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ABSTRACT

Bayesian Optimization (BO) is a powerful framework for optimizing noisy,
expensive-to-evaluate black-box functions. When the objective exhibits invari-
ances under a group action, exploiting these symmetries can substantially improve
BO efficiency. While using maximum similarity across group orbits has long been
considered in other domains, the fact that the max kernel is not positive semidefinite
(PSD) has prevented its use in BO. In this work, we revisit this idea by considering
a PSD projection of the max kernel. Compared to existing invariant (and non-
invariant) kernels, we show it achieves significantly lower regret on both synthetic
and real-world BO benchmarks, without increasing computational complexity.

1 INTRODUCTION

Bayesian optimization (BO) tackles the maximization of a noisy, expensive-to-evaluate black-box
f⋆ : S ⊂ Rd → R using a Gaussian process (GP) surrogate. When prior knowledge says that f⋆ is
invariant on orbits [x] = {gx : g ∈ G} of a group G, that is,

f⋆(x) = f⋆(gx) (∀g ∈ G),

embedding this invariance into the kernel can significantly improve sample efficiency. A classical
and principled approach is to average a base kernel kb over group orbits (e.g., Kondor (2008);
Glielmo et al. (2017); Brown et al. (2024)). Averaging yields a G-invariant kernel with a clean RKHS
interpretation (as discussed in Section 2.2), but as |G| grows it can dilute high-similarity alignments
across orbits.

From averaging to max-alignment. We revisit a simple idea—retain the strongest orbitwise
alignment—and adapt it to BO. Given a base kernel kb and a symmetry group G, define

kmax(x,x
′) = max

g,g′∈G
kb
(
gx, g′x′), (1)

so that the similarity between x and x′ is the best alignment over their orbits. While kmax is
symmetric and G-invariant, it is not positive semidefinite (PSD) in general and thus cannot serve
directly as a GP covariance.

A PSD, invariant surrogate via projection + Nyström. On a finite design set D, we form the Gram
matrix of kmax and project it onto the PSD cone (eigenvalue clipping), obtaining K+. Denoting by
K†

+ the Moore-Penrose pseudo-inverse of K+, we then define the G-invariant, PSD kernel

k
(D)
+ (x,x′) = kmax(x,D)K†

+ kmax(D,x′). (2)

Equivalently, k(D)
+ (x,x′) = ϕ(x)⊤ϕ(x′) with features ϕ(x) = K

†/2
+ kmax(D,x), which makes

positive semidefiniteness immediate. By construction, k(D)
+ (i) coincides with kmax on D whenever

kmax is already PSD, and (ii) has per-iteration asymptotic cost comparable to orbit-averaged kernels;
details in Section 3.2.

Why can max-alignment help? Averaging mixes all orbit pairings and can shrink contrasts as
|G| increases. In contrast, (1) preserves high-contrast alignments that drive exploration, while the
projection step (2) produces a valid GP kernel without introducing new algorithmic complexity
(BO iterations already perform a Singular Value Decomposition (SVD) of the Gram matrix for GP
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inference, so the extra-computation of K†
+ does not change the asymptotic cost as we will see later

in Table 1).

Empirics and spectra. Across synthetic benchmarks with finite and continuous groups and a
wireless-network design task, we show that k(D)

+ consistently attains lower cumulative and simple
regret than both the base kernel and the orbit-averaged alternative, with gains increasing with |G|. Our
spectral analyses reveal that k(D)

+ does not necessarily enjoy faster eigendecay than averaging-based
kernels; thus, eigendecay-based regret bounds would predict similar or weaker rates, yet we observe
the opposite in practice. We hypothesize that search-geometry effects (e.g., preserving high-contrast
orbit alignments), approximation hardness and misspecification are key factors to take into account to
fill this gap between theory and practice; see Section 5.

Summary of the contributions. We propose kmax as a max-alignment route to G-invariance, turn it
into a valid GP kernel for BO via PSD projection and Nyström, and show k

(D)
+ is G-invariant, equals

kmax on D when kmax is PSD, and matches the asymptotic cost of orbit-averaged kernels (Section 3).
We demonstrate consistent BO gains over orbit averaging across BO benchmarks (Section 4), and we
analyze why eigendecay alone does not explain these gains (Section 5).

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION IN A NUTSHELL

Problem. We seek to maximize an expensive-to-evaluate, black-box objective f⋆ : S→R under the
assumption that f⋆ is in the RKHS Hk of a kernel k : S ×S → R. Each query x ∈ S returns a noisy
observation y = f⋆(x) + ε, where ε ∼ N (0, σ2

0). Let Zt = {(xi, yi)}ti=1 denote the dataset after t
evaluations, and write Dt = (x1, . . . ,xt) and yt = (y1, . . . , yt)

⊤.

Surrogate model: the GP prior. BO maintains a probabilistic surrogate f over functions in Hk to
guide sampling of new queries x ∈ S with the goal of converging to argmaxx∈S f

⋆(x). A common
choice is a zero-mean Gaussian process (GP) (Rasmussen & Williams, 2006),

f ∼ GP(0, k),

Conditionally on Zt, the posterior f | Zt is still a GP with posterior mean and covariance

µt(x) = k(x,Dt)
(
Kt + σ2

0It
)−1

yt, (3)

Covt(x,x
′) = k(x,x′)− k(x,Dt)

(
Kt + σ2

0It
)−1

k(Dt,x′), (4)

where Kt = k(Dt,Dt) ∈ Rt×t, It is the t× t identity, and k(x,Dt) = [k(x,x1), . . . , k(x,xt)].

BO Iteration. At step t, BO trades off exploration (learning f⋆) and exploitation (sampling near
current optima) via an acquisition function αt : S → R computed from (µt,Covt) (e.g., GP-
UCB (Srinivas et al., 2012) or Expected Improvement (Jones et al., 1998)). The next point is

xt+1 ∈ argmax
x∈S

αt(x), yt+1 = f⋆(xt+1) + εt+1.

Measuring performance with regret. We follow the common practice in BO: for experiments where
f⋆ is known, we measure the regret on the deterministic f⋆ ∈ Hk, and when discussing theoretical
regret bounds we refer to the regret on f ∼ GP(0, k) (Garnett, 2023). In both cases, for h = f or
h = f⋆, the instantaneous regret at timestep t is rt = maxx∈S h(x)− h(xt), the cumulative regret
at horizon T is RT =

∑T
t=1 rt, and the simple regret is sT = maxx∈S h(x) − max1≤t≤T h(xt).

A BO algorithm with a sublinear regret (i.e., RT ∈ o(T )) is called no-regret and offers asymptotic
global optimization guarantees on f⋆. Most standard cumulative regret upper bounds are established
in terms of the eigendecay of the operator spectrum of the kernel k (Srinivas et al., 2012; Valko et al.,
2013; Scarlett et al., 2017; Whitehouse et al., 2023).

2.2 INVARIANCE IN BAYESIAN OPTIMIZATION

In many applications, the objective function f⋆ is invariant under the action of a known symmetry
group G on S, i.e., f⋆(x) = f⋆(gx) for all g ∈ G. When such invariances are ignored, BO
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algorithms may waste evaluations by treating all points within the same |G|-orbit as distinct. Given
a non-invariant base kernel kb and an arbitrary symmetry group G, both provided by the user, this
section reviews existing strategies for incorporating group invariance into BO and positions our
contribution within this literature.

Data augmentation. A popular way to enforce symmetry is to expand the dataset Z itself, as it is
often done in computer vision (Krizhevsky et al., 2012). For each acquired observation (xt, yt), one
augments Z with all transformed copies {(gxt, yt)}g∈G , while leaving the base kernel kb unchanged.
However, since BO scales as O(|Z|3), this approach quickly becomes computationally prohibitive
and is inapplicable to continuous symmetry groups.

Search space restriction. A second strategy is to restrict the optimization domain to the smallest
subset SG ⊆ S such that

⋃
g∈G gSG = S (e.g., Baird et al. (2023)). For instance, if S = [−1, 1]2

and G is the group of planar rotations by angle π/2, then it suffices to optimize over SG = [0, 1]2

while keeping the base kernel kb unchanged. In general, however, identifying a suitable fundamental
domain SG can be challenging, and enforcing optimization within it may be impractical.

Invariant kernels. A principled way to incorporate prior G-invariance of f⋆ is to consider a G-
invariant GP prior f , i.e., a GP whose sample paths x ∈ S 7→ f(x, ω) obtained by fixing one outcome
ω in the probability space are themselves invariant under G. Ginsbourger et al. (2012) established that
such GPs necessarily admit a G-invariant covariance function1, meaning k(gx, g′x′) = k(x,x′) for
all x,x′ ∈ S and g, g′ ∈ G. The central question then becomes: how can one construct an invariant
kernel k from an arbitrary base kernel kb and symmetry group G? An elegant solution, dating back to
Kondor (2008) and recently advocated for BO by Brown et al. (2024), is to average kb over G-orbits:

kavg(x,x
′) =

1

|G|2
∑
g,g′∈G

kb(gx, g
′x′). (5)

This construction is not only guaranteed to be G-invariant, but also admits a clean functional in-
terpretation: if Hkb and Hkavg denote the RKHS induced by kb and kavg respectively, then Hkavg
coincides exactly with the subspace of G-invariant functions in Hkb (Theorem 4.4.3 in Kondor
(2008)). Consequently, kavg (up to normalization) has gained popularity as the standard off-the-shelf
kernel for BO in symmetric settings (Glielmo et al., 2017; Kim et al., 2021; Brown et al., 2024).

A complementary idea in kernel methods is to retain the best latent alignment between two orbits via
a maximum, as in convolution/best-match kernels for structured data (Gärtner, 2003; Vishwanathan
et al., 2003) and follow-up work across domains (Fröhlich et al., 2005; Zhang, 2010; Curtin et al.,
2013). Max-alignment kernels, however, are not PSD in general, leading to indefinite Gram matrices.
This has motivated two families of remedies: (i) explicit Kreı̆n-space formulations (Ong et al., 2004;
Oglic & Gärtner, 2018), and (ii) simple PSD corrections such as eigenvalue clipping/flipping in
SVMs (Luss & D' aspremont, 2007; Chen et al., 2009), which are empirically effective.

