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Abstract
We consider the problem of contextual bandits
and imitation learning, where the learner lacks
direct knowledge of the executed action’s reward.
Instead, the learner can actively request the expert
at each round to compare two actions and receive
noisy preference feedback. The learner’s objec-
tive is two-fold: to minimize regret associated
with the executed actions, while simultaneously,
minimizing the number of comparison queries
made to the expert. In this paper, we assume that
the learner has access to a function class that can
represent the expert’s preference model under ap-
propriate link functions and present an algorithm
that leverages an online regression oracle with re-
spect to this function class. For the contextual ban-
dit setting, our algorithm achieves a regret bound
that combines the best of both worlds, scaling as
O(min{

√
T , d/∆}), where T represents the num-

ber of interactions, d represents the eluder dimen-
sion of the function class, and ∆ represents the
minimum preference of the optimal action over
any suboptimal action under all contexts. Our al-
gorithm does not require the knowledge of ∆, and
the obtained regret bound is comparable to what
can be achieved in the standard contextual bandits
setting where the learner observes reward signals
at each round. Additionally, our algorithm makes
only O(min{T, d2/∆2}) queries to the expert.
We then extend our algorithm to the imitation
learning setting, where the agent engages with
an unknown environment in episodes of length
H , and provide similar guarantees regarding re-
gret and query complexity. Interestingly, with
preference-based feedback, our imitation learn-
ing algorithm can learn a policy outperforming
a sub-optimal expert, matching the result from
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interactive imitation learning algorithms (Ross &
Bagnell, 2014) that require access to the expert’s
actions and also reward signals.

1. Introduction
Human feedback for training machine learning mod-
els has been widely used in many scenarios, including
robotics (Ross et al., 2011; 2013; Jain et al., 2015; Laskey
et al., 2016; Christiano et al., 2017) and natural language
processing (Stiennon et al., 2020; Ouyang et al., 2022). By
integrating human feedback into the training process, these
techniques align machine learning models with human in-
tention and enable high-quality human-machine interaction
(e.g., ChatGPT).

Existing methods generally leverage two types of human
feedback. The first is the action from human experts, which
is the dominant feedback mode used in the literature of
imitation learning or learning from demonstrations (Abbeel
& Ng, 2004; Ziebart et al., 2008; Daumé et al., 2009; Ross
et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017; Osa
et al., 2018). The second type of feedback, preference-
based feedback, involves comparing pairs of actions. In
this approach, the expert provides feedback by indicating
their preference between two options selected by the learner.
While both types of feedback have their applications, our
focus in this work is on preference-based feedback, which
is particularly suitable for scenarios where it is challenging
for human experts to recommend the exact optimal action
while making pairwise comparisons is much easier.

Learning via preference-based feedback has been exten-
sively studied, particularly in the field of dueling bandits
(Yue & Joachims, 2011; Yue et al., 2012; Zoghi et al., 2014;
Ailon et al., 2014; Komiyama et al., 2015; Wu & Liu, 2016;
Saha & Gaillard, 2021; Bengs et al., 2021; Saha & Gaillard,
2022) and contextual dueling bandits (Dudı́k et al., 2015;
Saha & Krishnamurthy, 2022; Wu et al., 2023). Different
from the standard bandit setting, the learner proposes two
actions in dueling bandits and only gets noisy preference
feedback from the human expert. Follow-up works extend
the preference-based learning model from the one-step ban-
dit setting to the multi-step decision-making (e.g., IL and
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RL) setting (Chu & Ghahramani, 2005; Sadigh et al., 2017;
Christiano et al., 2017; Lee et al., 2021a; Chen et al., 2022;
Saha et al., 2023). These studies mainly focus on how to
learn a high-quality policy from human feedback, without
concerning the question of active query in order to minimize
the query complexity.

However, query complexity is an important metric to opti-
mize when learning from human feedback, as human feed-
back is expensive to collect. For instance, InstructGPT
(Ouyang et al., 2022) is trained only on around 30K pieces
of human feedback, which is significantly fewer than the
internet-scale dataset used for pre-training the base model
GPT3, indicating the challenge of scaling up the size of
human feedback datasets. In other areas, such as robotics,
learning from human feedback is also not easy. (Ross et al.,
2013; Laskey et al., 2016) pointed out that querying human
feedback in the learning loop is challenging, and extensively
querying for feedback puts too much burden on the human
experts.

In this work, we design principled algorithms that can learn
from preference-based feedback while at the same time min-
imizing query complexity, under the settings of contextual
bandits (Auer et al., 2002; Langford & Zhang, 2007) and im-
itation learning (Ross et al., 2011). Our main contributions
can be summarized as follows.

• In the contextual dueling bandits setting, the stochastic
preference feedback is generated based on a preference
matrix (Saha & Krishnamurthy, 2022). We propose an
algorithm (named AURORA – in short of Active pref-
erence qUeRy fOR contextual bAndits) that achieves a
best-of-both-worlds regret bound (i.e., achieves the mini-
mum of the worst-case regret and an instance-dependent
regret), while at the same providing an instance-dependent
query complexity bound. For benign instances, our regret
and query bounds both scale with ln(T ) where T is the
total number of interactions in contextual bandits.

• In imitation learning, the stochastic preference feedback
is generated based on the underlying reward-to-go of the
expert’s policy (e.g., the expert prefers actions that lead
to higher reward-to-go). We propose an algorithm named
AURORAE, in short of Active preference qUeRy fOR
imitAtion lEarning, which instantiates H instances of
AURORA, one per each time step for the finite horizon
Markov Decision Process (MDP), where H is the hori-
zon. By leveraging preference-based feedback, we show
that, interestingly, our algorithm can learn to outperform
the expert when the expert is suboptimal. Such a result
is beyond the scope of the classic imitation learning al-
gorithm DAGGER and previously can only be achieved
by algorithms like AGGREVATE(D) (Ross & Bagnell,
2014; Sun et al., 2017; Cheng & Boots, 2018) and LOLS

(Chang et al., 2015) which require direct access to ex-
pert’s actions and reward signal, which is a much stronger
feedback mode than ours.

To the best of our knowledge, for both contextual bandit
and imitation learning with preference-based feedback, our
algorithms are the first to achieve best-of-both-worlds regret
bounds while at the same time minimizing query complexi-
ties.

2. Preliminaries
In this section, we introduce the setup of contextual bandits
and imitation learning with preference-based feedback. We
denote [N ] as the set of integers between 1 and N inclu-
sively. The set of all distributions over a set S is denoted by
∆(S).

2.1. Contextual Bandits with Preference-Based
Feedback

In this section, we introduce the contextual dueling bandits
setting. We assume a context set X and an action space
A = [A]. At each round t ∈ [T ], a context xt is drawn
adversarially, and the learner’s task is to decide whether
they want to make a query. If they make a query, they need
to select a pair of actions (at, bt) ∈ A ×A, upon which a
feedback yt ∈ {−1, 1} is revealed to the learner regarding
either at or bt is better. Specifically, we assume there is a
preference function f⋆ : X ×A×A → [−1, 1] and that the
feedback yt is drawn from

Pr(at is preferred to bt |xt) :=

Pr(yt = 1 |xt, at, bt) = ϕ
(
f⋆(xt, at, bt)

)
where ϕ(d) : [−1, 1] → [0, 1] is the link function, which
satisfies ϕ(d) + ϕ(−d) = 1 for any d. If the learner does
not make a query, they should still select a pair of actions
(at, bt) ∈ A × A but will not receive any feedback. Let
Zt ∈ {0, 1} indicate whether a query is made at round t.

We consider the realizability setting and that a general func-
tion class F ⊆ X × A × A → [−1, 1] is known to the
learner. We suppose f⋆, as well as the functions in F , is
transitive and anti-symmetric.
Assumption 2.1. We assume f⋆ ∈ F and any functions
f ∈ F satisfies the following two properties: (1) transitivity:
for any x ∈ X and a, b, c ∈ A, if f(x, a, b) > 0 and
f(x, b, c) > 0, then we must have f(x, a, c) > 0; (2) anti-
symmetry: f(x, a, b) = −f(x, b, a) for any x ∈ X and any
a, b ∈ A.

We provide an example below for which Assumption 2.1 is
satisfied.
Example 1. Assume there exists a function r⋆ : X ×A →
[0, 1] such that f⋆(x, a, b) = r⋆(x, a)−r⋆(x, b) for any x ∈
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X and a, b ∈ A. Typically, such a function r⋆ represents the
“reward function” of the bandit. In such a scenario, we can
first parameterize a reward class R ⊆ X ×A → [0, 1] and
define F = {f : f(x, a, b) = r(x, a) − r(x, b), r ∈ R}.
Moreover, it is common to have ϕ(d) := 1/(1+exp(−d)) in
this setting, which recovers the Bradley-Terry-Luce (BTL)
model (Bradley & Terry, 1952).

Assumption 2.1 ensures the existence of an optimal arm, as
stated below.
Lemma 2.2. Under Assumption 2.1, for any function f ∈ F
and any context x ∈ X , there exists an arm a ∈ A such
that f(x, a, b) ≥ 0 for any arm b ∈ A. We denote this best
arm by πf (x) := a. (When the best arms are not unique,
we break the tie arbitrarily and use πf (x) to denote any of
them.)

The learner’s goal is to minimize the regret while minimiz-
ing the number of queries to the expert, which are defined
below.

RegretCB
T :=

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
,

QueriesCB
T :=

T∑
t=1

Zt.

We remark that our setting generalizes that of Saha &
Krishnamurthy (2022) in that we assume an additional
link function ϕ for feedback generation, while they as-
sume the feedback is sampled from Pr(y = 1 |x, a, b) =
(Pt[at, bt] + 1)/2, which is captured in our setting (see Ex-
ample 2). However, (Saha & Krishnamurthy, 2022) do not
assume transitivity.

2.2. Imitation Learning with Preference-Based
Feedback

For imitation learning, we consider the finite-horizon
Markov decision process (MDP), which is a tuple
M(X ,A, r, P,H) where X is the state space, A is the ac-
tion space, P is the transition kernel, r : X × A → [0, 1]
is the reward function, and H is the length of each episode.
The interaction between the learner and the environment
proceeds as follows: at each episode t ∈ [T ], the learner
receives an initial state xt,0 which could be chosen adver-
sarially. Then, the learner plays for H steps. At each step
h, the learner first decides whether they will make a query.
If they make a query, they need to select a pair of actions
(at,h, bt,h) ∈ A×A, upon which a feedback yt,h ∈ {−1, 1}
is revealed to the learner regarding which action is preferred
from the expert’s perspective. Here the feedback is sampled
according to

Pr(at,h is preferred to bt,h |xt,h, h) :=

Pr(yt,h = 1 |xt,h, at,h, bt,h, h) = ϕ
(
f⋆
h(x, at,h, bt,h)

)
.

