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Abstract

Multimodal large language models (MLLMs)001
are prone to non-factual or outdated knowledge002
issues, highlighting the importance of knowl-003
edge editing. Many benchmark has been pro-004
posed for researching multimodal knowledge005
editing. However, previous benchmarks focus006
on limited scenarios due to the lack of rigor-007
ous definition of multimodal knowledge. To008
better evaluate multimodal knowledge editing,009
we propose a decomposed definition of multi-010
modal knowledge. Following the decomposed011
definition of multimodal knowledge, we intro-012
duce three scenarios and a novel requirement013
modality consistency. We construct MC-MKE,014
a fine-grained Multimodal Knowledge Editing015
benchmark emphasizing Modality Consistency016
through strict data selection. We evaluate sev-017
eral multimodal knowledge editing methods on018
MC-MKE, revealing their limitations, partic-019
ularly in terms of modality consistency. Our020
work highlights the challenges posed by multi-021
modal knowledge editing and motivates further022
research in developing effective techniques for023
this task.024

1 Introduction025

With the developments of multimodal large lan-026

guage models (MLLMs), their application has be-027

come widespread across various fields. However,028

these models struggle with the challenge that the029

knowledge stored within them could be inaccu-030

rate or outdated. Knowledge editing is aimed to031

solve the problem. Following the conventional032

definition of knowledge-editing in LLMs, a few033

studies have proposed benchmarks for knowledge034

editing in MLLMs (Cheng et al., 2024; Huang et al.,035

2024; Li et al., 2024). However, these evaluation036

datasets overlook a key difference between multi-037

modal knowledge and textual knowledge, which038

led them to ignore an additional requirements for039

multimodal knowledge editing. Specifically, a mul-040

timodal knowledge can be seen as a combination041
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Figure 1: An example of multimodal knowledge editing.
Knowledge editing corrects the knowledge, allowing
it to accurately recognize the person as Messi instead
of Mac Allister. At the same time, to ensure the con-
sistency of multimodal knowledge, the edited model
should also correctly understand that the person in the
image plays for Miami FC instead of Liverpool.

of a visual knowledge part linking an image to the 042

corresponding entity and a textual knowledge part 043

related to the entity. To better handle and evaluate 044

multimodal knowledge editing scenarios, we define 045

multimodal knowledge in a decomposed format 046

consisting of visual knowledge and textual knowl- 047

edge in multimodal knowledge editing task. The 048

decomposition of multimodal knowledge brings up 049

the extra requirement modality Consistency. 050

Editing the knowledge requires ensuring consis- 051

tency across the corresponding visual, textual and 052

multimodal knowledge. For example, as shown in 053

Figure 1, the wrong visual knowledge in model is 054

(image of Messi, Mac Allister). Incorrect visual 055

knowledge combined with textual knowledge (Mac 056

Allister, play for, Liverpool) can lead to wrong 057

multimodal knowledge. Knowledge editing needs 058

to correct the corresponding visual knowledge so 059

that the model can successfully recognize the per- 060

son in the image as Messi. At the same time, it 061
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is essential to ensure that the related multimodal062

knowledge is also consistently updated, meaning063

the corresponding multimodal knowledge should064

be corrected to (image of Messi, play for, Miami).065

We believe that a knowledge editing method should066

always ensure the consistency of knowledge across067

different modalities. This property is the essential068

difference between multimodal knowledge editing069

and uni-modal knowledge editing.070

Following the decomposed definition of multi-071

modal knowledge, we propose a multimodal knowl-072

edge editing benchmark emphasizing modality con-073

sistency (MC-MKE). MC-MKE consists of three074

subsets, corresponding to three different scenar-075

ios of multimodal knowledge editing. Our bench-076

mark provides various scenarios for multimodal077

knowledge editing and can more systematically078

and comprehensively evaluate the performance of079

a multimodal knowledge editing method in a fine-080

grained manner on Reliability, Locality, Generality081

and Consistency aspect.082

We evaluate four of the most renowned multi-083

modal knowledge editing methods including fine-084

tuning, MEND (Mitchell et al., 2022a), IKE (Zheng085

et al., 2023), and SERAC (Mitchell et al., 2022b)086

on the three subsets of different editing scenarios.087

We find that the performance of these methods is088

far from satisfaction on MC-MKE. None of them089

can achieve great performance on all three differ-090

ent editing formats, especially for the consistency091

metric. It is demonstrated that multimodal knowl-092

edge editing is still challenging and requires further093

exploration.094

In summary, our contributions are as follows1:095

• We introduce a decomposed definition of multi-096

modal knowledge in multimodal knowledge edit-097

ing task. We introduce three scenarios and a098

novel requirement Consistency based on the defi-099

nition.100

• We present MC-MKE, a new multimodal knowl-101

edge editing benchmark with 112k train sam-102

ples and 44k test samples that can evaluate mul-103

timodal editing methods on various properties104

under three different editing scenarios. The large-105

scale dataset ensure the quality of the test results106

and also provide abundant data resources for de-107

veloping multimodal knowledge editing.108

• We conduct experiments with various knowledge109

1Our code and data will be released to the community to
facilitate future research after accepted.