Our adaptation to BO. Guided by the above, we adopt the max-alignment view for BO. To ensure
positive definiteness, we project kmax (see (1)) onto a PSD kernel k(D)

+ , which coincides with kmax

whenever the latter is already PSD. This preserves the sharp, high-contrast orbit alignments of kmax

while ensuring compatibility with the BO framework and it keeps per-iteration BO complexity on par
with orbit-averaged kernels (see complexity details later in Section 2.2). In our experiments, k(D)

+
better reflects the intended symmetries of standard synthetic objectives and achieves substantially
lower cumulative regret; interestingly, these empirical gains are not mirrored by existing eigendecay-
based upper bounds, a point we return to in Section 5.

3 THE MAX KERNEL

We have introduced the max-alignment kernel kmax and its PSD surrogate k(D)
+ in (2). This section

explains why kmax is a natural G-invariant covariance, clarifies how it differs from orbit averaging
through examples, and records the practical PSD construction we use in BO.

1Up to modification, i.e., there is another GP f ′ such that for every x ∈ S, P(f(x) = f ′(x)) = 1 and f ′

has invariant paths and invariant covariance, see Property 3.3 in Ginsbourger et al. (2012).
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3.1 MOTIVATION: kmax AS A VALID COVARIANCE

A natural way to motivate kmax is to exhibit G-invariant GPs whose covariance equals kmax.

Construction. Let h ∼ GP(0, kb) with an isotropic base kernel kb(x,x′) = κ(∥x− x′∥2) with κ
nonincreasing (e.g., popular ones such as RBF, Matérn). Consider a map ϕG such that (i) ϕG(x) =
ϕG(gx) for all g ∈ G and (ii) ∥ϕG(x)−ϕG(x′)∥2 = ming,g′ ∥gx−g′x′∥2. Define f(x) = h(ϕG(x)).
Then f is G-invariant and:
Proposition 1. Under the construction above, f ∼ GP(0, kmax) with kmax given by (1).

Proof sketch, details in Appendix A. Cov(f(x), f(x′))
deff
= kb(ϕG(x), ϕG(x

′))
(ii)
= κ(ming,g′ ∥gx−

g′x′∥2), and monotonicity of κ converts the min-distance into maxg,g′ kb(gx, g
′x′).

This shows that kmax naturally arises as the covariance of valid G-invariant GPs. In contrast, the
common approach to invariance in BO is to build kavg by averaging a base kernel as in (5). But
averaging and maximization induce fundamentally different geometries:
Lemma 2. For any base kernel kb and any (double) orbit O(x,x′) := {(gx, g′x′), g, g′ ∈ G},
kavg = kmax on O(x,x′) if and only if kb = kmax on that orbit.

Indeed, an average reaches the maximum only when every term is maximal. Thus kavg can never
reproduce the geometry of kmax, except in the degenerate case where the base kernel is already
kmax, making averaging redundant. One might wonder whether this limitation of kavg could be
circumvented by building it from a different base kernel than the one used for kmax. In Appendix A.2
we show that, under mild assumptions satisfied by standard kernels (upper-bounded by 1, with
equality k(x,x) = 1 along the diagonal), kavg and kmax can coincide only in the trivial case where
the base kernel of kavg is already invariant when its arguments belong to the same orbit. Thus, even
in this more general setting, averaging does not reproduce the geometry of maximization (except if
the base kernel already had invariances).

To make this contrast concrete, we now examine a simple example (radial invariance with an RBF
base kernel) where kmax and kavg can be computed in closed form.
Example 3 (Radial invariance with kmax). Let G be the group of planar rotations and kb(x,x′) =
exp
(
−∥x− x′∥22/2l2

)
be an RBF kernel. With ϕG(x) = ∥x∥2,

kmax(x,x
′) = exp

(
−(∥x∥2 − ∥x′∥2)2/2l2

)
, kavg(x,x

′) = exp
(
−∥x∥2

2+∥x′∥2
2

2l2

)
I0

(
∥x∥2∥x′∥2

l2

)
,

with I0 the modified Bessel function (derivation in Appendix B). As illustrated in Figure 1, the
two kernels kmax and kavg induce qualitatively different similarity structures. By construction,
kmax assigns large similarity whenever ∥x∥2 ≈ ∥x′∥2. If ∥x∥2 = ∥x′∥2, the function f⋆ satisfies
f⋆(x) = f⋆(x′) since it is invariant under rotations, and kmax exactly recovers this invariance by
assigning maximal similarity kmax(x,x

′) = 1. In contrast, kavg only approximates this behavior:
its iso-similarity curves as a function of (∥x∥2, ∥x′∥2) correspond to distorted balls, and two points
with identical norms may be ranked as highly dissimilar (see the diagonal ∥x∥2 = ∥x′∥2 of the right
plot in Figure 1). This mismatch highlights that while both constructions enforce rotation invariance,
only kmax preserves the correct notion of similarity.

3.2 A PSD EXTENSION OF kmax: WHAT WE USE IN PRACTICE

Because kmax is not PSD in general, we apply a standard projection step on the finite design set
D = {x1, . . . ,xn}. Let K = kmax(D,D) with eigendecomposition K = QΛQ⊤ and define2

(with the max applied elementwise)

K+ = Q max(0,Λ)Q⊤. (6)

We then use the Nyström extension3 (Williams & Seeger, 2000) to evaluate cross-covariances with
new points, yielding the PSD, G-invariant surrogate k(D)

+ given in (2) and that we reproduce here:

k
(D)
+ (x,x′) := kmax(x,D)K†

+ kmax(D,x′). (7)

2K+ does not depend on the choice of the eigendecomposition, see Lemma 7 in the appendix.
3It indeed extends K+ since k

(D)
+ (xi,xj) = Ki,: K

†
+ K:,j = (KK†

+K)ij = (K+)ij .
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Figure 1: (Left) A two-dimensional function f⋆(x) invariant under planar rotations (see (16)): if
∥x∥2 = ∥x′∥2, then f⋆(x) = f⋆(x′). (Center/Right) Rotation-invariant kernels derived from an
RBF base kernel (lengthscale 1/2), visualized as a function of (∥x∥2, ∥x′∥2). kmax (center) captures
the correct invariance, while kavg (right) only approximates it.

Table 1: Complexity per BO iteration. Here |G|∗ denotes either |G| or |G|2 depending on whether the
orbit terms reduce to a single sum (when kb(gx,x′) suffices) or require a double sum over (g, g′); m
is the number of candidate points used in acquisition optimization.

Base kernel kb Averaged kavg Projected k(D)
+

Gram matrix (n× n) O(n2) O(n2|G|∗) O(n2|G|∗)
SVD / inversion O(n3) O(n3) O(n3)
PSD projection – – O(n3)4

Per-query evaluation O(1) O(|G|∗) O(n|G|∗)
BO iteration O(m+ n2 + n3) O((m+ n2)|G|∗ + n3) O((mn+ n2)|G|∗ + n3)

Key properties of k(D)
+ :

• PSD & invariance. k(D)
+ is PSD and inherits argumentwise G-invariance5 of kmax.

• Consistency with kmax. If K ⪰ 0, then K+ = K and k(D)
+ agrees with kmax on D ×D.

• Cost. Each BO iteration involves (i) building the Gram matrix on D, (ii) inverting the Gram matrix
to build the acquisition function, and (iii) m kernel evaluations when optimizing the acquisition
function. Step (ii) has the same cost as the SVD of K needed to compute both K+ and K†

+, which
makes k(D)

+ having the same asymptotic per-iteration cost as kavg; its per-query evaluations are
more expensive, but this difference is negligible as long as we keep m ≲ n. A concise complexity
summary is provided in Table 1.

• Regularity. For finite groups, kmax is a max of finitely many smooth maps and is almost every-
where (a.e.) differentiable; the Nyström extension preserves a.e. differentiability in each argument.
For continuous groups, smoothness can sometimes be obtained via closed-form formulas (e.g., as
in Example 3).

We now illustrate the behavior of k(D)
+ versus kavg (in this situation, kmax is not PSD and the

projection step is indeed needed to restore positive semidefiniteness).

Example 4 (Ackley function with k+). Figure 2 compares k(D)
+ and kavg on the one-dimensional

Ackley function (see (15)). The projected kernel k(D)
+ preserves the expected pairwise symmetries

(invariance along x = y and x = −y) and spreads mass more evenly across the symmetric regions,
whereas kavg concentrates covariance mostly near the origin. Thus, k(D)

+ better reflects the symmetry
geometry of the problem, echoing the qualitative difference observed in Example 3.

Beyond the finite view (details in Appendix C). The PSD projection with Nyström in Equation (7) is
a practical, data-dependent construction. It can be seen as the finite-sample face of a broader, intrinsic
definition that does not depend on D. Since kmax is symmetric, it admits a spectral decomposition

4One SVD of K suffices to obtain both K+ and K†
+, so the extra PSD projection does not increase

asymptotic cost.
5kmax(gx,x

′) = kmax(x,x
′) implies kmax(gx,D) = kmax(x,D), hence invariance of k(D)

+ .

5
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Figure 2: (Left) One-dimensional Ackley function f⋆ (see (15)), invariant up to sign flips, and GP
posterior means µt(x) as in (3) for k(D)

+ (orange diamond) and kavg (green circles) built from D (black
crosses). (Center) Covariance structure induced by k(D)

+ . (Right) Covariance structure induced by
kavg. Both kernels are invariant to reflections across x = y and x = −y, but kavg concentrates
covariance near 0, while k(D)

+ better reflects the underlying symmetry geometry. Consequently, the
GP posterior mean induced by k(D)

+ is the best at fitting the objective (left).

Table 2: Performance of kb, kavg, and k(D)
+ across benchmarks. For each kernel k ∈ {kb, kavg, k(D)

+ }
we report m ± serr, where m is the empirical mean over 10 seeds (lower is better) and serr is the
empirical standard error. Best mean is bold; means m whose 95% confidence interval (m± 1.96serr)
confidence interval overlap with the best are underlined. Performance is measured by cumulative
regret on synthetic benchmarks and by negated simple reward on real-world experiments.

