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ABSTRACT

Partial differential equations (PDEs) have a wide range of applications in physics
and computational science. Solving PDEs numerically is usually done by first
meshing the solution region with finite difference method (FDM) and then using
iterative methods to obtain an approximation of the exact solution on these meshes,
hence decades of research to design iterators with fast convergence properties.
With the renaissance of neural networks, many scholars have considered using deep
learning to speed up solving PDEs, however, these methods leave poor theoretical
guarantees, or sub-convergence. We build our iterator on top of the existing standard
hand-crafted iterative solvers. At the operational level, for each iteration, we use
a deep convolutional network to modify the current iterative result based on the
historical iterative results as a way to achieve faster convergence. At the theoretical
level, due to the introduced historical iterative results, our iterator is a new iterative
format: Unfixed Bias Iterator. We provide sufficient theoretical guarantees, and
theoretically prove that our iterator can obtain correct results with convergence, as
well as a better generalization. Finally, sufficient numerical experiments show that
our iterator has a convergence speed far beyond that of other iterators and exhibits
strong generalization ability.

1 INTRODUCTION

Partial differential equations (PDEs) play an important role in science and engineering disciplines,
and numerous physical problems are themselves PDEs, such as sound propagation, fluid flow,
electromagnetic fields, efc.. Numerical solutions to PDEs have been developed over the past few
decades and successfully applied to many real-world applications, i.e., aerodynamics and weather
forecasting. These numerical methods, the most representative of which is the finite difference
method (FDM) Mitchell & Griffiths| (1980), first grid the solution region of the problem and then
obtain an approximation of the exact solution at discrete grid points. Nevertheless, as the size and
complexity of the problem increase, the computational complexity of the numerical methods becomes
extremely large, and therefore, reducing the computational complexity of the numerical solution of
PDEs has become a hot research topic in recent years.

With the renaissance of neural networks, data-driven deep learning methods have made breakthroughs
on a variety of tasks|Qi et al.[|(2016)); [He et al.|(2015); |Vinod, (2019), and as a result, some approaches
Bachouch et al.|(2018)); Beck et al.| (2019); |Pirmorad et al.[(2021)); |[Luz et al.|(2020); Berg & Nystrom:
(2017);/Chan-Wai-Nam et al.|(2019); Han et al.|(2017); Hure€ et al.| (2019); Hutzenthaler et al.|(2019);
Li et al.[(2003)); |Khoo et al.|(2018);|Lagaris et al.| (1998} 2000); Lambrianides et al.|(2020); |Yang et al.
(2020); [Lye et al.| (2020) have considered using deep learning models to reduce the computational
complexity of solving PDEs, and have achieved encouraging results. Some methods [Huang et al.
(2021a); L1 et al.[(2021); [Huang et al.[(2021b)); Han & Lee|(2021a3b)); Ben- Yair et al.| (2021); Malik
et al.[(2020); |Stevens & Colonius| (2020); L1 et al.| (2020); Dockhorn|(2019) directly output numerical
solutions of PDEs by training an end-to-end deep learning model with the conditions of the PDEs as
input. The computational complexity of these methods depends entirely on the size of the network,
but their accuracy and generalization are not guaranteed given the uninterpretability of the deep
models, so these methods are not applicable in some fields where the accuracy of numerical solutions
is strictly required.

To solve this problem, some of the methods|Shit et al.[(2019); He & Xu|(2019); |Greenfeld et al.|(2019));
Taghibakhshi et al.|(2021); Hsieh et al.[(2019) are built directly on top of existing hand-designed
iterative methods Frankel (1950); Graser & Sander (2014); Hackbusch & Wittum|(1998)), and they can
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inherit many qualities of existing iterative methods, such as the ability to obtain numerical solutions
with arbitrary accuracy, a certain degree of generalization, efc., and even some of them Shit et al.
(2019); Hsieh et al.[(2019) carry out theoretical proofs. Specifically, they train a deep network which
can correct the current iteration value by using the residual between the current iteration value and
the last iteration value, but using only the residual of two adjacent iterations to estimate the correction
value is obviously not accurate enough. In this paper, we consider using the residual generated by all
adjacent iterations to estimate the correction value, which can greatly improve the accuracy of the
correction value and thus substantially speed up the convergence speed of the iterator. If we regard
the residual analogously to the gradient, other methods are similar to the gradient descent method,
while our method is similar to the momentum gradient descent method Ruder (2016).