Irrespective of whether they made a query, the learner then
picks a single action from at,h, bt,h and transit to the next
step (our algorithm will just pick an action uniformly ran-
dom from at,h, bt,h). After H steps, the next episode starts.
Let Zt,h ∈ {0, 1} indicate whether the learner decides to
query at round t and step h. We assume the function class
F to be the product of H classes, i.e., F = F0 × · · · FH−1

where, for each h, we use Fh = {f : X×A×A → [−1, 1]}
to model f⋆

h and assume Fh satisfies Assumption 2.1.

A policy is a mapping π : X → ∆(A). For a policy π,
the state value function for a state x at step h is defined
as V π

h (x) := E[
∑H−1

i=h ri |xh = x] and the state-action
value function for a state-action pair (x, a) is Qπ

h(x, a) :=

E[
∑H−1

i=h ri |xh = x, ah = a]. Both expectations are taken
over all trajectories induced by the policy π.

We assume that different from contextual bandits, the pref-
erence function f⋆

h is defined as f⋆
h(x, a, b) := Qπe

h (x, a)−
Qπe

h (x, b), the difference between the state-action function
of an expert policy πe. Intuitively the expert prefers actions
that have high reward-to-go under its policy.

The goal is still to minimize the regret and number of
queries, but the former is now defined via the performance
gap:

RegretILT :=

T∑
t=1

(
V πe
0 (xt,0)− V πt

0 (xt,0)
)
,

QueriesILT :=

T∑
t=1

H−1∑
h=0

Zt,h.

Here πt is the strategy the learner used to select actions at
episode t.

2.3. Link Function and Online Regression Oracle

As a standard practice (Agarwal, 2013), we assume ϕ is
the derivative of some α-strongly convex function Φ :
[−1, 1] → R and define the associated loss function as
ℓϕ(d, y) = Φ(d)− d(y + 1)/2. In line with prior works in
the literature (Foster et al., 2020; Foster & Rakhlin, 2020;
Simchi-Levi & Xu, 2022; Foster et al., 2018a), our algo-
rithm utilizes an online regression oracle and assumes it can
achieve sublinear regret.

Assumption 2.3. We assume the learner has access to an on-
line regression oracle pertaining to the loss ℓϕ such that for
any sequence {(x1, a1, b1, y1), . . . , (xT , aT , bT , yT )}
where the label yt is generated by yt ∼
ϕ(f⋆(xt, at, bt)), we have

∑T
t=1 ℓϕ

(
ft(xt, at, bt), yt

)
−

inff∈F ℓϕ
(
f(xt, at, bt), yt

)
≤ Υ for some Υ that grows

sublinearly with respect to T .

Here Υ represents the regret upper bound and is typically
of logarithmic order in many cases (here we drop the
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dependence on T for notation simplicity). We provide two
examples to illustrate it.
Example 2 (Squared loss). If we consider Φ(d) = d2/4 +
d/2 + 1/4, which is 1/4-strongly convex, then we obtain
ϕ(d) = (d + 1)/2 and ℓϕ(d, y) = (d − y)2/4, thereby
recovering the squared loss, which has been widely stud-
ied by prior works. For example, Rakhlin & Sridharan
(2014) characterized the minimax rates for online square
loss regression in terms of the offset sequential Rademacher
complexity, resulting in favorable bounds for the regret.
Specifically, we have Υ = O(log |F|) assuming the func-
tion class F is finite, and Υ = O(d log(T )) assuming F
is a d-dimensional linear class. We also kindly refer the
readers to Krishnamurthy et al. (2017); Foster et al. (2018a)
for efficient implementations.
Example 3 (Logistic loss). When Φ(d) = log(1 + exp(d))
which is strongly convex at [−1, 1], we have ϕ(d) =
1/(1 + exp(−d)) and ℓϕ(d, y) = log(1 + exp(−yd)).
Thus, we recover the logistic regression loss, which
allows us to use online logistic regression and achieve
Υ = O(log |F|) assuming finite F . There have been nu-
merous endeavors in minimizing the log loss, such as Foster
et al. (2018b) and Cesa-Bianchi & Lugosi (2006, Chapter 9).

3. Contextual Bandits with Preference-Based
Active Queries

We first present our algorithm, named AURORA, for con-
textual dueling bandits, as shown in Algorithm 1. At each
round t ∈ [T ], the online regression oracle has a predic-
tor ft, and we construct a version space Ft containing all
functions close to ft on all observed data. Here we set the
threshold β := 4Υ/α+ (16+ 24α) log

(
4δ−1 log(T )

)
/α2,

which ensures that f⋆ ∈ Ft for any t ∈ [T ] with probabil-
ity at least 1 − δ (Lemma D.3). Thus, we have |At| ≥ 1
(so Line 1 will not run into trouble with high probability).
We then form a candidate arm set At, which consists of
greedy arms induced by all functions in the version space.
When |At| = 1, the only arm in the set is the optimal since
f⋆ ∈ Ft, and thus no query is needed (Zt = 0). However,
when |At| > 1, each arm in At may be the optimal arm, and
thus we need to make a query to obtain more information.

Next, we explain our strategy for making a query. Firstly,
we compute wt, which represents the “width” of the version
space. Specifically, we proved that wt overestimated the in-
stantaneous regret for playing any arm in At (Lemma D.2).
Then, we define the indicator λt that indicates if the
estimated cumulative regret,

∑t−1
s=1 Zwws, has exceeded√

AT/β. Note that we multiply Zt to wt since we do not
incur any regret when Zt = 0. Below, we explain two query
strategies for different values of λt.

• If λt = 0, we know that our cumulative reward has not

Algorithm 1 Active preference qUeRy fOR contextual bAn-
dits (AURORA)
Require: function class F , confidence parameter β = 4Υ

α +
16+24α

α2 log
(
4δ−1 log(T )

)
.

1: Online regression oracle produces f1.
2: for t = 1, 2, . . . , T do
3: Receive context xt.
4: Compute the version space Ft ={

f ∈ F :

t−1∑
s=1

Zs

(
f(xs, as, bs)− ft(xs, as, bs)

)2
≤ β

}
.

5: Compute the candidate arm set At = {πf (xt) :
∀f ∈ Ft}.

6: Decide whether to query Zt = 1{|At| > 1}.
7: if Zt = 1 then
8: Compute wt = supa,b∈At

supf,f ′∈Ft
f(x, a, b)−

f ′(x, a, b),
9: Compute λt = 1{

∑t−1
s=1 Zsws ≥

√
AT/β}.

10: if λt = 0 then
11: pt = Uniform(At).
12: else
13: Compute γt = λt

√
AT/β.

14: Let pt be an arbitrary solution of
maxa∈At

∑
b ft(xt, a, b)pt(b) +

2
γtpt(a)

≤ 5A
γt

.
15: end if
16: Sample at, bt ∼ pt independently and receive

feedback yt.
17: Feed information ((xt, at, bt), yt) to the online re-

gression oracle which returns ft+1.
18: else
19: Set both at and bt as the only action in At and play

them.
20: end if
21: end for

yet exceeded
√

AT/β = O(
√
T ), so we will explore as

much as possible by uniform sampling from At.

• If λt = 1, we may have incurred regret larger than
O(

√
T ), and therefore we use a technique similar to in-

verse gap weighting (IGW) as inspired by (Saha & Kr-
ishnamurthy, 2022) to achieve a better balance between
exploration and exploitation. Specifically, we solve a sim-
ple convex program (Line 1), which is proved to be always
feasible and the solution pt satisfies (see Lemma D.5)

E
a∼pt

[
f⋆(xt, πf⋆(x), a)

]
≤

O

(
γt E

a,b∼pt

[(
ft(xt, a, b)− f⋆(xt, a, b)

)2]
+

A

γt

)
.

(1)

Through this, we can convert the instantaneous regret
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to the point-wise error between the predictor ft and the
truth f⋆ plus an additive A/γt. The cumulative point-
wise error can be bounded by the online regression regret.
We note that when there exists a “reward function” r :
X × A → [0, 1] for each f ∈ F such that f(x, a, b) =
r(x, a)− r(x, b) (Example 1) we can define pt directly as

pt(a) =


1

A+γt

(
rt(xt,πft (xt))−rt(xt,a)

) a ̸= πft(xt)

1−
∑

a̸=πft (xt)
pt(a) a = πft(xt)

,

where rt is the reward function associated with ft, i.e.,
ft(x, a, b) = rt(x, a) − rt(x, b). This is the standard
IGW expression and leads to the same guarantee as (1)
(see Lemma D.6).

3.1. Theoretical Analysis

Towards the theoretical guarantees of Algorithm 1, we em-
ploy two quantities to characterize a contextual bandit in-
stance: the uniform gap and the eluder dimension.
Assumption 3.1 (Uniform gap). We assume the optimal
arm πf⋆(x) induced by f⋆ under any context x ∈ X
is unique. Further, we assume a uniform gap ∆ :=
infx infa ̸=πf⋆ (x) f

⋆(x, πf⋆(x), a) > 0.

We note that the existence of a uniform gap is a standard
assumption in the literature of contextual bandits (Dani
et al., 2008; Abbasi-Yadkori et al., 2011; Audibert et al.,
2010; Garivier et al., 2019; Foster & Rakhlin, 2020; Foster
et al., 2020). Next, we introduce the eluder dimension
(Russo & Van Roy, 2013) and begin by defining the term
“ϵ-dependence”.
Definition 3.2 (ϵ-dependence). Assume a function class
G ⊆ X → R. We say an element x ∈ X is ϵ-dependent
on {x1, x2, . . . , xn} ⊆ X with respect to G if any pair of
functions g, g′ ∈ G satisfying

∑n
i=1(g(xi)− g′(xi)) ≤ ϵ2

also satisfies g(x) − g′(x) ≤ ϵ. Otherwise, we say x is
independent of it.
Definition 3.3 (Eluder dimension). The ϵ-eluder dimension
of a function class G ⊆ X → R, denoted by dimE(G, ϵ), is
the length d of the longest sequence of elements in X satis-
fying that there exists some ϵ′ ≥ ϵ such that every element
in the sequence is ϵ′-independent of its predecessors.

Eluder dimension is one of the standard complexity mea-
sures for function classes which has been used in the lit-
erature of bandits and RL extensively (Chen et al., 2022;
Osband & Van Roy, 2014; Wang et al., 2020; Foster et al.,
2020; Wen & Van Roy, 2013; Jain et al., 2015; Ayoub et al.,
2020; Ishfaq et al., 2021; Huang et al., 2021). Examples
where eluder dimensions are small include linear functions,
generalized linear models, and functions in reproducing
kernel Hilbert space (RKHS).

Given these quantities, we are ready to state our main results.

Theorem 3.4. Under Assumptions 2.1, 2.3 and 3.1, Algo-
rithm 1 guarantees the following upper bounds of the regret
and the number of queries:

RegretCB
T ≤ Õ

(
min

{√
ATβ,

A2β2dimE

(
F , ∆

2A2

)
∆

})
,

QueriesCB
T ≤ Õ

(
min

{
T,

A3β3dim2
E

(
F , ∆

2A2

)
∆2

})

with probability at least 1−δ. We recall that β = O(α−1Υ+
α−2 log(δ−1 log(T ))). We have hidden logarithmic terms
in the upper bounds for brevity.