editing methods on MC-MKE under different 110

scenarios. The results reveal the limitations of ex- 111

isting methods, especially for Consistency. We 112

found that editing the model component corre- 113

sponding to type of edit knowledge can obtain 114

better results of Consistency. 115

2 Related Works 116

2.1 Knowledge Editing 117

Knowledge editing aims to provide efficient and 118

lightweight solutions for updating knowledge in 119

models (Zhu et al., 2020). Several benchmarks 120

have been developed for this task, including 121

COUNTERFACT (Meng et al., 2022) for coun- 122

terfactual knowledge, MQuake (Zhong et al., 2023) 123

for multi-hop knowledge, AToKE (Yin et al., 2024) 124

for retaining old knowledge, and WIKIUPDATE 125

(Wu et al., 2024) for unstructured knowledge. 126

These benchmarks primarily address language 127

model editing, leaving multimodal model editing 128

underexplored. To address this gap, Cheng et al. 129

(2024) introduced the MMEdit benchmark based 130

on Visual QA (Antol et al., 2015) and Image Cap- 131

tioning (Herdade et al., 2019). Huang et al. (2024) 132

developed VLKEB, which uses multimodal Knowl- 133

edge Graphs (Liu et al., 2019) to evaluate vision 134

knowledge editing. Additionally, MIKE (Li et al., 135

2024) focuses on fine-grained multimodal entity 136

knowledge editing. However, as shown in Table 1, 137

all previous work has neglected the organization of 138

multimodal knowledge and lacked a more rigorous 139

definition of multimodal knowledge editing, which 140

is what our work focuses on. 141

2.2 Multimodal Models 142

Multimodal large language models have developed 143

rapidly in recent years. BLIP-2 (Li et al., 2023b) ap- 144

ply Q-Former architecture to transform image input 145

into LLMs input tokens. LLaVA(Liu et al., 2024b) 146

and LLaVA-v1.5(Liu et al., 2024a) utilize linear 147

layers or perceptrons to map the vision features 148

into the inputs of LLMs. Through instruction tun- 149

ing on BLIP2, InstructBLIP(Dai et al., 2024) gains 150

the ability to follow the instructions on different 151

tasks. Notably, MiniGPT-4(Zhu et al., 2023) and 152

MiniGPT-v2(Chen et al., 2023) are also powerful 153

LVLMs that exhibit strong performance across var- 154

ious vision-language tasks. There are many other 155

MLLMs such as mPLUG-Owl(Ye et al., 2023), Ot- 156

ter(Li et al., 2023a) and Qwen-VL (Bai et al., 2023). 157

Among all MLLMs, GPT-4V(OpenAI, 2023) is the 158
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Benchmark Fine-grained Edit_scenarios Edit_requirements
IE SRO IRO Reliability Locality Generality Consistency

MMEdit ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

VLKEB ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗

MIKE ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗

MC-MKE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparisons of current multimodal knowledge editing benchmarks, MMEdit (Cheng et al., 2024),
VLKEB (Huang et al., 2024) and MIKE (Li et al., 2024). IE, SRO, and IRO represent different editing scenarios. ✓
and ✗ mean whether the benchmark can provide data of corresponding editing scenario. In Fine-grained, ✓ means
that the corresponding benchmark is constructed based on fine-grained entity information, while ✗ means that the
benchmark is constructed around multimodal task data. Edit_requirements are the properties we expect from a good
editing method. ✓ and ✗ indicate whether the benchmark contains the ability to test these properties of editing
methods.

most powerful one now. We select some of these159

MLLMs for our research.160

3 Multimodal Knowledge Editing161

3.1 Definition of Multimodal Knowledge162

We believe a piece of multimodal knowledge can be163

represented as a combination of visual knowledge164

from image recognition of an entity and textual165

knowledge triplet about the recognized entity. We166

use (i, e) and (s, r, o) to represent visual knowl-167

edge and textual knowledge, separately. We finally168

decompose a piece of multimodal knowledge as:169

K(i, e, s, r, o) = (i, e)×e=s (s, r, o) (1)170

171 Further, in many cross-modal datasets, most in-172

stances represent multimodal knowledge in the173

form of (i, r, o) because there is no need to explic-174

itly mention the intermediate entity e (and s). So175

another combined form of multimodal knowledge176

can be denoted as:177

(i, e)×e=s (s, r, o) = (i, r, o) (2)178

179 In summary, (i, e), (s, r, o), (i, r, o) are three180

types of knowledge involved in multimodal knowl-181

edge editing. A specific example can be seen in182

Figure 2, where the relevant relation and entities of183

the knowledge are highlighted in the sentence with184

corresponding colors.185

3.2 Requirements of MMEdit Method186

Consistency Consistency means that after any com-187

ponent (e, s, r, o) in multimodal knowledge 2 is188

edited, such a equation still holds like 3, where189

ẽ, s̃, r̃, õ correspond to the possibly edited knowl-190

edge.191

(i, ẽ)×ẽ=s̃ (s̃, r̃, õ) = (i, r̃, õ) (3) 192

193Reliability Reliability requirement of multimodal 194

knowledge editing refers to the success rate of edits 195

under the corresponding editing format. 196

Locality Locality means that multimodal editing 197

should not affect unrelated knowledge when editing 198

the corresponding knowledge. 199

Generality Generality means that after a piece of 200

multimodal knowledge is edited, the model should 201

not only output the edited knowledge under the 202

exact input used for editing. It needs to provide 203

correct edited responses under various generaliza- 204

tions, such as rephrased textual input or different 205

images of the same entity. 206

3.3 Edit scenarios of MMEdit 207

As shown in the example in Figure 2, we define 208

three different edit scenarios: IE_edit, SRO_edit, 209

and IRO_edit. 210

IE_edit IE_edit focuses on editing knowledge re- 211

lated to image-to-entity recognition, denoted as 212

(i, e → ẽ). If we want to edit the model’s recogni- 213

tion of an entity in an image, we input the image 214

and modify the model’s recognition output for this 215

image to a new output (e.g. telling the model the 216

person in Figure 2 is Messi rather than Mac Allis- 217

ter). 218

In IE_edit, after perfoming (i, e → ẽ), consis- 219

tency means that, following Eq (3), the edited multi- 220

modal knowledge should be (i, r̃, õ) = (i, ẽ)×ẽ=s̃ 221

(s̃, r̃, õ), with (i, r̃, õ) being the consistency knowl- 222

edge to be checked. Using the same example, after 223

the player in Figure 2 is edited from Mac Allister 224

to Messi, the club which player in the image plays 225

for should be changed from Liverpool to Miami 226

FC correspondingly. 227
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The player in the image is Messi(Mac 
Allister).