At the operational level, our method only applies the momentum trick compared to other methods,
but at the theoretical level, the difference between our method and other methods is that most of the
hand-designed iterative methods and deep learning-based iterative methods are by nature a linear
iterator |[Hsieh et al.| (2019)), while ours is not. A linear iterator has a fixed update matrix (7") and bias
(). The purpose of the models trained by the deep learning-based method is to find a 7" and c that
makes the iterator converge faster. The disadvantage of this class of iterators is that the bias ¢ cannot
be modified adaptively with iteration, limiting the flexibility of the iterator. However, our iterator no
longer has a fixed bias due to the introduction of residuals generated by historical iteration values,
and its bias can be continuously changed with iterations, enabling it to give a different bias for each
iteration, which is more flexible and versatile, and also has faster convergence. We call our iterator an
Unfixed Bias Iterator. In fact, the linear iterator is just a special case of an unfixed bias iterator.

Linear iterator is widely used in the industry despite its many drawbacks because it has sufficient
theoretical guarantees to determine whether a new linear iterator converges and has generalization.
This paper also provides sufficient theoretical guarantees for our proposed new iterative format:
the unfixed bias iterator, and analyzes the convergence and generalization of our iterator. Finally,
adequate numerical experiments show that our method can converges much faster than other methods.

Our contributions are summarized as follows:

* We introduce a new iterative format: the unfixed bias iterator, and provide sufficient theoreti-
cal guarantees for it, after which we prove theoretically that our iterator can converge and
has some generalization.

* We propose a novel iterator that can estimate the correction value of the current iteration
value using the residuals generated by all adjacent iteration values. The correction value
estimated by our iterator is more accurate compared to other methods, thus greatly improving
the convergence speed of the iteration.

* Experiments show that our iterator obtains SOTA performance in terms of convergence
speed.

2 RELATED WORK

2.1 END-TO-END METHODS

The end-to-end methods |[Huang et al.| (2021a)); |Li et al.| (2021); [Huang et al.| (2021b); Han & Lee
(2021atb); Ben-Yair et al.| (2021); Malik et al.| (2020); [Stevens & Coloni1us| (2020); L1 et al.| (2020);
Dockhorn| (2019)) usually train a neural network as the solver of PDEs, and different neural networks
are also used for different PDEs. |Stevens & Colonius|(2020) uses a fully convolutional Long Short-
Term Memory (LSTM) |Greff et al.|(2015) network to exploit the spatiotemporal dynamics of PDEs.
The neural network serves to enhance finite-difference and finite-volume methods (FDM/FVM)
that are commonly used to solve PDEs, allowing the method to maintain guarantees on the order
of convergence. Meta-Auto-Decoder (MAD) |Huang et al.|(2021b) treats solving parametric PDEs
as a meta-learning problem and utilizes the Auto-Decoder structure [Park et al.[(2019) to deal with
different tasks/PDEs. Physics-informed losses induced from the PDEs governing equations and
boundary conditions is used as the training losses for different tasks. The primary idea of Han & Lee
(2021b) is to use graph neural network (GNN) |Scarselli et al.| (2009) for modeling the spatial domain,
and Neural ODE for modeling the temporal domain. The attention mechanism (Correia & Colombini
(2021)) identifies important inputs/features and assign more weightage to the same; this enhances the
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performance of the proposed framework. Using conditional generative adversarial networks (cGAN)
Jaiswal et al.|(2017), |Farimani et al.| (2017) trains models for the direct generation of solutions to
steady state heat conduction and incompressible fluid flow purely on observation without knowledge
of the underlying governing equations. End-to-end algorithms use mostly uninterpretable neural
networks, so they can only verify the accuracy of their methods empirically rather than theoretically.
However, our method provides a theoretical explanation.

2.2 ITERATIVE METHODS

Iterative methods |Shit et al.[(2019); He & Xu! (2019)); |Greenfeld et al.| (2019); [Taghibakhshi et al.
(2021)); |Hsieh et al.| (2019) are built on top of existing hand-designed iterative methods, thus inheriting
many of their advantages. A neural solverShit et al.|(2019) to learn an optimal iterative scheme for
a class of PDEzs, in a data-driven fashion and attains this objective by modifying an iteration of an
existing semi-implicit solver using a deep neural network. Multigrid Network (MgNet) He & Xu
(2019) develops an unified model that simultaneously recovers some convolutional neural networks
for image classification and multigrid (MG) |[Hackbusch & Wittum| (1998)) methods for solving
discretized PDEs. |Greenfeld et al.|(2019) learns a (single) mapping from a family of parameterized
PDEs to prolongation operators and trains a neural network for the entire class of PDEs, using an
efficient and unsupervised loss function. [Taghibakhshi et al.| (2021) proposes a method using a
reinforcement learning (RL) |Puranikl (2021)) agent based on graph neural networks Scarselli et al.
(2009), which can learn to perform graph coarsening on small training graphs and then be applied
to unstructured large graphs in Multigrid. Hsieh et al.| (2019) proposes an approach to learn a fast
iterative solver tailored to a specific domain and achieves this goal by learning to modify the updates
of an existing solver using a deep neural network. The iterative methods using nonlinear neural
network can not guarantee the accuracy as the end-to-end method. Although the methods using only
linear neural network can guarantee the accuracy in theory, they are essentially linear iterators, which
limits their performance.