When the loss ℓϕ is either squared or logistic
loss (Examples 2 and 3), the parameter β will
be logarithmic in T . In such cases, the regret is
Õ(min{

√
T ,dimE

(
F ,∆/(A2)

)
/∆}) and the number of

queries is Õ(min{T, dim2
E(F ,∆/(2A2))/∆2}), ignoring

A and logarithmic terms. Both consist of two components:
the worst-case and the instance-dependent upper bounds.
The worst-case bound provides a guarantee under all
circumstances, while the instance-dependent one may
significantly improve the upper bound when the problem
exhibits good structures (e.g., a bounded eluder dimension
and a non-trivial gap).

Comparion to MINMAXDB (Saha & Krishnamurthy,
2022). In their setting, they assume Pr(y = 1 |x, a, b) =
(f⋆(x, a, b)+ 1)/2, which is a specification of our feedback
model (Example 2). While our worst-case regret bound
matches theirs, we improve upon their results by having an
additional instance-dependent regret bound. Furthermore,
we also have a guarantee on the query complexity while
MINMAXDB simply queries every round.

In Appendix B, we present lower bounds on regret and the
number of queries, demonstrating that Algorithm 1 achieves
a tight dependence on the gap ∆ and T . Moreover, we also
show that Algorithm 1 can be extended to scenarios where
the uniform gap does not exist (i.e., when Assumption 3.1
is not satisfied) without any modifications to the algorithm.

4. Imitation Learning with Preference-Based
Active Queries

In this section, we introduce our second algorithm, which
is presented in Algorithm 2. In essence, we treat the
MDP as a concatenation of H contextual bandits and run
an AURORA (Algorithm 1) for each time step. Specifi-
cally, we first create H instances of AURORA, denoted
by AURORAh (h = 0, . . . ,H − 1). Here we consider
AURORA as an interactive program that takes the context
xt as input and can output at, bt, and Zt. At each episode
t and each time step h therein, we first feed the current

5



Contextual Bandits and Imitation Learning with Preference-Based Active Queries

Algorithm 2 Active preference qUeRy fOR imitAtion lEarn-
ing (AURORAE)
Require: function class F0,F1, . . . ,FH−1, confidence pa-

rameter β.
1: Create H instances of Algorithm 1:

AURORAh(Fh, β) for h = 0, 1, . . . ,H − 1.
2: for t = 1, 2, . . . , T do
3: Receive initial state xt,0.
4: for h = 0, 1, . . . ,H − 1 do
5: Feed xt,h to AURORAh(Fh, β).
6: Get at,h, bt,h, Zt,h from AURORAh(Fh, β).
7: if Zt,h = 1 then
8: Receive feedback yt,h.
9: Feed information ((xt,h, at,h, bt,h), yt,h) to

AURORAh(Fh, β) to perform an update.
10: end if
11: Execute a ∼ Uniform({at,h, bt,h}) and transits to

xt,h+1.
12: end for
13: end for

state xt,h to AURORAh as the context; then, AURORAh

will decide whether to query. If it decides to make a
query, we will ask for the feedback yt,h on the proposed
two actions at,h, bt,h, and let AURORAh perform an up-
date with the information ((xt,h, at,h, bt,h), yt,h). We re-
call that the noisy binary feedback yt,h is sampled as
yt,h ∼ ϕ(Qπe

h (xt,h, at,h) − Qπe

h (xt,h, bt,h)) in this case.
We emphasize that the learner has no access to a ∼ πe(xt,h)
like DAGGER (Ross et al., 2011) nor reward-to-go access
like AGGREVATE(D) (Ross & Bagnell, 2014; Sun et al.,
2017). Finally, the learner executes one of the actions, and
the state transits to xt,h+1. We repeat the same process
for AURORAh+1, until the end of the episode. We name
this algorithm AURORAE, the plural form of AURORA,
which signifies that the algorithm is essentially a stack of
multiple AURORA instances.

4.1. Theoretical analysis

As Algorithm 2 is essentially a stack of Algorithm 1, we can
inherit many of the theoretical guarantees from the previous
section. To state the results, we first extend Assumption 3.1
into imitation learning.

Assumption 4.1 (Uniform Gap). For all h, we assume
the optimal action for f⋆

h under any state x ∈ X
is unique. Further, we assume a uniform gap ∆ :=
infh infx infa ̸=πf⋆

h
(x) f

⋆
h(x, πf⋆

h
(x), a) > 0.

We remark that, just as Assumption 3.1 is a common condi-
tion in the bandit literature, Assumption 4.1 is also common
in MDPs (Du et al., 2019; Foster et al., 2020; Simchowitz &
Jamieson, 2019; Jin & Luo, 2020; Lykouris et al., 2021; He

et al., 2021). The theoretical guarantee for Algorithm 2 is
presented in Theorem 4.2.

Theorem 4.2. Under Assumptions 2.1, 2.3 and 4.1, Algo-
rithm 2 guarantees the following upper bounds of the regret
and the number of queries:

RegretILT ≤

Õ

(
H ·min

{√
ATβ,

A2β2dimE

(
F , ∆

2A2

)
∆

})
−AdvT ,

QueriesILT ≤ Õ

(
H ·min

{
T,

A3β3dim2
E

(
F , ∆

2A2

)
∆2

})

with probability at least 1 − δ. Here AdvT :=∑T
t=1

∑H−1
h=0 Ext,h∼d

πt
xt,0,h

[maxa A
πe

h (xt,h, a)] ≥ 0, and

dπt

xt,0,h
(x) denotes the probability of πt

1 reaching the state
x at time step h starting from inital state xt,0. We also
recall that β = O(α−1Υ+ α−2 log(Hδ−1 log(T ))). Here
we have hidden logarithmic terms in the upper bounds for
brevity.

Compared to Theorem 3.4, the main terms of the upper
bounds for imitation learning are precisely the bounds in
Theorem 3.4 multiplied by H . In the proof presented in
Appendix D.6, we use the performance difference lemma
to reduce the regret of imitation learning to the sum of the
regret of H contextual dueling bandits, which explains this
factor of H .

Another interesting point is that the main term of the regret
upper bound is subtracted by a non-negative term AdvT ,
which measures the degree to which we can outperform
the expert policy. This means that our algorithm not only
competes with the expert policy but can also surpass it
to some extent. This guarantee is stronger than that of
DAGGER (Ross et al., 2011) in that DAGGER cannot
ensure the learned policy is better than the expert policy
regardless of how suboptimal the expert may be. While
this may look surprising at first glance since we are
operating under a somewhat weaker query mode than
that of DAGGER, we note that by querying experts for
comparisons on pairs of actions with feedback sampling as
y ∼ ϕ(Qπe(x, a)−Qπe(x, b)), it is possible to identify the
action that maximizes Qπe(x, a). Finally, we remark that
our worst-case regret bound is similar to that of Ross & Bag-
nell (2014); Sun et al. (2017), which can also outperform a
suboptimal expert but require access to both expert’s actions
and reward signals – a much stronger query model than ours.

1Policy πt consists of H time-dependent policies
πt,1, . . . , πt,H , where each πt,h is defined implicitly via
AURORAh, i.e., πt,h generates action as follows: given xt,h,
AURORAh recommends at,h, bt,h, followed by uniformly
sampling an action from {at,h, bt,h}.
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Hüllermeier, E. Preference-based reinforcement learning:
evolutionary direct policy search using a preference-based
racing algorithm. Machine learning, 97:327–351, 2014.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daumé III,
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A. Related works
Contextual Bandits with preference feedback. Dudı́k et al. (2015) is the first to consider contextual dueling bandits, and
one of their algorithms achieves the optimal regret rate. Saha & Krishnamurthy (2022) studied contextual dueling bandits
using a value function class and proposed an algorithm based on a reduction to online regression, which also achieves an
optimal worst-case regret bound. In this paper, we mainly follow the setting of the latter and make notable improvements
in two aspects: (1) in addition to the O(

√
AT ) optimal regret rate where A is the number of actions and T is the number

of interaction rounds, we established an instance-dependent regret upper bound that can be significantly smaller when the
bandit exhibits a favorable structure; (2) our algorithm has an instance-dependent upper bound on the number of queries.

Another related work is Saha & Gaillard (2022) which achieves the best-of-both-world regret for non-contextual dueling
bandits. We note that our setting is more general due to the existence of context and general function approximation,
enabling us to leverage function class beyond linear and tabular cases.

RL with preference feedback. RL with preference feedback has been widely employed in recent advancements in
AI (Ouyang et al., 2022; OpenAI, 2023). According to Wirth et al. (2017), there are generally three types of preference
feedback: action preferences (Fürnkranz et al., 2012), state preferences (Wirth & Fürnkranz, 2014), and trajectory prefer-
ences (Busa-Fekete et al., 2014; Novoseller et al., 2020; Xu et al., 2020; Lee et al., 2021b; Chen et al., 2022; Saha et al.,
2023; Pacchiano et al., 2021; Biyik & Sadigh, 2018; Taranovic et al.; Sadigh et al., 2017). We focus on the action preference
modality with the goal of achieving tight regret bounds and query complexities.

Interactive imitation learning. In imitation learning, two common feedback modalities are typically considered: demon-
strations that contain experts’ actions, and preferences. The former involves directly acquiring expert actions (e.g., (Ross
et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017; Chang et al., 2015)), while the latter focuses on obtaining preferences
between selected options (Chu & Ghahramani, 2005; Lee et al., 2021a; Zhu et al., 2023). Our imitation learning algorithm
belongs to the second category, and we established tight regret bounds and query complexities for our algorithm.

We also note that our method shares some similarities with ADACB (Foster et al., 2020), especially in terms of theoretical
results, but differs in two aspects: (1) they assume regular contextual bandits where the learner observes the reward directly,
while we assume preference feedback, and (2) they assume a stochastic setting where contexts are drawn i.i.d., but we
assume the context is adversarially chosen. While these two settings may not be directly comparable, it should be noted that
ADACB does not aim to minimize query complexity.

B. Additional Results
B.1. Lower Bounds

To understand whether our algorithm attains tight upper bounds, it is important to also establish lower bounds. By using a
reduction from regular multi-armed bandits to the contextual dueling bandit, we can show the following lower bounds.

Theorem B.1 (Lower bounds). The following two claims hold:

(1) for any algorithm, there exists an instance that leads to RegretCB
T ≥ Ω(

√
AT );

(2) for any algorithm achieving a worse-case expected regret upper bound in the form of E[RegretCB
T ] ≤ O(

√
AT ), there

exists an instance with gap ∆ =
√

A/T that results in E[RegretCB
T ] ≥ Ω(A/∆) and E[QueriesCB

T ] ≥ Ω(A/∆2) =
Ω(T ).

By relating these lower bounds to Theorem 3.4, we can conclude that our algorithm achieves a tight dependence on the
gap ∆ and T , up to logarithmic factors, in terms of both regret and the number of queries. Furthermore, as an additional
contribution, we establish alternative lower bounds in Section D.4.1 by conditioning on the limit of regret, rather than the
worst-case regret as assumed in Theorem B.1. The lower bounds obtained in this case are similar to those in Theorem B.1.

