
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON LOGICAL EXTRAPOLATION FOR MAZES WITH
RECURRENT AND IMPLICIT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has suggested that certain neural network architectures—particularly
recurrent neural networks (RNNs) and implicit neural networks (INNs)— are ca-
pable of logical extrapolation. That is, one may train such a network on easy
instances of a specific task and then apply it successfully to more difficult in-
stances of the same task. In this paper, we revisit this idea and show that (i) The
capacity for extrapolation is less robust than previously suggested. Specifically, in
the context of a maze-solving task, we show that while INNs (and some RNNs)
are capable of generalizing to larger maze instances, they fail to generalize along
axes of difficulty other than maze size. (ii) Models that are explicitly trained to
converge to a fixed point (e.g. the INN we test) are likely to do so when extrapo-
lating, while models that are not (e.g. the RNN we test) may exhibit more exotic
limiting behaviour such as limit cycles, even when they correctly solve the prob-
lem. Our results suggest that (i) further study into why such networks extrapolate
easily along certain axes of difficulty yet struggle with others is necessary, and (ii)
analyzing the dynamics of extrapolation may yield insights into designing more
efficient and interpretable logical extrapolators.

1 INTRODUCTION

Figure 1: Three extrapolation dimensions: maze size, percola-
tion, and deadend start. Each shown maze is generated using the
indicated parameters. The origin (i.e., maze size 9 × 9, perco-
lation p = 0, and deadend start = True) represents the
training distribution. Moving away from the origin corresponds
to an out-of-distribution shift. Green denotes the start position.

A hallmark of human learning is the
ability to generalize from easy prob-
lem instances to harder ones by merely
thinking for longer. In (Schwarzschild
et al., 2021b) it is demonstrated that
recurrent neural networks (RNNs) are
also capable of such logical extrapola-
tion. That is, RNNs that are trained
on ‘easy’ instances of a task such as
solving small mazes can, in some cases,
successfully solve ‘harder’ tasks of the
same kind, such as larger mazes.

A pre-requisite for logical extrapolation
is the ability of the network to adjust
its computational budget to fit the dif-
ficulty of the problem at hand. Con-
cretely, this means that the network
should be able to vary its number of
layers (or iterations). Two classes of
network naturally fit this description:
weight-tied RNNs and Implicit Neural
Networks (INNs), also known as Deep Equilibrium Networks (DEQs) (Bai et al., 2019; El Ghaoui
et al., 2021; Wu Fung et al., 2022). Both INNs and RNNs, described further in Section 2, have been
considered for logical extrapolation problems (Schwarzschild et al., 2021b;c; Bansal et al., 2022;
Anil et al., 2022) .

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work we revisit prior results on logical extrapolation with both RNNs and INNs in the context
of a single task: maze-solving (Bansal et al., 2022; Anil et al., 2022). While previous studies on
logical extrapolation in maze-solving have characterized difficulty as simply a function of maze size,
we introduce two new ways in which to vary the difficulty: (i) a binary variable deadend start ∈
{True,False} which, when set to True, constrains the start point to have exactly degree 1, (ii)
a percolation constant p ∈ [0, 1] which relates to the likelihood of a maze containing loops. Only
for p = 0 are mazes are guaranteed to be acyclic and thus have unique solutions. We note that in
both prior works examining logical extrapolation in maze-solving, deadend start = True and
p = 0. We show that the models introduced in prior work (Bansal et al., 2022; Anil et al., 2022)
do not generalize when deadend start and p are varied, even though they generalize well as
maze size is varied. More detail on the maze solving task and the modifications we make is given in
Section 3.2.

As our second major contribution, we investigate how RNNs and INNs generalize. Initially, it
was observed that with proper training RNNs converge to a fixed point, even for more difficult
task instances such as larger maze sizes (Bansal et al., 2022). However, Anil et al. (2022) hints
at more complex behaviour, as they find evidence of periodicity in the dynamics of INNs when
applied to larger mazes. We quantify this phenomenon using tools from Topological Data Analysis
(TDA)(De Silva et al., 2012; Perea & Harer, 2015; Tralie & Perea, 2018). We find that, while the
INN we consider (Anil et al., 2022) consistently converges to a fixed point, regardless of maze size,
the RNN we consider (Bansal et al., 2022) exhibits more complex limiting behaviour. Specifically,
for most larger mazes, this RNN converges to either a two-point cycle or two-loop cycle. In order to
streamline TDA on INN/RNN architectures, this work also contributes a PyTorch-based (Paszke
et al., 2019) wrapper to Ripser (Bauer, 2021; Tralie et al., 2018), a fast Python library for TDA
(see Subsection 2.3 and Appendix D for more details).

Our results suggest that a network’s ability to extrapolate may depend on the axis along which
difficulty is increased; thus, greater caution is needed when using neural networks for extrapolation.
We conclude by discussing how the tools introduced for studying periodicity may also be useful in
other deep learning contexts.

2 BACKGROUND AND PRIOR WORK

2.1 RECURRENT NEURAL NETWORKS

A special class of RNNs, namely, weight-tied input-injected networks (or simply weight-tied
RNNs), are used in logical extrapolation (Schwarzschild et al., 2021b; Bansal et al., 2022). For
a K-layer weight-tied RNN NΘ, the output is given by

NΘ(d) = PΘ2
(uK) where uj = TΘ1

(uj−1, d) for j = 1, . . . ,K. (1)

Here, Θ1 and Θ2 are the parameters of the networks TΘ1 and PΘ2 respectively, and Θ := {Θ1,Θ2},
while d denotes the input features. These networks represent a unique class of architectures that
leverage weight sharing across layers to reduce the number of parameters. The input injection at
each layer ensures the network does not ‘forget’ the initial data (Bansal et al., 2022). In (Bansal
et al., 2022), it is empirically observed that a certain weight-tied RNN extrapolates to larger mazes
when applying more iterations. The authors speculate that the reason for this success is that the
model has learned to converge to fixed points within its latent space (Section 5, Bansal et al. (2022)).