3 METHODOLOGY

3.1 NOTATIONS

The purpose of the linear PDEs solver is to find functions « that satisfy a series of partial differential
equations and boundary conditions, as follows:

{ﬂu(x) =f(z),x €@

u(x) =6(x),z € 0¢ )

where « € F = {u : R¥ — R} is the equation to be solved, A : F —  is a linear operator,
f:RF — Rand 6 : R* — R are a function that can be obtained naturally according to the problem,
and @ is the domain of definition of the function to be solved. The problem domain of PDEs is
discretized into an n X n X --- X n (k many) uniform Cartesian grid with mesh width A by using
FDM Mitchell & Griffiths|(1980), the solution of the following equation at discrete grid points is an
approximation of the solution of Eq. [T}

G(Au) = Gf @
1-Gu=(1-G)
where G, A € R %" the matrices of @ and A after discretization, and u, b and f € R™" the vectors
of u, 6 and f after discretization. Therefore, a discretized PDE problem consists of five components
(A, G, f,b,n). In this paper, we fix A but vary G, f, b, n, and are interested in learning an iterator
that solves a class of PDE problems governed by the same A.

3.2 ITERATOR AND TRAINING

The difference between our iterator and other iterators at the operational level is that we apply the
residuals generated by all two adjacent iterations to each estimated correction, this idea inspired by
the great success of momentum gradient descent in the field of deep model optimization. Specifically,
for a fixed PDE problem class A, let ¢ be a standard iterative solver, such as Jacobi iterator. We will
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use more formal notation p(u; G, f, b, n) as  that is a function of u, but also depends on G, f, b, n.
We rely on ¢ to design our new iterator ¢y : R — R™" as:
Wit+1 = @(Uu G7 fa b7 Tl) — U4
Zit1 = HGHULL'_H + (1 — Q)Zl 3)
uir1 = @(ui; G, f,b,m) + zig1
where zp = 0, ug is an arbitrary initial vector, H is a learned linear operation and 6 € [0, 1] is
a hyper-parameter. If # = 0, our iterator degenerates to Jacobi iterator. If § = 1, our iterator
degenerates to the iterator in [Hsieh et al.| (2019). Therefore, they are special cases of our iterator.

In our experiments, 6 is fixed to 0.8. When there is no confusion, we neglect the dependence on
G, f,b,n and denote p(u; G, f,b,n) as p(u), and Yy (u; G, f,b,n) as Yy (u).

We train our iterator ¢ g (u; G, f, b, n) to converge quickly to the ground truth solution on a set of
problem instances. For each instance, the ground truth solution u, is obtained from the existing
solver . The loss function is:

min B[ (0: G, £,b,m) — w3, “

where 4o ~ N (0, 1). For the training data of each batch, the number of iterations [ may be different.
In our experiment, [ is uniformly chosen from [1, 20].

3.3 THEORETICAL ANALYSIS

Since our iterator is no longer a linear iterator, we first define a new iterator format: unfixed bias
iterator and give the sufficient conditions for its convergence, and finally discuss the accuracy and
generalization of our iterator at the theoretical level.

3.3.1 UNFIXED BIAS ITERATOR
As before, denote p(u;) = Tu; + c. Observe that:
Y (ui) = o(u;) + zig1
=Tu; +c+0GH(Tu; + ¢ —u;) + (1 — )z

+60 (1-6)"7 Hu.
j=1
Since the offset (¢ + 6GHc + 0 Z;zl (1 —6)"~7 Hw,) is no longer a constant vector, our iterator is
a completely new format, which we call it unfixed bias iterator:

Definition 3.1 (Unfixed Bias Iterator). An unfixed bias iterator is a function ¢ : R®" — R™" that can
be expressed as:
uip1 = ¢(ug) = Tu; + ¢, (6)

where T is called the update matrix, and c; is a unfixed bias vector.

Whether an unfixed bias iterator converges depends on 7" and c¢;, and has the following theorem:

Theorem 3.2. An unfixed bias iterator ¢ converges to a unique fixed point from any initial vector if
and only if the spectral radius p(T) < 1 and lim,,_,~ ¢, = Cs.

