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ABSTRACT

Bayesian Optimization (BO) is a powerful framework for optimizing noisy,
expensive-to-evaluate black-box functions. When the objective exhibits invari-
ances under a group action, exploiting these symmetries can substantially improve
BO efficiency. While using maximum similarity across group orbits has long been
considered in other domains, the fact that the max kernel is not positive semidefinite
(PSD) has prevented its use in BO. In this work, we revisit this idea by considering
a PSD projection of the max kernel. Compared to existing invariant (and non-
invariant) kernels, we show it achieves significantly lower regret on both synthetic
and real-world BO benchmarks, without increasing computational complexity.

1 INTRODUCTION

Bayesian optimization (BO) tackles the maximization of a noisy, expensive-to-evaluate black-box
f*:S c R* — R using a Gaussian process (GP) surrogate. When prior knowledge says that f* is
invariant on orbits [x] = {gx : g € G} of a group G, that is,

f*(x) = f(9z) (Vge€g),

embedding this invariance into the kernel can significantly improve sample efficiency. A classical
and principled approach is to average a base kernel k;, over group orbits (e.g., | Kondor (2008));
Glielmo et al.|(2017); Brown et al.|(2024)). Averaging yields a G-invariant kernel with a clean RKHS
interpretation (as discussed in Section|2.2)), but as |G| grows it can dilute high-similarity alignments
across orbits.

From averaging to max-alignment. We revisit a simple idea—retain the strongest orbitwise
alignment—and adapt it to BO. Given a base kernel &}, and a symmetry group G, define

Emax(, ) = max ky(gz, g'x’), 1
(z,2') = max, gz, g'') (1

so that the similarity between x and x’ is the best alignment over their orbits. While k. is
symmetric and G-invariant, it is not positive semidefinite (PSD) in general and thus cannot serve
directly as a GP covariance.

A PSD, invariant surrogate via projection + Nystrom. On a finite design set D, we form the Gram
matrix of k.« and project it onto the PSD cone (eigenvalue clipping), obtaining K, . Denoting by

K i the Moore-Penrose pseudo-inverse of K, , we then define the G-invariant, PSD kernel
P (@,2') = kmax(, D) K| kunax (D, @) Q)

Equivalently, kS_D) (z,2') = ¢(x) " ¢(x') with features ¢(x) = KI/Q kmax (D, x), which makes

positive semidefiniteness immediate. By construction, kjf)) (i) coincides with k., on D whenever
kmax 1s already PSD, and (ii) has per-iteration asymptotic cost comparable to orbit-averaged kernels;
details in Section[3.2]

Why can max-alignment help? Averaging mixes all orbit pairings and can shrink contrasts as
|G| increases. In contrast, (I)) preserves high-contrast alignments that drive exploration, while the
projection step (2) produces a valid GP kernel without introducing new algorithmic complexity
(BO iterations already perform a Singular Value Decomposition (SVD) of the Gram matrix for GP
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inference, so the extra-computation of K i does not change the asymptotic cost as we will see later
in Table [T).

Empirics and spectra. Across synthetic benchmarks with finite and continuous groups and a

wireless-network design task, we show that k:(f)) consistently attains lower cumulative and simple
regret than both the base kernel and the orbit-averaged alternative, with gains increasing with |G|. Our
spectral analyses reveal that kS_D) does not necessarily enjoy faster eigendecay than averaging-based
kernels; thus, eigendecay-based regret bounds would predict similar or weaker rates, yet we observe
the opposite in practice. We hypothesize that search-geometry effects (e.g., preserving high-contrast
orbit alignments), approximation hardness and misspecification are key factors to take into account to
fill this gap between theory and practice; see Section 3]

Summary of the contributions. We propose ky,.x as a max-alignment route to G-invariance, turn it
into a valid GP kernel for BO via PSD projection and Nystrom, and show k(f) is G-invariant, equals
kmax on D when k.« is PSD, and matches the asymptotic cost of orbit-averaged kernels (Section .
We demonstrate consistent BO gains over orbit averaging across BO benchmarks (Sectiond)), and we

analyze why eigendecay alone does not explain these gains (Section 3.

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION IN A NUTSHELL

Problem. We seek to maximize an expensive-to-evaluate, black-box objective f* : S — R under the
assumption that f* is in the RKHS Hj, of akernel k£ : S x § — R. Each query € S returns a noisy
observation y = f*(x) + €, where ¢ ~ N'(0, 03). Let Z; = {(z;, y:) }!_; denote the dataset after ¢
evaluations, and write D; = (x1,..., @) and Yy = (y1,...,Yt)

Surrogate model: the GP prior. BO maintains a probabilistic surrogate f over functions in Hy, to
guide sampling of new queries & € S with the goal of converging to arg max,cs f*(x). A common
choice is a zero-mean Gaussian process (GP) (Rasmussen & Williams|, |2000),

f~GP(0,k),
Conditionally on Z;, the posterior f | Z; is still a GP with posterior mean and covariance
-1
pe(x) = k(z,Dy) (Ki + o5 L)  ye, 3
COVt(CB, :B/) = k(.’B, .’B/) - k(ma Dt) (Kt + USIt>_1k(Dt7 :E/), (4)

where K; = k(D;, D;) € RY¥!, I, is the ¢ x t identity, and k(x, D;) = [k(x, x1), ..., k(z, z)].

BO Iteration. At step ¢, BO trades off exploration (learning f*) and exploitation (sampling near
current optima) via an acquisition function oy : S — R computed from (i, Covy) (e.g., GP-
UCB (Srinivas et al.}[2012)) or Expected Improvement (Jones et al., |1998))). The next point is

i1 € argmax (), Yir1 = [H(®e11) + €441
xEe

Measuring performance with regret. We follow the common practice in BO: for experiments where
f* is known, we measure the regret on the deterministic f* € Hj, and when discussing theoretical
regret bounds we refer to the regret on f ~ GP(0, k) (Garnett, [2023). In both cases, for h = f or
h = f*, the instantaneous regret at timestep ¢ is 7y = maxgzes h(x) — h(xy), the cumulative regret
at horizon T'is Ry = Zle i, and the simple regret is s = maxges h(x) — maxi<i<7 h(xy).
A BO algorithm with a sublinear regret (i.e., Ry € o(T)) is called no-regret and offers asymptotic
global optimization guarantees on f*. Most standard cumulative regret upper bounds are established
in terms of the eigendecay of the operator spectrum of the kernel & (Srinivas et al., [2012} |Valko et al.|
2013 Scarlett et al.,[2017; |Whitehouse et al., [2023)).

2.2 INVARIANCE IN BAYESIAN OPTIMIZATION

In many applications, the objective function f* is invariant under the action of a known symmetry
group G on S, ie., f*(x) = f*(gx) for all ¢ € G. When such invariances are ignored, BO
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algorithms may waste evaluations by treating all points within the same |G|-orbit as distinct. Given
a non-invariant base kernel ky, and an arbitrary symmetry group G, both provided by the user, this
section reviews existing strategies for incorporating group invariance into BO and positions our
contribution within this literature.

Data augmentation. A popular way to enforce symmetry is to expand the dataset Z itself, as it is
often done in computer vision (Krizhevsky et al.,[2012)). For each acquired observation (x;, y;), one
augments Z with all transformed copies { (g, y¢) } gcg, While leaving the base kernel ki, unchanged.
However, since BO scales as O(| Z|?), this approach quickly becomes computationally prohibitive
and is inapplicable to continuous symmetry groups.

Search space restriction. A second strategy is to restrict the optimization domain to the smallest
subset Sg C S such that Ugeg gSg = S (e.g., Baird et al[(2023)). For instance, if S = [—1,1]2
and G is the group of planar rotations by angle 7 /2, then it suffices to optimize over Sg = [0, 1]?
while keeping the base kernel k}, unchanged. In general, however, identifying a suitable fundamental
domain Sg can be challenging, and enforcing optimization within it may be impractical.