B.2. Results Without Uniform Gap Assumption

We highlight that Theorem 3.4 can naturally extend to scenarios where a uniform gap does not exist (i.e., when Assumption 3.1
is not satisfied) without any modifications to the algorithm. The result is stated below, which is analogous to Theorem 3.4.

Theorem B.2. Under Assumptions 2.1 and 2.3, Algorithm 1 guarantees the following upper bounds of the regret and the
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number of queries:

RegretCB
T ≤

Õ

(
min
ϵ>0

min

{√
ATβ, Tϵβ +

A2β2dimE

(
F , ϵ

2A2

)
ϵ

})
,

QueriesCB
T ≤

Õ

(
min
ϵ>0

min

{
T, T 2

ϵ β/A+
A3β3dim2

E

(
F , ϵ

2A2

)
ϵ2

})

with probability at least 1−δ. Here we define Tϵ :=
∑T

t=1 1{Gap(xt) ≤ ϵ}, and Gap(x) := mina ̸=πf⋆ (x) f
⋆(x, πf⋆(x), a)

is the gap under a specific context x. We have hidden logarithmic terms in the upper bounds for brevity.

Compared to Theorem 3.4, it differs in the extra term involving Tϵ. Here ϵ denotes a gap threshold, and Tϵ measures how
many times the context falls into a small-gap region. We highlight that Tϵ is small under certain conditions such as the
Tsybakov noise condition (Tsybakov, 2004). It is also worth mentioning that our algorithm is agnostic to ϵ, thus allowing us
to take the minimum over all ϵ > 0.

C. Discussion and Future Work
We presented interactive decision-making algorithms that learn from preference-based feedback while minimizing query
complexity. Our algorithms for contextual bandits and imitation learning share worst-case regret bounds similar to the
bounds of the state-of-art algorithms in standard settings while maintaining instance-dependent regret bounds and query
complexity bounds. Notably, our imitation learning algorithm can outperform suboptimal experts, matching the result
of (Ross & Bagnell, 2014; Sun et al., 2017), which operates under much stronger feedback.

In terms of future work, we believe our result on contextual dueling bandits can be extended to the stochastic setting where
we may replace the eluder dimension with the value function disagreement coefficient (Foster et al., 2020), which is weaker
than the eluder dimension, and replace the online regression oracle by a supervised-learning batch regression oracle. We
also conjecture that the dependence on the eluder dimension in the query complexity bound can be improved. Finally,
another interesting direction is to develop practical implementations of our proposed algorithms.

D. Missing Proofs
D.1. Supporting Lemmas

Lemma D.1. For any t ∈ [T ], if f⋆ ∈ Ft, then we have wt ≥ ∆ whenever |At| > 1.

Proof of Lemma D.1. When |At| > 1, we know there exists a function f ′ ∈ Ft satisfying

a′ := πf ′(xt) ̸= πf⋆(xt) =: a⋆t .

Then we have ∆ ≤ f⋆(xt, a
⋆
t , a

′) ≤ f⋆(xt, a
⋆
t , a

′) − f ′(xt, a
⋆
t , a

′) ≤ wt where the second inequality holds since
f ′(xt, a

⋆
t , a

′) ≤ 0.

Lemma D.2. For any t ∈ [T ] and any arm a ∈ At, we have f⋆(xt, πf⋆(xt), a) ≤ wt.

Proof of Lemma D.2. For any a ∈ At, by the definition of At, there must exists a function f for which a = πf (xt). Hence,

f⋆(xt, πf⋆(xt), a) ≤ f⋆(xt, πf⋆(xt), a)− f(xt, πf⋆(xt), a) ≤ wt,

where the first inequality holds since f(xt, πf⋆(xt), a) ≤ 0.

Lemma D.3. The following holds with probability at least 1− δ for any T > 3,

T∑
t=1

Zt

(
f⋆(xt, at, bt)− ft(xt, at, bt)

)2 ≤ 4Υ

α
+

16 + 24α

α2
log
(
4δ−1 log(T )

)
.
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Proof of Lemma D.3. Throughout the proof, we denote zt := (xt, at, bt) for notational simplicity. We define DΦ as the
Bregman divergence of the function Φ:

DΦ(u, v) = Φ(u)− Φ(v)− ϕ(v)(u− v)

where we recall that ϕ = Φ′ is the derivative of Φ. Since Φ is α-strong convex, we have α(u − v)2/2 ≤ DΦ(u, v), and
hence,

T∑
t=1

Zt

(
f⋆(zt)− ft(zt)

)2 ≤ 2

α

T∑
t=1

ZtDΦ(ft(zt), f
⋆(zt)). (2)

Hence, it suffice derive an upper bound for the Bregman divergence then. Define νt as below:

νt :=Zt

[
DΦ (ft(zt), f

⋆(zt))− (ℓ (ft(zt), yt)− ℓ (f⋆(zt), yt))
]

=Zt

[
DΦ (ft(zt), f

⋆(zt))− (Φ (ft(zt))− (yt + 1)ft(zt)/2− Φ (f⋆(zt)) + (yt + 1)f⋆(zt)/2)
]

=Zt

[
Φ (ft(zt))− Φ (f⋆(zt))− ϕ (f⋆(zt)) (ft(zt)− f⋆(zt))

− (Φ (ft(zt))− (yt + 1)ft(zt)/2− Φ (f⋆(zt)) + (yt + 1)f⋆(zt)/2)
]

=Zt

(
ft(zt)− f⋆(zt)

)(
(yt + 1)/2− ϕ(f⋆(zt))

)
We note that Et[(yt + 1)/2] = ϕ(f⋆(zt)), and thus Et[νt] = 0, which means νt is a martingale difference sequence. Now
we bound the value and the conditional variance of νt in order to derive concentration results.

1. Bound the value of νt:

|νt| ≤ |(yt + 1)/2− ϕ (f⋆(zt)) | · |ft(zt)− f⋆(zt)|∞ ≤ 1 · 2 = 2.

2. Bound the conditional variance of νt:

E
t
[ν2t ] =Zt E

t

[
((yt + 1)/2− ϕ (f⋆(zt)))

2
(ft(zt)− f⋆(zt))

2
]

≤Zt E
t

[
(ft(zt)− f⋆(zt))

2
]

≤Zt E
t

[
2

α
·DΦ(ft(zt), f

⋆(zt))

]
≤2Zt

α
DΦ(ft(zt), f

⋆(zt))

where for the last line we note that xt, gt are measurable at t.

Now we apply Lemma E.1, which yields for any δ < 1/e and T > 3, with probability at least 1− 4δ log(T ),

T∑
t=1

νt ≤max

2

√√√√ T∑
t=1

2Zt

α
DΦ(ft(zt), f⋆(zt)), 6

√
log(1/δ)

√log(1/δ)

≤2

√√√√ T∑
t=1

2Zt

α
DΦ(ft(zt), f⋆(zt))log(1/δ) + 6log(1/δ) (since max(a, b) ≤ a+ b)

≤
T∑

t=1

1

2
ZtDΦ(ft(zt), f

⋆(zt)) +
4 log(1/δ)

α
+ 6log(1/δ) (AM-GM)

13
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Recall the definition of νt, and we conclude that
T∑

t=1

ZtDΦ (ft(zt), f
⋆(zt))−

T∑
t=1

Zt

(
ℓϕ
(
ft(zt), yt

)
− ℓϕ

(
f⋆(zt), yt

))
≤

T∑
t=1

1

2
ZtDΦ(ft(zt), f

⋆(zt)) +
4 log(1/δ)

α
+ 6log(1/δ),

which implies

1

2

T∑
t=1

ZtDΦ (ft(zt), f
⋆(zt)) ≤

T∑
t=1

Zt

(
ℓϕ
(
ft(zt), yt

)
− ℓϕ

(
f⋆(zt), yt

))
+

4 log(1/δ)

α
+ 6log(1/δ).

Plugging this upper bound of Bregman divergence into (2), we obtain that, with probability at least 1− 4δ log(T ), for any
δ < 1/e and T > 3, we have

T∑
t=1

Zt

(
f⋆(zt)− ft(zt)

)2 ≤ 4

α
Υ+

(
16

α2
+

24

α

)
log(δ−1) =: β

Finally, we finish the proof by adjusting the coefficient δ to obtain the desired result.

The following lemma is a variant of Russo & Van Roy (2013, Proposition 3), with the main difference being that (1) the
version space is established using the function produced by the oracle instead of the least squares estimator, and (2) the extra
multiplicative factor Zt.
Lemma D.4. For Algorithm 1, it holds that

T∑
t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) > ϵ

}
≤
(
4β

ϵ2
+ 1

)
dimE(F , ϵ) (3)

for any constant ϵ > 0,

Proof of Lemma D.4. We first define a subsequence consisting only of the elements for which we made a query in that
round. Specifically, we define ((xi1 , ai1 , bi1), (xi2 , ai2 , bi2), . . . , (xik , aik , bik)) where 1 ≤ i1 < i2 < · · · < ik ≤ T and
(xt, at, bt) belongs to the subsequence if and only if Zt = 1. We further simplify the notation by defining zj := (xij , aij , bij )
and f(zj) := f(xij , aij , bij ). Then we note that the left-hand side of (3) is equivalent to

k∑
j=1

1

{
sup

f,f ′∈Fj

f(zj)− f ′(zj) > ϵ

}
, (4)

and the version space in Algorithm 1 is equal to

Fj =

{
f ∈ F :

j−1∑
s=1

(
f(zs)− ft(zs)

)2
≤ β

}
. (5)

Hence, it suffice to establish the lower bound for (4) under the version space of (5). To that end, we make one more
simplicication in notation: we denote

w′
j := sup

f,f ′∈Fj

f(zj)− f ′(zj)

We begin by showing that if w′
j > ϵ for some j ∈ [k], then zj is ϵ-dependent on at most 4β/ϵ2 disjoint subsequence of its

predecessors. To see this, we note that when w′
j > ϵ, there must exist two function f, f ′ ∈ Fj such that f(zj)− f ′(zj) > ϵ.

If zj is ϵ-dependent on a subsequence (zi1 , zi2 , . . . , zin) of its predecessors, we must have
n∑

s=1

(
f(zis)− f ′(zis)

)2
> ϵ2.

14
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Hence, if zj is ϵ-dependent on l disjoint subsequences, we have

j−1∑
s=1

(
f(zs)− f ′(zs)

)2
> lϵ2. (6)

For the left-hand side above, we also have

j−1∑
s=1

(
f(zs)− f ′(zs)

)2 ≤ 2

j−1∑
s=1

(
f(zs)− ft(zs)

)2
+ 2

j−1∑
s=1

(
ft(zs)− f ′(zs)

)2 ≤ 4β (7)

where the first inequality holds since (a+ b)2 ≤ 2(a2 + b2) for any a, b, and the second inequality holds by (5). Combining
(6) and (7), we get that l ≤ 4β/ϵ2.