2.2 IMPLICIT NETWORKS

Drawing motivation from (Bansal et al., 2022), (Anil et al., 2022) propose to use implicit neural
networks (INNs) for logical extrapolation tasks. INNs are a broad class of architectures whose
outputs are the fixed points of an operator parameterized by a neural network. That is,

NΘ(d) = PΘ2
(u⋆) where u⋆ = TΘ1

(u⋆, d). (2)

Here again Θ = {Θ1,Θ2} refers collectively to the parameters of the networks TΘ1 and PΘ2 and d
is the input feature, while u⋆ represents a fixed point of TΘ. These networks can be interpreted as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

infinite-depth weight-tied input-injected neural networks (El Ghaoui et al., 2021; Bai et al., 2019;
Winston & Kolter, 2020).

Unlike traditional networks, INN outputs are not defined by a fixed number of computations but
rather by an implicit condition. INNs have been applied to domains as diverse as image classification
(Bai et al., 2020), inverse problems (Gilton et al., 2021; Yin et al., 2022; Liu et al., 2022; Heaton
et al., 2021; Heaton & Wu Fung, 2023), optical flow estimation (Bai et al., 2022), game theory
(McKenzie et al., 2024a), and decision-focused learning (McKenzie et al., 2024b). In principle,
INNs are naturally suited for logical extrapolation, as they are not defined via an explicit cascade of
layers, but rather by an implicit, fixed-point, condition. This condition can be viewed as specifying
when the problem is considered solved. Key to logical extrapolation is that this characterization of
“solving a problem” is always the same, regardless of the difficulty of the problem at hand.

2.3 TOPOLOGICAL DATA ANALYSIS IN THE LATENT SPACE

For both RNNs and INNs, we call {uj}Kj=1 ⊂ Rn the latent iterates, and n the latent dimension.
Note that n can be, and often is, larger than the dimension of the input feature d or network output
NΘ(d). To characterize the limiting behaviour of the sequence of latent iterates we study its shape.
Intuitively, if this sequence exhibits periodic behaviour, it should trace out a loop. More precisely,
the sequence should appear as though it was sampled from the topological equivalent of a circle
embedded in Rn. Topological data analysis (TDA) provides a set of tools for analysing the shape of
point clouds, and has been previously applied in other contexts to study periodicity (De Silva et al.,
2012; Perea & Harer, 2015; Tralie & Perea, 2018).

As stated in Section 1, we construct a PyTorch wrapper to Ripser (Bauer, 2021; Tralie et al.,
2018), a fast Python library for TDA (see Appendix D for further details). Ripser computes
(persistent) homology groups to identify the most significant topological features of the point cloud.
The relevant quantities are the zeroth and first (persistent) Betti numbers, which we denote as B0 and
B1 respectively. These are the “dimensions”1 of the zeroth and first homology groups, and count the
respective number of connected components and loops in the data. We identify and interpret three
common values of the tuple [B0, B1].

1. Convergence to a point ([B0, B1] = [1, 0]). The sequence is clustered around a single
point. No loops are present.

2. Two-point cycle ([B0, B1] = [2, 0]) The sequence is clustered around two points, and
alternates between them. No loops are present.

3. Two-loop cycle ([B0, B1] = [2, 2]) The sequence lies along two well-separated, thickened
loops, and alternates between them.

We emphasize that, while 1. represents the expected convergent behaviour (see Sections 2.1, 2.2) 2.
and 3. represent novel, previously undetected limiting behaviour. A more precise overview of TDA
is presented in Appendix B.

3 EXPERIMENTS

We study two trained maze-solving models from previous works. The first model is an RNN from
Bansal et al. (2022) which we call DT-Net, and the second is an INN from Anil et al. (2022) which
we call PI-Net2. We emphasize that while both works propose multiple models, we focus on the
most performant model from each work. Our source code is provided in the supplementary material,
and will be released publicly.

DT-Net uses a progressive loss function to encourage improvements at each RNN layer. In this
approach, the recurrent module is run for a random number of iterations, and the resulting output is
used as the initial input for the RNN, while gradients from the initial iterations are discarded. The

1More formally: these count classes in the zeroth and first homology groups of the Rips complex that persist
for large ranges of the length scale.

2This stands for ‘Path-Independent’ net, as path independence is a feature identified in Anil et al. (2022) as
being strongly correlated with generalization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input Solution Input Solution

Figure 2: Maze input-solution pairs of size 9 × 9 (left) and 49 × 49 (right). Start positions are in green
and end positions are in red. Mazes problems/inputs are RGB raster images and solutions are black and white
images highlighting the solution path in white.

Input Solution Input Solution

Figure 3: Example of maze with a start position that has multiple neighbors (left); example of a percolated
maze (p = 0.2) with loops (right).

model is then trained to produce the solution after another random number of iterations. We refer the
reader to (Bansal et al., 2022, Section 3.2) for additional details. For PI-Net, path-independence
(i.e., contractivity) is encouraged in two ways: (i) by using random initialization for half of the
batch and zero initialization for the other half, and (ii) by varying the compute budgets/depths of the
forward solver during training.

3.1 THE MAZE-SOLVING TASK

In this and previous work (Schwarzschild et al., 2021a;b; Bansal et al., 2022; Anil et al., 2022),
maze solving problems are encoded as raster images (Figure 2). Given this RGB input image, the
task is to return a black and white image representing the unique path from start (indicated by a
green tile) to end (indicated by a red tile). In this work, we consider “accuracy” on a single maze
to be 1 if the solution is exactly correct and 0 otherwise. However, instead of using the original
“easy to hard” dataset (Schwarzschild et al., 2021a), we use the maze-dataset Python package
(Ivanitskiy et al., 2023). maze-dataset can provide maze-solution pairs in the same format and
from the same distribution, but allows modifications to the distribution if desired. The original “easy
to hard” dataset only contains acyclic (i.e. percolation parameter p = 0, any path between two nodes
is unique) mazes generated via randomized depth-first search (RDFS) and with start positions having
exactly degree 1 (i.e., deadend start=True). We remove these restrictions to investigate the
behavior of the selected models on out-of-distribution mazes in Subsection 3.2. More details on our
usage of maze-dataset are given in Appendix A.