Proof. Necessity: If u, is a fixed point, then v, = Tu, + c.. Observe that:
U1 — s = T(u — us) + (cp — ¢x)
=T%(up_1 — us) + T(ch_1 — i) + (ck — Cs)
@)
k

=TH M ug —w) + YT (e — c)
=0
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By the arbitrariness of ug, we have that:

lim T" =0 = p(T) < 1. (8)
n—oo
According to Lemma[A.T] we can infer that:
lim (¢, —¢i) =0= lim ¢, = c.. 9)
n—oo n—oo

Sufficiency: If p(T') < 1, then |I — T'| # 0, then the equation (I — T')u = ¢, has a unique solution,
which is recorded as u.,. For any ug, according to Lemma@ we have that:

lim (u, —us) = Um T"(ug — uy)

n— oo n—oo

n—1

. nm—1—i/, _
+ lim ; e —c) (10)

=0+0=0

= lim wu, = u,.
n— oo

3.3.2 ACCURACY

The correct PDE solution is a fixed point of ¢z by the following theorem:
Theorem 3.3. For any PDE problem (A, G, f,b,n) and choice of H, u, = lim,,_,oc ¥} (uo), if

Uy = limy, 00 "™ (u) and lim,_,o Hzx = 0.
Proof. When 6 = 0, our iterator degenerates into a Jacobi iterator, and the theorem obviously holds.

When 6 = 1, our iterator degenerates into the iterator in Hsieh et al.|(2019), and the theorem has been
proved by Hsieh et al.| (2019).

When 0 < 6 < 1, since w, = lim,,_,o 9} (u0), according to Cauchy criterion, we have that:

lim w,, = 0. (11)
n— o0
Because of lim,_,o Hx = 0, we know that:
lim Hw,, = 0. (12)
n— 00

If we define wy = 0, we can obtain:
zp = 0Hwy, + (1 —0)zp_1
=0Hw, + (1 —0)(0Hw,—1+ (1 —0)z,—2)

(13)
=0y (1-60)""Huw;
i=0
Since 0 < (1 —0) < 1 and lim,,—, oo Hw,, = 0, according to Lemma we can deduce that:
Tz, =0 lim_ ;(1 —0)" "Huw; = 0. (14)
To sum up, we have that:
Jim 9™ (ug) = lim (" (uo) + 2nt1)
= lim ¢"(up) + lim z, (15)
n—o0 n—oo
O

For any PDE problem, Theorem [3.3] points out that once our iterator converges, the fixed point
obtained by our iterator must be accuracy. This means that our iterator can obtain solutions with
arbitrary precision just as well as the hand-designed iterator.
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3.3.3 GENERALIZATION

For the PDE problem (A, G, f,b,n), in the case of fixed A, even if we can only use a limited
combination of (G, f, b, n) to train our model, the model shows surprising generalization properties,
which we show in Theorem 3.4t

Theorem 3.4. For fixed A, G,n and fixed H, if for one fy, bo, Y (u; G, fo,bo,n) is accuracy for
the PDE problem (A, G, fo,bo,n), then for all f and b, the iterator Yy (u; G, f,b,n) is accuracy for
the PDE problem (A, G, f,b,n).

Proof. From Theorem [3.2] and Theorem our iterator is accuracy if and only if the following

conditions holds:
p(T+60GHT —0GH) < 1

. " e (16)
nlgr;o(c—i-@GHc—i-GZlH(l —0)""w;) = ¢y

Since T" depends on A, G, n, and ¢ depends on A, G, f, b, n, it follows that the establishment of
p(T+60GHT — OGH) < 1 only depends on A, G, n and has nothing to do with f, b.

For a fixed A, G, n such that ¢ 5 (u; G, fo, bo, n) is accuracy, there must be p(T") < 1, then we have
Uy = lim,, 00 ©™ (ug) for all f,b. Therefore, according to the proof of Theorem we have that:

nlgrréo(c+9GHc+HZ;H(l —6)""w;)
N i an
:c—I—HGHc—I—nlL)ngO(GZ;H(l—@) w;)

=c+0GHc+0=c+0GHec.

Since the above equation holds for all f,b, that is, the establishment of lim,, . (c + 0GHc +
6> " H(1—60)"""w;) = c, is independent of f,b.

In summary, the accuracy of the iterator is independent with f and b. Thus, if the iterator is accuracy
for one fj and by, then it is accuracy for any choice of f and b. O

Theorem [3.4] states that our iterator can be freely generalized to different f and b. There is no
guarantee that our iterator can generalize to different G and n. Generalization to different G' and
n has to be empirically verified: in our experiments, our learned iterator converges to the correct
solution for a variety of grid sizes n and geometries G, and we have not observed that any GG, n make
our iterators non convergent.