Next, we show that for any sequence (z′1, . . . , z
′
τ ), there is at least one element that is ϵ-dependent on at least τ/d−1 disjoint

subsequence of its predecessors, where d := dimE(F , ϵ). To show this, let m be the integer satisfying md+1 ≤ τ ≤ md+d.
We will construct m disjoint subsequences, B1, . . . , Bm. At the beginning, let Bi = (z′i) for i ∈ [m]. If z′m+1 is ϵ-dependent
on each subsequence B1, . . . , Bm, then we are done. Otherwise, we select a subsequence Bi which z′m+1 is ϵ-independent
of and append z′m+1 to Bi. We repeat this process for all elements with indices j > m+ 1 until either z′j is ϵ-dependent
on each subsequence or j = τ . For the latter, we have

∑m
i=1 |Bi| ≥ md, and since each element of a subsequence Bi is

ϵ-independent of its predecesors, we must have |Bi| = d for all i. Then, zτ must be ϵ-dependent on each subsequence by
the definition of eluder dimension.

Finally, let’s take the sequence (z′1, . . . z
′
τ ) to be the subsequence of (z1, . . . , zk) consisting of elements zj for which w′

j > ϵ.
As we have established, we have (1) each z′j is ϵ-dependent on at most 4β/ϵ2 disjoint subsequences, and (2) some z′j
is ϵ-dependent on at least τ/d − 1 disjoint subsequences. Therefore, we must have τ/d − 1 ≤ 4β/ϵ2, implying that
τ ≤ (4β/ϵ2 + 1)d.

The following lemma is adopted from Saha & Krishnamurthy (2022, Lemma 3).

Lemma D.5. For any function f ∈ F and any context x ∈ X , the following convex program of p ∈ ∆(A) is always
feasible:

∀a ∈ A :
∑
b

f(x, a, b)p(b) +
2

γp(a)
≤ 5A

γ
.

Furthermore, any solution p satisfies:

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
≤ γ

4
E

a,b∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

5A

γ

whenever γ ≥ 2A.

Lemma D.6. Assume that for each f ∈ F , there exists an associated function r : X ×A → [0, 1] such that f(x, a, b) =
r(x, a)− r(x, b) for any x ∈ X and a, b ∈ A. In this case, for any context x ∈ X , if we define p as

p(a) =


1

A+γ
(
r(x,πf (x))−r(x,a)

) a ̸= πf (x)

1−
∑

a̸=πf (x)
p(a) a = πf (x)

,

then we have

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
≤ γ E

a,b∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

A

γ

Proof of Lemma D.6. Fix any b ∈ A. Then, the distribution p can be rewritten as

p(a) =


(
A+ 2γ

(
r(x,πf (x))−r(x,b)+1

2 − r(x,a)−r(x,b)+1
2

))−1

a ̸= πf (x)

1−
∑

a̸=πf (x)
p(a) a = πf (x)

.
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Therefore, denoting f⋆(x, a, b) = r⋆(x, a)− r⋆(x, b) for some function r⋆, we have

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
= E

a∼p

[
r⋆(x, πf⋆(x))− r⋆(x, a)

]
=2 E

a∼p

[
r⋆(x, πf⋆(x))− r⋆(x, b) + 1

2
− r⋆(x, a)− r⋆(x, b) + 1

2

]
≤2 · 2γ E

a∼p

[(
r(x, a)− r(x, b) + 1

2
− r⋆(x, a)− r⋆(x, b) + 1

2

)2
]
+

A

γ

=γ E
a∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

A

γ

where for the inequality above we invoked Lemma E.2 with ŷ(a) = (r(x, a) − r(x, b) + 1)/2 and y⋆(a) = (r⋆(x, a) −
r⋆(x, b) + 1)/2. We note that the above holds for any b ∈ A. Hence, we complete the proof by sampling b ∼ p.

Lemma D.7. Assume f⋆ ∈ Ft for all t ∈ [T ]. Suppose there exists some t′ ∈ [T ] such that λt = 0 for all t ≤ t′. Then we
have

t′∑
t=1

Ztwt ≤ 56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆))

with probability at least 1− δ.

Proof. Since f⋆ ∈ Ft, we always have πf⋆(xt) ∈ At for all t ∈ [T ]. Hence, whenever Zt is zero, we have At = {πf⋆(xt)}
and thus we do not incur any regret. Hence, we know Ztwt is either 0 or at least ∆ by Lemma D.1. Let us fix an integer
m > 1/∆, whose value will be specified later. We divide the interval [∆, 1] into bins of width 1/m and conduct a refined
study of the sum of Ztwt:

t′∑
t=1

Ztwt ≤
t′∑

t=1

(1−∆)m−1∑
j=0

Ztwt · 1
{
Ztwt ∈

[
∆+

j

m
, ∆+

j + 1

m

]}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt1

{
wt ≥ ∆+

j

m

}

=

(1−∆)m−1∑
j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt1

{
sup

a,b∈At

sup
f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆+
j

m

}

=

(1−∆)m−1∑
j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆+
j

m

}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥
(
∆+

j

m

)}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

)
A2

t′∑
t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥
(
∆+

j

m

)}
︸ ︷︷ ︸

(∗)

where in the third inequality we replace the supremum over a, b by the summation over a, b, and in the last inequality we
further replace it by the expectation. Here recall that pt(a) is uniform when λt = 0, leading to the extra A2 factor. To deal
with (∗), we first apply Lemma E.3 to recover the empirical at and bt, and then apply Lemma D.4 to get an upper bound via
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the eluder dimension:

(∗) ≤2

t′∑
t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥
(
∆+

j

m

)}
+ 8 log(δ−1)

≤2

(
4β(

∆+ j
m

)2 + 1

)
dimE

(
F ;

∆

2A2

)
+ 8 log(δ−1)

≤ 10β(
∆+ j

m

)2 · dimE

(
F ;

∆

2A2

)
+ 8 log(δ−1)

with probability at least 1− δ. Plugging (∗) back, we obtain

t′∑
t=1

Ztwt ≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

)
· 10A2β(

∆+ j
m

)2 · dimE

(
F ;

∆

2A2

)
+ 8mA2 log(δ−1)

=10A2β · dimE

(
F ,

∆

2A2

) (1−∆)m−1∑
j=0

∆+ j+1
m(

∆+ j
m

)2 + 8mA2 log(δ−1)

≤10A2β · dimE

(
F ,

∆

2A2

)∆+ 1/m

∆2
+

(1−∆)m−1∑
j=1

2

∆ + j
m

+ 8mA2 log(δ−1)

≤10A2β · dimE

(
F ,

∆

2A2

) (1−∆)m−1∑
j=0

2

∆ + j
m

+ 8mA2 log(δ−1)

≤20A2β · dimE

(
F ,

∆

2A2

) (1−∆)m−1∑
j=0

∫ j

j−1

1

∆ + x
m

dx+ 8mA2 log(δ−1)

=20A2β · dimE

(
F ,

∆

2A2

)∫ (1−∆)m−1

−1

1

∆ + x
m

dx+ 8mA2 log(δ−1)

=20A2β · dimE

(
F ,

∆

2A2

)
·m log

(
1

∆−m−1

)
+ 8mA2 log(δ−1)

where for the second inequality, we use the fact that (j + 1)/m ≤ 2j/m for any j ≥ 1; for the third inequality, we assume
m > 1/∆. Setting m = 2/∆, we arrive at

t′∑
t=1

Ztwt ≤40A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/∆) + 16A2 log(δ−1)/∆

≤56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)),

which completes the proof.

Lemma D.8. Whenever

56A2β · dimE

(
F ,

∆

2A2

)
· log(2/(δ∆))/∆ <

√
AT/β,

we have λ1 = λ2 = · · · = λT = 0 with probability at least 1− δ.

Proof of Lemma D.8. We prove it via contradiction. Assume the inequality holds but there exists t′ for which λt′ = 1.
Without loss of generality, we assume that λt = 0 for all t < t′, namely that t′ is the first time that λt is 1. Then by definition
of λt′ , we have

t′−1∑
s=1

Zsws ≥
√
AT/β.
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On the other hand, by Lemma D.7, we have

t′−1∑
s=1

Zsws ≤ 56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)).

The combination of the above two inequalities contradicts with the conditions.

D.2. Proof of Lemma 2.2

Proof of Lemma 2.2. We prove it via contradiction. If no such arm exists, meaning that for any arm a, there exists an arm
b such that f⋆(x, a, b) < 0. Then we can find a sequence of arms (a1, a2, . . . , ak) such that f⋆(x, ai, ai+1) < 0 for any
i = 1, . . . , k − 1 and f⋆(x, ak, a1) < 0, which contradicts with the transitivity (Assumption 2.1).

D.3. Proof of Theorem 3.4

We begin by showing the worst-case regret upper bound.

Lemma D.9 (Worst-case regret upper bound). For Algorithm 1, assume f⋆ ∈ Ft for all t ∈ [T ]. Then, we have

RegretCB
T ≤ 38

√
ATβ · log(4δ−1)

with probability at least 1− δ.

Proof of Lemma D.9. We recall that the regret is defined as

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
.

Since at and bt are always drawn independently from the same distribution in Algorithm 1, we only need to consider the
regret of the at part in the following proof for brevity — multiplying the result by two would yield the overall regret.

We first observe the definition of λt in Algorithm 1: the left term
∑t−1

s=1 Zsws in the indicator is non-decreasing in t while
the right term remains constant. This means that there exists a particular time step t′ ∈ [T ] dividing the time horizon into
two phases: λt = 0 for all t ≤ t′ and λt = 1 for all t > t′. Now, we proceed to examine these two phases individually.

For all rounds before t′, we can compute the expected partial regret as

t′∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
=

t′∑
t=1

Zt E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤

t′∑
t=1

Ztwt ≤
√
ATβ, (8)

where the equality holds since we have At = {πf⋆(xt)} whenever Zt = 0 under the condition that f⋆ ∈ Ft. The first
inequality is Lemma D.2, and the second inequality holds by the definition of λt and the condition that λt = 0.
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On the other hand, for all rounds after t′, we have

T∑
t=t′+1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
=

T∑
t=t′+1

Zt E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤

T∑
t=t′+1

Zt

(
5A

γt
+

γt
4

E
a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2])

=

T∑
t=t′+1

Zt

(
5A√
AT/β

+

√
AT/β

4
E

a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2])

≤5
√
ATβ +

√
AT/β

4

T∑
t=t′+1

Zt E
a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2]

≤5
√

ATβ +

√
AT/β

2

T∑
t=t′+1

Zt

(
f⋆(xt, at, bt)− ft(xt, at, bt)

)2
+ 8
√

AT/β · log(4δ−1)

≤5
√

ATβ +

√
ATβ

2
+ 8
√
AT/β · log(4δ−1). (9)

where the first inequality holds by Lemma D.5 (or Lemma D.6 for specific function classes), the second equality is by the
definition of γt, the third inequality is by Lemma E.3, and the fourth inequality holds by Lemma D.3.

Putting the two parts, (8) and (9), all together, we arrive at

T∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤ 7
√

ATβ + 8
√

AT/β · log(4δ−1) ≤ 15
√
ATβ · log(4δ−1).