Invariant kernels. A principled way to incorporate prior G-invariance of f* is to consider a G-
invariant GP prior f, i.e., a GP whose sample paths € S — f(,w) obtained by fixing one outcome
w in the probability space are themselves invariant under G. |Ginsbourger et al.| (2012)) established that
such GPs necessarily admit a G-invariant covariance functio meaning k(gx, g'x’) = k(x, ') for
all z, ' € S and g, ¢’ € G. The central question then becomes: how can one construct an invariant
kernel k from an arbitrary base kernel kp, and symmetry group G? An elegant solution, dating back to
Kondor| (2008) and recently advocated for BO by Brown et al.|(2024), is to average ki, over G-orbits:

1
kavg(m,ﬁcl) = W Z kb(gm,g’sc’). (5)

9,9'€G

This construction is not only guaranteed to be G-invariant, but also admits a clean functional in-
terpretation: if H, and Hy, . denote the RKHS induced by ki, and k., respectively, then Hy,
coincides exactly with the subspace of G-invariant functions in Hg, (Theorem 4.4.3 in Kondor
(2008)). Consequently, k,yg (up to normalization) has gained popularity as the standard off-the-shelf
kernel for BO in symmetric settings (Glielmo et al.| 2017} Kim et al.,[2021; Brown et al., [2024).

A complementary idea in kernel methods is to retain the best latent alignment between two orbits via
a maximum, as in convolution/best-match kernels for structured data (Gértner, 2003 |Vishwanathan
et al., |2003) and follow-up work across domains (Frohlich et al., [2005; Zhang| 2010; |Curtin et al.|
2013). Max-alignment kernels, however, are not PSD in general, leading to indefinite Gram matrices.
This has motivated two families of remedies: (i) explicit Krein-space formulations (Ong et al.|[2004;
Oglic & Gartner, 2018)), and (ii) simple PSD corrections such as eigenvalue clipping/flipping in
SVMs (Luss & D" aspremont, [2007; (Chen et al., |2009)), which are empirically effective.

Our adaptation to BO. Guided by the above, we adopt the max-alignment view for BO. To ensure

positive definiteness, we project kmax (see (1)) onto a PSD kernel k:(f), which coincides with k.«
whenever the latter is already PSD. This preserves the sharp, high-contrast orbit alignments of Ky,
while ensuring compatibility with the BO framework and it keeps per-iteration BO complexity on par
with orbit-averaged kernels (see complexity details later in Section . In our experiments, k:EFD)
better reflects the intended symmetries of standard synthetic objectives and achieves substantially
lower cumulative regret; interestingly, these empirical gains are not mirrored by existing eigendecay-
based upper bounds, a point we return to in Section 5}

3 THE MAX KERNEL

We have introduced the max-alignment kernel ky,,x and its PSD surrogate kS_D) in (). This section
explains why k.« is a natural G-invariant covariance, clarifies how it differs from orbit averaging
through examples, and records the practical PSD construction we use in BO.

'Up to modification, i.e., there is another GP f’ such that for every « € S, P(f(z) = f'(x)) = 1 and f’
has invariant paths and invariant covariance, see Property 3.3 in|Ginsbourger et al.|(2012).
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3.1 MOTIVATION: kpax AS A VALID COVARIANCE

A natural way to motivate k. is to exhibit G-invariant GPs whose covariance equals Ay, ax.

Construction. Let h ~ GP(0, ky,) with an isotropic base kernel ky, (x, ') = k(||Jz — &'||2) with &
nonincreasing (e.g., popular ones such as RBF, Matérn). Consider a map ¢¢ such that (i) ¢g(x) =
¢g(gz) forallg € G and (ii) [|pg () — ¢g (') |2 = ming 4 [|g@—g'®"||2. Define f(x) = h(¢g()).
Then f is G-invariant and:

Proposition 1. Under the construction above, f ~ GP(0, kmax) with kmax given by (I).

Proof sketch, details in Appendix@ Cov(f(x), f(x)) = kv (pg(x), pg(x')) @ k(ming ¢ || g E]

g'x'||2), and monotonicity of x converts the min-distance into max, g ky (g, g'x’).

This shows that k. naturally arises as the covariance of valid G-invariant GPs. In contrast, the
common approach to invariance in BO is to build k,y, by averaging a base kernel as in (3). But
averaging and maximization induce fundamentally different geometries:

Lemma 2. For any base kernel ky, and any (double) orbit O(x,x') = {(g9x,¢d'2’),9,9' € G},
kave = kmax on O(x, x') if and only if ky, = kmax on that orbit.

Indeed, an average reaches the maximum only when every term is maximal. Thus k., can never
reproduce the geometry of ky.x, except in the degenerate case where the base kernel is already
kmax, making averaging redundant. One might wonder whether this limitation of k. could be
circumvented by building it from a different base kernel than the one used for kp,,x. In Appendix
we show that, under mild assumptions satisfied by standard kernels (upper-bounded by 1, with
equality k(x, x) = 1 along the diagonal), kaveg and kpax can coincide only in the trivial case where
the base kernel of &, is already invariant when its arguments belong to the same orbit. Thus, even
in this more general setting, averaging does not reproduce the geometry of maximization (except if
the base kernel already had invariances).

To make this contrast concrete, we now examine a simple example (radial invariance with an RBF
base kernel) where kyax and k,y, can be computed in closed form.

Example 3 (Radial invariance with kmax). Let G be the group of planar rotations and ky,(x, x') =
exp(—||@ — x'||3/21?) be an RBF kernel. With ¢g(x) = ||

2
x 2 m/ 2 x m/
kmax($7x/) _ eXp(—(Hchg _ ||$/H2)2/2l2) ’ kavg(wyxl) _ exp(— I H2;;L| HQ)IO(H H2l|2|) H2))

with Iy the modified Bessel function (derivation in Appendix [B)). As illustrated in Figure [I| the
two kernels kmax and kaye induce qualitatively different similarity structures. By construction,
kmax assigns large similarity whenever ||x||2 = ||@'||2. If ||z||2 = ||&’||2, the function f* satisfies
f*(x) = f*(&') since it is invariant under rotations, and kpax exactly recovers this invariance by
assigning maximal similarity kmax (2, ") = 1. In contrast, kays only approximates this behavior:
its iso-similarity curves as a function of (||x||2, ||2'||2) correspond to distorted balls, and two points
with identical norms may be ranked as highly dissimilar (see the diagonal ||x||2 = ||&'||2 of the right
plot in Figure[l). This mismatch highlights that while both constructions enforce rotation invariance,
only kumax preserves the correct notion of similarity.

3.2 A PSD EXTENSION OF ky,ax: WHAT WE USE IN PRACTICE

Because k.« is not PSD in general, we apply a standard projection step on the finite design set
D = {zx,...,T,}. Let K = kpax(D, D) with eigendecomposition K = QAQ " and deﬁneE]
(with the max applied elementwise)

K, = Qmax(0,A)Q". (6)
We then use the Nystrom extensiorﬂ (Williams & Seeger, |2000) to evaluate cross-covariances with
new points, yielding the PSD, G-invariant surrogate kS_D) given in (2) and that we reproduce here:

P (@,2') = kax (@, D) KT kynax (D, o). @)

2K, does not depend on the choice of the eigendecomposition, see Lemmain the appendix.
*It indeed extends K, since kSrD)(mi, z;) = K, Kl K.; = (KKTFK)” = (K4)ij.
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Radial-Invariant Function

11x'll2

k A IIxll2 lix]l2
Figure 1: (Left) A two-dimensional function f*(x) invariant under planar rotations (see (T6)): if
lzll2 = ||2'||2, then f*(x) = f*(«’). (Center/Right) Rotation-invariant kernels derived from an

RBF base kernel (lengthscale 1/2), visualized as a function of (||||2, ||’||2). kmax (center) captures
the correct invariance, while k¢ (right) only approximates it.