Benchmark |G| kb kavg k
(D)
+

Synthetic (Cumulative Reg.)
Ackley2d 8 382.7± 5.7 128.2± 10.4 126.4± 3.6
Griewank6d 64 3840.3± 177.7 3067.4± 841.9 1832.6± 146.3
Rastrigin5d 3, 840 3568.5± 91.3 1583.5± 341.9 813.4± 70.6
Radial2d ∞ 388.6± 20.3 480.9± 76.4 199.7± 11.6
Scaling2d ∞ 1820.6± 1135.4 3361.8± 742.9 25.4± 6.4

Real-World (Neg. Simple Rew.)
WLAN8d 24 −65.0± 3.2 −51.8± 1.7 −74.4± 0.7

kmax(x,x
′) =

∑
i λiϕi(x)ϕi(x

′) in L2, and we can always define (a.e.)

k+(x,x
′) :=

∑
i

max(0, λi)ϕi(x)ϕi(x
′),

with k+ = kmax whenever kmax is already PSD. On finite domains, this precisely reduces to the
matrix PSD projection in (6). In Appendix C we formalize the infinite-domain construction via
integral operators, prove that k+ is G-invariant, and show that the finite projection + Nyström in (7)
converges to k+ at the spectral (Hilbert-Schmidt) level under iid sampling (Appendix C.3).

Takeaway. kmax is the exact covariance of a natural class of G-invariant GPs and induces a search
geometry that preserves high-contrast orbit alignments (Examples 3 and 4). The PSD projection +
Nyström step yields a valid GP kernel k(D)

+ without introducing extra asymptotic complexity. We
now measure its practical impact in Section 4.

4 EXPERIMENTS

We evaluate k(D)
+ against two baselines: (i) the off-the-shelf kernel kb (no symmetry handling), and

(ii) the orbit-averaged kernel kavg (Brown et al., 2024). Benchmarks include standard synthetic
objectives and a real-world wireless design task with known invariances. We ask: (Q1) Does k(D)

+
reduce simple/cumulative regret vs. kavg? and (Q2) How does performance scale with the size of the
symmetry group and dimension? Experimental details are in Appendix E.

Headline: k(D)
+ wins on every task. Across all benchmarks (Table 2), k(D)

+ achieves the best mean
performance with up to 50% of improvement. This answers Q1 positively. Regarding Q2, we will see

6
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Figure 3: Cumulative regret and negated simple reward under GP-UCB with kb (blue crosses), kavg
(orange diamonds), and k(D)

+ (green circles). Shaded areas: standard error over 10 seeds.

that as the group size increases, k(D)
+ stays strong, while kavg degrades and can even underperform

the non-invariant base kernel kb.

Setup in one glance. We run GP-UCB with each kernel k ∈ {kb, kavg, k(D)
+ }, using the same

acquisition and optimization budgets. We report results averaged over 10 seeds. Synthetic objectives
span d ∈ {2, . . . , 6} and symmetry sizes from |G| = 8 up to continuous groups (|G| = ∞). The
real-world task is an 8-dimensional AP-placement problem invariant to AP permutations (Section 4.2).
Hyperparameters and group actions are detailed in Appendix E.

4.1 SYNTHETIC BENCHMARKS

We consider synthethic functions f⋆ (Ackley, Griewank, Rastrigin, etc.) that exhibit symmetries and
are classically considered as challenging to optimize in the BO literature (Qian et al., 2021; Bardou
et al., 2024). We cover dimensions d = 2 to d = 6 and group sizes |G| = 8 to |G| = ∞. We evaluate
performance using the cumulative regretRT =

∑T
i=1

(
f⋆(x∗)−f⋆(xt)

)
since the global maximizer

x∗ = argmaxx∈S f
⋆(x) is known.

Finite groups: the gap widens as |G| grows. With Matérn-5/2 base kb on Ackley2d (|G|=8), kavg
and k(D)

+ are tied; both dominate kb. As |G| increases (Griewank6d, |G|=64; Rastrigin5d, |G|=3,840),
k
(D)
+ increasingly outperforms kavg achieving cumulative regrets that are, on average, 40% and 49%

lower respectively (Table 2 and Figure 3, top panels).

Continuous groups: kavg can underperform even kb. For radial and scaling invariances (continuous
groups; RBF base), kavg degrades relative to kb, while k(D)

+ remains strong (Figure 3, bottom left).

4.2 WIRELESS NETWORK DESIGN

A wireless network (WN) consists of m access points (APs) deployed over a given area to provide
Internet connectivity to p users. Since the quality of service (QoS) of each AP is degraded by
interference from neighboring APs, determining optimal AP placement is a central challenge in
WN design (Wang et al., 2020). In this benchmark, we use a simulator that, given p users and
m APs placed on a surface A, evaluates the resulting QoS (see Appendix E for details). The
optimization task is therefore to determine the positions of m APs on a two-dimensional surface,
yielding the 2m-dimensional search space S = Am. Because all APs are identical, the QoS
function is naturally invariant under permutations of their positions. We use a Matérn-3/2 base kb to
better capture threshold effects in the objective induced by AP-user associations (Bardou & Begin,
2022). Performance is evaluated using the negated best reward mint∈[T ] −f⋆(xt) attained during
optimization (the regret cannot be computed because the max of f⋆ is unknown), since the goal is

7
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Figure 4: Left column: Average regret RT /T for kb (blue crosses), kavg (orange diamonds), and
k
(D)
+ (green circles) on Ackley (top) and Rastrigin (bottom), averaged over 10 seeds with standard

error bars. Middle and right columns: Empirical eigendecays under different bases and groups
(ordered, normalized eigenvalues of the Gram matrix).

to assess the quality of the best network configuration discovered by the optimizer, rather than the
cumulative negative reward across all explored configurations.

k
(D)
+ finds better network configurations. In the AP-placement task with p = 16 users and m = 4

APs (d = 8, |G| = 24 permutations), k(D)
+ consistently discovers higher-throughput configurations

than both kavg and kb (Figure 3, bottom right; Figure 5 in Appendix E contains the resulting network
configuration).

4.3 ROBUSTNESS TO GROUP SIZE

Both synthetic and real-world benchmarks suggest that kavg performs comparably to k(D)
+ when

the group size |G| is small, but its performance deteriorates as |G| grows, whereas k(D)
+ remains

stable. To investigate this effect more systematically, we conduct additional experiments on the
d-dimensional Ackley and Rastrigin benchmarks, each invariant under the hyperoctahedral group G
of size |G| = 2dd!. We compare the average regret of kavg and k(D)

+ after 50 iterations of GP-UCB
for d = 1, . . . , 5, and include kb as a baseline to control for the effect of increasing dimensionality.

The results are shown in Figure 4 (left column) . Both experiments reveal the same trend: while
kavg consistently outperforms kb, its performance also deteriorates as |G| increases. In contrast, k(D)

+
remains largely unaffected by the growing number of symmetries, demonstrating a clear robustness
to group size. In the next section, we discuss several explanations for these empirical observations.

Takeaway. k(D)
+ consistently matches or outperforms kavg and kb, with the largest gains at large |G|.

The evidence suggests that (i) how a kernel encodes orbit alignments matters as much as whether
it is invariant, and (ii) averaging across many alignments can dilute informative similarities. These
themes reconnect with our discussion in Section 5 and motivate analyses beyond eigendecay rates.

5 SPECTRAL ANALYSIS AND REGRET BOUNDS

So far, k(D)
+ has shown consistently lower regret than kavg, despite comparable computational cost.

A natural question is: can existing BO theory account for such a gap? Current regret bounds for GP
surrogates proceed via the information gain, which is shaped by the decay of the operator spectrum
of the kernel. In particular, faster spectral decay leads to tighter regret upper bounds in standard
analyses (Srinivas et al., 2012; Valko et al., 2013; Scarlett et al., 2017; Whitehouse et al., 2023). We
now compare the eigendecay of k(D)

+ and kavg, and ask whether it can explain the empirical gap.

8
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Empirical eigendecays: similar or faster decay for kavg. Across our benchmarks, the empirical
spectra of k(D)

+ and kavg exhibit very similar log–log slopes (decay rates). In several settings, kavg’s
eigenvalues decay even faster than those of k+; see Figure 4 (middle and right columns). Under
the usual theory, this would translate into similar, or potentially tighter, upper bounds for methods
run with kavg compared to those with k(D)

+ . A more detailed discussion of the empirical spectra in
Figure 4 and further insights are in Appendix D.

Limitations of eigendecay as an explanation. Since kavg matches or exceeds k(D)
+ in empirical

decay rate, standard theory would predict similar or better regret upper bounds. Yet in practice we
consistently observe lower regret for k(D)

+ (Section 4). This suggests that eigendecay alone does not
capture the structural advantages of k(D)

+ . We outline possible explanations in the conclusion.

6 CONCLUSION

Our spectral analysis highlights a gap between theory and practice: although kavg often exhibits faster
empirical eigendecay than k(D)

+ , the latter consistently achieves lower regret. Standard eigendecay
arguments thus fail to explain the observed advantage of k(D)

+ .

We hypothesize two complementary explanations. First, geometry vs. rates: eigendecay quantifies
how fast spectra shrink but ignores which eigenfunctions are emphasized. In practice, kavg often
introduces similarity reversals, distorting the search geometry (Figure 1), whereas k(D)

+ preserves
high-contrast alignments between orbits, inherited from kmax. Second, approximation hardness:
BO theory typically assumes that the black-box f⋆ lies in the RKHS Hk of the chosen kernel k.
Existing work on misspecification (Bogunovic & Krause, 2021) shows that the cumulative regret can
be bounded from below by a linear term that involves the distance between f⋆ and Hk. Yet even
when this distance is zero, different kernels may yield very different approximation rates, affecting
how quickly BO can optimize f⋆. This distinction matters: in our experiments with the RBF kernel
as kb (Section 4), Hkb is universal (property of the RBF kernel, see Micchelli et al. (2006)), hence
invariant functions f⋆ always lie in Hkavg (consider (Pf)(x) =

∑
g∈G f(gx)/|G| the projection onto

Hkavg (Brown et al., 2024, Appendix A) and observe that if fn → f⋆ with fn ∈ Hkb then Pfn → f⋆

with Pfn ∈ Hkavg ). There is no misspecification in the sense of Bogunovic & Krause (2021) since
d(f⋆,Hkavg) = 0, yet kavg still performs worse than k(D)

+ . This suggests that f⋆ is simply harder
to approximate in Hkavg than in Hkmax

. A plausible reason why Brown et al. (2024) report strong
performance for kavg is that they focus on functions that are explicit linear combinations of relatively
few kavg(xt, ·) atoms (between 64 and 512, depending on dimension; see their Appendix B.1). In
such settings, kavg looks very effective since its GP posterior mean can in principle recover the
function exactly once those xt are sampled. Typical BO objectives do not share this structure, which
may explain why in our experiments kavg sometimes underperforms even the base kernel, while k(D)

+
remains more reliable. Developing regret bounds that also measure approximation hardness, capturing
both the distance to Hk and approximation rates, seems a promising way to obtain guarantees that
align more closely with empirical performance.