Now we apply Lemma E.3 again. The following holds with probability at least 1− δ/2,

T∑
t=1

f⋆(xt, πf⋆(xt), at) ≤ 2

T∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
+ 4 log(4δ−1) ≤ 19

√
ATβ · log(4δ−1).

The above concludes the regret of the at part. The regret of the bt can be shown in the same way. Adding them together, we
conclude that

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤ 38

√
ATβ · log(4δ−1).

Lemma D.10 (Instance-dependent regret upper bound). For Algorithm 1, assume f⋆ ∈ Ft for all t ∈ [T ]. Then, we have

RegretCB
T ≤ 2128A2β2 ·

dimE

(
F , ∆

2A2

)
∆

· log2(4/(δ∆))

with probability at least 1− δ.

Proof of Lemma D.10. We consider two cases. First, when

56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)) <
√

AT/β, (10)
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we invoke Lemma D.8 and get that λt = 0 for all t ∈ [T ]. Hence, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤2

T∑
t=1

Ztwt

≤112A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆))

≤2128A2β2 ·
dimE

(
F , ∆

2A2

)
∆

· log2(4/(δ∆))

where the first inequality is by Lemma D.2 and the fact that we incur no regret when Zt = 0 since f⋆ ∈ Ft. The second
inequality is by Lemma D.7.

On the other hand, when the contrary of (10) holds, i.e.,

56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)) ≥
√

AT/β, (11)

applying Lemma D.9, we have

RegretCB
T ≤38

√
ATβ · log(4δ−1)

=38β · log(4δ−1) ·
√

AT/β

≤38β · log(4δ−1) · 56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆))

≤2128A2β2 ·
dimE

(
F , ∆

2A2

)
∆

· log2(4/(δ∆))

where we apply the condition (11) in the second inequality.

Lemma D.11 (Query complexity). For Algorithm 1, assume f⋆ ∈ Ft for all t ∈ [T ]. Then, we have

QueriesCB
T ≤ min

{
T, 3136A3β3 dim

2
E

(
F , ∆

2A2

)
∆2

· log2(2/(δ∆))

}

with probability at least 1− δ.

Proof of Lemma D.11. We consider two cases. First, when

56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)) <
√
AT/β (12)
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we can invoke Lemma D.8 and get that λt = 0 for all t ∈ [T ]. Hence,

QueriesCB
T =

T∑
t=1

Zt

=

T∑
t=1

Zt1{wt ≥ ∆}

=

T∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}

≤
T∑

t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}

≤A2
T∑

t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}
︸ ︷︷ ︸

(∗)

where the second equality is by Lemma D.1, the second inequality holds as pt(a) is uniform for any a, b when λt = 0. We
apply Lemma E.3 and Lemma D.4 to (∗) and obtain

(∗) ≤2

T∑
t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥ ∆

}
+ 8 log(δ−1)

≤2

(
4β

∆2
+ 1

)
dimE(F ; ∆) + 8 log(δ−1)

≤10β

∆2
· dimE(F ; ∆) + 8 log(δ−1).

Plugging this back, we obtain

QueriesCB
T ≤10A2β

∆2
· dimE(F ; ∆) + 8A2 log(δ−1)

≤3136A3β3 dim
2
E

(
F , ∆

2A2

)
∆2

· log2(2/(δ∆)).

On the other hand, when the contrary of (12) holds, i.e.,

56A2β ·
dimE

(
F , ∆

2A2

)
∆

· log(2/(δ∆)) ≥
√

AT/β.

Squaring both sides, we obtain

3136A4β2 dim
2
E

(
F , ∆

2A2

)
∆2

· log2(2/(δ∆)) ≥ AT/β

which leads to

T ≤ 3136A3β3 dim
2
E

(
F , ∆

2A2

)
∆2

· log2(2/(δ∆)).

We note that we always have QueriesCB
T ≤ T , and thus,

QueriesCB
T ≤ T ≤ 3136A3β3 dim

2
E

(
F , ∆

2A2

)
∆2

· log2(2/(δ∆)).

Hence, we complete the proof.

Having established the aforementioned lemmas, we are now able to advance towards the proof of Theorem 1.

Proof of Theorem 3.4. By Lemma D.3 and the construction of version spaces Ft in Algorithm 1, we have f⋆ ∈ Ft for all
t ∈ [T ] with probability at least 1− δ. Then, the rest of the proof follows from Lemmas D.9 to D.11.

21



Contextual Bandits and Imitation Learning with Preference-Based Active Queries

D.4. Proof of Theorem B.1

In this section, we will prove the following theorem, which is stronger than Theorem B.1.

Theorem D.12 (Lower bounds). The following two claims hold:

(1) for any algorithm, there exists an instance that leads to RegretCB
T ≥ Ω(

√
AT );

(2) for any algorithm achieving a worse-case expected regret upper bound in the form of E[RegretCB
T ] ≤ O(

√
A·T 1−β) for

some β > 0, there exists an instance with gap ∆ =
√
A · T−β that results in E[RegretCB

T ] ≥ Ω(A/∆) = Ω(
√
A · T β)

and E[QueriesCB
T ] ≥ Ω(A/∆2) = Ω(T 2β).

We observe that Theorem B.1 can be considered as a corollary of the above theorem when setting β = 1/2.

In what follows, we will first demonstrate lower bounds in the setting of multi-armed bandits (MAB) with active queries and
subsequently establish a reduction from it to contextual dueling bandits in order to activate these lower bounds. We start by
formally define the setting of MAB with active queries below.

Multi-armed bandits with active queries. We consider a scenario where there exist A arms. Each arm a is assumed to
yield a binary reward (0 or 1), which is sampled from a Bernoulli distribution Bern(r̄a), where r̄a denotes the mean reward
associated with arm a.The arm with the highest mean reward is denoted by a⋆ := argmaxa r̄a. Let ∆a := r̄a⋆ − r̄a denote
the gap of arm a ∈ [A]. The interaction proceeds as follows: at each round t ∈ [T ], we need to pull an arm but can choose
whether to receive the reward signal (denote this choice by Zt). The objective is to minimize two quantities: the regret and
the number of queries,

RegretT =

T∑
t=1

∆at , QueriesT =

T∑
t=1

Zt. (13)

Towards the lower bounds, we will start with a bound on the KL divergence over distributions of runs under two different
bandits. This result is a variant of standard results which can be found in many bandit literature (e.g., Lattimore & Szepesvári
(2020)).

Lemma D.13. Let I1 and I2 be two instances of MAB. We define p1 and p2 as their respective distributions over the
outcomes of all pulled arms and reward signals when a query is made. Concretely, p1 and p2 are measuring the probability
of outcomes (denoted by O) in the following form:

O =
(
Z1, a1, (r1), . . . , ZT , aT , (rT )

)
where the reward rt is included only when Zt = 1, and we added parentheses above to indicate this point. We denote Pr1
(resp. Pr2) as the reward distribution of I1 (resp. I2). We define n̄a =

∑T
t=1 Zt1{at = a} as the number of times arm a is

pulled when making a query. Then, given any algorithm A, the Kullback–Leibler divergence between p1 and p2 can be
decomposed in the following way

KL(p1, p2) =

A∑
a=1

E
p1

[n̄a] ·KL
(
Pr1(r | a),Pr2(r | a)

)
.

Proof of Lemma D.13. We define the conditional distribution

Pr1(rt |Zt, at)

{
Pr1(rt | at) if Zt = 1

1 if Zt = 0
,

and similarly for Pr2. Additionally, we denote PrA as the probability associated with algorithm A. Then, for any outcome
O, we have

p1(O) =

T∏
t=1

PrA
(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr1(rt |Zt, at),
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and we can write p2(O) in a similar manner. Hence,

KL(p1, p2) = E
O∼p1

[
log

(∏T
t=1 PrA

(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr1(rt |Zt, at)∏T

t=1 PrA
(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr2(rt |Zt, at)

)]

= E
O∼p1

[
T∑

t=1

log

(
Pr1(rt |Zt, at)

Pr2(rt |Zt, at)

)]

= E
O∼p1

[
T∑

t=1

Zt log

(
Pr1(rt | at)
Pr2(rt | at)

)]

= E
O∼p1

[
T∑

t=1

Zt E
rt∼Pr1(· | at)

[
log

(
Pr1(rt | at)
Pr2(rt | at)

)]]

= E
O∼p1

[
T∑

t=1

Zt ·KL
(
Pr1(· | at),Pr2(· | at)

)]

=

A∑
a=1

E
O∼p1

[n̄a] ·KL
(
Pr1(· | at),Pr2(· | at)

)

where the third equality holds by the definition of Pr1 and Pr2.

The following lemma establishes lower bounds for MAB with active queries. It presents a trade-off between the regret and
the number of queries.

Lemma D.14. Let I denote the set of all MAB instances. Assume A is an algorithm that achieves the following worst-case
regret upper bound for some C and β:

E
[
RegretT

]
≤ CT 1−β ,

for all I ∈ I. Then, for any MAB instance I ∈ I, the regret and the number of queries made by algorithm A are lower
bounded:

E
[
RegretT

]
≥
∑
a̸=a⋆

ζ

∆a
log

(
∆a

4CT−β

)
, E

[
QueriesT

]
≥
∑
a ̸=a⋆

ζ

∆2
a

log

(
∆a

4CT−β

)

where the coefficient ζ = mina min{r̄a, 1− r̄a} depends on the instance I .

Proof of Lemma D.14. For any MAB instance I and any arm a†, we define a corresponding MAB instance I ′ as follows.
Denote r̄ and r̄′ as the mean reward of I and I ′, respectively. For I ′, we set the mean reward r̄′a = r̄a for any a ̸= a† and
r̄′a† = r̄a† + 2∆a† . Consequently, the optimal arm of I ′ is a† with margin ∆a† . Let na denote the number of times that arm
a is pulled. We define the event

E = {na† > T/2}.

Then, we have

E
p

[
RegretT

]
≥ T∆a†

2
· p(E), E

p′

[
RegretT

]
≥ T∆a†

2
· p′(E∁).
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Hence,

2CT 1−β ≥E
p

[
RegretT

]
+ E

p′

[
RegretT

]
≥T∆a†

2

(
p(E) + p′(E∁)

)
=
T∆a†

2

(
1−

(
p′(E)− p(E)

))
≥T∆a†

2

(
1− TV

(
p, p′

))
≥T∆a†

2

(
1−

√
1− exp

(
−KL(p, p′)

))
≥T∆a†

2
exp

(
−1

2
·KL(p, p′)

)
.

By Lemma D.13, we have

KL(p, p′) =

A∑
a=1

E
p
[n̄a] ·KL

(
Pr(r | a),Pr′(r | a)

)
=E

p
[n̄a† ] ·KL

(
Pr(r | a†),Pr′(r | a†)

)
≤E

p
[n̄a† ] ·∆2

a† · 2/ζ

where the last inequality is by Lemma E.6. Putting the above two inequality together, we arrive at

E
p
[n̄a† ] ≥ ζ

∆2
a†

log

(
∆a†

4CT−β

)
.