Table 1: Complexity per BO iteration. Here |G[* denotes either |G| or |G|? depending on whether the
orbit terms reduce to a single sum (when &y, (g, ) suffices) or require a double sum over (g, g'); m
is the number of candidate points used in acquisition optimization.

Base kernel kj, Averaged kg Projected k(f)
Gram matrix (n x n) O(n?) O(n?|G[) O(n?|G[)
SVD / inversion O(n?) O(n?) O(n?
PSD projection - - O(n?
Per-query evaluation o) O(|Gf) O(n|G
BO iteration O(m+n?+n3) O((m+n?)|G[f +n3)  O((mn+n?)|G[f +n?)

Key properties of kiD):

e PSD & invariance. kSFD) is PSD and inherits argumentwise G -invarianceﬁ of kmax-

« Consistency with k. It K = 0, then K| = K and k{” agrees with kpyay on D x D.
* Cost. Each BO iteration involves (i) building the Gram matrix on D, (ii) inverting the Gram matrix
to build the acquisition function, and (iii) m kernel evaluations when optimizing the acquisition

function. Step (ii) has the same cost as the SVD of K needed to compute both K and K l, which

makes k(f) having the same asymptotic per-iteration cost as k,y; its per-query evaluations are
more expensive, but this difference is negligible as long as we keep m < n. A concise complexity
summary is provided in Table[T}

* Regularity. For finite groups, kmax 1S @ max of finitely many smooth maps and is almost every-
where (a.e.) differentiable; the Nystrom extension preserves a.e. differentiability in each argument.
For continuous groups, smoothness can sometimes be obtained via closed-form formulas (e.g., as
in Example 3).

We now illustrate the behavior of kiD) versus K,yve (in this situation, K.y is not PSD and the

projection step is indeed needed to restore positive semidefiniteness).

(D)
+

Example 4 (Ackley function with k). Figurecompares k)"’ and kayg on the one-dimensional

Ackley function (see (13))). The projected kernel kS_D) preserves the expected pairwise symmetries
(invariance along x = y and x = —y) and spreads mass more evenly across the symmetric regions,
whereas kg concentrates covariance mostly near the origin. Thus, ker) better reflects the symmetry
geometry of the problem, echoing the qualitative difference observed in Example 3]

Beyond the finite view (details in Appendix[C). The PSD projection with Nystrém in Equation (7) is
a practical, data-dependent construction. It can be seen as the finite-sample face of a broader, intrinsic
definition that does not depend on D. Since ky,,x is symmetric, it admits a spectral decomposition

“One SVD of K suffices to obtain both K, and K Ir, so the extra PSD projection does not increase
asymptotic cost.

Ekmax (92, &) = kmax (2, 2") implies kmax (g, D) = kmax (2, D), hence invariance of kf)).



Under review as a conference paper at ICLR 2026

Ackleyld k{PY(x, x')

—— Objective f
I x Observations D
»— Post. Mean (k{”)
—e— Post. Mean (Kayg)

-0.25
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Figure 2: (Left) One-dimensional Ackley functlon [* (see (T3)), invariant up to sign flips, and GP
posterior means /1 () as in (3) for kzsr (orange diamond) and k.. (green circles) built from D (black

crosses). (Center) Covariance structure induced by Icg_D). (Right) Covariance structure induced by
kave. Both kernels are invariant to reflections across * = y and x = —y, but k,,, concentrates

covariance near 0, while k(D) better reflects the underlying symmetry geometry. Consequently, the

(P) is the best at fitting the objective (left).

Table 2: Performance of ky, Kave, and kf” across benchmarks. For each kernel k € {ky, kave, ker)}
we report m =+ Ser, Where m is the empirical mean over 10 seeds (lower is better) and s is the
empirical standard error. Best mean is bold; means m whose 95% confidence interval (m £ 1.965s¢)
confidence interval overlap with the best are underlined. Performance is measured by cumulative
regret on synthetic benchmarks and by negated simple reward on real-world experiments.

GP posterior mean induced by &

Benchmark |G| ky, kave k(f)
Synthetic (Cumulative Reg.)

Ackley2d 8 382.7£5.7 128.2+10.4 126.4+ 3.6
Griewank6d 64 3840.3 +177.7 30674 £841.9 1832.6 +£146.3
Rastrigin5d 3,840 3568.5+91.3 1583.5+341.9 813.4+70.6
Radial2d 00 388.6 +20.3 480.9 + 76.4 199.7+11.6
Scaling2d 00 1820.6 £1135.4 3361.8 4+ 742.9 254+6.4
Real-World (Neg. Simple Rew.)

WLANS8d 24 —65.0 = 3.2 —51.8+£ 1.7 —74.44+0.7

kmax(z, ') = >, \igi(x)d;(x') in L?, and we can always define (a.e.)

ky(z, @) = Zmax(o, Ai) di()di('),

with k4 = kpax Whenever £y, is already PSD. On finite domains, this precisely reduces to the
matrix PSD projection in (€). In Appendix [C| we formalize the infinite-domain construction via
integral operators, prove that & is G-invariant, and show that the finite projection + Nystrom in (7)
converges to k4. at the spectral (Hilbert-Schmidt) level under iid sampling (Appendix [C.3).

Takeaway. k. is the exact covariance of a natural class of G-invariant GPs and induces a search
geometry that preserves high-contrast orbit alignments (Examples [3]and ). The PSD projection +

Nystrom step yields a valid GP kernel kg_p) without introducing extra asymptotic complexity. We
now measure its practical impact in Section ]

4 EXPERIMENTS
We evaluate kELD) against two baselines: (i) the off-the-shelf kernel k}, (no symmetry handling), and
(ii) the orbit-averaged kernel k.., (Brown et al [2024). Benchmarks include standard synthetic

objectives and a real-world wireless design task with known invariances. We ask: (Q1) Does kS_D)

reduce simple/cumulative regret vs. kayvg? and (Q2) How does performance scale with the size of the
symmetry group and dimension? Experimental details are in Appendix E

Headline: k:SrD) wins on every task. Across all benchmarks (Table , k:(f) achieves the best mean
performance with up to 50% of improvement. This answers Q1 positively. Regarding Q2, we will see
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Figure 3: Cumulative regret and negated simple reward under GP-UCB with ki, (blue crosses), kayvg
(orange diamonds), and kS_D) (green circles). Shaded areas: standard error over 10 seeds.

that as the group size increases, kS_D) stays strong, while k,,, degrades and can even underperform
the non-invariant base kernel k.

Setup in one glance. We run GP-UCB with each kernel k € {kp, kayg, kSrD)}, using the same
acquisition and optimization budgets. We report results averaged over 10 seeds. Synthetic objectives
span d € {2,...,6} and symmetry sizes from |G| = 8 up to continuous groups (|G| = oo). The
real-world task is an 8-dimensional AP-placement problem invariant to AP permutations (Section[d.2).
Hyperparameters and group actions are detailed in Appendix [E}

4.1 SYNTHETIC BENCHMARKS

We consider synthethic functions f* (Ackley, Griewank, Rastrigin, etc.) that exhibit symmetries and
are classically considered as challenging to optimize in the BO literature (Qian et al.,|202 1} Bardou
et al.; 2024). We cover dimensions d = 2 to d = 6 and group sizes |G| = 8 to |G| = co. We evaluate

performance using the cumulative regret Ry = ZiTzl ( @)= f *(mt)) since the global maximizer
x* = argmax, g f*(x) is known.