Finally, while our focus has been empirical, we note that the intrinsic data-independent version of
k
(D)
+ , which we called k+ and which we mentioned at the end of Section 3.2 (introduced formally

in Appendix C), provides a natural, data-independent analogue of the practical kernel k(D)
+ . We see

k+ as a convenient object for future theoretical work, as it cleanly isolates the PSD projection of
kmax from the additional data dependence introduced by Nyström. We believe that it makes k+ a
convenient starting point for any future theoretical work, in the same spirit as gradient flow serving as
an idealized analogue of gradient descent.
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Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD explorations newsletter, 5
(1):49–58, 2003.

David Ginsbourger, Xavier Bay, Olivier Roustant, and Laurent Carraro. Argumentwise invariant
kernels for the approximation of invariant functions. Ann. Fac. Sci. Toulouse Math. (6), 21(3):
501–527, 2012. ISSN 0240-2963,2258-7519. doi: 10.5802/afst.1343. URL https://doi.
org/10.5802/afst.1343.

Aldo Glielmo, Peter Sollich, and Alessandro De Vita. Accurate interatomic force fields via machine
learning with covariant kernels. Physical Review B, 95(21):214302, 2017.

Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear
Algebra and its Applications, 103:103–118, 1988. ISSN 0024-3795. doi: https://doi.org/
10.1016/0024-3795(88)90223-6. URL https://www.sciencedirect.com/science/
article/pii/0024379588902236.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Jungtaek Kim, Michael McCourt, Tackgeun You, Saehoon Kim, and Seungjin Choi. Bayesian
optimization with approximate set kernels. Machine Learning, 110(5):857–879, 2021.

10

https://link.springer.com/article/10.1007/BF02867116
https://link.springer.com/article/10.1007/BF02867116
https://doi.org/10.5802/afst.1343
https://doi.org/10.5802/afst.1343
https://www.sciencedirect.com/science/article/pii/0024379588902236
https://www.sciencedirect.com/science/article/pii/0024379588902236


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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A PROOFS FOR SECTION 3

A.1 FULL STATEMENT AND PROOF OF PROPOSITION 1

We state Proposition 1 formally and give a slightly more detailed proof.
Proposition 5 (Max-kernel covariance for invariant GPs). Let S,Sh ⊂ Rd be measurable spaces and
let a (finite or compact) group G act measurably on S. Let h ∼ GP(0, kb) be a GP on Sh with an
isotropic base kernel kb : (x,x′) ∈ S×S 7→ κ(∥x−x′∥2) where κ : R≥0 → R≥0 is nonincreasing.
Assume there exists ϕG : S → Sh satisfying (i) invariance: ϕG(x) = ϕG(gx) for all g ∈ G,x ∈ S;
and (ii) minimal-distance representativity: ∥ϕG(x)− ϕG(x

′)∥2 = ming,g′∈G ∥gx− g′x′∥2. Define
f(x) = h(ϕG(x)). Then f ∼ GP(0, kmax) and it is G-invariant.

Proof. Since g is a GP, f is also a GP, and invariance follows from (i). Its covariance kernel is kmax

since:

Cov [f(x), f(x′)] = Cov [h(ϕG(x)), h(ϕG(x
′))]

= kb(ϕG(x), ϕG(x
′))

= κ( min
g,g′∈G

||gx− g′x′||2) (8)

= max
g,g′∈G

κ(||gx− g′x′||2) (9)

= kmax(x,x
′) (10)

where we used (ii) in Equation (8), and monotonicity of κ in Equation (9). Note that compactness of
G guarantees that the minimum in (ii) is indeed achieved, which makes Equation (9) true even when
κ is not necessarily continuous.

A.2 AVERAGING VS MAXIMIZATION WITH DIFFERENT BASE KERNELS

We extend Lemma 2 to the case where kavg and kmax are built from different base kernels. The result
shows that even in this more flexible setting, the coincidence of kavg and kmax can only occur in
degenerate situations.
Lemma 6. Let kb and k′b be two base kernels such that ∥kb∥∞ = ∥k′b∥∞ = 1 and k′b(x,x) = 1 for
all x. Let kavg be the group-averaged kernel built from kb and kmax be the maximization kernel built
from k′b. It holds

kavg = kmax on the orbit O(x, gx) := {(hx, h′gx), h, h′ ∈ G}
for every x ∈ X and g ∈ G, if and only if

kb(x, gx) = kmax(x, gx) = 1 for every x and g ∈ G.
In particular, this forces kb to already exhibit a form of G-invariance on pairs (x, gx).

Proof. (⇒) Fix x and g ∈ G. Since by assumption k′b is bounded by 1 and k′b(x,x) = 1:

1 ≥ kmax(x, gx) = max
h,h′∈G

k′b(hx, h
′gx) ≥ k′b(x,x) = 1

so kmax(x, gx) = 1.

Now consider kavg. By definition,

kavg(x, gx) =
1

|G|2
∑

h,h′∈G

kb(hx, h
′gx).

Each summand is bounded by 1 and the average is equal to 1 as kavg(x, gx) = kmax(x, gx) = 1.
Therefore each term is equal to 1, which proves kb = kmax = 1 on O(x, gx). As this is true for
every x, g ∈ G, this shows the result. The converse is immediate.

This shows that even when allowing different base kernels for kavg and kmax, equality between
the two kernels requires kb to already be argumentwise G-invariant on pairs (x, gx). This fails for
standard choices (e.g. RBF kernels with translation or rotation groups), so averaging cannot replicate
maximization in practice.
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B RADIAL INVARIANCE: CLOSED FORM FOR kavg

We prove the formulas provided in Example 3. Let G = SO(2) act on R2 by in-plane rotations,
and let kb be the RBF kernel with lengthscale l: kb(x,x′) = exp

(
− ∥x − x′∥22/(2l2)

)
. Writing

x = (r, θ) and x′ = (s, φ) in polar coordinates, we have

kavg(x,x
′) =

1

(2π)2

∫ 2π

0

∫ 2π

0

exp
(
− r2+s2−2rs cos(θ−φ+α−β)

2l2

)
dα dβ.

Integrating out the absolute angle and keeping only the relative angle ψ = θ − φ+ α− β yields

kavg(x,x
′) = exp

(
− r2+s2

2l2

)
· 1

2π

∫ 2π

0

exp
(
rs
l2 cosψ

)
dψ = exp

(
− r2+s2

2l2

)
I0
(
rs
l2

)
,

where I0(z) = 1
2π

∫ 2π

0
ez cosψ dψ is the modified Bessel function of order 0.

C AN INTRINSIC PSD PROJECTION k+ AND ITS PROPERTIES

In the main text we defined a data-dependent kernel k(D)
+ , corresponding to a PSD projection of kmax

on a finite set of samples D, extended by Nyström. This finite-sample construction k(D)
+ is the star

of the show in practice (as it is convenient to compute, and shows strong performance in practice).
However, its data-dependence might make theoretical analysis quite involved. In this appendix, we
show that k(D)

+ is the finite-sample facet of a broader, intrinsic data-independent PSD projection
k+ of kmax which (i) preserves the G-invariance of kmax, (ii) coincides with kmax whenever kmax

is already PSD. Since the PSD projection of kmax discussed here can also be applied to any other
indefinite kernel k, we directly introduce it for an arbitrary kernel k.

We begin as a warmup with the finite-domain “matrix” construction to build intuition, and then lift it
to general domains via integral operators.

C.1 WARMUP: FINITE DOMAINS

We start on a finite domain S to build intuition. In that case, k+ is simply Frobenius-nearest PSD
truncation of the Gram matrix on the full domain S, which is unique, basis-independent, preserves
G-invariance, and coincides with k when k is already PSD.

Let S = {x1, . . . ,xN} be finite, and let G act on S. Consider any symmetric kernel k on S with
Gram matrix K ∈ RN×N (possibly indefinite) given by Kij = k(xi,xj). We define k+ as the
kernel corresponding to the Frobenius-nearest PSD projection of K (Higham, 1988).
Lemma 7 (Frobenius PSD projection and explicit form (Higham, 1988)). The optimization problem
K+ := argminP⪰0 ∥P − K∥F has a unique solution and, for any eigendecomposition K =

QΛQ⊤, it is given by

K+ = Q max(0,Λ)Q⊤,

where max(0, ·) acts entrywise on Λ. In particular, the matrix K+ depends only on K (not on the
chosen eigenbasis), satisfies K+ ⪰ 0, and K+ = K iff K ⪰ 0.

We define k+, the (Frobenius) PSD projection of k, as:

k+(xi, xj) := (K+)ij , i, j ∈ [N ]. (11)

Inheritance of G-invariance. Each element g ∈ G induces a permutation of the elements of S: let
πg be the permutations of the integers j ∈ {1, . . . , N} defined by gxj = xπg(j). Denote by Pg the
permutation matrix associated with πg. For every vector v, the matrix Pg acts as (Pgv)i = vπ−1

g (i)

which is equivalent to the action on canonical vectors Pgej = eπg(j) or (Pg)ij = 1i=πg(j).

Invariance in the first component guarantees kmax(xπg(i),xj) = kmax(gxi,xj) = kmax(xi,xj) for
every i, j ∈ {1, . . . , N}, i.e., the rows of K = (k(xi,xj))i,j are invariant under the permutation πg ,
hence PgK = K. Thus, for any positive integer m, PgKm = (PgK)Km−1 = Km so for any

14
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polynomial p such that p(0) = 0, Pgp(K) = p(K). Now consider a sequence (pn)n of polynomials
such that6 pn(0) = 0 and |pn(λ) − max(0, λ)| →

n→∞
0 for any λ in the spectrum of K. In the

limit PgK+ = K+, hence k+ is invariant under the action of G on the first variable (k+(gx,x′) =
k+(x,x

′)), and invariance along the second one follows by symmetry (K+P
⊤
g = K+). This shows

that k+ inherits from the G-invariance of k (equivalently, PgK = K = KP⊤
g for all g). We collect

this result in the next lemma.
Lemma 8 (Invariance is preserved by the projection). Consider g ∈ G. If PgK = K, then
PgK+ = K+ = K+P

⊤
g . Hence the projected kernel k+ is G-invariant on S × S .