This establishes a query lower bound for arm a†. Consequently, we have

E[RegretT ] ≥
∑
a̸=a⋆

E
p
[n̄a] ·∆a ≥

∑
a̸=a⋆

ζ

∆a
log

(
∆a

4CT−β

)
,

and similarly,

E[QueriesT ] ≥
∑
a̸=a⋆

E
p
[n̄a] ≥

∑
a̸=a⋆

ζ

∆2
a

log

(
∆a

4CT−β

)
.

Now we can proceed with the proof of Theorem D.12.

Proof of Theorem D.12. We will show a reduction from the the multi-armed bandits with active queries to the contextual
dueling bandits in order to apply lower bounds from the MAB literature and the ones established above.

Reduction. Since we focus on the multi-armed bandit where no context is involved, we just ignore the notation of
context everywhere for brevity. For the dueling setting, given two arms a and b, we define f⋆(a, b) = r̄a − r̄b and let the
preference-based feedback be obtained in the following process:

1. We pull both arm once, obtaining reward ya, yb ∈ {0, 1}.

2. If ya > yb, we return 1. If ya < yb, we return −1. Otherwise (i.e., ya = yb = 1 or 0), we return either −1 or 1 with
equal probability, 1/2.
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Then we can verify that the probability of returning 1 is (r̄a − r̄b + 1)/2. So we can just specify the link function to be
ϕ(d) = (d+ 1)/2. As we verified earlier, Φ =

∫
ϕ is strongly convex (Example 2). Moreover, if we define the gap of an

MAB as ∆̄ := mina̸=a⋆(r̄a⋆ − r̄a) where a⋆ := argmaxi r̄i, then we have ∆̄ = ∆ in this reduction. We futher note that
the regret of MAB is

T∑
t=1

(r̄a⋆ − r̄at
) +

T∑
t=1

(r̄a⋆ − r̄bt),

which, by our definition of f⋆, is equivalent to the preference-based regret. The number of queries is clearly equivalent as
well.

Now, we are ready to prove the two claims in our statement.

Proof of the first claim. We refer the reader to Lattimore & Szepesvári (2020, Theorem 15.2) for a proof of the minimax
regret lower bound of Ω(

√
AT ) for the MAB. Through the reduction outlined above, that lower bound naturally extends to

the dueling bandits setting, yielding RegretCB
T ≥ Ω(

√
AT ).

Proof of the second claim. We choose an arbitrary MAB for which ζ = mina min{r̄a, 1− r̄a} > 0.2 and the gaps of all
arms are equal to ∆. Invoking Lemma D.14, we have

E
[
RegretT

]
≥ 0.2(A− 1)

∆
log

(
∆

4CT−β

)
≥ Ω

(
A

∆

)
, E

[
QueriesT

]
≥ 0.2(A− 1)

∆2
log

(
∆

4CT−β

)
≥ Ω

(
A

∆2

)
.

We further choose ∆ = 40CT−β and C =
√
A, leading to

E
[
RegretT

]
≥ 0.2(A− 1)

40
√
A

· T β = Ω
(√

A · T β
)
, E

[
QueriesT

]
≥ 0.2(A− 1)

1600A
· T 2β = Ω

(
T 2β

)
.

Via the reduction we have shown above, these lower bounds naturally extend to the contextual dueling bandit setting, thereby
completing the proof.

D.4.1. ALTERNATIVE LOWER BOUNDS CONDITIONING ON THE LIMIT OF REGRET

In this section, we establish an analogue of Theorem D.12 but under a different condition. We first introduce the concept of
diminishing regret.

Definition D.15. We say that an algorithm guarantees a diminishing regret if for all contextual dueling bandit instances and
p > 0, it holds that

lim
T→∞

E[RegretCB
T ]

T p
= 0.

The lower bounds under the assumption of diminishing regret guarantees are stated as follows.

Theorem D.16 (Lower bounds). The following two claims hold:

(1) for any algorithm, there exists an instance that leads to RegretCB
T ≥ Ω(

√
AT );

(2) for any gap ∆ and any algorithm achieving diminishing regret, there exists an instance with gap ∆ that results in
E[RegretCB

T ] ≥ Ω(A/∆) and E[QueriesCB
T ] ≥ Ω(A/∆2) for sufficiently large T .

We should highlight that the condition of diminishing regret (Theorem D.16) and the worst-case regret upper bounds
(Theorems B.1 and D.12) are not comparable in general. However, Theorem D.16 is also applicable to our algorithm
(Algorithm 1) since our algorithm possesses an instance-dependent regret upper bound that is clearly diminishing.

To prove Theorem D.16, we first show the following lemma, which is a variant of Lemma D.14.

Lemma D.17. Let I denote the set of all MAB instances. Assume A is an algorithm that achieves diminishing regret for all
MAB instances in I, i.e., for any I ∈ I and p > 0, it holds that

lim
T→∞

E[RegretT ]
T p

= 0.
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Then, for any MAB instance I ∈ I, the regret and the number of queries made by algorithm A are lower bounded in the
following manner:

lim inf
T→∞

E
[
RegretT

]
log T

≥
∑
a ̸=a⋆

ζ

∆a
, lim inf

T→∞

E
[
QueriesT

]
log T

≥
∑
a ̸=a⋆

ζ

∆2
a

where the coefficient ζ := mina min{r̄a, 1− r̄a} depends on the instance I . Recall that RegretT and QueriesT are defined
in (13).

Proof of Lemma D.17. The proof is similar to Lemma D.14. For any MAB instance I ∈ I and any arm a†, we define a
corresponding MAB instance I ′ as follows. Denote r̄ and r̄′ as the mean reward of I and I ′, respectively. For I ′, we set the
mean reward r̄′a = r̄a for any a ̸= a† and r̄′a† = r̄a† + 2∆a† . Consequently, the optimal arm of I ′ is a† with margin ∆a† .
Let na denote the number of times that arm a is pulled. We define the event

E = {na† > T/2}.

Let p and p′ denote the probability of I and I ′, respectively. Then, we have

E
p

[
RegretT

]
≥ T∆a†

2
· p(E), E

p′

[
RegretT

]
≥ T∆a†

2
· p′(E∁)

where E∁ means the complement of event E. Hence,

E
p

[
RegretT

]
+ E

p′

[
RegretT

]
≥T∆a†

2

(
p(E) + p′(E∁)

)
=
T∆a†

2

(
1−

(
p′(E)− p(E)

))
≥T∆a†

2

(
1− TV

(
p, p′

))
≥T∆a†

2

(
1−

√
1− exp

(
−KL(p, p′)

))
≥T∆a†

2
exp

(
−1

2
·KL(p, p′)

)
.

Here TV denotes the total variation distance. By Lemma D.13, we have

KL(p, p′) =

A∑
a=1

E
p
[n̄a] ·KL

(
Pr(r | a),Pr′(r | a)

)
=E

p
[n̄a† ] ·KL

(
Pr(r | a†),Pr′(r | a†)

)
≤E

p
[n̄a† ] ·∆2

a† · 2/ζ

where the last inequality is by Lemma E.6. Putting it all together, we arrive at

E
p
[n̄a† ] ≥ ζ

∆2
a†

log

 T∆a†

2
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
 .

Taking the limit on both sides yields

lim inf
T→∞

Ep[n̄a† ]

log T
≥ lim inf

T→∞

ζ

∆2
a†

·

log

 T∆
a†

2

(
Ep

[
RegretT

]
+Ep′

[
RegretT

])


log T

= lim inf
T→∞

ζ

∆2
a†

·

1 +
log(∆a†/2)

log T︸ ︷︷ ︸
(i)

−
log
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
log T︸ ︷︷ ︸
(ii)

 .
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Here the limit of (i) is clearly 0. For the limit of (ii), we note that by the definition of diminishing regret, for any C > 0,
there exists a T ′ such that E[RegretT ]/T p ≤ C for any T > T ′. This implies

log
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
log T

≤
log
(
2CT p

)
log T

=
log(2C)

log T
+ p

for any p > 0. Therefore, the limit of (ii) is also 0. Plugging these back, we obtain

lim inf
T→∞

Ep[n̄a† ]

log T
≥ ζ

∆2
a†
.

This establishes a query lower bound for arm a†. Consequently, we have

lim inf
T→∞

E[RegretT ]
log T

≥ lim inf
T→∞

∑
a̸=a⋆

Ep[n̄a] ·∆a

log T
≥
∑
a̸=a⋆

ζ

∆a
,

and similarly,

lim inf
T→∞

E[QueriesT ]

log T
≥ lim inf

T→∞

∑
a̸=a⋆

Ep[n̄a]

log T
≥
∑
a̸=a⋆

ζ

∆2
a

.

Now, we proceed with the proof of Theorem D.16.

Proof of Theorem D.16. The proof of the first claim is the same as Theorem D.12, so we will omit it here. Let us now focus
on the proof of the second claim. By Lemma D.17, for any algorithm achieving diminishing regret, the following is true for
any MAB instance:

lim inf
T→∞

E
[
RegretT

]
log T

≥
∑
a̸=a⋆

ζ

∆a
, lim inf

T→∞

E
[
QueriesT

]
log T

≥
∑
a̸=a⋆

ζ

∆2
a

.

We choose an arbitrary MAB for which ζ ≥ 0.2 and the gaps of all suboptimal arms are equal to ∆. Then, for this instance,
we have

lim inf
T→∞

E
[
RegretT

]
log T

≥ 0.2(A− 1)

∆
, lim inf

T→∞

E
[
QueriesT

]
log T

≥ 0.2(A− 1)

∆2
.

By the definition of limit, when T is large enough (exceeding a certain threshold), we have

E
[
RegretT

]
log T

≥ 0.1(A− 1)

∆
,

E
[
QueriesT

]
log T

≥ 0.1(A− 1)

∆2
.

Via the reduction we have shown in the proof of Theorem D.12, these lower bounds naturally extend to the contextual
dueling bandit setting, thereby completing the proof.

D.5. Proof of Theorem B.2

Proof of Theorem B.2. We establish the bounds for regret and the number of queries, consecutively. First, we set an arbitrary
gap threshold ϵ > 0. Since our algorithm is independent of ϵ, we can later choose any ϵ that minimizes the upper bounds.

Proof of regret. We start with the regret upper bound. By definition, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
.

Since at and bt are always drawn independently from the same distribution in Algorithm 1, we only need to consider the
regret of the at part in the following proof for brevity — multiplying the result by two would yield the overall regret.

The worst-case regret upper bound presented in Lemma D.9 doesn’t reply on the gap assumption and thus remains applicable
in this setting. Hence, we only need to prove the instance-dependent regret upper bound. To that end, we first need an
analogue of Lemma D.8.
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Lemma D.18. Fix any ϵ > 0. Whenever

2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ)) <
√

AT/β,

we have λ1 = λ2 = · · · = λT = 0 with probability at least 1− δ.

Proof of Lemma D.18. The proof is similar to Lemma D.8 and is via contradiction. Assume the inequality holds but there
exists t′ for which λt′ = 1. Without loss of generality, we assume that λt = 0 for all t < t′, namely that t′ is the first time
that λt is 1. Then by definition of λt′ , we have

t′−1∑
s=1

Zsws ≥
√
AT/β.