3.2 EXTRAPOLATION

Usage of the maze-dataset package allows us to explore the behavior of DT-Net and PI-Net
outside of the training distribution in a direction other than simply maze size. Specifically, in ad-
dition to being able to create mazes of any size (Figure 2), we investigate mazes whose start is
not restricted to nodes of degree 1 (Figure 3). Furthermore, by setting the percolation parameter
p to values > 0, we can create mazes that may contain cycles, which means that the uniqueness
of valid paths or even shortest-path solutions is no longer guaranteed (Figure 3). More detail on
maze-dataset and our usage of it is given in Appendix A of the appendix and Subsection 3.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

DT-Net PI-Net
deadend start=True deadend start=False deadend start=True deadend start=False

0 20 40 60 80 100
Maze_size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 20 40 60 80 100
Maze_size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 20 40 60 80 100
Maze_size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 20 40 60 80 100
Maze_size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 4: Left: DT-Net extrapolation accuracy (see Subsection 3.1) on a sample of 100 mazes at various
maze sizes, with deadend start=True and deadend start=False. Right: Analogous results for
PI-Net. Both models extrapolate very well to larger maze sizes with sufficient iterations. However, perfor-
mance diminishes when the start position is allowed to have neighbors, regardless of the number of iterations.
See Subsection C.3 for examples of these failures. Note that deadend start=False does not guarantee
that the degree of the start position is > 1, and mazes still satisfying this condition contribute to some of the
performance seen. See Figure 3.2 for a breakdown of accuracy by start position.

Increased Maze Size. We first verify the extrapolation performance of DT-Net and PI-Net with
increasing maze size (Bansal et al., 2022; Anil et al., 2022). For each maze size n × n, where
n ∈ {9, 19, 29, . . . , 99}, we tested each model on 100 mazes. As expected, with sufficient itera-
tions, both models achieve strong performance. See the plots labeled deadend start=True in
Subsection 3.2. Both models achieve perfect accuracy on the 9 × 9 mazes of the training distribu-
tion. Furthermore, with 3,000 iterations, DT-Net achieves perfect accuracy and correctly solved all
test mazes. PI-Net achieved near perfect accuracy on smaller mazes, but performance noticeably
diminished for mazes larger than 59× 593 . Importantly, running more iterations usually helps and
never harms accuracy. Note that for PI-Net the performance of the model after 1,000 iterations is
identical to performance after 3,000 iterations at all tested maze sizes; this indicates that convergence
occurred by 1,000 iterations.

Deadend Start. Allowing the start position to have multiple neighbors, rather than starting at a
deadend, represents a different out-of-distribution shift from the training dataset. This shift corre-
sponds to changing deadend start from True to False, and diminishes the performance of
both models. See the plots labeled deadend start=False in Subsection 3.2. With this shift,
accuracy on 9 × 9 mazes drops from 1.00 to 0.72 for DT-Net and from 1.00 to 0.94 for PI-Net.
Interestingly, the fraction of failed predictions remains relatively stable as maze size is increased.
There is no clear qualitative difference between mazes that were correctly and incorrectly solved by
the models. However, we do observe that accuracy decreases monotonically from 1.0 as the number
of start position neighbors increases from 1, a deadend, to 4, the maximum neighbors possible (see
Figure 3.2). See Appendix C.3 for examples of mazes the models fail to solve.

Percolation. The final out-of-distribution shift we consider is increasing percolation from 0 in the
training dataset, to a nonzero value which potentially introduces cycles into the mazes. We reiterate
that when percolation equals 0, all mazes are acyclic and hence any path between two nodes is
unique. This shift significantly reduces accuracy, as shown in Figure 3.2, and it highlights the ill-
posed nature of solving percolated mazes. The presence of loops creates multiple paths to the goal.
Notably, increasing the number of iterations in this setting does not improve model performance.
We also observe that the loops introduced by percolation persist during inference with DT-Net,
indicating behavior similar to that of the dead-end-filling algorithm (Hendrawan, 2020).

3.3 LATENT DYNAMICS

For both DT-net and PI-net the latent space dimension n is significantly larger than the output
space dimension. Consequently, PΘ2 is a projection operator with large-dimensional fibers4. While
prior works emphasize the importance of training a model to reduce loss, i.e. the discrepancy be-

3Note this does not contradict the experiments in Anil et al. (2022)
4By fiber we are referring to the preimage of any point in the output space under PΘ2 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

DT-Net PI-Net

12340.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

9

1234

19

1234

29

1234

39

1234

49

1234

59

1234

69

1234

79

1234

89

1234

99

Start Neighbors

Maze Size

12340.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

9

1234

19

1234

29

1234

39

1234

49

1234

59

1234

69

1234

79

1234

89

1234

99

Start Neighbors

Maze Size

Incorrect Correct

Figure 5: DT-Net and PI-Net predictions for deadend start=False maze predictions split by maze
size and the number of start position neighbors (from 1, a deadend, to 4, the maximum possible). For both
models, accuracy diminishes on mazes with more start position neighbors.

DT-Net PI-Net

0.000 0.008 0.016 0.024 0.032 0.040
Percolation

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.000 0.008 0.016 0.024 0.032 0.040
Percolation

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Input Prediction Solution

Figure 6: Left: Accuracy rapidly diminishes for both models when percolation increases above 0. Both
models were iterated 30 times, and the resulting outputs do not change with additional iterations. Right: Both
models fail on any maze with a loop, as they always include loops in the prediction.

tween NΘ(d) and the true solution x⋆, at every iteration (Bansal et al., 2022; Anil et al., 2022),
there is no incentive for the iterative part of the network TΘ1

(·, d) to prefer one element of the fiber
P−1
Θ2

(x⋆) := {u ∈ Rn : PΘ2
(u) = x⋆} over another. Thus, TΘ1

(·, d) may exhibit more complex
dynamics than convergence-to-a-point, while NΘ(d) still yields the correct solution.