Even if some G, n makes our iterator generalization fail, there is no risk of obtaining incorrect results.
The iterator will simply fail to converge. This is because according to Theorem [3.3] fixed points of
our new iterator is the same as the fixed point of hand designed iterator . Therefore if our iterator is
convergent, it is accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

For fair comparison, we follow Hsieh et al.|(2019) to prepare our experimental setting, including data
set, evaluation criterion and the implementation of H.

Data set: To reemphasize, our goal is to train a model on simple domains where the ground truth
solutions can be easily obtained, and then evaluate its performance on more complex geometries and
boundary conditions.

For training, we select the simplest homogeneous equation on a 2-dimensional square domain (k = 2)
with boundary conditions such that each side is a random fixed value. In this case, the equation
can be solved quickly by Jacobi method, so we can obtain a large number of training data with low
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Model Baseline Square L-shape Cylinders f#0

layers/ops layers/ops layers/ops layers/ops

Convl1 Hsieh et al.|(2019) Jacobi 0.432/0.702  0.432/0.702  0.432/0.702 0.431/0.701
Conv2 Hsieh et al.[{(2019) Jacobi 0.286/0.524  0.286/0.524  0.286/0.524 0.285/0.522
Conv3 Hsieh et al.[(2019) Jacobi 0.219/0.424  0.219/0.423  0.220/0.426  0.217/0.421
Conv4 Hsieh et al.|(2019) Jacobi 0.224/0.449  0.224/0.449  0.224/0.448  0.222/0.444
U-Net2 |Hsieh et al.[(2019) Multigrid | 0.091/0.205 0.090/0.203  0.091/0.204  0.079/0.178
U-Net3 [Hsieh et al.[(2019) Multigrid | 0.220/0.494  0.213/0.479 0.201/0.453  0.185/0.417
Unfixed-Bias-Convl Jacobi 0.175/0.328  0.206/0.386  0.221/0.415 0.163/0.306
Unfixed-Bias-Conv2 Jacobi 0.146/0.291 0.169/0.337 0.175/0.350 0.142/0.284
Unfixed-Bias-Conv3 Jacobi 0.155/0.319 0.176/0.362  0.185/0.382 0.153/0.316
Unfixed-Bias-Conv4 Jacobi 0.171/0.360  0.194/0.408 0.203/0.427 0.162/0.340
Unfixed-Bias-U-Net2 Multigrid | 0.029/0.066 0.033/0.074 0.032/0.072  0.028/0.064
Unfixed-Bias-U-Net3 Multigrid | 0.014/0.031 0.014/0.031 0.015/0.033  0.014/0.031

Table 1: Results in solving Possion Equation.

Model Baseline Square L-shape Cylinders f#0

layers/ops layers/ops layers/ops layers/ops

Conv1 (a=1)[Hsieh et al.[(2019) Jacobi | 0.422/0.685 0.394/0.640 0.423/0.687 0.258/0.420
Unfixed-Bias-Conv1 (a=1) Jacobi | 0.183/0.343 0.232/0.434 0.258/0.483 0.186/0.349
Unfixed-Bias-Conv2 (a=1) Jacobi | 0.160/0.319 0.173/0.346 0.181/0.363 0.145/0.290
Convl (a=2)[Hsieh et al./(2019) Jacobi | 0.396/0.643 0.344/0.559 0.350/0.569 0.270/0.440
Unfixed-Bias-Conv1 (a=2) Jacobi | 0.178/0.333 0.214/0.401 0.230/0.431 0.172/0.323
Unfixed-Bias-Conv2 (a=2) Jacobi | 0.145/0.289 0.174/0.349 0.176/0.353 0.139/0.279
Convl (a=3)[Hsieh et al[(2019)  Jacobi | 0.383/0.622 0.405/0.659 0.513/0.834 0.381/0.619
Unfixed-Bias-Conv1 (a=3) Jacobi | 0.150/0.281 0.161/0.303 0.179/0.336  0.194/0.363
Unfixed-Bias-Conv2 (a=3) Jacobi | 0.155/0.309 0.170/0.340 0.172/0.345 0.197/0.393

Table 2: Results in solving Helmholtz Equation.

computational cost. This setting is also used in|Sharma et al.| (2018)); [Farimani et al.| (2017)); Hsieh
et al.[(2019).

For testing, we use larger grid sizes n than training. For example, choose 256 x 256 grid sizes to test
our model, which is trained on 64 x 64 grids. Moreover, we design some challenging geometries
to test the generalization of our models: (i) same geometry but larger grid, (ii) L-shape geometry,
(iii) Cylinders geometry, and (iv) PDEs in the same geometry, but f # 0. L-shape and cylinders
geometries are designed because the models are trained on square domains and have never seen sharp
or curved boundaries. Examples of the four settings are shown in Appendix [B.3]

Implementation of H: We use convolution to realize A. Similarly, we use the stack of convolutional
layers or U-Net |Ronneberger et al.|(2015) with linear operation only to implement [/, and different
implementation methods use different data sets.