The player in the image plays for Miami 
FC(Liverpool).

Messi plays for Miami FC(Liverpool).

The player in the image plays for Miami 
FC(Liverpool).

Due to the player‘s transfer, the player in 
the image plays for Miami FC(Liverpool).

Messi plays for Miami FC(Liverpool).
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Figure 2: The left represents an example of visual knowledge (i, e), textual knowledge (s, r, o) and the corresponding
multimodal knowledge (i, r, o). The right provides an overview of Consistency on different editing scenarios. The
red represents the editing operation, while the purple indicates the requirement to maintain consistency in the
corresponding scenario.

SRO_edit SRO_edit focuses on editing specific228

textual knowledge triplets (s, r, o → õ) without229

requiring image information, e.g., directly telling230

the model Messi plays for Miami FC instead of231

Liverpool. However, to unify the input format of232

multimodal large language models, we use a black233

image as visual input in SRO_edit (Subsequent ex-234

periments in Appendix A show that when using235

questions generated from textual knowledge as in-236

put, the type of input image does not significantly237

impact the accuracy of the answers as long as the238

image does not contain relative content.).239

In SRO_edit, after performing (s, r, o → õ), con-240

sistency means that, following Eq 3, the edited mul-241

timodal knowledge should be (i, e)×e=s(s, r, õ) =242

(i, r, õ), with (i, r, õ) being the consistency knowl-243

edge to be checked. Using the same example in244

Figure 2, after the club Messi plays for is edited245

from Liverpool to Miami FC, the club the player in246

the image plays for should also be changed from247

Liverpool to Miami FC correspondingly.248

IRO_edit Many multimodal datasets and tasks249

only possess the final multimodal data (i, r, o) and250

may not contain its decomposed items (i, e) and251

(s, r, o), indicating that directly editing (i, r, o) is252

also a potential knowledge editing scenario. How-253

ever, when (i, r, o → õ) is edited, we are actu-254

ally implicitly editing its decomposed (i, e) or255

(s, r, o) knowledge. For example, we can actu-256

ally perform either an implicit IE_edit (i, e →257

ẽ) ×ẽ=s̃ (s̃, r, õ) = (i, r, o → õ) or an implicit258

SRO_edit (i, e)×e=s (s, r, o → õ) = (i, r, o → õ)259

to achieve this target.260

Therefore, a unique requirement in IRO_edit is261

that, even though the corresponding visual knowl- 262

edge or textual knowledge is not explicitly identi- 263

fied, an effective editing method should implicitly 264

understand and update which piece of knowledge 265

should be edited, such as through utilizing reasons 266

of this editing. For example in Figure 2, we are 267

telling the model the person in the image plays for 268

Miami FC instead of Liverpool due to player trans- 269

fer, which indicates that the entity recognized in the 270

image remains unchanged but the corresponding 271

textual knowledge should be changed. An effective 272

knowledge editing method should correctly com- 273

prehend this reason perform the correct implicit 274

editing (in this case, the model should actually per- 275

form SRO_edit). 276

Theoretically, either (i, e → ẽ) or (s, r, o → 277

õ) can be possible implicit ways of performing 278

IRO_edit. However, there could be many non- 279

unique ẽ which satisfy this requirements when 280

IRO_edit is performed through (i, e → ẽ), so 281

we only consider IRO_edit implicitly performed 282

through (s, r, o → õ) in our research and our 283

dataset provides automatically generated reasons 284

to ensure this. 285

Therefore, the consistency in IRO_edit means 286

that after (i, r, o → õ) is performed, following Eq 287

3, the edited multimodal knowledge should still be 288

(i, e) ×e=s (s, r, o → õ) = (i, r, o → õ), but this 289

time with (s, r, õ) being the consistency knowledge 290

to be checked. Still taking Figure 2 as an example, 291

after telling the model the person in the image plays 292

for Miami FC instead of Liverpool, the club Messi 293

plays for should also be modified to Miami FC 294

from Liverpool. 295
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(s, r, o) (Germany, continent, Europe)

sro_question Which continent is Germany located in? + Black image

entity 
category of s Country

image of s

ie_question Which Country is shown in the picture?

iro_question Which continent is the Country in the 
picture located in?

+ image of s

+ image of s

Data Selection
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(i, r, o) (image of Germany, continent, Europe)
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Figure 3: The left is the raw data we constructed from MQuAKE, where the sro_question and (s, r, o) triples are
extracted from the MQuAKE dataset. The image of s is crawled and filtered from Google. We generate the entity
categories and constructed ie_question and iro_question. The right is the data selection process, only the instance
where all three questions can be successfully answered by all tested MLLMs(n=3), is retained in the original data
Dorig for knowledge editing.