This possibility is considered for the first time in Anil et al. (2022), where it is proposed that, in
order to solve a particular instance, TΘ1

(·, d) need not have a unique fixed point, but rather need
only possess a global attractor. In other words, no matter which initialization u0 is selected, the
latent iterates exhibit the same asymptotic behaviour. They dub this property “path independence”.
In (Anil et al., 2022, App. F, App. G) evidence of instances d where the latent iterates induced by
TΘ1(·, d) form a limit cycle, yet NΘ(d) is correct, is provided.

It is therefore both interesting and important to understand the latent dynamics of DT-Net and
PI-Net. Building upon Anil et al. (2022), we introduce several tools for doing so. Most impor-
tantly, we use TDA 2.3 to quantitatively study the statistics of the limiting behaviours induced by
a pretrained TΘ1

(·, d) as d varies. In our experiments, for both models, we consider 100 mazes at
maze sizes 9× 9, 19× 19, . . . , 69× 69. We select a “burn-in” parameter K̃ < K and then consider
latent iterates {uj}Kj=K̃

in order to study stable long-term latent behavior. We set K̃ = 3, 001 and
K = 3, 400.

Residuals. (Anil et al., 2022) considers the residuals rj := ∥uj+1 − uj∥2, i.e. the distances
between consecutive iterates. The one-dimensional sequence of residuals offers a window into the
high-dimensional dynamics of the latent iterates. In particular, if rj = 0 for all sufficiently large
j then the uj have converged to a fixed point. (Anil et al., 2022) finds instances d such that the
residual sequence {rj}Kj=K̃

induced by a variant5 of PI-net is visually periodic. We replicate
this finding for DT-net (see Figure 7, third panel) and discover a novel asymptotic behaviour of

5Although not the variant we consider, see Appendix C.1 for further discussion.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3000 3100 3200 3300 3400
Iteration

2.2

2.4

2.6

2.8

3.0

3.2

Re
si

du
al

3000 3100 3200 3300 3400
Iteration

10.4

10.6

10.8

11.0

11.2

Re
si

du
al

Figure 7: Residual plots and corresponding PCA projections for two sequences of DT-Net latent iterates. The
left two plots indicate oscillation between two points corresponding to [B0, B1] = [2, 0] for a 19 × 19 maze.
The right two plots indicate oscillation between two loops corresponding to [B0, B1] = [2, 2] for a 69 × 69
maze. Both mazes were solved correctly.

{rj}Kj=K̃
: convergence to a nonzero value (see Figure 7, first panel). To understand the underlying

latent dynamics more deeply, a different method is required.

PCA. Projecting the high-dimensional latent iterates onto their first three principal components
reveals the underlying geometry of {uj}Kj=K̃

responsible for the observed residual sequences

{rj}Kj=K̃
. Specifically, the first sequence of latent iterates oscillates between two points (see Fig-

ure 7, panel 2), yielding constant values of rj equal to the distance between these points. We call
such limiting behaviour a two-point cycle. The second sequence of latent iterates oscillates between
two loops (see Figure 7, panel 4), yielding values of rj that oscillate around the distance between
these loops. We call such limiting behaviour a two-loop cycle. To the best of our knowledge, neither
of these limiting behaviours has been observed previously in the latent dynamics of an RNN or INN.

TDA. Using TDA tools as discussed in Section 2.3, we analyze the frequency with which the afore-
mentioned limiting behaviours occur. This is possible because these limiting behaviours are dis-
tinguishable using the persistent Betti numbers (see Section 2.3 and Appendix B) of {uj}Kj=K̃

.
Specifically, convergence to a point has [B0, B1] = [1, 0], a two-point cycle has ([B0, B1] = [2, 0]),
and a two-loop cycle ([B0, B1] = [2, 2]).

Table 4 summarizes the TDA results. For PI-Net, every latent sequence converges to a fixed-
point. For DT-Net at every maze size the majority of latent sequences approach a two-point cycle,
a minority approach a two-loop cycle, and a few approach some other geometry. Interestingly,
DT-Net exhibits fixed-point convergence in latent sequences of 17 in-distribution mazes at maze
size 9× 9.

4 DISCUSSION

The results of Subsection 3.2 suggest two points warranting further discussion. First, we highlight
that seemingly mild distribution shifts (e.g. that induced by toggling deadend start) can have a
large negative effect on model performance, while performance can be unchanged under a seemingly
larger distribution shift (e.g. increasing maze size). Secondly, other distribution shifts (e.g. using a
nonzero percolation parameter and thus allowing for maze cycles) may make the task, as framed by
the training data given to the model, ill-posed. More specifically, both DT-net and PI-net are
trained to find the unique path from start to end, but when the maze has even a single loop, there
is no longer a unique path. When presented with a maze that does not have a unique solution path,
both models fail (see Figure 3.2 and Appendix Subsection C.3), whereas a human might reasonably
reinterpret the task (e.g. “find the shortest path”, or even “find a path”) and solve it.

The results of Subsection 3.3 suggest that the dynamics of RNNs are richer than previously thought,
particularly when the latent space is high-dimensional. While Section 4 clearly shows that models
trained with path independence (Bansal et al., 2022) converge to fixed points more frequently, it is
unclear how this correlates with (i) overall model accuracy and (ii) robustness towards distributional
shifts. If allowing more exotic limiting behaviour (e.g. limit cycles, not just fixed points) is benign,
or even desirable, various theoretical results on the convergence and backpropagation of RNNs
and INNs (Liao et al., 2018; Wu Fung et al., 2022; Ramzi et al., 2022; Geng et al.; Bolte et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Betti number frequencies for DT-Net and PI-Net. PI-Net always exhibits fixed-point con-
vergence ([B0, B1] = [1, 0]) whereas DT-Net usually approach a two-point cycle ([B0, B1] = [2, 0]) or
sometimes a two-loop cycle ([B0, B1] = [2, 2]). ∗Sequence converged to within 0.01.

n for n× n maze
MODEL [B0,B1] 9 19 29 39 49 59 69

DT-Net [1, 0]∗ 17 0 0 0 0 0 0

[2, 0] 75 80 79 74 73 77 86

[2, 2] 4 18 17 22 25 21 14

Other 4 2 4 4 2 2 0

PI-Net [1, 0]∗ 100 100 100 100 100 100 100

2024) need to be revisited and adjusted to allow such behaviour. If exotic limiting behaviour is in
fact undesirable, further research on interventions promoting path independence Winston & Kolter
(2020); Bansal et al. (2022), and the ensuing tradeoffs, should be conducted.