On the other hand, we have

t′−1∑
s=1

Zsws =

t′−1∑
s=1

1{Gap(xt) ≤ ϵ}Zsws +

t′−1∑
s=1

1{Gap(xt) > ϵ}Zsws

≤2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ))

where the inequality is by Lemma D.7. The above two inequalities contradicts with the conditions.

Towards an instance-dependent regret upper bound, we adapt the proof of Lemma D.10 to this setting. We consider two
cases. First, when

2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ)) <
√

AT/β, (14)

we invoke Lemma D.18 and get that λt = 0 for all t ∈ [T ]. Hence, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤2

T∑
t=1

1{Gap(xt) ≤ ϵ}Ztwt + 2

T∑
t=1

1{Gap(xt) > ϵ}Ztwt

≤4Tϵ + 112A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ))

≤76β · log(4δ−1) · Tϵ + 2128A2β2 ·
dimE

(
F , ϵ

2A2

)
ϵ

· log2(4/(δϵ))

where the first inequality is by Lemma D.2 and the fact that we incur no regret when Zt = 0 since f⋆ ∈ Ft. The second
inequality is by Lemma D.7.

On the other hand, when the contrary of (14) holds, i.e.,

2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ)) ≥
√

AT/β, (15)

applying Lemma D.9, we have

RegretCB
T ≤38

√
ATβ · log(4δ−1)

=38β · log(4δ−1) ·
√

AT/β

≤38β · log(4δ−1) ·

(
2Tϵ + 56A2β ·

dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ))

)

≤76β · log(4δ−1) · Tϵ + 2128A2β2 ·
dimE

(
F , ϵ

2A2

)
ϵ

· log2(4/(δϵ))
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where we apply the condition (15) in the second inequality.

Proof of the number of queries. To show an upper bound for the number of queries, we also consider two cases. First,
when

2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ)) <
√

AT/β, (16)

we can invoke Lemma D.18 and get that λt = 0 for all t ∈ [T ]. Hence, similar to the proof of Lemma D.11, we have

QueriesCB
T =

T∑
t=1

Zt

=

T∑
t=1

Zt1{Gap(xt) < ϵ}+
T∑

t=1

Zt1{Gap(xt) ≥ ϵ}

=Tϵ +

T∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}

≤Tϵ +

T∑
t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}

≤Tϵ +A2
T∑

t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}
︸ ︷︷ ︸

(∗)

where the second inequality holds as pt(a) is uniform for any a, b when λt = 0. We apply Lemma E.3 and Lemma D.4 to
(∗) and obtain

(∗) ≤2

T∑
t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥ ϵ

}
+ 8 log(δ−1)

≤2

(
4β

ϵ2
+ 1

)
dimE(F ; ϵ) + 8 log(δ−1)

≤10β

ϵ2
· dimE(F ; ϵ) + 8 log(δ−1).

Plugging this back, we obtain

QueriesCB
T ≤Tϵ +

10A2β

ϵ2
· dimE(F ; ϵ) + 8A2 log(δ−1)

≤8T 2
ϵ β/A+ 6272A3β3 dim

2
E

(
F , ϵ

2A2

)
ϵ2

· log2(2/(δϵ)).

On the other hand, when the contrary of (16) holds, i.e.,

2Tϵ + 56A2β ·
dimE

(
F , ϵ

2A2

)
ϵ

· log(2/(δϵ)) ≥
√

AT/β.

Squaring both sides and leveraging the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

8T 2
ϵ + 6272A4β2 dim

2
E

(
F , ϵ

2A2

)
ϵ2

· log2(2/(δϵ)) ≥ AT/β

which leads to

T ≤ 8T 2
ϵ β/A+ 6272A3β3 dim

2
E

(
F , ϵ

2A2

)
ϵ2

· log2(2/(δϵ)).
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We note that we always have QueriesCB
T ≤ T and thus

QueriesCB
T ≤ T ≤ 8T 2

ϵ β/A+ 6272A3β3 dim
2
E

(
F , ϵ

2A2

)
ϵ2

· log2(2/(δϵ)).

Minimizing on ϵ. Given that the aforementioned proofs hold for any threshold ϵ, we can select the specific value of ϵ that
minimizes the upper bounds. Hence, we deduce the desired result.

D.6. Proof of Theorem 4.2

Proof of Theorem 4.2. The upper bound of the number of queries is straightforward: Algorithm 2 is simply running H
instances of Algorithm 1, so the total number of queries is simply the sum of these H instances. For bounding the regret, we
have

RegretILT =

T∑
t=1

V πe
0 (xt,0)− V πt

0 (xt,0)

≤
H−1∑
h=0

T∑
t=1

E
xt,h,at,h∼d

πt
xt,0,h

[
Qπe

h (xt,h, π
πe

h (xt,h))−Qπe

h (xt,h, at,h)
]

≤
H−1∑
h=0

T∑
t=1

E
xt,h,at,h∼d

πt
xt,0,h

[
Qπe

h (xt,h, π
+
h (xt,h))−Qπe

h (xt,h, at,h)
]

−
H−1∑
h=0

T∑
t=1

E
xt,h∼d

πt
xt,0,h

[
Aπe

h (xt,h, π
+
h (xt,h))

]
≤H · E

[
RegretCB

T

]
−AdvT .

where the first inequality holds by Lemma E.5, and we denote π+
h (xt,h) = argmaxa Q

πe

h (xt,h, a) in the second inequality.
Then, we can plug the upper bound of RegretCB

T (Theorem 3.4). Moreover, we need to take a union bound over all
h ∈ [H].

E. Supporting Lemmas
Lemma E.1 (Kakade & Tewari (2008, Lemma 3)). Suppose X1, . . . , XT is a martingale difference sequence with |Xt| ≤ b.
Let

Vart Xt = Var (Xt | X1, . . . , Xt−1)

Let V =
∑T

t=1 Vart Xt be the sum of conditional variances of Xt ’s. Further, let σ =
√
V . Then we have, for any δ < 1/e

and T ≥ 3,

Pr

(
T∑

t=1

Xt > max{2σ, 3b
√
ln(1/δ)}

√
ln(1/δ)

)
≤ 4 ln(T )δ.

The following lemma is adopted from Foster & Rakhlin (2020, Lemma 3).

Lemma E.2. For any vector ŷ ∈ [0, 1]A, if we define p to be

p(a) =


1

A+γ
(
ŷ(â)−ŷ(a)

) if a ̸= â,

1−
∑

a̸=â p(a) if a = â

where â = argmaxa ŷ(a), then for any y⋆ ∈ [0, 1]A and γ > 0, we have

E
a∼p

[(
y⋆(a⋆)− y⋆(a)

)
− γ
(
ŷ(a)− y⋆(a)

)2]
≤ A

γ
.
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Lemma E.3 (Zhu & Nowak (2022, Lemma 2)). Let (Zt)t≤T to be real-valued sequence of positive random variables
adapted to a filtration Ft. If |Zt| ≤ B almost surely, then with probability at least 1− δ,

T∑
t=1

Zt ≤
3

2

T∑
t=1

Et [Zt] + 4B log
(
2δ−1

)
,

and
T∑

t=1

Et [Zt] ≤ 2

T∑
t=1

Zt + 8B log
(
2δ−1

)
.

Lemma E.4. Let X be a non-negative valued random variable such that X ≤ B almost surely. Then, for any α > 0,

1{E[X] ≥ α} ≤ J

J∑
j=1

E
[
2j1{X ≥ 2j−2α}

]
,

where J = log
(⌈

4B
α

⌉)
.

Proof of Lemma E.4. First note that if E[X] < α, then 1{E[X] ≥ α} = 0, which trivially implies the final statement. In
the following, we thus consider the scenario in which E[X] ≥ α.

We define the set of points {αj}Jj=1 where αj := 2j−2α. Then, we claim that there must exists some j′ ∈ [J ] for which

Pr
(
X ∈ [αj′ , αj′+1)

)
≥ 1

J2j′
. (17)

We prove (17) via contradiction. Suppose (17) doesn’t hold, which means Pr(X ∈ [αj , αj+1)) < 1/(J2j) for all j ∈ [J ].
Then, we must have that

E[X] = E
[
X1{X <

α

2
}
]
+

J∑
j=1

E[X1{αj ≤ X < αj+1}]

≤ α

2
+

J∑
j=1

E[αj+11{αj ≤ X < αj+1}]

=
α

2
+

J∑
j=1

αj+1 Pr(αj ≤ X < αj+1)

<
α

2
+

J∑
j=1

2j−1α · 1

J2j

=
α

2
+

J∑
j=1

α

2J

= α,

where the second inequality follows from plugging in the supposed bound on Pr(X ∈ [αj , αj+1)). However, the above
contradictions the fact that E[X] ≥ α, and thus (17) must hold.

Using (17), we note that

1{E[X] ≥ α} = 1 ≤ J2j
′
Pr(X ∈ [αj′ , αj′+1)),
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which implies that

1{E[X] ≥ α} ≤ J E
[
2j

′
1{X ∈ [αj′ , αj′+1)}

]
≤ J E

[
2j

′
1{X ≥ αj′}

]
≤ J

J∑
j=1

E
[
2j1{X ≥ αj}

]
= J

J∑
j=1

E
[
2j1{X ≥ 2j−2α}

]
,

where the last line follows by plugging in the definition of αj .

Lemma E.5 (Performance difference lemma (Agarwal et al., 2019)). For any two policies π and π′ and any state x0 ∈ X ,
we have

V π
0 (x0)− V π′

0 (x0) =

H−1∑
h=0

E
xh,ah∼dπ

x0,h

[
Aπ′

h (xh, ah)
]

where Aπ
h(x, a) = Qπ

h(x, a)− V π
h (x, a) and dπx0,h

(x, a) is the probability of π reaching the state-action pair (x, a) at time
step h starting from initial state x0.

Lemma E.6. For any two Bernoulli distributions Bern(x) and Bern(y) with x, y ∈ [b, 1− b] for some 0 < b ≤ 1/2, the
KL divergence of them is upper bounded as follows:

KL
(
Bern(x),Bern(y)

)
≤ 2(x− y)2

b
.

Proof of Lemma E.6. Denote ∆ = x− y. Then, by definition, we have

KL
(
Bern(x),Bern(y)

)
=x ln

x

y
+ (1− x) ln

1− x

1− y

=x ln
x

x−∆
+ (1− x) ln

1− x

1− x+∆

=x ln

(
1 +

∆

x−∆

)
+ (1− x) ln

(
1− ∆

1− x+∆

)
Since ln(1 + x) ≤ x for all x > −1, we have

KL
(
Bern(x),Bern(y)

)
≤x · ∆

x−∆
− (1− x) · ∆

1− x+∆

=∆ ·
(

x

x−∆
− 1− x

1− x+∆

)
=∆ ·

(
∆

x−∆
+

∆

1− x+∆

)
≤∆2 ·

(
1

y
+

1

1− y

)
≤2∆2

b
.
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