can be applied in a pixel-wise manner that ena-
bles material-based segmentation. Fig. 14 shows two exam-
ples of material segmentation. For the scene in Fig. 14a, all
objects are whitish, and the material classes are not obvious
to human eyes in the RGB image. With our method, the
materials are classified for each pixel as shown in Fig. 14b.
For this application, we use only frequency-dependent dis-
tortions but not depth-dependent distortions, i.e., m ¼ 1,
because the alignment of pixels becomes hard when the
geometric relationship between the camera and scene
changes. Due to that, the result appears to be a little bit
noisy, but it still shows faithful classification and segmenta-
tion. For this experiment, we used a reduced database con-
taining only four materials because the dimensionality of
the feature vector is limited. Fig. 14c shows another scene,
where wallets made of genuine and fake leather are placed,
and they are correctly classified as shown in Fig. 14d.

Real-Time Material Classification System

We develop a near real-time material classification system,3

which can recognize the target material class by a hand-
held ToF camera or by moving the target object in front of a
fixed ToF camera. Fig. 15a shows the setting, where an
object is waved in front of a ToF camera, and its material
class is estimated at interactive speed and displayed as
depicted in Fig. 15b. Because the ground-truth depth is not
available, the relative depth distortion is used as described
in Eq. (4); thus the number of relative frequencies is 2.
Tracking is not employed in this system and a small area on
the optical axis of the camera is used for classification. Using
the partial matching strategy described in Eq. (6), our
method yields estimates in near real-time even when obser-
vations at only a small number of depth locations m is
available. By increasing the variation of depths m by mov-
ing the target object or camera, the classification accuracy is
gradually improved because of the availability of richer
information.

Fig. 13. Classification result for different color boards. The center confu-
sion matrix shows the classification of material-and-color, which is
defined as a joint classification of the base material and color pigment.
The right confusion matrix shows the result of base material classifica-
tion. The result shows that our method is capable of classifying objects
without being confused by their colors, and also that it can further clas-
sify materials with different pigments.

Fig. 14. Material segmentation results. (a) All utensils are white hence it
is difficult to classify only with an RGB image. (b) Result of our material
classification. Although there are some estimation errors due to that only
the frequency-dependent distortions are used for classification, it shows
convincing material-based segmentation of the scene. (c) Wallets made
of genuine and fake leather and copper coins are placed in the scene.
(d) Material segmentation result.

Fig. 15. Real-time material classification. (a) A person waving a target
object in front of a ToF camera. (b) A screen capture of the system. A
ranking of the estimated material class is shown at interactive speed.

3. A video is included in a supplementary material, which
can be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2018.2869885 for
demonstration.
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Depth Correction

Once materials are classified, the distorted depths can be
corrected for recovering an accurate depth map using the
material database that contains the samples of distortions
for all materials. Some examples of depth correction are
shown in Fig. 16. A knife in the figure consists of ceramic

blade and rubber grip, and the measured depth of the rub-
ber part is greatly distorted than the depth of the ceramic
region due to subsurface scattering. Based on the material
segmentation result, the depth can be corrected and the gap
between the ceramic and rubber regions is reduced. For this
experiment, we do not change the depth of the target; there-
fore, only the frequency-dependent distortions are used
(m ¼ 1). We reduced the database as same as the material
classification application. Other depth correction results for
wheel, hammer, and hand gripper scenes are also shown in
Fig. 16. In a similar manner to the knife scene, using the
material segmentation result, the measured depths are cor-
rected as shown in the rightmost column. The depth gap
among different materials are suppressed to exhibit con-
vincing reconstruction.

Another example is shown in Fig. 1. Because mayonnaise
has significant subsurface scattering, the measured depth of
mayonnaise region is strongly distorted than that of the
label region as shown in Fig. 1b. Fig. 1c depicts our result of
material segmentation. Although some artifacts are observ-
able because of the limited amount of measurement and
slanted surface orientations, mayonnaise and the label
regions are largely well separated. Using the segmentation
result and depth distortion database, a faithful 3D shape of
the mayonnaise bottle is recovered as shown in Fig. 1d.
Compared to the original shape, the depth discontinuity

Fig. 16. Material segmentation and depth correction result for a knife, wheel, hammer, and hand gripper. Each target object consists of distinct mate-
rial parts. After material segmentation, the distorted depths are corrected and the depth gaps across the different materials are reduced, yielding
more convincing shape recovery for heterogeneous objects.