Finite groups: the gap widens as |G| grows. With Matérn-5/2 base ki, on Ackley2d (|G|=8), kavg
and kS_D) are tied; both dominate ky,. As |G| increases (Griewank6d, |G|=64; Rastrigin5d, |G|=3,840),

k:ip) increasingly outperforms k,y, achieving cumulative regrets that are, on average, 40% and 49%
lower respectively (Table 2] and Figure 3] top panels).

Continuous groups: %, can underperform even ky,. For radial and scaling invariances (continuous
groups; RBF base), k., degrades relative to k;,, while kS_D) remains strong (Figure bottom left).

4.2 WIRELESS NETWORK DESIGN

A wireless network (WN) consists of m access points (APs) deployed over a given area to provide
Internet connectivity to p users. Since the quality of service (QoS) of each AP is degraded by
interference from neighboring APs, determining optimal AP placement is a central challenge in
WN design (Wang et al.l 2020). In this benchmark, we use a simulator that, given p users and
m APs placed on a surface A, evaluates the resulting QoS (see Appendix [E] for details). The
optimization task is therefore to determine the positions of m APs on a two-dimensional surface,
yielding the 2m-dimensional search space S = A". Because all APs are identical, the QoS
function is naturally invariant under permutations of their positions. We use a Matérn-3/2 base k;, to
better capture threshold effects in the objective induced by AP-user associations (Bardou & Beginl,
2022). Performance is evaluated using the negated best reward min, e[ — f*(;) attained during
optimization (the regret cannot be computed because the max of f* is unknown), since the goal is
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kS_D) (green circles) on Ackley (top) and Rastrigin (bottom), averaged over 10 seeds with standard
error bars. Middle and right columns: Empirical eigendecays under different bases and groups
(ordered, normalized eigenvalues of the Gram matrix).

to assess the quality of the best network configuration discovered by the optimizer, rather than the
cumulative negative reward across all explored configurations.

kS_D) finds better network configurations. In the AP-placement task with p = 16 users and m = 4

APs (d = 8, |G| = 24 permutations), k(j” consistently discovers higher-throughput configurations
than both k. and ky, (Figure bottom right; Figure [5|in Appendix E]contains the resulting network
configuration).

4.3 ROBUSTNESS TO GROUP SIZE

Both synthetic and real-world benchmarks suggest that £, performs comparably to kg_D) when

the group size |G| is small, but its performance deteriorates as |G| grows, whereas k;(f)) remains
stable. To investigate this effect more systematically, we conduct additional experiments on the
d-dimensional Ackley and Rastrigin benchmarks, each invariant under the hyperoctahedral group G

of size |G| = 2%d!. We compare the average regret of kayg and kSrD) after 50 iterations of GP-UCB
ford=1,...,5, and include ky, as a baseline to control for the effect of increasing dimensionality.

The results are shown in Figure 4] (left column) . Both experiments reveal the same trend: while

kavg consistently outperforms ki, its performance also deteriorates as |G| increases. In contrast, kS_D)
remains largely unaffected by the growing number of symmetries, demonstrating a clear robustness
to group size. In the next section, we discuss several explanations for these empirical observations.

Takeaway. kf’) consistently matches or outperforms kayvg and ky,, with the largest gains at large |G|.

The evidence suggests that (i) how a kernel encodes orbit alignments matters as much as whether
it is invariant, and (ii) averaging across many alignments can dilute informative similarities. These
themes reconnect with our discussion in Section [5|and motivate analyses beyond eigendecay rates.

5 SPECTRAL ANALYSIS AND REGRET BOUNDS

So far, kS_D) has shown consistently lower regret than k., despite comparable computational cost.
A natural question is: can existing BO theory account for such a gap? Current regret bounds for GP
surrogates proceed via the information gain, which is shaped by the decay of the operator spectrum
of the kernel. In particular, faster spectral decay leads to tighter regret upper bounds in standard
analyses (Srinivas et al., 2012} [Valko et al., 2013} |Scarlett et al.|[2017; Whitehouse et al., [2023)). We

now compare the eigendecay of kip) and k., and ask whether it can explain the empirical gap.
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Empirical eigendecays: similar or faster decay for k... Across our benchmarks, the empirical

spectra of kS_D) and k. exhibit very similar log—log slopes (decay rates). In several settings, Kayvg’s
eigenvalues decay even faster than those of k. ; see Figure 4| (middle and right columns). Under
the usual theory, this would translate into similar, or potentially tighter, upper bounds for methods

run with k,,, compared to those with kS_D). A more detailed discussion of the empirical spectra in
Figure ] and further insights are in Appendix [D}

Limitations of eigendecay as an explanation. Since k,,; matches or exceeds kSrD) in empirical
decay rate, standard theory would predict similar or better regret upper bounds. Yet in practice we

consistently observe lower regret for kS_D) (Section . This suggests that eigendecay alone does not

capture the structural advantages of ker). We outline possible explanations in the conclusion.

6 CONCLUSION

Our spectral analysis highlights a gap between theory and practice: although k.., often exhibits faster

empirical eigendecay than kf”, the latter consistently achieves lower regret. Standard eigendecay

arguments thus fail to explain the observed advantage of kS_D).
We hypothesize two complementary explanations. First, geometry vs. rates: eigendecay quantifies

how fast spectra shrink but ignores which eigenfunctions are emphasized. In practice, k,yg often

introduces similarity reversals, distorting the search geometry (Figure , whereas k(f) preserves

high-contrast alignments between orbits, inherited from k.. Second, approximation hardness:
BO theory typically assumes that the black-box f* lies in the RKHS H;, of the chosen kernel k.
Existing work on misspecification (Bogunovic & Krause, [2021) shows that the cumulative regret can
be bounded from below by a linear term that involves the distance between f* and Hj. Yet even
when this distance is zero, different kernels may yield very different approximation rates, affecting
how quickly BO can optimize f*. This distinction matters: in our experiments with the RBF kernel
as ki, (Section E]), Hr, is universal (property of the RBF kernel, see Micchelli et al.| (2006))), hence
invariant functions f* always lie in Hy,,,, (consider (P f)(z) = >_ g f(9z)/|G| the projection onto
Hk.,, (Brown et al,, 2024, Appendix A) and observe thatif f,, — f* with f,, € Hy, then Pf,, — f*

with Pf, € Hj_ ). There is no misspecification in the sense of Bogunovic & Krause (2021) since

d(f*, Hi,y,) = 0, yet kayg still performs worse than ksrp). This suggests that f* is simply harder

to approximate in Hy, , thanin Hg, . A plausible reason why |Brown et al.|(2024) report strong
performance for K, is that they focus on functions that are explicit linear combinations of relatively
few Kavg (¢, -) atoms (between 64 and 512, depending on dimension; see their Appendix B.1). In
such settings, kayg looks very effective since its GP posterior mean can in principle recover the
function exactly once those z; are sampled. Typical BO objectives do not share this structure, which

avg

may explain why in our experiments k,, sometimes underperforms even the base kernel, while kip)
remains more reliable. Developing regret bounds that also measure approximation hardness, capturing
both the distance to Hj, and approximation rates, seems a promising way to obtain guarantees that
align more closely with empirical performance.

Finally, while our focus has been empirical, we note that the intrinsic data-independent version of
k;(f), which we called k. and which we mentioned at the end of Section (introduced formally

in Appendix , provides a natural, data-independent analogue of the practical kernel k(f). We see
k. as a convenient object for future theoretical work, as it cleanly isolates the PSD projection of
kmax from the additional data dependence introduced by Nystrom. We believe that it makes k. a
convenient starting point for any future theoretical work, in the same spirit as gradient flow serving as
an idealized analogue of gradient descent.
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A PROOFS FOR SECTION[3]

A.1 FULL STATEMENT AND PROOF OF PROPOSITION[]

We state Proposition ] formally and give a slightly more detailed proof.