4 MC-MKE Benchmark Construction296

Since pure textual knowledge editing datasets are297

constructed from textual knowledge triplets (s, r, o)298

and contain editing information (s, r, o → õ),299

we apply the textual knowledge editing dataset300

MQuAKE (Zhong et al., 2023) as the starting point301

to construct our multimodal knowledge editing302

dataset MC-MKE. MQuAKE, as a text knowledge303

editing dataset, contains knowledge triplets, related304

editing information and textual questions as test305

input. Each instance in MQuAKE corresponds to306

a textual knowledge triplet and its textual editing307

information.308

4.1 Data Selection309

Different from previous editing datasets, we per-310

formed strict data selection from the original311

MQuAKE dataset to achieve a high-quality dataset,312

to meet the requirement for rigorous consistency313

evaluation.314

Based on the previous definition of multimodal315

knowledge, as seen in Eq (2), in order to rigorously316

evaluate the impact of knowledge editing on multi-317

modal knowledge, we require that the model must318

be able to successfully answer the corresponding319

questions in all three scenarios for the original mul-320

timodal knowledge before editing. Otherwise, for321

example, even if the model successfully edits the322

visual knowledge (i, e → ẽ) and maintains con-323

sistency, but its textual knowledge (s̃(ẽ), r, õ) is324

incorrect, it will not be able to infer the multimodal 325

knowledge (i, r, õ). The specific process for con- 326

structing and filtering the raw data is shown in Fig- 327

ure 3. We first extract the textual knowledge triples 328

(s, r, o) and their corresponding sro_question from 329

the MQuAKE dataset. Based on experiment A, we 330

use textual questions with black images as inputs. 331

Next, we retrieve images of s from Google and ap- 332

ply the CLIP to filter the images, while employing 333

the GPT to generate the entity category of s. We 334

then construct the corresponding ie_question and 335

iro_question to test whether the model correctly 336

understand the corresponding (i, e) and (i, r, o) 337

knowledge. We selected LLaVA-v1.5, Instruct- 338

BLIP, and MiniGPT-v2 as the MLLMs for testing. 339

Only the data where all three questions are suc- 340

cessfully answered by all tested MLLMs will be 341

retained as the raw data Dorig. 342

More details about data selection and generation 343

quality assessment can be found in Appendix C. 344

4.2 Dataset Construction 345

Reliability Data Construction For multimodal 346

knowledge in our filtered dataset Dorig, we sequen- 347

tially construct editing data under different editing 348

scenarios. For IE_edit, our editing inputs consist of 349

images and automatically generated textual inputs. 350

We choose to use an entity ẽ of the same category 351

as the entity e as the editing target. Additionally, 352

we require that Dorig contains the corresponding 353

(s̃(ẽ), r̃, õ) data. If this condition is not guaran- 354
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teed, the corresponding ẽ cannot be used as the355

edit target because consistency cannot be evaluated.356

For SRO_edit, our editing inputs consist of textual357

questions with black image, with the editing target358

being the corresponding new knowledge õ given in359

MQuAKE dataset. We also require that õ is of the360

same category as o. For IRO_edit, our editing input361

is constructed based on the input from SRO_edit,362

combined with entity categories and templates. The363

target õ is chosen from the corresponding data in364

the SRO_edit editing dataset. More strict require-365

ments can be seen in Appendix C. A statement366

which is constructed with the updated knowledge367

(as shown in the left part of Fig 2) will serve as368

the editing input according to different scenarios.369

When editing knowledge on IRO_edit scenario, we370

will add the possible reason generated from GPT371

into statement according to sec 3.3. The input of372

Reliability Data is then constructed from the edited373

knowledge.374

Consistency Data Construction For an edited375

knowledge, we first find the corresponding consis-376

tency test knowledge, according to Sec 3.3 under377

different scenarios, and then construct the corre-378

sponding test input from the consistency test knowl-379

edge.380

Locality Data Construction This part contains381

multiple locality inputs and corresponding locality382

outputs. For each edit, we randomly select different383

instances with knowledge unrelated to the current384

edited knowledge but of the same editing scenario385

as locality data to check whether this edit affects386

unrelated knowledge. Each edit corresponds to five387

test data instance for locality.388

Generality Data Construction Generality data389

consists of Image Generality data and Text Gener-390

ality data. In Image Generality, we construct test391

input with different images of the corresponding392

entity for each edit. We crawl similar images from393

the web and use CLIP to choose the most similar394

ones. Each edit corresponds to five test data in-395

stance for Image Generality. In Text Generality, we396

first construct test input from the edited knowledge397

and then generate different paraphrases with GPT398

as final test input. Each edit corresponds to five test399

data instance for Text Generality.400

4.3 Benchmark statistics401

We create MC-MKE consisting of a training set402

with 111904 samples and a test set with 44118403

Edit format IE_edit SRO_edit IRO_edit All

Tr
ai

n

#Data 3544 5968 5968 15480
#Relation 37 30 30 37
#Entity 3544 5230 5230 5407

#Alias(avg.) 14.18 13.62 13.62 13.75
#Image 21264 - 20790 22134

#Category 142 342 342 343
#Input Samples 28352 35808 47744 111904

Te
st

#Data 920 982 982 2884
#Relation 28 30 30 30
#Entity 810 1041 1041 1424

#Alias(avg.) 20.46 17.02 17.02 18.11
#Image 2358 - 1311 2550

#Category 49 76 76 76
#Input Samples 15640 11784 16694 44118

Table 2: The statistic of different subsets of MC-MKE.
#Data refers to the number of knowledge entries. #