Relation to the practical Nyström kernel. If the set D = {x1, . . . ,xn} used to build k(D)
+ (Equa-

tion (7)) equals the whole domain D = S, then k(D)
+ = k+. Indeed, k(D)

+ (xi,xj) = Ki:K
†
+K:j =

(KK†
+K)ij = (K+)ij on D ×D, and the latter is the definition of k+ on finite domains.

We now generalize the matrix considerations above using integral operators. The finite-domain
construction is recovered as a special case.

C.2 GENERAL DEFINITION (VIA INTEGRAL OPERATORS THEORY)

We lift the finite-domain construction of the previous subsection to general domains by viewing
k as a Hilbert–Schmidt operator and defining k+ as the positive part of Tk; this yields a PSD,
data-independent kernel that inherits any G-invariance and equals k whenever k is PSD.

Let (S, T , µ) be a probability space. For a measurable, symmetric kernel k : S × S → R with
k ∈ L2(µ⊗ µ), let the (compact, self-adjoint) Hilbert-Schmidt operator Tk : L2(µ) → L2(µ) be

(Tkf)(x) =

∫
S
k(x,x′) f(x′) dµ(x′).

(Note that in the finite-domain case, f is a vector indexed by the domain and if µ is the uniform
measure then Tk is simply multiplication by the Gram matrix K normalized by the domain size.) By
the spectral theorem, there exist (λi, ϕi)i≥1 with {ϕi} orthonormal in L2(µ) and (λi) ∈ ℓ2 (possibly
of mixed signs) such that Tk =

∑
i≥1 λi ϕi ⊗ ϕi in L2(µ) where for every u, v ∈ L2(µ), u ⊗ v is

the rank-one operator L2(µ) → L2(µ) such that (u⊗ v)f := ⟨f, v⟩u for every f ∈ L2(µ).

Generic definition of k+ via operator theory. Define the positive part of Tk =
∑
i λi ϕi ⊗ ϕi by

T+
k :=

∑
i(λi)+ ϕi ⊗ ϕi, where (t)+ = max{t, 0}. Since

∑
i((λi)+)

2 ≤
∑
i λ

2
i <∞, the series

k+(x,x
′) :=

∑
i≥1

(λi)+ ϕi(x)ϕi(x
′) (µ⊗ µ-a.e.). (12)

converges in L2(µ⊗ µ) and defines a kernel µ⊗ µ-almost everywhere. By construction7 Tk+ = T+
k ,

hence k+ is PSD as a kernel a.e., and PSD in the operator sense:
〈
f, Tk+f

〉
≥ 0 for all f ∈ L2(µ).

In particular, if k was already PSD (all λi ≥ 0), then k+ = k (up to null sets). It also inherits
G-invariance of k if k is indeed invariant (the proof mimics the finite-domain case, we give the full
details for completeness in Appendix C.6).

C.3 FROM THE FINITE-SAMPLE PROJECTION TO THE INTRINSIC LIMIT: WHAT CONVERGES TO
WHAT?

We relate the practical, data-dependent Nyström kernel k(D)
+ (Equation (7)) to the intrinsic k+: under

iid sampling, the empirical spectra of k(D)
+ /|D| converge to that of Tk+ , with rates under mild moment

assumptions. This shows that eigendecay-based regret analysis
6We can impose pn(0) = 0 since f(0) = 0. Indeed, take pn(λ) = qn(λ)− qn(0) where qn is a sequence

given by Weierstrass’ theorem, which converges to f(λ) = max(0, λ) on the spectrum of K. We have
|pn(λ)− f(λ)| ≤ |qn(λ)− f(λ)|+ |qn(0)| and because f(0) = 0 we get |qn(0)| = |qn(0)− f(0)| → 0.

7Indeed, by definition (Tk+f)(x) =
∫
S

(∑
i≥1(λi)+ϕi(x)ϕi(x

′)
)
f(x′) dµ(x′) =∑

i≥1(λi)+ ⟨f, ϕi⟩ϕi(x) =
((∑

i≥1(λi)+ ϕi ⊗ ϕi

)
f
)
(x) =

(
T+
k f

)
(x).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Notations. Let X1, X2, · · · ∼ µ i.i.d. and Dn = {X1, . . . , Xn}. We write Kn := k(Dn,Dn),
K+
n := argminP⪰0 ∥P − Kn∥F , K̃n := Kn/n, and recall that the practical (data-dependent)

kernel defined in Equation (7) is

k
(Dn)
+ (x,x′) = k(x,Dn) (K+

n )
† k(Dn,x′).

We denote by λ(T ) the (ordered, nonincreasing, each counted with its multiplicity) sequence of eigen-
values of a compact self-adjoint operator T , and by δ2

(
λ(T ), λ(S)

)
:=
(∑

i |λi(T )− λi(S)|2
)1/2

the spectral ℓ2 distance. For symmetric matrices M , λ(M) denotes the nonincreasing sequence
of eigenvalues of M (with multiplicity) padded with an infinite number of zeros. For a bounded
operator A, ∥A∥HS and ∥A∥op denote the Hilbert-Schmidt and operator norms, respectively. We
include in Appendix C.4 a reminder on the different notions of norms and convergence, and we now
recall the essentials.

Relations between convergence notions. For compact self-adjoint operators: (i)
max

(
δ2
(
λ(Tn), λ(T )

)
, ∥Tn − T∥op

)
≤ ∥Tn − T∥HS (Reed & Simon, 1972; Bhatia & El-

sner, 1994); (ii) converse inequalities do not hold in infinite dimension (see Appendix C.4 for
examples). Thus, HS convergence is the strongest notion of convergence we manipulate here.

We now present convergence guarantees of the data-dependent construction k(Dn)
+ /n to the intrinsic

k+ under progressively stronger assumptions. With minimal assumptions we obtain almost-sure
spectral consistency in the δ2 metric; with stronger assumptions we obtain quantitative rates in HS
norm (hence also spectral ℓ2 in probability).

(a) Weak a.s. spectral consistency of positive parts (minimal assumptions).
Proposition 9. Assume the symmetric (not necessarily PSD) kernel k is in L2(µ⊗ µ) so that Tk is
Hilbert-Schmidt. Let Ŝn : L2(µn) → L2(µn) be the integral operator with kernel k(Dn)

+ (x,x′)/n
defined by:

(Ŝnf)(x) =
1

n

n∑
j=1

k
(Dn)
+ (x, Xj)f(Xj). (13)

Assume the Xi are pairwise distinct almost surely. Then, almost surely,

δ2

(
λ
(
Ŝn
)
, λ
(
Tk+

))
−→
n→∞

0.

Proof. Let Kn be the empirical operator on Rn with matrix 1
n (k(Xi, Xj))i,j and let λ(Kn) be

its ordered spectrum (nonincreasing, with multiplicity) padded with an infinite number of zeros.
Theorem 3.1 of Koltchinskii & Giné (2000) shows that δ2(λ(Kn), λ(Tk)) → 0 as n→ ∞.

Let K+
n be the positive part of Kn (i.e., its Frobenius PSD projection). Since λ 7→ max(0, λ) is

1-Lipschitz, we have for any operators T, S:

δ2(λ(T+), λ(S+)) =
∑
i

|max(0, λi(T ))−max(0, λi(S))| ≤
∑
i

|λi(T )−λi(S)| = δ2(λ(T ), λ(S)).

We deduce that δ2(λ(K+
n ), λ(Tk+)) → 0 as n→ ∞.

It remains to observe that the spectrum of K+
n as an operator on Rn is the same as Ŝn : L2(µn) →

L2(µn). This identification is standard (e.g., see above Equation 1.2 in Koltchinskii & Giné (2000)).
For completeness, we include the formal arguments of Koltchinskii & Giné (2000) in Lemma 12,
which shows that we can identify the spectrum of k(Dn)

+ (Dn,Dn)/n with the one of K+
n a.s. if the

iid Xi ∼ µ are pairwise distinct a.s, which is true as soon as µ is non-atomic; otherwise one can
index the distinct atoms and work in Rm with m = #supp(µn), obtaining the same spectral identity
on that subspace.

(b) Expected HS convergence with O(n−1/2) rate (stronger assumption). Define the empirical
integral operator (Tnf)(x) := 1

n

∑n
i=1 k(x, Xi)f(Xi) and Dn := Tn − Tk. Let (λi, ϕi)i≥1 be an

16
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eigensystem of Tk in L2(µ). Assume the following fourth-order summability condition holds:

C :=
∑
i,j≥1

λ2i

∫
S
ϕi(x)

2 ϕj(x)
2 dµ(x) < ∞. (14)

Proposition 10 (Expected HS rate). Under k ∈ L2(µ⊗ µ) and (14),

E
[
∥Dn∥2HS

]
≤ C

n
, E

[
∥Dn∥HS

]
≤
√

C
n .

Consequently, ∥Dn∥HS = OP(n
−1/2) and therefore using the same notations as in Proposition 9

δ2
(
λ(K+

n ), λ(T
+
k )
)
= OP(n

−1/2), δ2

(
λ
(
Ŝn
)
, λ(Tk+)

)
= OP(n

−1/2).

Proof. Fix any f ∈ L2(µ). By Fubini-Tonelli for non-negative functions, we have:

E
[
∥Dnf∥2L2(µ)

]
=

∫
S
E
[(
(Dnf)(x)

)2]
dµ(x).

By definition

(Dnf)(x) =
1

n

n∑
i=1

k(x, Xi)f(Xi)−
∫
S
k(x,x′)f(x′) dµ(x′)

where the randomness comes from the i.i.d. Xi ∼ µ. Hence E
[
(Dnf)(x)

]
= 0 and for any fixed x

E
[(
(Dnf)(x)

)2]
= Var

(
(Dnf)(x)

)
=

1

n
Var
(
k(x, X)f(X)

)
≤ 1

n

∫
S
k(x,x′)2f(x′)2 dµ(x′).