Proposition 5 (Max-kernel covariance for invariant GPs). Let S, Sy, C R? be measurable spaces and
let a (finite or compact) group G act measurably on S. Let h ~ GP(0, ky,) be a GP on Sy, with an
isotropic base kernel ky, : (z,2') € S xS — k(|| —a'||2) where k : R>g — Rxq is nonincreasing.
Assume there exists ¢g : S — Sy, satisfying (i) invariance: ¢g(x) = ¢g(gx) forallg € G,x € S;
and (ii) minimal-distance representativity: ||¢g(x) — ¢g(x')|2 = ming grcg ||gx — g'@’||2. Define
f(x) = h(¢pg(x)). Then f ~ GP(0, kmax) and it is G-invariant.

Proof. Since g is a GP, f is also a GP, and invariance follows from (i). Its covariance kernel is k,ax
since:

Cov [f(z), f(x')] = Cov [h(¢pg(x)), h(¢g(z))]
= ku(¢g(x), pg(x'))

— ; Y 8
H(ggl,lgg llgz — g'x'|2) (®)

! !
= - 9
g{r;%ﬁ(Ilgw g'z'[|2) ©
- kmax(m7m/) (10)

where we used (ii) in Equation (8], and monotonicity of  in Equation (9). Note that compactness of
G guarantees that the minimum in (ii) is indeed achieved, which makes Equation (9) true even when
K is not necessarily continuous. [

A.2 AVERAGING VS MAXIMIZATION WITH DIFFERENT BASE KERNELS

We extend Lemmato the case where K,y¢ and kmax are built from different base kernels. The result
shows that even in this more flexible setting, the coincidence of kayg and kyax can only occur in
degenerate situations.

Lemma 6. Let ki, and ki, be two base kernels such that ||ky || = ||kt || = 1 and ki (z, ) = 1 for
all x. Let kyyg be the group-averaged kernel built from ki, and kuax be the maximization kernel built
from ki.. It holds

Kave = kmax on the orbit O(z, gz) := {(hx,h'gx), h,h' € G}
forevery x € X and g € G, if and only if
ky(x, g) = kmax(,g2) =1 foreveryx and g € G.

In particular, this forces ky, to already exhibit a form of G-invariance on pairs (x, gx).
Proof. (=) Fix x and g € G. Since by assumption %, is bounded by 1 and & (x, ) = 1:
1> kmax = ki (hxz, B > K =1
> (z, gz) Jmax p(ha, B gz) > ki (x, )
80 kmax(x, gx) = 1.
Now consider k,y,. By definition,

Z ky(hx,h' gz).

h,h'€G

1
kavg(wagw) = |2

‘?
Each summand is bounded by 1 and the average is equal to 1 as kayg (T, ) = kmax(, gz) = 1.

Therefore each term is equal to 1, which proves ky, = kmax = 1 on O(x, gx). As this is true for
every x, g € G, this shows the result. The converse is immediate. [

This shows that even when allowing different base kernels for kaye and kp,ax, equality between
the two kernels requires ky, to already be argumentwise G-invariant on pairs (x, gx). This fails for
standard choices (e.g. RBF kernels with translation or rotation groups), so averaging cannot replicate
maximization in practice.
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B RADIAL INVARIANCE: CLOSED FORM FOR kavg

We prove the formulas provided in Example 3| Let G = SO(2) act on R? by in-plane rotations,
and let ky, be the RBF kernel with lengthscale I: ky(x,@') = exp( — |l@ — «'||3/(2(%)). Writing
x = (r,0) and ' = (s, ) in polar coordinates, we have

N (m m/) B 1 27 27 o (7 r2+5272rscos(97<p+a7,3)) da dp
avg ) - (27T>2 o o p 212 .

Integrating out the absolute angle and keeping only the relative angle v = 6 — ¢ + a — 3 yields

2 2 1 2 2 2
kayg(z, x') = exp(—r;{f ) . g/o exp(55 cos ) dip = exp(—%) Io(%2),

where Io(z) = 5= fOQﬂ €* 5% dy) is the modified Bessel function of order 0.

C AN INTRINSIC PSD PROJECTION k; AND ITS PROPERTIES

In the main text we defined a data-dependent kernel ksrp), corresponding to a PSD projection of kyy,.x

on a finite set of samples D, extended by Nystrom. This finite-sample construction kf)) is the star

of the show in practice (as it is convenient to compute, and shows strong performance in practice).
However, its data-dependence might make theoretical analysis quite involved. In this appendix, we
show that k(j’) is the finite-sample facet of a broader, intrinsic data-independent PSD projection
k. of kpax which (i) preserves the G-invariance of Ky ax, (ii) coincides with kp,, Whenever kypax
is already PSD. Since the PSD projection of ky,,x discussed here can also be applied to any other
indefinite kernel k, we directly introduce it for an arbitrary kernel k.

We begin as a warmup with the finite-domain “matrix” construction to build intuition, and then lift it
to general domains via integral operators.

C.1 WARMUP: FINITE DOMAINS

We start on a finite domain S to build intuition. In that case, k. is simply Frobenius-nearest PSD
truncation of the Gram matrix on the full domain S, which is unique, basis-independent, preserves
G-invariance, and coincides with k& when k is already PSD.

Let S = {x,...,x N} be finite, and let G act on S. Consider any symmetric kernel £ on S with
Gram matrix K € RY*¥ (possibly indefinite) given by K;; = k(x;, x;). We define k, as the
kernel corresponding to the Frobenius-nearest PSD projection of K (Highaml [1988)).

Lemma 7 (Frobenius PSD projection and explicit form (Higham, |1988)). The optimization problem
K, = argming, [|P — K||[r has a unique solution and, for any eigendecomposition K =
QAQT, it is given by

K. = Qmax(0,A)Q,
where max(0, ) acts entrywise on A. In particular, the matrix K depends only on K (not on the
chosen eigenbasis), satisfies K >~ 0, and K, = K iff K > 0.

We define k., the (Frobenius) PSD projection of k, as:
ki(zi, ;) = (K4)ij, i,j € [N]. (11)

Inheritance of G-invariance. Each element g € G induces a permutation of the elements of S: let

74 be the permutations of the integers j € {1,..., N} defined by gx; = =, _(;). Denote by P, the

permutation matrix associated with 7. For every vector v, the matrix Py acts as (Pyv); = v, -1,
g

which is equivalent to the action on canonical vectors Pye; = ey ;) or (Py)ij = Li—r ().

Invariance in the first component guarantees Kmax (T, (i); Tj) = Fmax(9T;, ) = kmax (i, ;) for
every i,j € {1,..., N}, ie., the rows of K = (k(x;,x;)); ; are invariant under the permutation 7,
hence P, K = K. Thus, for any positive integer m, P,K™ = (P,K)K™~! = K™ so for any
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polynomial p such that p(0) = 0, P,p(K) = p(K). Now consider a sequence (p,, ), of polynomials

such thaﬂ pn(0) = 0 and |p,(A\) — max(0,\)] — O for any X in the spectrum of K. In the
n— oo

limit P, KK, = K, hence k is invariant under the action of G on the first variable (k1 (g, ') =

ki (2, x")), and invariance along the second one follows by symmetry (K +PqT = K ). This shows

that £ inherits from the G-invariance of k (equivalently, P K = K = K Pg—r for all g). We collect
this result in the next lemma.

Lemma 8 (Invariance is preserved by the projection). Consider g € G. If PJK = K, then
PK, =K, = K+Pg—r. Hence the projected kernel k4 is G-invariant on S x S.