Relation refers to the types of relation on related
knowledge.#Entity refers to the total number of enti-
ties appeared including s, o and e. #Alias refers to the
number of answer aliases. #Image refers to the number
of images. #Input Samples refers to the total number of
test inputs.

samples. Methods such as SERAC can apply train- 404

ing set to adjust their configuration. The test set 405

consists of a total of 2884 pieces of knowledge 406

across three different edit formats. The associated 407

knowledge involves a large number of entities and 408

relations, indicating the diversity of MC-MKE. It 409

also has an average of 18.11 answer aliases per sam- 410

ple, significantly reducing misjudgments of the ex- 411

act match metrics. Dataset statistics are presented 412

in Table 2. More details and examples about our 413

dataset can be found in Appendix C and D. 414

5 Experiments 415

5.1 MMEdit Methods 416

There have been many single-modal (text) knowl- 417

edge editing methods for , while multi-modal 418

knowledge editing methods have not been fully 419

explored. Therefore, we select the following rep- 420

resentative editing methods including Finetuning, 421

MEND (Mitchell et al., 2022a), IKE (Zheng et al., 422

2023) and SERAC (Mitchell et al., 2022b) in single- 423

modal knowledge editing for evaluation following 424

previous setting(Cheng et al., 2024). More details 425

of these editing methods can be seen in Appendix 426

B. 427
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Figure 4: Results on IE_edit,SRO_edit and IRO_edit for tested editing methods on two MLLMs. Since models do
not support multiple image inputs, we use 0 for Locality and Image Generality in IKE on IE_edit and IRO_edit.
Detailed results can be found in appendix E.

5.2 Results & Analysis428

Consistency of Existing Methods Based on the429

experimental results in Figure 4, we found that in430

IE_edit scenario, most knowledge editing methods431

perform poorly in terms of consistency across both432

models. In the SRO_edit and IRO_edit scenarios,433

the consistency performance is relatively higher.434

However, in SRO_edit and IRO_edit, the output of435

their corresponding consistency output matches the436

required edited output, with only the input informa-437

tion being different according to Sec 3.3. In these438

two editing scenarios, high Consistency without439

high Locality may come from overfitting. Only440

when a method achieves high Consistency across441

all three editing scenarios can its Consistency prop-442

erty be considered trustworthy.443

According to Figure 4, the FT(Vision) maintains444

high Consistency among all training-based meth-445

ods on InstructBLIP, indicating that the FT(Vision)446

is not solely overfitting to obtain Consistency un-447

der IE_edit scenario. Overall, IKE shows good448

Consistency while maintaining a certain degree of449

Locality. However, even IKE shows unsatisfactory450

consistency performance on the IE_edit scenario,451

and its consistency performance on MiniGPT-v2452

on SRO_edit and IRO_edit scenario is even worse.453

This indicates that the current tested methods ig- 454

nore Consistency during development, resulting in 455

their inability to maintain high consistency across 456

all scenarios. 457

Editing Methods on Different Scenarios There 458

are some findings regarding different scenarios ac- 459

cording to Figure 4. Some knowledge editing meth- 460

ods are sensitive to different scenarios on some as- 461

pects, while others are not. Specifically, the MEND 462

knowledge editing method exhibits consistent char- 463

acteristics across different models and scenarios, 464

with similar shapes in the radar charts for various 465

tests. It demonstrates high locality across all testing 466

environments. However, its performance in reliabil- 467

ity, generality, and consistency is poor. Overall, in 468

the IE_edit scenario, MEND’s reliability typically 469

performs better. This may be because MEND con- 470

duct editing through mapping the corresponding 471

changed knowledge to the corresponding parame- 472

ter changes, and the mapping of (i, e) knowledge 473

is relatively more straightforward. MEND may be 474

easier to map the corresponding (i, e) knowledge 475

changes to the corresponding parameter changes. w 476

IKE places the edited knowledge into the input con- 477

text, requiring the model to answer the questions 478

based on the context. The variation in results is 479

7



caused by the different reasoning abilities required480

by the model in different scenarios. Additionally,481

the inherent reasoning capabilities of different mod-482

els also affect the variation in IKE results. Overall,483

the performance of the IKE method is relatively484

unstable.485

The FT method directly fits the edited input486

by training the specified parameters. Its consis-487

tency varies significantly across different scenar-488

ios. Considering its generally low locality in most489

cases, this may be caused by overfitting, as men-490

tioned earlier. Its reliability and generality are rel-491

atively high across most scenarios, indicating that492

the FT method can successfully fit the correspond-493

ing edited knowledge. However, the ability of this494

method to protect other knowledge and maintain495

consistency still needs improvement.496

SERAC performs well on most of the exper-497

iments, but its consistency remains low in the498

IE_edit scenario. We believe that, although the clas-499

sifier SERAC applys can effectively distinguish be-500

tween inputs related to edited knowledge and those501

that are not, it still cannot directly improve consis-502

tency. Even if the classifier identifies the need to503

use the counterfactual model to answer questions504

in the consistency test, the ability to respond to505

the consistency test still depends on the counter-506

factual model itself, which is obtained from the507

fine-tuning strategy. What’s more, the performance508

of SERAC relies heavily on the classifier perfor-509

mance, whether the classifier can correctly identify510

the appropriate model for the given input. We find511

that in the Text Generality of IRO_edit, the classi-512

fier of SERAC often fails to properly classify the513

inputs for text generality, leading to selecting the514

wrong model and thereby reducing performance.515

Editing Different Components Cheng et al.516

(2024) mentioned the visual module is harder to517

edit compared to the text module. Based on our518

experimental results, this point holds true in some519

experiments. For MEND, meta-learning requires520

predicting network changes corresponding to the521

knowledge edits, and editing the visual module to522

output the edited knowledge is more challenging.523

As a result, in most cases, using MEND(Vision)524

tends to result in lower Reliability according to Fig-525

ure 4. However, while the MEND approach does526

help prevent the modification of irrelevant knowl-527

edge to some extent, editing the LLM module with528

MEND still often achieves lower locality as shown529

in Figure 4. Across the three datasets, FT(Vision)530
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Figure 5: The Result of Consistency of FT and MEND
when editing different component(Vision or LLM) of
InstructBLIP and MiniGPT-v2 on three different scenar-
ios.