The exploration of neural networks’ internal representations in maze-solving scenarios has emerged
as a compelling area of study (Mini et al., 2023; Ivanitskiy et al., 2024). This research aligns closely
with the rapidly expanding field of AI interpretability (Räuker et al., 2023), which has become
increasingly crucial as neural architectures grow in sophistication. Investigations into networks
trained on spatial tasks—spanning chess (Karvonen, 2024; Jenner et al., 2024; McGrath et al., 2022),
othello (Li et al., 2022; Nanda, 2023; He et al., 2024), graph traversal (Brinkmann et al., 2024;
Momennejad et al., 2024), and mazes (Mini et al., 2023; Ivanitskiy et al., 2024)—have provided
significant insights into their decision-making processes. Our study of the DT-Net model, with its
foundation in chess puzzle training (Bansal et al., 2022; Schwarzschild et al., 2021b), contributes
another valuable perspective to this complex landscape of spatial reasoning research.

Our topological tools could be used to explore how distribution shifts affect the latent dynamics,
complementing prior work Liang et al. (2021) which considers this from a non-topological per-
spective. It would be useful to determine if topological information can be used to detect out-of-
distribution examples, analogous to how Sastry & Oore (2020) flags examples with abnormal latent
representations using Gram matrices. Finally, we note that the tools developed in this work could
be applied to study latent dynamics in other settings, for example data assimilation (Williams et al.,
2023).

Limitations. While this work focuses on the two most performant models from Bansal et al.
(2022) and Anil et al. (2022), considering other models proposed in these works may yield addi-
tional insights. Moreover, it would be of interest to consider different dimensions of extrapolation
for other tasks considered in the aforementioned works, for example the prefix sum problem or solv-
ing chess puzzles Schwarzschild et al. (2021a). We did not do so as it is less clear (to us) how to
define, and interpret, such dimensions.

5 CONCLUSION

Using a maze-solving task with out-of-distribution test datasets constructed along different axes
(maze size, deadend start, and percolation), we demonstrate that the ability of RNNs or INNs to
extrapolate can depend on the type of out-of-distribution shift considered. Specifically, we find that
a trained RNN and INN (DT-Net and PI-Net, respectively), can successfully extrapolate maze-
solving to larger mazes but are less successful in extrapolating maze-solving to mazes with start
positions with multiple neighbors and mazes with loops.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J. Zico Kolter,
and Roger B Grosse. Path Independent Equilibrium Models Can Better Exploit Test-Time Com-
putation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 7796–7809. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/331c41353b053683e17f7c88a797701d-Paper-Conference.pdf.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. Advances in Neural
Information Processing Systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale Deep Equilibrium Models. Advances in
Neural Information Processing Systems, 33:5238–5250, 2020.

Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilibrium optical flow esti-
mation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 620–630, 2022.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. End-to-end Algorithm Synthesis with Recurrent Net-
works: Extrapolation without Overthinking. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 20232–20242. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
7f70331dbe58ad59d83941dfa7d975aa-Paper-Conference.pdf.

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Comput.
Topol., 5(3):391–423, 2021. ISSN 2367-1726. doi: 10.1007/s41468-021-00071-5. URL https:
//doi.org/10.1007/s41468-021-00071-5.

Jérôme Bolte, Edouard Pauwels, and Samuel Vaiter. One-step differentiation of iterative algorithms.
Advances in Neural Information Processing Systems, 36, 2024.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, et al. A Mechanistic Analysis of a Transformer
Trained on a Symbolic Multi-Step Reasoning Task. arXiv preprint arXiv:2402.11917, 2024.

Vin De Silva, Primoz Skraba, and Mikael Vejdemo-Johansson. Topological Analysis of Recurrent
Systems. In NIPS 2012 Workshop on Algebraic Topology and Machine Learning, December 8th,
Lake Tahoe, Nevada, pp. 1–5, 2012.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit Deep
Learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, and Zhouchen Lin. Is Attention
Better Than Matrix Decomposition? In International Conference on Learning Representations.

Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep Equilibrium Architectures for Inverse
Problems in Imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Zhengfu He, Xuyang Ge, Qiong Tang, et al. Dictionary Learning Improves Patch-Free Cir-
cuit Discovery in Mechanistic Interpretability: A Case Study on Othello-GPT. arXiv preprint
arXiv:2402.12201, 2024.

Howard Heaton and Samy Wu Fung. Explainable AI via learning to optimize. Scientific Reports,
13(1):10103, 2023.

Howard Heaton, Samy Wu Fung, Aviv Gibali, and Wotao Yin. Feasibility-based fixed point net-
works. Fixed Point Theory and Algorithms for Sciences and Engineering, 2021:1–19, 2021.

YF Hendrawan. Comparison of Hand Follower and Dead-End Filler Algorithm in Solving Perfect
Mazes. In Journal of Physics: Conference Series, volume 1569, pp. 022059. IOP Publishing,
2020.