Relation to the practical Nystrom kernel. If the set D = {x1,...,x, } used to build k:ErD) (Equa-
tion (7)) equals the whole domain D = S, then k\”) = k. . Indeed, k{” (a;, z;) = K. K| K.; =
(KK . K);; = (K1);j on D x D, and the latter is the definition of k. on finite domains.

We now generalize the matrix considerations above using integral operators. The finite-domain
construction is recovered as a special case.

C.2 GENERAL DEFINITION (VIA INTEGRAL OPERATORS THEORY)

We lift the finite-domain construction of the previous subsection to general domains by viewing
k as a Hilbert—Schmidt operator and defining k. as the positive part of T}; this yields a PSD,
data-independent kernel that inherits any G-invariance and equals k whenever k is PSD.

Let (S, T, 1) be a probability space. For a measurable, symmetric kernel k£ : S X S — R with
k € L*(u ® p), let the (compact, self-adjoint) Hilbert-Schmidt operator Ty, : L?(u) — L?(u) be

(T (@) = /S B 2) f (') du(a).

(Note that in the finite-domain case, f is a vector indexed by the domain and if x is the uniform
measure then 7}, is simply multiplication by the Gram matrix K normalized by the domain size.) By
the spectral theorem, there exist (\;, ¢;);>1 with {¢; } orthonormal in L?(p) and ()\;) € ¢2 (possibly
of mixed signs) such that T, = Y_,o; \; ¢; @ ¢; in L?(p) where for every u,v € L?(p), u ® v is

the rank-one operator L2(z1) — L2(u) such that (u @ v)f := (f,v) u for every f € L?(p).

Generic definition of & via operator theory. Define the positive part of T}, = >, A; ¢; ® ¢; by
T = 3,(\)+ ¢i ® ¢, where () = max{t,0}. Since _,((X\i)+)? < >, A? < oo, the series

ki(@,a)) =Y (N4 di(x) ¢il@') (n® prae.). (12)

i>1

converges in L?(y ® 1) and defines a kernel p @ p-almost everywhere. By constructio Tk, = T,j ,
hence k. is PSD as a kernel a.e., and PSD in the operator sense: <f, Ty, f> > 0forall f € L?(p).
In particular, if k£ was already PSD (all A\; > 0), then k; = k (up to null sets). It also inherits
G-invariance of k if k is indeed invariant (the proof mimics the finite-domain case, we give the full
details for completeness in Appendix [C.0).

C.3 FROM THE FINITE-SAMPLE PROJECTION TO THE INTRINSIC LIMIT: WHAT CONVERGES TO
WHAT?
We relate the practical, data-dependent Nystrom kernel k‘g_D) (Equation ) to the intrinsic k. : under

iid sampling, the empirical spectra of kf) /|D| converge to that of T}, , with rates under mild moment
assumptions. This shows that eigendecay-based regret analysis

We can impose p,, (0) = 0 since £(0) = 0. Indeed, take p,, (\) = gn()) — ¢ (0) where ¢, is a sequence
given by Weierstrass’ theorem, which converges to f(A) = max(0,\) on the spectrum of K. We have
Ipn(X) = F(N)] < [gn(X) = F(A)] 4 ¢(0)] and because f(0) = 0 we get [¢n (0)] = |¢2(0) — £(0)] = 0.

’Indeed, by definition (T, f)(x) = Is (Zi21(Ai)+¢i(m)¢i($/))f($/) du(x’) =
S Qs (£,60) 6u(@) = (D1 W)+ 000 6:) ) (@) = (T ) (@):

15



Under review as a conference paper at ICLR 2026

Notations. Let X1, Xo,--- ~ piid. and D, = {X1,...,X,}. We write K,, :== k(D,,,Dy,),
K, := argminpy |P — K, | r, K,, := K,/n, and recall that the practical (data-dependent)
kernel defined in Equation (7) is

EP (@, @) = k(x,D,) (K1) k(D,, o).

We denote by A(T') the (ordered, nonincreasing, each counted with its multiplicity) sequence of eigen-

values of a compact self-adjoint operator T, and by d3(A(T), A(S)) := (3; [X:(T) — Xi(9)[?) 1/2
the spectral /5 distance. For symmetric matrices M, A(M) denotes the nonincreasing sequence
of eigenvalues of M (with multiplicity) padded with an infinite number of zeros. For a bounded
operator A, ||A|lus and || A||op denote the Hilbert-Schmidt and operator norms, respectively. We
include in Appendix [C.4]a reminder on the different notions of norms and convergence, and we now
recall the essentials.

Relations between convergence notions. For compact self-adjoint operators: @)
max (62(A(T,), M), [T — Tllop) < T — Tllus (Reed & Simon, |1972; Bhatia & El4
sner, [1994); (ii) converse inequalities do not hold in infinite dimension (see Appendix [CE] for
examples). Thus, HS convergence is the strongest notion of convergence we manipulate here.

We now present convergence guarantees of the data-dependent construction k(f") /n to the intrinsic
k. under progressively stronger assumptions. With minimal assumptions we obtain almost-sure
spectral consistency in the §, metric; with stronger assumptions we obtain quantitative rates in HS
norm (hence also spectral {5 in probability).

(a) Weak a.s. spectral consistency of positive parts (minimal assumptions).
Proposition 9. Assume the symmetric (not necessarily PSD) kernel k is in L*(u ® ) so that Ty, is

Hilbert-Schmidt. Let Sy, : L*(jn) — L2(u) be the integral operator with kernel ks_D")(a:, z')/n
defined by:

Dn
ST (@, X;) F(X5). (13)

j=1

Assume the X; are pairwise distinct almost surely. Then, almost surely,

5(X50), NT,)) — 0.
Proof. Let K,, be the empirical operator on R" with matrix 2 (k(X;, X;));; and let A(K,,) be
its ordered spectrum (nonincreasing, with multiplicity) padded with an infinite number of zeros.
Theorem 3.1 of Koltchinskii & Ging|(2000) shows that d3(A( K, ), A(T%)) — 0 as n — oo.

Let K, be the positive part of K,, (i.e., its Frobenius PSD projection). Since A — max(0, \) is
1-Lipschitz, we have for any operators 7, S:

2(A(T4), A(S4)) = Z | max(0, Ai(T)) —max(0, Ai(5))] < Z IA(T)=Ai(S)] = 02 (MT), A(5))-

We deduce that d2(A(K}), A(Tk,)) — 0as n — oo.

It remains to observe that the spectrum of K :{ as an operator on R” is the same as §n 1 L? (tn) —
L2 (1. This identification is standard (e.g., see above Equation 1.2 in [Koltchinskii & Giné|(2000)).
For completeness, we include the formal arguments of |[Koltchinskii & Giné|(2000) in Lemma |12}
which shows that we can identify the spectrum of kiD") (D, Dy) /n with the one of K a.s. if the
iid X; ~ p are pairwise distinct a.s, which is true as soon as p is non-atomic; otherwise one can
index the distinct atoms and work in R™ with m = #supp(u.,, ), obtaining the same spectral identity
on that subspace. O

(b) Expected HS convergence with (’)(n‘l/ 2) rate (stronger assumption). Define the empirical
integral operator (T}, f)(z) := Sor k(z, X;) f(X;) and D, :=T,, — Ty, Let (\;, ¢;);>1 be an

T n
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eigensystem of T}, in L?(1). Assume the following fourth-order summability condition holds:

C= 3 a2 /S 6:(2)? 6;(2)? du(a) < . (14)

i,52>1

Proposition 10 (Expected HS rate). Under k € L?(u @ p) and (14),

C
E[|Dalfis] < —  E[|Dallus] < NG

D, |lus = Op(n~"?) and therefore using the same notations as in Proposition @]

BOEDANT) = 0en2), 5 NE.) A(Tk,)) = Os(n'12).