often achieves reliability similar to FT(LLM). On 531

MiniGPT-v2, FT(Vision) results in higher locality. 532

Apart from previous difference, we also found 533

that editing the corresponding part based on the 534

edit scenario could yield better results in certain as- 535

pects according to Figure 5. From the consistency 536

aspect, for the IE_edit data, the edited knowledge 537

is primarily visual knowledge. Whether using the 538

FT or MEND method, editing in the Vision mod- 539

ule achieves better consistency. For the SRO and 540

IRO scenarios, the edited knowledge is primarily 541

textual, and in this case, both the FT and MEND 542

methods, particularly in the LLM component of the 543

model, achieve better consistency results. These 544

results hold true for the tested models, InstructBlip 545

and MiniGPT-v2. This may suggest that different 546

types of knowledge are more closely related to the 547

corresponding parts in MLLMs. Therefore, we be- 548

lieve that in the future, studying the appropriate 549

editing methods for different types of knowledge 550

should be an important direction. 551

6 Conclusion 552

We refine the definition of multimodal knowledge 553

and introduce a new benchmark MC-MKE. We 554

conduct experiments to analyze the effectiveness 555

of several multimodal knowledge editing methods 556

across different models, editing scenarios, and com- 557

ponents. We find that these methods have limita- 558

tions, and cannot achieve perfect performance on 559

different editing scenarios. To maintain consis- 560

tency, it may be better to edit the model compo- 561

nents corresponding to the specific knowledge part. 562
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Limitations563

The main limitations of our work are related to lim-564

ited knowledge editing methods and multimodal565

large language models. We only provide results566

on MLLMs with 7B checkpoint. We were unable567

to test larger checkpoints, due to resource con-568

straints.As we study the latest MLLMs on four569

knowledge editing methods which have not been570

discussed in prior work, we need to implement571

them from scratch. We end up implement four572

knowledge editing methods, Finetuning, MEND,573

IKE and SERAC.574

Ethical Considerations575

MC-MKE: is a synthetic dataset constructed by576

randomly modifying the factual knowledge triplets,577

rather than being crafted by humans. The data578

samples could accidentally involve context which579

is toxic or offensive in nature. ChatGPT is used for580

data annotation and assisting writing.581
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A Pre-experiments710

SRO_edit focuses on editing a textual knowledge711

triplets (s, r, o), inherently requiring no additional712

visual inputs. But to align with the standard input713

format of MLLMs, we input a black image as the714

visual placeholder. In this section, we present a715

preliminary experiment to explore different choices716

of the input visual images including black images,717

white images and random noise. The accuracy of718

InstructBLIP with these three types of images on 719

SRO_edit are 95.11, 96.53 and 94.70 respectively. 720

It is shown that these uninformative images barely 721

have influence on the results. 722

B Experiment Details 723

Finetuning Details Finetuning is one of the most 724

widely used and apparent methods for improving or 725

modifying the abilities of pre-trained models and 726

is also generally used as a baseline for knowledge 727

editing. Since one can select the model component 728

to finetune, it is natural to explore the differences 729

between finetuning different model components. 730

We focus on finetuning two parts: the alignment 731

module and the LLM component of an MLLM. For 732

the LLM component, we only finetune the last layer. 733

We list the hyper-parameters used for finetuning in 734

Table 3. MiniGPT-v2 and InstructBLIP share the 735

same hyper-parameters. 736

Learning Rate 5e-4
Steps 16
Optimizer AdamW
Weight Decay 0.05

Table 3: Hyper-Parameters used for finetuning.

MEND Details Model Editor Networks with 737

Gradient Decomposition (MEND) (Mitchell et al., 738

2022a) is an editor network mapping a single de- 739

sired input-output knowledge pair to the corre- 740

sponding parameter update of the original model. 741

Specifically, the input-output knowledge pair pro- 742

vides a standard fine-tuning gradient as a starting 743

point for editing updates. Then MEND directly 744

transforms the gradient to a better parameter up- 745

date ensuring both generality and locality. Train- 746

ing process of MEND requires additional training 747

data specific to the underlying model. Following 748

(Mitchell et al., 2022a), we construct an edit dataset 749

and a locality dataset for both InstructBLIP and 750

MiniGPT-v2. We leverage the data filtered in Sec- 751

tion 4.1 as the edit dataset, sharing identical dis- 752

tribution with MC-MKE. Since both InstructBLIP 753

and MiniGPT-v2 leverage MS COCO(Lin et al., 754

2015) for pretraining, we include it as the local- 755

ity training dataset. We search for three important 756

hyper-parameters cloc, cedit and learning rate on 757

each experimental setting for ten times. We found 758

that MEND is very sensitive to hyperparameters, 759

especially when the target module is small (e.g. the 760

MEND(Vision) setting in our main experiment). 761
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IKE Details In-Context Knowledge Editing762