For the implementation of convolutional layer stacking, we call it Unfixed-Bias-ConvX model. The
model is trained on the square domain with 16 x 16, and tested on 64 x 64 grid sizes.

For the implementation of U-Net, we call it Unfixed-Bias-U-NetX model. The model is trained on
the square domain with 64 x 64, and tested on 256 x 256 grid sizes.

Evaluation Criterion: For Unfixed-Bias-Conv models, we compare them against Jacobi method.

On GPU, the Jacobi iterator and our model can both be efficiently implemented as convolution layers.
Thus, we measure the computation cost by the number of convolutional layers. Suppose Jacobi
method converges after NV iterations, and our model converges after M iterations. Then the evaluation
criteria layers is calculated as follows:

M(1+1L)

l = —7"
ayers N ,

(13)
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Square L-shape Cylinders F#0

Model Baseline layers/ops layers/ops layers/ops layers/ops

Unfixed-Bias-Convl (a=1)  Jacobi | 0.247/0.462 0.196/0.368 0.208/0.390 0.242/0.453
Unfixed-Bias-Conv2 (a=1)  Jacobi | 0.212/0.425 0.177/0.354 0.187/0.373 0.207/0.415
Unfixed-Bias-Conv3 (a=1)  Jacobi | 0.259/0.533 0.203/0.419 0.220/0.454 0.251/0.518

Unfixed-Bias-Convl (a=2)  Jacobi | 0.241/0.362 0.207/0.311 0.202/0.303 0.235/0.353
Unfixed-Bias-Conv2 (a=2)  Jacobi | 0.208/0.390 0.186/0.352 0.198/0.371 0.205/0.384
Unfixed-Bias-Conv3 (a=2)  Jacobi | 0.253/0.505 0.237/0.473 0.227/0.454 0.243/0.485

Unfixed-Bias-Convl (a=3)  Jacobi | 0.261/0.392 0.245/0.367 0.243/0.364 0.260/0.389
Unfixed-Bias-Conv2 (a=3)  Jacobi | 0.214/0.402 0.199/0.373 0.202/0.379 0.208/0.391
Unfixed-Bias-Conv3 (a=3)  Jacobi | 0.285/0.570 0.239/0.479 0.244/0.487 0.254/0.508

Table 3: Results in solving Heat Conduction Equation.

where L represents the number of convolution layers stacked in 1.

On CPU, the Jacobi iteration requires 4 multiply-add operations, while a 3 x 3 convolutional kernel
requires 9 operations, so we measure the computation cost by the number of multiply-add operations.
Since our iterator has 2 additional multiply-add operation when calculating z;4;, the evaluation
criteria ops is calculated as follows:
M4 +2+9L)
= - =7 19

ops N (19)
For Unfixed-Bias-U-Net models, we compare them against Multigrid method with the same number
of sub-sampling and smoothing layers. Therefore, our models have the same number of convolutional
layers, and roughly 9/4 times the number of operations compared to Multigrid.

4.2 NUMERICAL EXPERIMENTS

We have validated the effectiveness of our iterator in solving different PDEs.

4.2.1 POSSION EQUATION

The Possion Equation is written as:

Viu = f (20)
where V2 is the Laplace operator. Table|1|{shows results of our iterator in solving Poisson Equation.
For Unfixed-Bias-ConvX models, they converge to the correct solution, and require less computation
than Jacobi in all settings. Our Unfixed-Bias-Conv2 is the best model, which achieves 5.7 ~ 7.0x
faster than Jacobi in terms of layers, and 2.9 ~ 3.5 x faster in terms of multiply-add operations. In
addition, it is 26% ~ 53% faster than Conv3 |Hsieh et al.|(2019).

For Unfixed-Bias-U-NetX models, they also converge to the correct solution, and require less
computation than Multigrid in all settings. Our Unfixed-Bias-U-Net3 is 66.7 ~ 71.4x faster than
Multigrid in terms of layers, and 30.3 ~ 32.3x faster in terms of multiply-add operations. In addition,
it is 464% ~ 507% faster than U-Net2 [Hsieh et al.[(2019).

According to Theorem 3.2] if our iterator converges for a geometry, then it is guaranteed to converge
to the correct solution for any f and boundary values b. The experiment results show that our model
not only converges but also converges faster than the standard solver in a variety of grid sizes n and
geometries G. Empirically, this also shows that our method has strong generalization.