9

https://proceedings.neurips.cc/paper_files/paper/2022/file/331c41353b053683e17f7c88a797701d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/331c41353b053683e17f7c88a797701d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7f70331dbe58ad59d83941dfa7d975aa-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7f70331dbe58ad59d83941dfa7d975aa-Paper-Conference.pdf
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1007/s41468-021-00071-5

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Michael Ivanitskiy, Alexander F. Spies, Tilman Räuker, Guillaume Corlouer, Christopher Math-
win, Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi Inoue,
and Samy Wu Fung. Linearly Structured World Representations in Maze-Solving Transform-
ers. In Marco Fumero, Emanuele Rodolá, Clementine Domine, Francesco Locatello, Karolina
Dziugaite, and Caron Mathilde (eds.), Proceedings of UniReps: the First Workshop on Unifying
Representations in Neural Models, volume 243 of Proceedings of Machine Learning Research,
pp. 133–143. PMLR, 15 Dec 2024. URL https://proceedings.mlr.press/v243/
ivanitskiy24a.html.

Michael Igorevich Ivanitskiy, Rusheb Shah, Alex F. Spies, Tilman Räuker, Dan Valentine, Can
Rager, Lucia Quirke, Chris Mathwin, Guillaume Corlouer, Cecilia Diniz Behn, and Samy Wu
Fung. A Configurable Library for Generating and Manipulating Maze Datasets, 2023. URL
http://arxiv.org/abs/2309.10498.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, et al. Evidence of Learned Look-Ahead in a Chess-
Playing Neural Network. arXiv preprint arXiv:2406.00877, 2024.

Adam Karvonen. Emergent World Models and Latent Variable Estimation in Chess-Playing Lan-
guage Models. arXiv preprint arXiv:2403.15498, 2024.

Kenneth Li, Aspen K Hopkins, David Bau, et al. Emergent world representations: Exploring a
sequence model trained on a synthetic task. arXiv preprint arXiv:2210.13382, 2022.

Kaiqu Liang, Cem Anil, Yuhuai Wu, and Roger Grosse. Out-of-Distribution Generalization with
Deep Equilibrium Models. In Workshop on Uncertainty and Robustness in Deep Learning. ICML,
2021.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urta-
sun, and Richard Zemel. Reviving and Improving Recurrent Back-Propagation. In International
Conference on Machine Learning, pp. 3082–3091. PMLR, 2018.

Jiaming Liu, Xiaojian Xu, Weijie Gan, Ulugbek Kamilov, et al. Online deep equilibrium learning
for regularization by denoising. Advances in Neural Information Processing Systems, 35:25363–
25376, 2022.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, et al. Acquisition of chess knowledge in
AlphaZero. Proceedings of the National Academy of Sciences, 119(47):e2206625119, 2022.

D McKenzie, H Heaton, Q Li, S Wu Fung, S Osher, and W Yin. Three-Operator Splitting for
Learning to Predict Equilibria in Convex Games. SIAM Journal on Mathematics of Data Science,
6(3):627–648, 2024a.

Daniel McKenzie, Samy Wu Fung, and Howard Heaton. Differentiating Through Integer Linear Pro-
grams with Quadratic Regularization and Davis-Yin Splitting. Transactions on Machine Learning
Research, 2024b.

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexan-
der Matt Turner. Understanding and Controlling a Maze-Solving Policy Network. arXiv preprint
arXiv:2310.08043, 2023.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, et al. Evaluating Cognitive Maps and
planning in Large Language Models with CogEval. Advances in Neural Information Processing
Systems, 36, 2024.

Elizabeth Munch. A User’s Guide to Topological Data Analysis. Journal of Learning Analytics, 4
(2):47–61, 2017.

Neel Nanda. Actually, Othello-GPT Has A Linear Emergent World Representation. Neel Nanda’s
Blog, 7, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. Advances in neural information processing systems,
32, 2019.

10

https://proceedings.mlr.press/v243/ivanitskiy24a.html
https://proceedings.mlr.press/v243/ivanitskiy24a.html
http://arxiv.org/abs/2309.10498

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jose A Perea and John Harer. Sliding Windows and Persistence: An Application of Topological
Methods to Signal Analysis. Foundations of Computational Mathematics, 15:799–838, 2015.

Zaccharie Ramzi, Florian Mannel, Shaojie Bai, Jean-Luc Starck, Philippe Ciuciu, and Thomas
Moreau. SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimiza-
tion and implicit models. In ICLR 2022-International Conference on Learning Representations,
2022.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward Transparent AI:
A Survey on Interpreting the Inner Structures of Deep Neural Networks. In 2023 ieee conference
on secure and trustworthy machine learning (satml), pp. 464–483. IEEE, 2023.

Chandramouli S. Sastry and Sageev Oore. Detecting Out-of-Distribution Examples with Gram Ma-
trices. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Arpit Bansal, Zeyad Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. Datasets for Studying Generalization from Easy to Hard Exam-
ples. arXiv preprint arXiv:2108.06011, 2021a.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, and
Tom Goldstein. Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with
Recurrent Networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021b.

Avi Schwarzschild, Arjun Gupta, Micah Goldblum, and Tom Goldstein. Thinking Deeply with
Recurrence: Generalizing from Easy to Hard Sequential Reasoning Problems. CoRR, 2021c.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,
Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, pp. 366–
381. Springer, 2006.

Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A Lean Persistent Homology
Library for Python. The Journal of Open Source Software, 3(29):925, Sep 2018. doi: 10.21105/
joss.00925. URL https://doi.org/10.21105/joss.00925.

Christopher J Tralie and Jose A Perea. (Quasi)Periodicity Quantification in Video Data, Using
Topology. SIAM Journal on Imaging Sciences, 11(2):1049–1077, 2018.

Jan P Williams, Olivia Zahn, and J Nathan Kutz. Sensing with shallow recurrent decoder networks.
arXiv preprint arXiv:2301.12011, 2023.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural
information processing systems, 33:10718–10728, 2020.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. JFB:
Jacobian-Free Backpropagation for Implicit Networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 6648–6656, 2022.

Wotao Yin, Daniel McKenzie, and Samy Wu Fung. Learning to Optimize: Where
Deep Learning Meets Optimization and Inverse Problems. SIAM News, 2022.
URL https://www.siam.org/publications/siam-news/articles/
learning-to-optimize-where-deep-learning-meets-optimization-and-inverse-problems.