Fig. 17. Thickness classification result. Acrylic boards of different thick-
nesses are measured. Because they are optically thin, they have signifi-
cantly different temporal response with respect to the thickness.
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between mayonnaise and the label regions is noticeably
reduced.

Thickness Classification

The proposed depth distortion feature is also useful for
thickness estimation of optically thin materials. For exam-
ple, white acrylic boards in Fig. 17a are optically thin, and
their impulse response varies with their physical thickness.
The thickness of the white acrylic board can therefore be
classified by our method. In a similar manner to the quanti-
tative evaluation (Figs. 12a, 12b, and 12c), the confusion
matrix of the classification with n ¼ 3 and m ¼ 1700 obser-
vations is summarized in Fig. 17b, which shows accurate
classification of target’s thickness. The thickness classifica-
tion can be conducted in a pixel-wise manner so that it ena-
bles a thickness-based image segmentation. Acrylic boards
with three distinct thickness are placed side-by-side and
measured as in Fig. 17c, and the thickness-based segmenta-
tion result is visualized in Fig. 17d.

6 CONCLUSION AND DISCUSSION

This paper describes a material classification method that
uses an off-the-shelf ToF camera. It is shown that the depth
measured by a ToF camera is distorted according to the
time domain impulse responses, and the distortion varies
along with the modulation frequency and the distance
between the object and the camera. The ToF depth distor-
tions are used as a cue for material classification instead of
discarding as a measuring error. The effectiveness of the
proposed method is evaluated by various real-world experi-
ments and a few applications are shown.

Since the ToF observation is a pair of amplitude and phase
components, one may consider using the amplitude compo-
nent for the task of material classification, while the pro-
posed method only uses the phase component. Indeed, the
amplitude and phase are are jointly distorted in the phasor
space. In the next paragraph, we discuss the potential of the
use of the amplitude component for material classification.

Amplitude Component for Material Classification

Instead of relative distortion as explained in Eq. (4), relative
amplitude components can be alternatively used in a similar
manner

zvi;dj ¼ ~avn;j � ~avi;j;

where ~avi;j is the measured amplitude at the ith modulation
frequency and the jth position, and z is the relative amplitude
component. Aligning these distortions, an mðn� 1Þ-length
vector z can be created and used as a feature vector.

Moreover, both the depth distortions and the relative
amplitude components can be combined to obtain richer
information. In that case, they have to be normalized
because the domains of the depth and amplitude are differ-
ent. A concatenated feature vector s can be set up as

s ¼ �vT �zT
� 	T

;

where �v and �z are normalized feature vectors of depth and
amplitude components, respectively.

Table 2 shows the comparison of the effectiveness of depth
distortion, amplitude distortion, and their combination as a
feature. In this test, the object is measured while changing
both the frequency and position (n ¼ 3 and m ¼ 1700), and
the result of depth distortion is the same as before as shown
in Fig. 12c.While amplitude component also is able to classify
materials to a certain degree, it turned out that the accuracy
was much lower than the result of depth distortion. More-
over, adding amplitude components to the depth distortion
did not contribute to the improvement of accuracy. The rea-
sonmay be that the amplitude is strongly affected by low sig-
nal-to-noise ratio (SNR). From this test, we consider that
while the amplitude component may have a potential, but for
a practical use a further study is needed.

Limitations

Our material classification exploits differences of time
domain impulse responses that depend on materials. In
other words, we assume that the impulse response is the
same for the same materials. However, it may not be always
true because difference in shape, color, and geometry may
cause variations in impulse responses. As we assessed in the
paper, there is a limitation in material classification accuracy
due to these differences. Related to this problem, optically
thin object’s impulse response also varies depending on the
thickness of the target object. On one hand, it serves as a cue
for classifying thickness of the target object as we have seen,
but on the other hand, it also suggests that a database with
varying thicknesses is needed for correctly classifying mate-
rials of an object that may have an arbitrary thickness. This is
one of the current limitations of our method. Using realistic
simulation such as Jarabo et al.’s renderer [54], a very large
database that includes all the materials and variations may
be obtained, but it still appears non-straightforward.

Another limitation is that the shape of illumination wave
may be device-dependent; therefore, the measured impulse
responses may have a dependency on ToF cameras. At this
point, a database could be built for each ToF camera prod-
uct, but eliminating the device-dependency appears to be
an important future work.
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