4.2.2 HELMHOLTZ EQUATION

The Helmholtz Equation is written as:
Viu+a’u=f (21)

where a is a constant. Table [2] shows results of our iterator in solving Helmholtz Equation. By
changing the value of a, we verify three different Helmholtz Equation. In all cases, our Unfixed-
Bias-ConvX models can converge and are better than Jacobi method. Unfixed-Bias-Conv2 achieves
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5.5 ~ 7.2x faster than Jacobi in terms of layers, and 2.8 ~ 3.6x faster in terms of multiply-add
operations. In addition, our Unfixed-Bias-Conv1 about ~ 2.5 times faster than Conv1 Hsieh et al.
(2019). Helmholtz Equation is much more difficult to solve than Poisson Equation, but our models
still obtain the performance of far more than manual design methods in this challenging equation,
which greatly reflects the superiority of our iterators.

4.2.3 HEAT CONDUCTION EQUATION

The Heat Conduction Equation is written as:

% —aVu ={. (22)
Table |3 shows results of our iterator in solving Heat Conduction Equation. The Heat Conduction
Equation combines the first-order and second-order partial derivatives, which further improves the
difficulty of solving. Our Unfixed-Bias-ConvX models can still converge, and both obtain faster
convergence speed than the manually designed iterator. Our Unfixed-Bias-Conv?2 is still the best
model, which achieves 4.6 ~ 5.6x faster than Jacobi in terms of layers, and 2.3 ~ 2.8 faster in
terms of multiply-add operations.

In essence, using Poisson Equation, Helmholtz Equation and Heat Conduction Equation to verify
the effectiveness of our method is changing A. Although we need to retrain a model for different
A, it also shows that our method can be easily extended to different PDEs, and can obtain an ideal
performance. In the future, we will consider training a model that can be generalized to different A.

See Appendix [B|for more numerical experiments.

5 CONCLUSION

We build a learned iterator on top of an existing standard iterative solver, which can modify the current
iteration result with the help of the historical iteration results, so as to accelerate the convergence
speed. At the theoretical level, due to the introduction of the historical iterative results, our iterator
is a new iterative format: Unfixed Bias Iterator: the unfixed bias iterator, and we provide sufficient
theoretical guarantees for it, after which we prove theoretically that our iterator can converge and
has some generalization. Experimental results show that even if our solver is trained only ion simple
domains, it can generalize to different grid sizes, geometries and boundary conditions. Moreover,
the powerful generalizability of our method is illustrated by solving for different PDEs. Last but not
least, our iterator greatly exceeds the existing iterators in convergence speed.
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A LEMMAS AND PROOFS

This chapter gives the lemmas we use and their proofs.

Lemma A.1. lim, , a, = 0, if lim, o Z;L:o B"iq; = 0, where B is a matrix and a; is a
vector.

Proof. Since lim,,_,o Y1 B""*a; = 0, we know that:

n n—1

. n—i, . — 1 n—1i,. . —
nhﬁn;o Z% B"a; nlgrréo(zg B"a;+a,) =0
1= 1=
n—1
= nh_{réo Z B"'a; = — lim a,

n—o00
=0

(23)

When n is sufficiently large, we have that:

n—1

a, = -y B"'a;, (24)

=0

n
n+1l—1:
Opy1 = — E Bt g,
=0

n—1

- E B"t'"q; — Ba,,
i=0

n—1 n—1
p By (25)
—E Bntl ’ai—&—BE B" g,
i=0 1=0

n—1 n—1
— _ E Bn+171ai + E Bn+177,ai =0
i=0 =0

= lim a, =0.

n—oo

O

Lemma A.2. lim, o > . B"“ia; = 0, if the spectral radius p(B) < 1 and lim,,_,~, a,, = 0,
where B is a matrix and a; is a vector.

12
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Proof. Let €. Then since lim,, ., a,, = 0 there is an Ny > 0 such that if m > N; we know that:

llaml| < e (26)
By dividing ", B"'q; into two parts with IV, as the boundary, we can obtain:
n Ny n
1Y B all < || B "ail [+ Y B" aill. 27)
i=0 i=0 i=Ny
According to Eq[26] we have that:
n n n—N;—1
1D B ail| <ell Y- B |l=¢ell Y B
i=Ny i=N; i=0 (28)
=ell(l - B)~H (I - B M|
<el(I-B)7"|
If ||a«|| > ||a;]| for all ¢ < N7, then we have that:
Ny Ny
1S B 0l < |3 B au|| < Ni[|B*Mia]]. (29)
i=0 =0
Obviously, there is an No > Nj such that if m > N5 we know that:
Ni||B™ Ma,|| <e. (30)
To sum up, if we take N = No, then for all m > N, we have that:
DB il < e([(1 = B)7HI+ 1), (31)
i=0
Therefore, lim,,_s oo E:‘L:o B"iq; = 0. O

Lemma A.3. lim,,_,. Z?:o Bty = 0,if0 < B < 1andlim, o a, = 0.