Consequently,

Proof. Fix any f € L?(u1). By Fubini-Tonelli for non-negative functions, we have:

BID. 1] = [ E[(Daf)(@)’] dute).

By definition
1 - ! ! !/
(Duf)@) = 3K X)F(X) ~ [ Ke.a)f(a) duta)
i=1
where the randomness comes from the i.i.d. X; ~ p. Hence E[(D,, f)()] = 0 and for any fixed =

E[((an)(w))ﬂ = Var((D,f)(x)) = %Var(k(w,X)f(X)) < % / k(x,x')2f(x')? du(z’).

s
The Hilbert-Schmidt spectral theorem gives the expansion k(z, ') = >, X\i¢;(z)d; (x') in L? (u ®

), with ();); € €2 and (¢;); an orthonormal set of L? (1) (see Equation 3.2 in Koltchinskii & Giné
(2000), Corollary 5.4 in /Conway|(2007)). Thus

LE[(an@)]auta) < 1 [ w210 dute)dute)

n

gk“j/s@(x'>¢j<w’>f<w/> (1, ¢4) du(=’)

=1i—;

IN

[
&
&
L
=

_ /\2 i N2 / Zd / .
>  ROCSRICIR e
Taking f = ¢; for a fixed j yields
1 / / !
B0 0] < 3y N [ a6 (e

Since || Dy, fllfis = 22, [1Dnd;l72 (. We get the main claim:

C

Jensen gives the bound for E||D,, ||us. Finally, d2(A(K},), A(Tx)) < || D»|lus (Hoffman-Wielandt
inequality in infinite dimension (Bhatia & Elsner, 1994)), and A\ — max (0, ) is 1-Lipschitz on R,
hence the spectral bound probability claim using Markov’s inequality, and Lemma [I2]transfers this
claims to S,,. L]
Remark 11 (On assumption (T4)). Condition is a fourth-order integrability requirement that
controls eigenfunction overlaps. It is standard in random Nystrom analyses (see, e.g., Equations (4.3)
and (4.11) of Koltchinskii & Giné|(2000)) and stronger than k € L2, but it yields a dimension-free
O(n~"?) rate in HS norm.

(c) High-probability HS rates (heavier but more precise). Under slightly stronger L*-type
conditions on eigenfunctions, the section 4 in |Koltchinskii & Giné|(2000) gives more more precise
statements on the rates in Proposition[I0] and we directly refer the reader to it.

17
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Application to k..., and to the BO kernels in the paper. When k = k.« is bounded on a
compact domain S (as in all our experiments), k € L?(u ® p) for any probability measure 2 on S,
s0 T},,... is Hilbert-Schmidt and Proposition [9]applies. In particular, the integral operator associated

with kS_D”) /n, called §n (Equation ) satisfies
6(A(50)s NTk,) ) =22 0.

This clarifies the two objects introduced in the main text: the intrinsic k4 is the unique data-

independent target, while the practical kernel kS_D"') (finite PSD projection + Nystrom) is an on-path
approximation whose spectrum converges (once normalized by n) to that of k£ under i.i.d. sampling.

The following subsections are only optional complementary materials added to help building intuitions
on the convergence results stated above.

C.4 REMINDERS ON THE DIFFERENT TYPE OF CONVERGENCES FOR BOUNDED LINEAR
OPERATORS

This subsection recalls standard notions of operator convergence, included only as background to
help build intuition for the convergence results above.

Definitions (operator norm, HS norm, spectral distance). Let H be a separable Hilbert space
with orthonormal basis {e; }; >1. For a bounded linear operator 1" : H — H,

1/2
ITllop = sup [T, Tl = (3 ITerli3)
I fll=1 i>1

The HS norm is basis-independent. When T is an integral operator with kernel & € L?(;u ® p1) on
L?(p) (Reed & Simon, |1972)

17l = [ /S k)P ditz) du(s),

For finite matrices, ||A|lus = ||A||r (Frobenius). We say 7,, — T in HS norm if ||T}, — T'||us —
0, and we say T, — T spectrally if d2(A(T,,), A(T')) — 0, where we recall that \(T) is the
ordered eigenvalues of a compact self-adjoint operator 7', and where the spectral ¢5-distance is

52(MT), A(S)) i= (X, I(T) = M) [2) /2.

Which convergences matter, and how they relate (reminders on well-known facts). We compare
three notions: (i) operator norm convergence |1, — T||op, — 0; (ii) Hilbert-Schmidt (HS) convergence

[T — T|las — 0; (iii) spectral convergence in 8y, i.e., 62(A(Tn), A(T)) = (X, |Ni(T}) —
Ai(T)]?) V2, 0, where A(-) denotes the ordered eigenvalues of a compact self-adjoint operator. We
recall the following well-known facts, useful to grasp the convergence results we state next.

(1) HS = spectral §,. For compact self-adjoint operators the (infinite-dimensional) Hoffman-

Wielandt inequality yields (Bhatia & Elsner,|1994)
02(AM(Tn), M(T)) < || Tn = Tllus.

(2) HS = operator norm. For every Hilbert-Schmidt operator S, ||S|lop < ||S|lus. Indeed
for unit vectors z,y € H, using x = ) (z,e;)e;, we have (Sx,y) = > . (7, e;) (Ses,y). By

Cauchy-Schwarz:
/ /
seal < (CleedP) (X lsean )"
icl

iel
The first factor equals ||z|| = 1, and for the second we use |(Se;, y)| < [|Se;|| ||y]| = ||Se:]| to get
S (Sen ) < 3 1Sedl = 1S
el icl

18
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Hence |(Sz,y)| < ||S||us. Taking the supremum over all unit y gives

1Sz = Sup, [(Sz,9)| < [[S]us;
y =

and then taking the supremum over all unit = yields

[Sllop = sup_[[Sz[| < |[S]us-
B

(3) Spectral > does not imply HS nor operator norm. Even if eigenvalues match in /s, the
operators may be far in norm because eigenvectors can rotate. Let T = diag(1,1/2,1/3,...) in the
canonical basis (e;);>1, and let U,, swap ey and e,,. Set T}, := U,,TU:. Then A(T;,) = A(T") for all
n (same ordered spectrum), so d2(A(T,,), A(T)) = 0. Yet |(T, — Tex|| = (U TUS — T)eq|| =
I(1/n —1)es|| =1 —1/n, hence |T;, — T'||op > 1 —1/n — 1 and, a fortiori, ||}, — T||us # 0.

(4) Operator norm does not imply spectral . Let 7' = 0 and T;, be diagonal with the first m,,
entries equal to ¢, and the rest 0. Choose ¢,, := n~'/2 and m,, := n. Then ||T},|op = £, — 0 but

52 (MT), AN(T)) = (S e2)Y? = /- (I/n) = 1.

(5) Two useful corollaries. (a) Spectral Jo-convergence implies convergence of the largest eigenvalue,
since sup, |\ (Ty) — M\i(T)| < 62(A(Ty), M(T)). (b) Operator-norm convergence forces uniform
eigenvalue deviations to vanish by Weyl’s inequality: sup; |X;(T,,) — Ai(T)| < || Ty, — T'|op, but it
does not control the ¢5-sum of all deviations.

Takeaway. HS is the strongest notion here: it simultaneously implies spectral §-convergence (and
thus convergence of eigenvalue-based quantities) and operator-norm convergence. The converses fail
in infinite dimension because eigenvectors can drift and an infinite number of tiny eigenvalue errors
can accumulate.