The Hilbert-Schmidt spectral theorem gives the expansion k(x,x′) =
∑
i λiϕi(x)ϕi(x

′) in L2(µ⊗
µ), with (λi)i ∈ ℓ2 and (ϕi)i an orthonormal set of L2(µ) (see Equation 3.2 in Koltchinskii & Giné
(2000), Corollary 5.4 in Conway (2007)). Thus∫

S
E
[(
(Dnf)(x)

)2]
dµ(x) ≤ 1

n

∫
S
k(x,x′)2f(x′)2 dµ(x′)dµ(x)

=
∑
i,j

λiλj

∫
S
ϕi(x

′)ϕj(x
′)f(x′)2 ⟨ϕi, ϕj⟩︸ ︷︷ ︸

=1i=j

dµ(x′)

=
∑
i

λ2i

∫
S
ϕi(x

′)2f(x′)2dµ(x′).

Taking f = ϕj for a fixed j yields

E
[
∥Dnϕj∥2L2(µ)

]
≤ 1

n

∑
i

λ2i

∫
S
ϕi(x

′)2ϕj(x
′)2dµ(x′).

Since ∥Dnf∥2HS =
∑
j ∥Dnϕj∥2L2(µ), we get the main claim:

E
[
∥Dn∥2HS

]
≤ C

n
.

Jensen gives the bound for E∥Dn∥HS. Finally, δ2(λ(Kn), λ(Tk)) ≤ ∥Dn∥HS (Hoffman-Wielandt
inequality in infinite dimension (Bhatia & Elsner, 1994)), and λ 7→ max(0, λ) is 1-Lipschitz on R,
hence the spectral bound probability claim using Markov’s inequality, and Lemma 12 transfers this
claims to Ŝn.
Remark 11 (On assumption (14)). Condition (14) is a fourth-order integrability requirement that
controls eigenfunction overlaps. It is standard in random Nyström analyses (see, e.g., Equations (4.3)
and (4.11) of Koltchinskii & Giné (2000)) and stronger than k ∈ L2, but it yields a dimension-free
O(n−1/2) rate in HS norm.

(c) High-probability HS rates (heavier but more precise). Under slightly stronger L4-type
conditions on eigenfunctions, the section 4 in Koltchinskii & Giné (2000) gives more more precise
statements on the rates in Proposition 10, and we directly refer the reader to it.
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Application to kmax and to the BO kernels in the paper. When k = kmax is bounded on a
compact domain S (as in all our experiments), k ∈ L2(µ⊗ µ) for any probability measure µ on S,
so Tkmax

is Hilbert-Schmidt and Proposition 9 applies. In particular, the integral operator associated
with k(Dn)

+ /n, called Ŝn (Equation (13)) satisfies

δ2

(
λ
(
Ŝn
)
, λ
(
Tk+

)) a.s.−−−−→
n→∞

0.

This clarifies the two objects introduced in the main text: the intrinsic k+ is the unique data-
independent target, while the practical kernel k(Dn)

+ (finite PSD projection + Nyström) is an on-path
approximation whose spectrum converges (once normalized by n) to that of k+ under i.i.d. sampling.

The following subsections are only optional complementary materials added to help building intuitions
on the convergence results stated above.

C.4 REMINDERS ON THE DIFFERENT TYPE OF CONVERGENCES FOR BOUNDED LINEAR
OPERATORS

This subsection recalls standard notions of operator convergence, included only as background to
help build intuition for the convergence results above.

Definitions (operator norm, HS norm, spectral distance). Let H be a separable Hilbert space
with orthonormal basis {ei}i≥1. For a bounded linear operator T : H→H,

∥T∥op := sup
∥f∥H=1

∥Tf∥H, ∥T∥HS :=
(∑
i≥1

∥Tei∥2H
)1/2

.

The HS norm is basis-independent. When T is an integral operator with kernel k ∈ L2(µ⊗ µ) on
L2(µ) (Reed & Simon, 1972)

∥T∥2HS =

∫∫
S×S

|k(x, y)|2 dµ(x) dµ(y).

For finite matrices, ∥A∥HS = ∥A∥F (Frobenius). We say Tn→ T in HS norm if ∥Tn − T∥HS →
0, and we say Tn → T spectrally if δ2

(
λ(Tn), λ(T )

)
→ 0, where we recall that λ(T ) is the

ordered eigenvalues of a compact self-adjoint operator T , and where the spectral ℓ2-distance is
δ2(λ(T ), λ(S)) :=

(∑
i |λi(T )− λi(S)|2

)1/2
.

Which convergences matter, and how they relate (reminders on well-known facts). We compare
three notions: (i) operator norm convergence ∥Tn−T∥op→ 0; (ii) Hilbert-Schmidt (HS) convergence
∥Tn − T∥HS → 0; (iii) spectral convergence in δ2, i.e., δ2

(
λ(Tn), λ(T )

)
:=

(∑
i |λi(Tn) −

λi(T )|2
)1/2 → 0, where λ(·) denotes the ordered eigenvalues of a compact self-adjoint operator. We

recall the following well-known facts, useful to grasp the convergence results we state next.

(1) HS =⇒ spectral δ2. For compact self-adjoint operators the (infinite-dimensional) Hoffman-
Wielandt inequality yields (Bhatia & Elsner, 1994)

δ2
(
λ(Tn), λ(T )

)
≤ ∥Tn − T∥HS.

(2) HS =⇒ operator norm. For every Hilbert-Schmidt operator S, ∥S∥op ≤ ∥S∥HS. Indeed
for unit vectors x, y ∈ H , using x =

∑
i⟨x, ei⟩ei, we have ⟨Sx, y⟩ =

∑
i∈I⟨x, ei⟩ ⟨Sei, y⟩. By

Cauchy-Schwarz:

|⟨Sx, y⟩| ≤
(∑
i∈I

|⟨x, ei⟩|2
)1/2(∑

i∈I
|⟨Sei, y⟩|2

)1/2
.

The first factor equals ∥x∥ = 1, and for the second we use |⟨Sei, y⟩| ≤ ∥Sei∥ ∥y∥ = ∥Sei∥ to get∑
i∈I

|⟨Sei, y⟩|2 ≤
∑
i∈I

∥Sei∥2 = ∥S∥2HS.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Hence |⟨Sx, y⟩| ≤ ∥S∥HS. Taking the supremum over all unit y gives

∥Sx∥ = sup
∥y∥=1

|⟨Sx, y⟩| ≤ ∥S∥HS,

and then taking the supremum over all unit x yields

∥S∥op = sup
∥x∥=1

∥Sx∥ ≤ ∥S∥HS.

(3) Spectral δ2 does not imply HS nor operator norm. Even if eigenvalues match in ℓ2, the
operators may be far in norm because eigenvectors can rotate. Let T = diag(1, 1/2, 1/3, . . .) in the
canonical basis (ei)i≥1, and let Un swap e1 and en. Set Tn := UnTU

∗
n. Then λ(Tn) = λ(T ) for all

n (same ordered spectrum), so δ2(λ(Tn), λ(T )) = 0. Yet ∥(Tn − T )e1∥ = ∥(UnTU∗
n − T )e1∥ =

∥(1/n− 1)e1∥ = 1− 1/n, hence ∥Tn − T∥op ≥ 1− 1/n→ 1 and, a fortiori, ∥Tn − T∥HS ̸→ 0.

(4) Operator norm does not imply spectral δ2. Let T = 0 and Tn be diagonal with the first mn

entries equal to εn and the rest 0. Choose εn := n−1/2 and mn := n. Then ∥Tn∥op = εn → 0 but

δ2
(
λ(Tn), λ(T )

)
=
(∑mn

i=1 ε
2
n

)1/2
=
√
n · (1/n) = 1.

(5) Two useful corollaries. (a) Spectral δ2-convergence implies convergence of the largest eigenvalue,
since supi |λi(Tn) − λi(T )| ≤ δ2(λ(Tn), λ(T )). (b) Operator-norm convergence forces uniform
eigenvalue deviations to vanish by Weyl’s inequality: supi |λi(Tn)− λi(T )| ≤ ∥Tn − T∥op, but it
does not control the ℓ2-sum of all deviations.

Takeaway. HS is the strongest notion here: it simultaneously implies spectral δ2-convergence (and
thus convergence of eigenvalue-based quantities) and operator-norm convergence. The converses fail
in infinite dimension because eigenvectors can drift and an infinite number of tiny eigenvalue errors
can accumulate.

C.5 IDENTIFICATION OF THE SPECTRUM OF AN EMPIRICAL OPERATOR IN L2(µn) AND ITS
MATRIX COUNTERPART

Here we show how the spectrum of the empirical operator can be identified with that of its matrix
form. This is complementary material meant to clarify how operator-level and matrix-level viewpoints
connect (which is useful, e.g., in the proof of Proposition 9).
Lemma 12 (Empirical Nyström spectral identity). Let Kn := 1

n

(
k(xi,xj)

)n
i,j=1

and let K+
n be

its spectral positive part (the Frobenius-nearest PSD projection). Define the empirical measure
µn := 1

n

∑n
i=1 δxi and the Nyström kernel

k
(Dn)
+ (x,x′) = k(x,Dn) (K+

n )
† k(Dn,x′).

Let Ŝn : L2(µn) → L2(µn) be the integral operator with kernel k(Dn)
+ (x,x′)/n, i.e.

(Ŝnf)(x) =
1

n

n∑
j=1

k
(Dn)
+ (x,xj) f(xj).

The map E : L2(µn) → Rn, Ef := 1√
n

(
f(x1), . . . , f(xn)

)⊤
, is an isometry: ∥Ef∥Rn =

∥f∥L2(µn), and we have the intertwining identity

E Ŝn = K+
n E.

If, in addition, the sample points x1, . . . ,xn are pairwise distinct, thenE is an isometric isomorphism
(hence invertible) and

λ
(
Ŝn
)

= λ
(
K+
n

)
= λ

(
k
(Dn)
+ (Dn,Dn)/n

)
.

Proof. First note the on-sample identity k
(Dn)
+ (xi,xj) = (K+)ij for the unscaled K =

(k(xi,xj))i,j , which follows from K(K+)†K = K+. Hence k(Dn)
+ (Dn,Dn) = K+ and therefore

k
(Dn)
+ (Dn,Dn)/n = K+

n .
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For f ∈ L2(µn) and each i ∈ {1, . . . , n},

√
n
(
EŜnf

)
i
= (Ŝnf)(xi) =

1

n

n∑
j=1

k
(Dn)
+ (xi,xj) f(xj) =

n∑
j=1

(K+
n )ij f(Xj) =

√
n
(
K+
n Ef

)
i
,

which proves E Ŝn = K+
n E. Since E is an isometry by definition of the L2(µn) inner product, if

the Xi are pairwise distinct then E is bijective and conjugates Ŝn with K+
n , so the spectra (with

multiplicities) coincide.