(IKE)(Zheng et al., 2023) enables knowledge763

editing by incorporating demonstration examples764

within the input data to update and acquire new fac-765

tual knowledge without the requirement of further766

training. Considering the limitation on the num-767

ber of input images, we choose to implement the768

zero-shot version of IKE.769

SERAC Details SERAC(Mitchell et al., 2022b)770

proposes a memory-based editing approach. The771

approach consists of a classifier and a counterfac-772

tual model. The classifier chooses whether to use773

the counterfactual model or not based on the rela-774

tion between the given input and edit memory.775

Since our tasks are multimodal, we use a neural776

network trained on the training set as the classifier.777

The neural network consists of a CLIP feature ex-778

traction layer and an MLP classification layer. We779

set the learning rate of the classification layer to780

0.0005. Since consistency requires the model to781

have reasoning abilities, we opted to continue using782

the large model as the counterfactual model. Specif-783

ically, we employ a large model with its LLM part784

fine-tuned on the edited knowledge as the counter-785

factual model.786

MLLMs Details InstructBLIP is a multimodal787

large language model that consists of three mod-788

ules. Its multimodal alignment module consists of789

a Qformer structure and a linear layer network to790

connect its vision and large language model mod-791

ule. We use InstructBLIP equipped with Vicuna-7B792

(Chiang et al., 2023).793

MiniGPT-v2 utilizes a linear projection layer794

as an alignment module to map visual features to795

LLM feature space. Compared with InstructBLIP,796

MiniGPT-v2 has a smaller alignment module but797

still more input visual features. We use MiniGPT-798

v2 equipped with Llama-2-Chat-7B (Touvron et al.,799

2023).800

C Data Details801

Entity Alias To facilitate entity evaluation, we col-802

lect alias of entities for all answers from the original803

dataset Draw. However, since we will edit some804

of the subject entities, we also used alias data from805

Wiki as a supplement to construct the final entity806

alias library. All of our matching is performed with807

entities and their corresponding aliases.808

Edit input Construction Details We choose to809

use an entity ẽ of the same category as the entity810

e and we require that the corresponding textual 811

knowledge triplet (s̃, r̃, õ), which s̃ = ẽ exists in 812

Dorig. 813

Locality Construction Details We ensure that 814

these selected entities differ from those of the 815

current knowledge. Formally, the knowledge 816

Kloc(i
′, e′, s′, r′, o′) for locality test of knowledge 817

K(i, e, s, r, o) must satisfy the condition i′ ̸= 818

i, e′ ̸= e, s′ ̸= s, r′ ̸= r, o′ ̸= o. We randomly 819

sample five pieces of knowledge to serve as the 820

locality test data. 821

Entity Category Generation Evaluation We 822

employ ChatGPT to generate the category of a 823

given entity. To verify the quality of categories 824

generated by ChatGPT, we randomly sampled 200 825

items and invited two annotators to independently 826

verify whether the entities mentioned in these items 827

matched their respective categories. The average 828

agreement between the annotators was 98%, with 829

a consistency rate of 97%, indicating that the gen- 830

erated entity categories are highly reliable. An 831

example of a generated entity category is: "google" 832

: "company". 833

Training set Construction Except for not under- 834

going the original problem filtering, the construc- 835

tion of the train data is similar to that of the test 836

set. We utilize some of the filtered data to construct 837

training set. For the filtered data which are not in 838

Dorig, we directly apply the question in MQuAKE 839

dataset as text generality textual input, and use the 840

images from google as image generality visual in- 841

put. 842

Rephrase Generation Evaluation We employ 843

ChatGPT to generate Generality data. To verify 844

the quality of rephrases generated by ChatGPT, we 845

randomly sampled 100 items each associated with 846

4 paraphrased sentences and asked two annotators 847

to independently assess the quality of each para- 848

phrased sentence, marking them as 0 for bad quality 849

and 1 for good quality. The average scores for the 850

400 paraphrase results were 0.9675, respectively, 851

with an agreement of 98%, demonstrating that the 852

quality of our paraphrases is sufficiently reliable. 853

An example of paraphrased sentence is: Origin : 854

"Who performed Folsom Prison Blues?" Rephrase : 855

"Who was the performer of Folsom Prison Blues?" 856

D Prompts 857

We designed specific prompts and instructions for 858

GPT-3.5-turbo-16k to rephrase the textual input for 859
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Prompts and Instructions

You are a helpful assistant.
Please rephrase the following original text with 10 differ-
ent and diverse expressions, maintaining exactly the same
meanings.
Note that you must not add any additional information and
not delete or lose any information of the original text.

Original Text:
{source}

5 Rephrased Texts:

Table 4: Prompts and instructions used for rephrasing
the textual input for the text generalization dataset.