Proof. Let ¢ > 0. Then since lim,,_,, o;, = 0 there is an N7 > 0 such that if m > N; we know
that:

|| < e (32)
By dividing ;" "~ ta; into two parts with N, as the boundary, we can obtain:
n N, n
1> B e <Y B |+ Y B el (33)
i=0 i=0 i=N,;
According to Eq[32] we have that:
n n n—N;—1
Y B <l Y B = > B
1=N1 1=N1 =0 (34)
1— n—N;—1
=€ ﬁ < < .
1-p 1-p
If we take o, = maxp<i<n, @, we have that:
Ny Ny
D8 il < ey B < Jan N gm N, (35)
i=0 i=0
Obviously, there is an No > Nj such that if m > N5 we know that:
|, N BN < e, (36)
To sum up, if we take N = No, then for all m > N, we have that:
S m—1i €
Therefore, lim,, o Y 1o 8" ‘e = 0. O
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Lemma A4. lim,,_, Z?:o B ta; =0, if0 < B < 1, limy_y00 @ = 0, where a; is a vector:

Proof. Since a; is a vector in linear space R*, where:

a; = (@, 0, oM. (38)

Then ) ", 3" ‘a; can be rewritten as:

n n n

OS2 pmiaD 3 gt S el (39)
i=0 i=0 i=0
According to Lemma limy, o0 D i g B”*iagj ) — 0 holds for any j.
Therefore, lim,, o0 Y1 8" “a; = 0. O

B MORE EXPERIMENTS

B.1 THE SENSITIVITY OF HYPER-PARAMETERS

In this section, we discuss the influence of the hyper-parameter 6§ and the number of iterations k of
the model.

Hyper-parameter 0: Taking models Unfixed-Bias-Conv2 and Unfixed-Bias-U-Net3 as examples,
we test their sensitivity to 6. The results are shown in Figure [l When 6 is between 0.5 and 0.8,
there is no obvious fluctuation in the convergence speed of the models. When 6 is less than 0.5, the
convergence speed of the models is greatly reduced. Because 6 is too small, the correction value is
too dependent on the historical correction value. Although the correction value is relatively stable,
the update is not real-time enough, resulting in the decline of the accuracy of the correction value.
When 6 is greater than 0.8, the convergence speed of the model also decreases significantly. The main
reason is that when 6 is too large, the correction value mainly refers to the current correction value.
Although the update of the correction value is timely, the stability is greatly reduced, and finally the
accuracy of the correction value is reduced. In our experiments, # = 0.8 is a suitable value for all
models.

05- 0s-

os
0t
0 0a- 0s-
o
03 03 02l
02 02] o2 02
1 .—\\_—\_/- “1 _\\—\/ 1 & N ’:\\\_.%—/_,,.
- | | g 0 0 .\ 5 . 0.0y | 0 . . 0 | . .
G o2 6 o de o7 o ds G 62 ds o d o7 G ds

00- 00-
o1 02 03 oa o6 07 08 o9 01 02 03 oa o6 07 o8 o9 4 ds
theta

os o's
theta theta

(a) Square. (b) L-shape. (c) Cylinders. d) f#0.

4 o
theta

Figure 1: Sensitivity of the models to 6.

Number of Iterations /: When we change the value range of iteration number &, no obvious change
in the convergence speed of the model is observed. Only in some extreme settings, for example,
[ € [1,2]. This setting requires that the model can converge with a minimum number of iterations,
but it is obviously impossible, which leads to model training collapse. However, although the models
are not sensitive to the value range of /, the range of smaller value can reduce the training time of the
models. Therefore, [ € [1,20] is a recommended setting.

B.2 ERRORS

Figure 2] shows that the errors decrease with iteration under different iterators. Obviously, our iterator
can reduce the high frequency error at a very fast speed. After reducing the errors to a certain extent,
the speed of Jacobi iterator to reduce the low-frequency errors is much lower than our iterator. From
the speed of error reduction, we can see why our method can achieve much faster convergence than
Jacobi iterator, which further explains the superiority of our iterator.
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Figure 2: Errors under different iteration times.
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Figure 3: The ground truth solutions of examples in different settings.

B.3 VISUALIZATION

We design some challenging geometries to test the generalization of our models: (i) same geometry
but larger grid, (ii) L-shape geometry, (iii) Cylinders geometry, and (iv) PDEs in the same geometry,
but f # 0. L-shape and cylinders geometries are designed because the models are trained on square
domains and have never seen sharp or curved boundaries. Examples of the four settings are shown in

Figure[3]
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