C.6 PROOF OF G-INVARIANCE OF k+ FOR GENERAL DOMAINS

We conclude this appendix with the formal proof that k+ defined in (12) inherits from any group-
invariance of k. This proof is not needed for the main results but is included for completeness. It
makes explicit why k+ preserves any G-invariance of k. The proof follows the one for finite domains
but is heavier in notations because it is now stated using integral operators to generalize the matrix
manipulations of finite domains. For finite domains, denoting by K the Gram matrix of k over
the whole domain and Pg the permutation matrix induced by the action of g ∈ G on the domain,
invariance of k is equivalent to PgK = KP⊤

g = K. Thus any polynomial p(K) of K such that
p(0) = 0 inherits from this invariance since we still have Pgp(K) = p(K)P⊤

g = p(K). And at the
limit, we get invariance of K+. Here, we mimic this proof, and we start by introducing the equivalent
integral operator form of the characterization PgK = KP⊤

g = K for general domains.

Lemma 13 (Kernel invariance ⇐⇒ operator commutation). Let (S, T , µ) be a probability space
and let G act measurably on S. Assume µ is G-invariant. Let Ug : L2(µ) → L2(µ) be the unitary
representation (Ugf)(x) := f(g−1x). Let k ∈ L2(µ ⊗ µ) be a symmetric kernel with integral
operator (Tkf)(x) =

∫
S k(x,x

′)f(x′) dµ(x′). Then the following are equivalent:

(i) k is argumentwise G-invariant: k(gx,x′) = k(x, gx′) = k(x,x′) for µ⊗ µ-a.e. (x,x′) and all
g ∈ G.

(ii) Tk satisfies UgTk = TkUg = Tk on L2(µ) for all g ∈ G.

Proof. (i)⇒(ii). For any f ∈ L2(µ),

(UgTkf)(x) = (Tkf)(g
−1x) =

∫
k(g−1x,x′)f(x′) dµ(x′).

By invariance of k in the first argument UgTk = Tk. Hence T ∗
kU

∗
g = T ∗

k and T ∗
k = Tk (self-adjoint)

and U∗
g = Ug−1 so TkUg−1 = Tk. This is true for all g ∈ G hence UgTk = TkUg = Tk.

(ii)⇒(i). For φ,ψ ∈ L2(µ),∫∫
k(x,x′)φ(x)ψ(x′) dµ(x)dµ(x′) = ⟨φ, Tkψ⟩ = ⟨φ, TkUgψ⟩.

Expanding the last inner product, we get by change of variable and invariance of µ∫∫
k(x,x′)φ(x)ψ(g−1x′) dµ(x)dµ(x′) =

∫∫
k(x, gx′)φ(x)ψ(x′) dµ(x)dµ(x′).

Hence for all φ,ψ,
∫∫

[k(x,x′) − k(x, gx′)]φ(x)ψ(x′) dµ(x)dµ(x′) = 0, which implies
k(x, gx′) = k(x,x′) µ⊗ µ-a.e. Symmetry implies argumentwise G-invariance.

We now show that UgT = T is preserved if we apply a function f such that f(0) = 0 to the spectrum
of T .

Lemma 14 (Borel functional calculus preserves invariance). Let T be a self-adjoint compact operator
on a Hilbert space H with eigendecomposition T =

∑
i λiϕi ⊗ ϕi, and let {Ug}g∈G be a unitary

representation such that UgT = TUg = T for all g ∈ G. For a bounded Borel function f : R → R,
define f(T ) =

∑
i f(λi)ϕi ⊗ ϕi. Then for such f with f(0) = 0, we have

Ugf(T ) = f(T )Ug = f(T ) for all g ∈ G.
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Proof. Proof sketch: The assumption UgT = T forces Ug to act as the identity on each nonzero
eigenspace of T , which directly yields Ugf(T ) = f(T ) for any bounded Borel f with f(0) = 0.

Step 1 (spectral decomposition for compact self-adjoint T without measures). Since T is compact
and self-adjoint, its spectrum is σ(T ) = {0} ∪ {λn : n ∈ I} where I is finite or countable, each
λn ̸= 0 is an eigenvalue of finite multiplicity, and λn → 0 if infinite. Let Eλ denote the eigenspace
for λ ̸= 0, and let E0 = kerT . We have the orthogonal decomposition

H = E0 ⊕
⊕

λ∈σ(T )\{0}

Eλ,

and T acts as scalar multiplication on each Eλ: T |Eλ
= λ IdEλ

, T |E0
= 0. Let Pλ be the

orthogonal projector onto Eλ (for λ ̸= 0) and P0 onto E0. Then for every v ∈ H with expansion
v = v0 +

∑
λ̸=0 vλ (vλ := Pλv), we have

Tv =
∑
λ̸=0

λ vλ.

Step 2 (Ug fixes each nonzero eigenspace pointwise). From UgT = T we get, for any v ∈ Eλ with
λ ̸= 0,

λUgv = Ug(Tv) = Tv = λ v,

hence Ugv = v. Thus Ug acts as the identity on each Eλ (λ ̸= 0). Equivalently, UgPλ = PλUg = Pλ
for all λ ̸= 0. (There is no restriction on Ug inside E0 = kerT .)

Step 3 (defining f(T ) for bounded Borel f with f(0) = 0). Because σ(T ) \ {0} is at most
countable and T is diagonal on {Eλ}, we can define f(T ) by applying f on the spectrum of T as

f(T ) v :=
∑

λ∈σ(T )\{0}

f(λ) vλ, v = v0 +
∑
λ̸=0

vλ, vλ ∈ Eλ.

The series converges in norm since the Eλ are mutually orthogonal and ∥f(T )v∥2 =∑
λ̸=0 |f(λ)|2∥vλ∥2 ≤

(
supλ̸=0 |f(λ)|2

)∑
λ ̸=0 ∥vλ∥2 ≤ ∥f∥2∞∥v∥2. Thus f(T ) is a bounded

operator with ∥f(T )∥ ≤ ∥f∥∞. (When f(0) = 0, there is no contribution on E0.)

Step 4 (invariance and commutation). For v = v0 +
∑
λ̸=0 vλ as above and any g ∈ G, Step 2

gives Ugv = Ugv0 +
∑
λ̸=0 vλ and PλUg = Pλ for λ ̸= 0. Hence

Ugf(T ) v = Ug

(∑
λ ̸=0

f(λ) vλ

)
=
∑
λ̸=0

f(λ)Ugvλ =
∑
λ̸=0

f(λ) vλ = f(T ) v,

i.e., Ugf(T ) = f(T ). In particular Ugf(T ) = f(T )Ug = f(T ) for all g ∈ G.

Consequence. If k is G-invariant, then so is k+ (Equation (12)).

D EIGENDECAY COMPARISON

In this appendix, we discuss in more details the empirical observations made in Section 5 and formally
derive some inequalities between Schatten norms of integral operators associated with kavg and k+.

D.1 EMPIRICAL OBSERVATIONS

Here, we further discuss the empirical spectra reported in Figure 4 (middle and right columns).

Computation of spectra. The normalized Gram matrices K/n (where K = (k(xi,xj))1≤i,j≤n)
reported in Figure 4 are computed from n = 3000 i.i.d. samples xi ∈ S. We compare the spectra
obtained with k ∈ {kb, kavg, k(D)

+ } with D = {x1, . . . ,xn} and each xi being chosen uniformly in
S = [−1, 1]. We also report the spectrum of kb when observations xi are instead sampled from an
alternative domain S ′ of reduced volume, chosen such that vol(S ′) = vol(S)/|G|. Finally, note that
because D is a set of i.i.d. observations, the spectrum of k(D)

+ approximates the one of k+ on S (see
Appendix C.3) so our observations transfer to k+.
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k
(D)
+ on S vs. kb on S ′. For the base kernels kb and groups G considered, the spectrum of k(D)

+ on
S = [−1, 1] exactly matches that of kb on the reduced domain S ′. This indicates that k(D)

+ faithfully
incorporates the extra similarities induced by G-invariance: it retains the eigendecay of kb, but as if it
were defined on the quotient space S/G of effective volume vol(S)/|G|.8

k
(D)
+ on S vs. kavg on S. From Figure 4 (middle and right columns) , it is clear that the spectrum

of kavg decays at least as fast as that of k(D)
+ . They coincide for the RBF kernel and kavg decays even

faster for the Matérn kernel. In principle, this suggests that kavg should admit tighter information-gain
bounds and thus better regret guarantees. However, our empirical results contradict this prediction, as
k
(D)
+ consistently outperforms kavg. This discrepancy highlights the fact that eigendecay alone does

not fully explain BO performance, as pointed out in Sections 5 and 6.

D.2 SCHATTEN NORM INEQUALITIES

While the empirical spectra in Appendix D.1 already highlight a mismatch between eigendecay and
observed BO performance, one may ask whether formal inequalities between the operators induced
by kavg and k+ can be established. We record here for completeness that it is possible to control the
Schatten class of k+ in terms of the one of kavg.

Assume: (S, µ) is a probability space on which a finite group G acts measurably, and the base kernel
kb is bounded, symmetric, PSD, and nonnegative. Define

kavg(x,x
′) :=

1

|G|2
∑
g,g′∈G

kb(gx, g
′x′), kmax(x,x

′) := max
g,g′∈G

kb(gx, g
′x′)

and k+ as the kernel corresponding to the positive part of Tkmax
: Tk+ = (Tkmax

)+.

Schatten norm interpolation. Let H = L2(µ) be the separable Hilbert space of squared integrable
functions on (S, µ), T : H → H a compact operator, and write si(T ) for the singular values of T , i.e.
si(T ) =

√
λi(T ∗T ), arranged in nonincreasing order and counted with multiplicity. The Schatten-p

norm is defined as

∥T∥Sp :=
(∑

i

si(T )
p
)1/p

, 1 ≤ p <∞, ∥T∥S∞ := sup
i
si(T ).