Prompts and Instructions

You are a powerful fine-grained entity category generator.
User will give the name of entity, and you will help answer
the fine-grained categoty of the entity. The answer is the
categoty only.
There are some examples: Given entity Cameroon, a pos-
sible answer should be "country".
Given entity David Beckham, a possible answer should be
"person".
Given entity The Great Gatsby, a possible answer should
be "book".
Given entity Producers’ Showcase, a possible answer
should be "TV show".
Given entity Lady Madonna, a possible answer should be
"song".
Given entity Cox Enterprises, a possible answer should be
"company".
The given entity is {}, a possible answer is:

Table 5: Prompts and instructions used for generating
fine-grained entity types.

the text generalization dataset and generate fine-860

grained entity types, as shown in Table 4 and Table861

5, respectively.862

We provide editing and testing inputs of different863

types of multimodal knowledge editing in Table 6,864

Table 7 and Table 8.865

E Detailed Results866

We present detailed experiment results in Table 9,867

10, 11 corresponding to Figure 4.868

Input Visual
Inputs

Textual Inputs

Edit
input

Question: The book in the pic-
ture is
ẽ: The Pilgrim’s Progress

pr

Question: The book in the pic-
ture is
tr: The Pilgrim’s Progress
Alias: Pilgrim’s Progress,
Land of Beulah, ...

pc

Question: The book in the pic-
ture was written in the lan-
guage of
tc: English
Alias: en, eng, English lan-
guage, ...

pl

Question: Which TV channel
is shown in the picture?
tl: ESPN
Alias: Entertainment and
Sports Programming Network

pMg

Question: The book in the pic-
ture is
tMg : The Pilgrim’s Progress
Alias: Pilgrim’s Progress,
Land of Beulah, ...

pTg

Question: Which book is
shown in the picture?
tTg : The Pilgrim’s Progress
Alias: Pilgrim’s Progress,
Land of Beulah, ...

Table 6: IE_edit multimodal input examples.

12



Input Visual
Inputs

Textual Inputs

Edit
input /

Question: Invisible Man was
written in the language of
õ: Sanskrit

pr /

Question: Invisible Man was
written in the language of
tr: Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

pc

Question: The book in the pic-
ture was written in the lan-
guage of
tc: Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

pl /

Question: What is the country
of citizenship of Warren Buf-
fett?
tl: United States of America
Alias: the United States, the
United States of America, ...

pTg /

Question: Which language
was Invisible Man written in?
tTg : Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

Table 7: SRO_edit multimodal input examples.

Input Visual
Inputs

Textual Inputs

Edit
input

Question: The official work
language of the book in the pic-
ture has changed.
The book in the picture was
written in the language of
õ: Sanskrit

pr

Question: The book in the pic-
ture was written in the lan-
guage of
tr: Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

pc /

Question: Invisible Man was
written in the language of
tc: Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

pl

Question: Who is the devel-
oper of the operating system
in the picture?
tl: Microsoft
Alias: MSFT, Microsoft Corp.,
...

pMg

Question: The book in the pic-
ture was written in the lan-
guage of
tMg : Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

pTg

Question: Which language
was the book in the picture
written in?
tTg : Sanskrit
Alias: Samskrta, Samskrtam,
Sanskrit language, ...

Table 8: IRO_edit multimodal input examples.
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Model Edit Reliability Locality Image Text ConsistencyMethod Generality Generality

InstructBLIP

FT(Vision) 89.57 0.34 90.30 24.10 38.07
FT(LLM) 98.48 0.03 96.41 78.04 9.09

MEND(Vision) 32.39 93.15 23.43 29.73 18.37
MEND(LLM) 88.58 53.23 85.21 86.49 9.46

IKE 68.26 / / 76.33 49.05
SERAC 98.48 87.65 96.41 68.41 9.09

MiniGPT-v2

FT(Vision) 98.04 66.43 91.52 98.13 16.67
FT(LLM) 95.76 0.59 91.48 93.41 8.71

MEND(Vision) 7.57 56.73 5.69 6.17 11.36
MEND(LLM) 26.52 67.34 20.17 29.19 4.54

IKE 47.61 / / 25.24 60.60
SERAC 95.76 83.85 91.48 81.48 8.71

Table 9: Experimental results on IE_edit data for four editing methods editing two different model components on
two MLLMs. The highest value is highlighted in bold.

Model Edit Reliability Locality Text ConsistencyMethod Generality

InstructBLIP

FT(Vision) 91.75 4.23 17.84 87.57
FT(LLM) 99.49 3.95 79.59 90.43

MEND(Vision) 13.64 95.03 10.00 3.86
MEND(LLM) 66.49 79.34 72.85 55.90

IKE 81.06 94.18 55.87 73.73
SERAC 99.49 89.53 65.05 90.43

MiniGPT-v2

FT(Vision) 98.78 24.81 97.68 31.67
FT(LLM) 97.35 2.01 93.73 91.24

MEND(Vision) 4.37 93.50 3.29 2.74
MEND(LLM) 2.85 76.96 2.62 3.25

IKE 30.55 91.26 24.83 21.18
SERAC 97.35 91.43 75.05 91.24

Table 10: Experimental results on SRO_edit data for four editing methods editing two different model components
on two MLLMs. The highest value is highlighted in bold.

Model Edit Reliability Locality Image Text ConsistencyMethod Generality Generality

InstructBLIP

FT(Vision) 84.83 2.75 85.07 34.25 76.37
FT(LLM) 91.65 4.85 91.47 81.87 86.46

MEND(Vision) 24.13 85.88 19.20 33.11 5.49
MEND(LLM) 70.57 64.78 72.05 86.00 50.50

IKE 71.59 / / 82.83 48.17
SERAC 91.65 99.06 91.47 26.01 86.46

MiniGPT-v2

FT(Vision) 98.98 73.71 93.32 98.78 24.13
FT(LLM) 88.49 2.04 87.25 86.99 84.32

MEND(Vision) 6.21 76.00 4.52 5.45 2.13
MEND(LLM) 34.21 67.31 25.49 43.91 6.72

IKE 62.73 / / 62.48 21.49
SERAC 88.49 97.25 87.25 26.92 84.32

Table 11: Experimental results on IRO_edit data for four editing methods editing two different model components
on two MLLMs. The highest value is highlighted in bold.
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