11

https://doi.org/10.21105/joss.00925
https://www.siam.org/publications/siam-news/articles/learning-to-optimize-where-deep-learning-meets-optimization-and-inverse-problems
https://www.siam.org/publications/siam-news/articles/learning-to-optimize-where-deep-learning-meets-optimization-and-inverse-problems

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A ADDITIONAL MAZE DATASET DETAILS

Both DT-Net and PI-Net were trained on the same maze dataset (Schwarzschild et al., 2021a)
containing 50, 000 mazes of size 9 × 9, meaning the mazes are subgraphs of the 5 × 5 lattice.
Training mazes were generated via RDFS without percolation, and with the start position being
constrained to being at a dead end (exactly 1 neighbor). We mimic this training distribution and add
out-of-distribution shifts using the maze-dataset Python package (Ivanitskiy et al., 2023).

We first note that for controlling maze size, maze-dataset.MazeDatasetConfig takes a
parameter grid nwhich denotes the size of the lattice which the maze is a subgraph of. By contrast,
the “easy to hard” (Schwarzschild et al., 2021a) dataset considers an n×n mean that many blocks in
its raster representation. To convert between these two notions of maze size, n = 2 · (grid n)− 1.

We can modify the start position constraint in maze-dataset by setting
deadend start=False in endpoint kwargs. When False, the start position is
sampled uniformly at random from all valid nodes, while when True the start position is samples
uniformly at random from all valid nodes with degree one. Valid nodes are, by default, those not
directly matching the end position or directly adjacent to it.

Randomized depth-first search (RDFS) is a standard algorithm for generating mazes, and produces
mazes which are spanning trees of the underlying lattice, and thus do not contain cycles. For any
acyclic graph with a spanning connected component, there is a unique (non-backtracking) path be-
tween any pair of points, and thus solutions are guaranteed to be unique. In our work, we select
LatticeMazeGenerators.gen dfs percolation as the maze ctor parameter. This
function takes an additional variable p in maze ctor kwargs, which controls the percolation
parameter. This percolation parameter, denoted p in our work, means that the final maze is the result
of a logical OR operation on the presence of all possible edges in the maze between an initial maze
generated via RDFS and a maze generated via percolation, where each edge is set to exist with prob-
ability p. This is equivalent to first generating a maze with RDFS and then setting each wall to an
edge with proability p. Since the initial RDFS maze is a spanning tree, adding any edge will cause
the creation of a cycle, thus giving our desired out-of-distribution mazes.

B TOPOLOGICAL DATA ANALYSIS

Topological Data Analysis, or TDA, attempts to produce informative summaries of high dimen-
sional data, typically thought of as point clouds6 U = {u1, . . . , uK} ⊂ Rn, by adapting tools from
algebraic topology.

B.1 SIMPLICIAL COMPLEXES

We are interested in TDA tools based on the idea of homology groups (Hatcher, 2002, Chapter 2).
Homology groups can be computed algorithmically from a geometric object known as a simplicial
complex, which we define below.
Definition 1. We collect definitions of several relevant concepts related to simplices.

1. A k-simplex is the convex hull of any k + 1 points in Rk,

σ := Conv {u1, . . . , uk+1} (3)

=

{
k+1∑
i=1

αiui : αi ≥ 0 and
k+1∑
i=1

αi = 1

}

2. A face of a k-simplex σ is a piece of the boundary of σ which is itself a simplex. That is, τ
is a face of σ defined in equation 3 if

τ = Conv
{
ui1 , . . . , uiℓ+1

}
3. A simplicial complex S is a set of simplices, of multiple dimensions, satisfying the follow-

ing properties
6By using the term “point cloud” we are implying that the ordering of points does not matter.

12

https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig.endpoint_kwargs
https://understanding-search.github.io/maze-dataset/maze_dataset.html#LatticeMazeGenerators.gen_dfs_percolation
https://understanding-search.github.io/maze-dataset/maze_dataset.html#MazeDatasetConfig.maze_ctor

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(a) For all σ ∈ S, all faces of σ are also in S.
(b) If any two σ1, σ2 ∈ S have non-empty intersection, then σ1 ∩ σ2 is a face of both σ1

and σ2, and consequently σ1 ∩ σ2 ∈ S

The process of computing homology groups from a simplicial complex is beyond the scope of this
paper. We refer the reader to (Hatcher, 2002, Chapter 2) for further details. It is also possible to
define homology groups for abstract simplicial complexes, R, for which a k-simplex σ ∈ R is not
literally a convex hull, but merely a list of points:

σ = {u1, . . . , uk+1}. (4)

In this case, a face is just a subset of σ:

τ =
{
ui1 , . . . , uiℓ+1

}
. (5)

Note that condition 3 (b) of Definition 1 is now vacuously true.

B.2 HOMOLOGY GROUPS

Although we have not stated exactly how homology groups are defined, in this section we discuss
a few of their properties. Fix a (possibly abstract) simplicial complex S. We shall work with
homology groups with coefficients in the field Z2 := Z/2Z, hence all homology groups will be
vector spaces over Z2. We will focus on the zeroth and first homology groups, denoted H0(S) and
H1(S) respectively. Elements in H0(S) are equivalence classes of points, where two points are
equivalent if they are in the same path component of S. Elements in H1(S) are equivalence classes
of closed loops, where two loops are equivalent if they “encircle the same hole” (Munch, 2017).
Consequently, the dimension of H0(S) (the zeroth Betti number, B0(S) counts the number of path
connected components of S, while the the dimension of H1(S) (the first Betti number, B1(S) counts
the number of distinct holes in S.