Lemma 15 (Monotonicity for pointwise kernels). If two kernels k, k′ are bounded and satisfy
0 ≤ k ≤ k′ pointwise, then ∥Tk∥Sp

≤ ∥Tk′∥Sp
for p = 2,∞. If k and k′ are also PSD, then

∥Tk∥Sp
≤ ∥Tk′∥Sp

for p = 1 too.

Proof. For p = ∞, the Schatten p-norm is the operator norm ∥T∥op = sup∥f∥H=1 ∥Tf∥H . Point-
wise 0 ≤ k ≤ k′ implies ∥Tkf∥H ≤ ∥Tk′ |f |∥H ≤ ∥Tk′∥S∞∥f∥H , so taking the supremum over
∥f∥H = 1 yields ∥Tk∥S∞ ≤ ∥Tk′∥S∞ . If T = Tk is the integral operator associated with a nonnega-
tive kernel k, then ∥Tk∥S2

= ∥k∥L2(µ⊗µ). Hence pointwise 0 ≤ k ≤ k′ gives ∥Tk∥S2
≤ ∥Tk′∥S2

for p = 2 as well. Finally when k is PSD, we have ∥Tk∥S2
=
∫
x
k(x, x)dµ(x) (and similarly for k′)

and again a pointwise comparison yields the result.

From this we immediately obtain, for our specific kernels that for p = 2,∞, and also p = 1 if kmax

is PSD:

kavg ≤ kmax ≤ |G|2 kavg ⇒ ∥Tkavg∥Sp
≤ ∥Tkmax

∥Sp
≤ |G|2 ∥Tkavg∥Sp

Lemma 16 (Interpolation inequalities for Schatten norms). For any nonnegative sequence a =
(ai)i≥1 one has

∥a∥ℓp ≤ ∥a∥ 2/p
ℓ2 ∥a∥ 1−2/p

ℓ∞ (p ≥ 2),

∥a∥pℓp ≤ ∥a∥ 2−p
ℓ1 ∥a∥ 2(p−1)

ℓ2 (1 ≤ p ≤ 2).

8For a finite group G of isometries, one indeed has vol(S/G) = vol(S)/|G| (Petersen, 2006).
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Proof. For p ≥ 2,
∑
i a
p
i =

∑
i a
p−2
i a2i ≤ ∥a∥p−2

ℓ∞
∑
i a

2
i , giving the stated inequality. For 1 ≤ p ≤

2, write ∑
i

api =
∑
i

a 2−p
i a

2(p−1)
i .

Let r = 1
2−p and s = 1

p−1 (with the usual convention 1/0 = ∞). For 1 < p < 2 we have
1 < r, s <∞ and by Hölder,∑

i

api ≤
(∑

i

(a2−pi )r
)1/r(∑

i

(a
2(p−1)
i )s

)1/s
=
(∑
i

ai
)1/r(∑

i

a2i
)1/s

.

Since 1/r = 2− p and 1/s = p− 1, this gives

∥a∥pℓp ≤ ∥a∥ 2−p
ℓ1 ∥a∥ 2(p−1)

ℓ2 .

The endpoint cases p = 1, 2 follow by continuity (and are trivial directly).

Applied to ai = si(T ), Lemma 16 yields the standard Schatten interpolation inequalities:

∥T∥Sp ≤ ∥T∥ 2/p
S2

∥T∥ 1−2/p
S∞

, (p ≥ 2),

∥T∥Sp
≤
(
∥T∥S1

) 2
p−1 (∥T∥2S2

)1− 1
p , (1 ≤ p ≤ 2).

Since the spectrum of Tk+ is the positive part of the one of Tkmax , we have ∥Tk+∥Sp ≤ ∥Tkmax∥Sp .
We deduce the next lemma.
Lemma 17. For p ≥ 2:

∥Tk+∥Sp ≤ ∥Tkmax∥Sp ≤ |G|∥Tkavg∥
2/p
S2

∥Tkavg∥
1−2/p
S∞

and if kmax is already PSD then for 1 ≤ p ≤ 2:

∥Tk+∥Sp = ∥Tkmax∥Sp ≤ |G|
(
∥Tkavg∥S1

)2/p−1 (∥Tkavg∥2S2

)1−1/p

and
∥Tkavg∥Sp

≤
(
∥Tkmax

∥S1

)2/p−1 (∥Tkmax
∥2S2

)1−1/p
.

E BENCHMARKS

In this appendix, we describe the experimental setting and all the benchmarks used to produce the
numerical results of Section 4.

E.1 EXPERIMENTAL DETAILS

In our experiments, every BO algorithm is implemented with the same BO library, namely
BOTorch (Balandat et al., 2020). All of them are initialized with five observations sampled uniformly
in S . After that, at each iteration t, every BO algorithm must:

• Fit its kernel hyperparameters. This is done by gradient ascent of the Gaussian likelihood, as
recommended by BOTorch. The hyperparameters are the signal variance λ, the lengthscale l and
the observational noise level σ2

0 .
• Optimize GP-UCB to find xt. This is done by multi-start gradient ascent, using the
optimize acqf function from BOTorch. As values of βt recommended by Srinivas et al.
(2012) turn out to be too exploratory in practice, we set βt = 0.5d log(t).

• Observe y(xt) = f(xt) + ϵt. Function values are corrupted by noise whose variance is 2% of the
signal variance.

We optimize over 50 iterations and typically measure the cumulated regret along the optimizer’s
trajectory.

All experiments are replicated across ten independent seeds and are run on a laptop equipped with
an Intel Core i9-9980HK @ 2.40 GHz with 8 cores (16 threads). No graphics card was used to
speed up GP inference. The typical time for each maximization problem ranged from ∼1 minute
(two-dimensional Ackley, |G| = 8) to ∼15 minutes (five-dimensional Rastrigin, |G| = 3840).
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E.2 BENCHMARKS

As GP-UCB is naturally formulated for maximization tasks, all benchmarks that require minimization
have been multiplied by −1 to produce benchmarks on maximization.

Ackley. The d-dimensional Ackley function is defined on S = [−16, 16]d with a global minimum
at fAckley(0) = 0 and has the following expression:

fAckley(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), (15)

where we set a = 20, b = 0.2 and c = 2π as recommended.

The d-dimensional Ackley is invariant to the hyperoctahedral group in d dimensions, which includes
permutations composed with sign-flips. Consequently, in d dimensions, |G| = 2d︸︷︷︸

sign flips

d!︸︷︷︸
permutations

.

Griewank. The d-dimensional Griewank function is defined on S = [−600, 600]d with a global
minimum at fGriewank(0) = 0 and has the following expression:

fGriewank(x) =

d∑
i=1

x2i
4000

−
d∏
i=1

cos

(
xi√
i

)
+ 1.

The d-dimensional Griewank is invariant to sign-flips of all d coordinates. Therefore, in d dimensions,
|G| = 2d.

Rastrigin. The d-dimensional Rastrigin function is defined on S = [−5.12, 5.12]d with a global
minimum at fRastrigin(0) = 0 and has the following expression:

fRastrigin(x) = 10d+

d∑
i=1

(
x2i − 10 cos (2πxi)

)
.

The d-dimensional Rastrigin is invariant to the hyperoctahedral group in d dimensions, which includes
permutations composed with sign-flips. Consequently, in d dimensions, |G| = 2d︸︷︷︸

sign flips

d!︸︷︷︸
permutations

.

Radial. Our radial benchmark is defined on S = [−10, 10]2 with a global minimum at fRadial(x
∗) =

0, where x∗ is any x ∈ S such that ||x||2 = ab. It has the following expression:

fRadial(x) = fRastrigin

(
||x||2
a

− b

)
(16)

where we set a = 10
√
2, b = 0.8 and where fRastrigin is the one-dimensional Rastrigin benchmark.

Our radial benchmark is invariant to planar rotations. Consequently, G comprises an uncountably
infinite number of symmetries.

Scaling. Our scaling benchmark is defined on S = [0.1, 10]2 with a global minimum at
fScaling(x

∗) = 0, where x∗ is any x = (x1, x2) ∈ S such that x1 = x2. It has the following
expression:

fScaling(x) =

(
x1
x2

− 1

)2

.

Our scaling benchmark is invariant to rescaling of both coordinates. Consequently, G comprises an
uncountably infinite number of symmetries.
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Figure 5: WN with the best positions of APs found by GP-UCB with k(D)
+ . APs are depicted by red

triangles and users with blue circles. The throughput for each user is shown in Mbps.

WLAN. The WLAN benchmark consists of p users scattered in an area A = [−50, 50]2 and
m access points (APs) to be placed in A. Therefore, the search space is S = Am, which is 2m-
dimensional. Given a placement {(xi, yi)}i∈[m] for the m APs, each user is allocated to the AP
closest to it. Each AP i has now a set U(xi, yi) of associated users.

Assume the AP i is associated to the user j ∈ U(xi, yi). The quality of service (QoS) of the AP-user
association is given by the Shannon capacity in Mbps:

Cij =W log2(1 + γij),

where W is the bandwidth of the signal (in MHz), γij is the signal to interference-plus-noise ratio
(SINR) defined by

γij =
Pij

N +
∑m
k ̸=i Pkj

.

Here, N is the background noise (in mW) while Pij is the power (in mW) received by user j from
AP i. The power received is computed using the well-known log-distance path-loss:

Pij = 10−L/10 min(d−λij , 1).

where dij is the Euclidean distance between AP i and user j and where L and λ are positive constants.

Finally, the objective function to maximize is the cumulated sum of Shannon capacities for every
AP-user association:

fWLAN(x,y) =

m∑
i=1

∑
j∈U(xi,yi)

Cij ,

where x = (x1, · · · , xm) and y = (y1, · · · , ym) are the positions of the m APs on the x-axis and
y-axis, respectively. In our experiment, we setW = 1 MHz, L = 46.67 dBm, λ = 3,N = −85 dBm,
m = 4 APs and p = 16 users.

Because the main goal of this task is to optimize the QoS by placing a set of APs, our objective
fWLAN is invariant to any permutation of the coordinates in the vectors x and y. Therefore, |G| = m!.

Figure 5 shows a depiction of the WLAN and the best placement of APs inferred by GP-UCB using
k
(D)
+ .

F USE OF LLMS
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ing text (e.g., bolding), and formatting tables. They were not used for generating technical content,
suggesting new concepts, or contributing to proofs or results. All ideas, proofs, experiments, and
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