B.3 THE RIPS COMPLEX

Given the above, in order to associate Betti numbers to a point cloud we first need to define an
appropriate simplicial complex.
Definition 2 (The Vietoris-Rips complex). Fix a point cloud U = {u1, . . . , uK} ⊂ Rn, and for
simplicity assume that K < n. Select a distance parameter ϵ ≥ 0. We define the simplicial complex
Sϵ, known as the Vietoris-Rips, or simply Rips, complex to contain all simplices

σ = Conv
{
ui1 , . . . , uiℓ+1

}
, (6)

satisfying the condition:
max

1≤m<n≤ℓ+1
∥uim − uin∥2 ≤ ϵ. (7)

In words, Sϵ contains all simplices on U with a diameter less than ϵ. We note that S0 = U and hence
B0(S0) = |U|, as every point in U is its own connected component., while B1(S0) = 0. On the
other end of the scale, when ϵ > diam(U), where

diam(U) = max
1≤i<j≤N

∥ui − uj∥2, (8)

the full-dimensional simplex

σ = Conv {u1, . . . , uK} (9)

is contained in Sϵ, and thus Sϵ has one connected component and no loops: B0(Sϵ) = 1, B1(Sϵ) =
0. Consequently, the important topological features of U are detected by the Rips complex for ϵ
values in (0,diam(U)).
The condition K < n in 2 may be removed, in which case Sϵ is defined as an abstract simplicial
complex. This distinction is not relevant for our work.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.4 PERSISTENT BETTI NUMBERS

Which value of ϵ should one choose? As discussed in Munch (2017), the trick is not to select a
particular value of ϵ but rather focus on features (concretely: equivalence classes in H0(Sϵ) and
H1(Sϵ)) which persist for large ranges of ϵ. More specifically, we define ϵb, the birth time, to be
the value of ϵ at which a particular equivalence class is first detected in Sϵ. The death time, ϵd, is
the largest value of ϵ for which a particular equivalence class is detected in Sϵ. Fixing a threshold
thresh, we say an equivalence class is persistent if ϵd − ϵb > thresh. We define the persistent
zeroth (respectively first) Betti number B0 (respectively B1) to be the number of distinct equivalence
classes appearing in H0(Sϵ) (respectively H1(Sϵ)) which satisfy ϵd − ϵb > thresh.

B.5 SLIDING WINDOW EMBEDDING

Finally, we note that Perea & Harer (2015); Tralie & Perea (2018) propose a more sophisticated
method for detecting periodicity using the sliding window embedding, also known as the delay
embedding:

{uj}Kj=1 7→

SWd,τ (uj) :=

uj

uj+τ

...
uj+dτ

K−dτ

j=1

, (10)

where τ (the delay) and d (the window size) are user-specified parameters. Then, persistent Betti
numbers are computed for {SWd,τ (uj)}K−dτ

j=1 instead. This construction is motivated by Taken’s
theorem Takens (2006) which, informally speaking, states that the dynamics of {uj}Kj=1 can be
recovered completely from its sliding window embedding, for sufficiently large d. Note this comes
at a price: the increase in dimension means an increase in computational cost.

In preliminary experiments we found that the persistent Betti numbers for {SWd,τ (uj)}K−dτ
j=1 did

not reveal anything that could not already be inferred from the persistent Betti numbers of {uj}Kj=1.
Thus, we chose not to work with the sliding window embedding.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 ADDITIONAL DETAILS ON PI-net

During our experiments we determined that there was another model parameter, beyond the num-
ber of iterations, that had a strong impact on the accuracy of PI-Net. Specifically, there is a
threshold parameter within the forward solver, Broyden’s method, that controls the maximum
rank of the inverse Jacobian approximation. Based on code included in the supplementary material
for Anil et al. (2022), it appears the threshold parameter was originally set at 40. However,
with this setting PI-Net performed very poorly; it failed on all mazes of size 49 × 49. Increas-
ing threshold increased the accuracy of PI-Net, but also increases memory costs because it
requires storing a number of high-dimensional latent iterates equal to threshold. For our experi-
ments, we used threshold = 1,000 in order to achieve strong accuracy without unreasonable
memory requirements.

C.2 COMPUTATIONAL RESOURCES

The experiments in this study were performed on a high-performance workstation with the following
specifications:

• CPU: AMD Ryzen Threadripper PRO 3955WX (16 cores, 32 threads)
• GPU: NVIDIA RTX A6000 (48 GiB VRAM)

– CUDA Version: 12.5, Driver Version: 555.42.06
• Memory: 251 GiB RAM
• Operating System: Ubuntu 20.04.6 LTS (x86 64 architecture)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.3 FAILED MODEL PREDICTIONS

DT-Net PI-Net
Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Input Prediction Solution

Figure 8: Examples of 9 × 9 mazes with deadend start=False predictions from DT-Net (left) and
PI-Net (right), some of which they fail to solve. Note that mistakes are often in the start position cell or cells
immediately adjacent to it.

D THE RIPSER WRAPPER

A number of optimizations were applied to reduce the memory and compute time of TDA. Instead
of providing a sequence of high-dimensional latent iterates directly to Ripser, we use a smaller
distance matrix containing pairwise distances between the iterates. This matrix is computed using an
optimization from Tralie & Perea (2018), where the iterates are first compressed with singular value
decomposition (SVD) to reduce memory costs. The SVD computation is performed in PyTorch
to leverage GPU acceleration. Initially, we also used a diagonal convolution optimization, also from
Tralie & Perea (2018), to avoid redundant computations when constructing the distance matrix for
the sliding window embedding. However, this second optimization was not used in our final TDA
experiments, as we dropped the sliding window embedding.

15

	Introduction
	Background and Prior Work
	Recurrent Neural Networks
	Implicit Networks
	Topological Data Analysis in the Latent Space

	Experiments
	The maze-solving task
	Extrapolation
	Latent Dynamics

	Discussion
	Conclusion
	Additional Maze Dataset Details
	Topological Data Analysis
	Simplicial Complexes
	Homology Groups
	The Rips Complex
	Persistent Betti Numbers
	Sliding Window Embedding

	Additional Experimental Details
	Additional Details on PI-net
	Computational Resources
	Failed Model Predictions

	The Ripser Wrapper