C.5 IDENTIFICATION OF THE SPECTRUM OF AN EMPIRICAL OPERATOR IN L?(11,,) AND ITS
MATRIX COUNTERPART

Here we show how the spectrum of the empirical operator can be identified with that of its matrix
form. This is complementary material meant to clarify how operator-level and matrix-level viewpoints

connect (which is useful, e.g., in the proof of Proposition E])

Lemma 12 (Empirical Nystrém spectral identity). Let K,, := X (k(z;, a:j))zjzl and let K& be
its spectral positive part (the Frobenius-nearest PSD projection). Define the empirical measure
fin =L 37" | 6s, and the Nystrom kernel

K2 (@, a') = k(@ Du) (KD KDy, ).
Let Sy, : L*(pin) — L2(u) be the integral operator with kernel k(f)")(a:, x')/n, ie.

n

~ 1

D,
(Sul)@) = = D K (o)) f ().
j=1
The map E : L*(u,) — R", Ef = ﬁ(f(acl), . .,f(:cn))T, is an isometry: ||Ef||g» =
Il fIlz2(u,,)> and we have the intertwining identity
ES, = K} E.
If, in addition, the sample points 1, . . . , x,, are pairwise distinct, then E is an isometric isomorphism

(hence invertible) and

XS.) = NK) = XKD, D) /n).
Proof. First note the on-sample identity k(f")(:vi,:vj) = (KT);; for the unscaled K =
(k(x4,x;))i ;» which follows from K (K )T K = K+. Hence kiD") (D, D) = K™ and therefore
kP (D, D) /n = K.
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For f € L*(py,) and each i € {1,...,n},

Vi (BS,f), = (Suf)(z;) = Zk(D @i ay) fs) = Y (K f(X;) = Vi (K ES),,

Jj=1

which proves E §n = K'E. Since E is an isometry by definition of the L?(p,,) inner product, if

the X; are pairwise distinct then E is bijective and conjugates S,, with K, so the spectra (with
multiplicities) coincide. O

C.6 PROOF OF G-INVARIANCE OF k4 FOR GENERAL DOMAINS

We conclude this appendix with the formal proof that k£, defined in inherits from any group-
invariance of k. This proof is not needed for the main results but is included for completeness. It
makes explicit why k. preserves any G-invariance of k. The proof follows the one for finite domains
but is heavier in notations because it is now stated using integral operators to generalize the matrix
manipulations of finite domains. For finite domains, denoting by K the Gram matrix of k over
the whole domain and P, the permutation matrix induced by the action of g € G on the domain,

invariance of k is equivalent to P, K = K Pg—'— = K. Thus any polynomial p(K) of K such that

p(0) = 0 inherits from this invariance since we still have Pyp(K) = p(K)P,’ = p(K). And at the
limit, we get invariance of K, . Here, we mimic this proof, and we start by introducing the equivalent
integral operator form of the characterization P, K = K PqT = K for general domains.

Lemma 13 (Kernel invariance <> operator commutation). Let (S, T, u) be a probability space
and let G act measurably on S. Assume  is G-invariant. Let U, : L*(u) — L?(p) be the unitary
representation (U Hx) = f(g 1w) Letk € L*(p @ u) be a symmetric kernel with integral
operator (Ty. f)(x fs ') du(x’). Then the following are equivalent:

(i) k is argumentwise G-invariant: k(giL’, ') = k(z,g2’) = k(x, &) for p ® p-a.e. (x,x') and all
gegqg.
(ii) Ty satisfies UyTy, = TpUy = T}, on L?(u) forallg € G.

Proof. (i)=(ii). For any f € L?(u),

(%ﬂjmw:Cmﬂ@”w%=/k@”wmﬁﬂfNM@7

By invariance of £ in the first argument U, T}, = T},. Hence T*U o =Ty and T} = T}, (self-adjoint)
and Ug = Uy-1 s0 TxUy—1 = Tj,. This is trueforallg S ghence U, Tk =TyUy = Ty.

(ii)=(i). For ¢, € L*(p),

// k(z,z') p(x)y(x') du(z)du(x") = (p, Tep) = (o, TiUy).

Expanding the last inner product, we get by change of variable and invariance of p

J[ ) cl@its e duteiduta’) = [[ kenge') olwiie!) du@dnte).

Hence for all ¢,v, [[[k(z,z') — k(z,gx’)] p(x)y(x’) du(x)dp(z’) = 0, which implies
k(x,gx') = k(x,z’') p ® p-a.e. Symmetry implies argumentwise G-invariance. O

We now show that U,T" = T is preserved if we apply a function f such that f(0) = 0 to the spectrum
of T

Lemma 14 (Borel functional calculus preserves invariance). Let T be a self-adjoint compact operator
on a Hilbert space H with eigendecomposition T = Y, \i; ® ¢;, and let {Ugy} 4cg be a unitary
representation such that U,T = TU, =T for all g € G. For a bounded Borel function f : R — R,

define f(T) =", f(Ni)¢; ® ¢i. Then for such f with f(0) = 0, we have
Ugf(T) = f(T)Ug = f(T)  forallge g
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Proof. Proof sketch: The assumption U,T" = T forces U, to act as the identity on each nonzero
eigenspace of T, which directly yields U, f(T') = f(T') for any bounded Borel f with f(0) = 0.

Step 1 (spectral decomposition for compact self-adjoint 7" without measures). Since 7" is compact
and self-adjoint, its spectrum is o(T) = {0} U {\,, : n € I} where I is finite or countable, each
An # 01is an eigenvalue of finite multiplicity, and A,, — 0 if infinite. Let F\ denote the eigenspace
for A # 0, and let Ey = ker T'. We have the orthogonal decomposition

H=Ee& P BE.
Aeo(T)\{0}

and T acts as scalar multiplication on each Ey: T|g, = Aldg,, T|g, = 0. Let P\ be the
orthogonal projector onto Ey (for A # 0) and Py onto Ey. Then for every v € H with expansion
v =1y + Z/\#O vy (vy = Pyv), we have

Tv = Z)\v,\.

A0
Step 2 (U, fixes each nonzero eigenspace pointwise). From U,T" = T we get, for any v € E) with
A#£0,

AUgv = Uy(Tv) = Tv = Av,

hence Uyv = v. Thus Uy acts as the identity on each E (A # 0). Equivalently, Uy Py = P\Uy, = P,
for all A # 0. (There is no restriction on U, inside Ey = ker T".)

Step 3 (defining f(7") for bounded Borel f with f(0) = 0). Because o(7T) \ {0} is at most
countable and T is diagonal on { £ }, we can define f(7') by applying f on the spectrum of T as

fMv = Z F(A) vy, UZU()-}-ZU)\, vy € Ey.
A€o (T)\{0} A#0

The series converges in norm since the E) are mutually orthogonal and ||f(T)v|? =

Yoazo FPIoall? < (supaso [F(NIP) Yo loall® < FI% 0] Thus f(T) is a bounded
operator with || f(T)|| < || fllco- (When f(0) = 0, there is no contribution on Ej.)

Step 4 (invariance and commutation). For v = vy + ) A£0 Ux S above and any g € G, Step 2
gives Ugv = Ugvg + ZA;ﬁO vy and P\U, = P, for A # 0. Hence

Upf(T) v =Us (DN 0r) = 3 FN Uy = D7 F(N or = £(T) v,
A#0 A0 A0

ie., Uy f(T) = f(T). In particular U, f(T) = f(T)U, = f(T) forall g € G. O

Consequence. If k is G-invariant, then so is k. (Equation (12)).

D EIGENDECAY COMPARISON

In this appendix, we discuss in more details the empirical observations made in Section[5|and formally
derive some inequalities between Schatten norms of integral operators associated with kaye and k..

D.1 EMPIRICAL OBSERVATIONS

Here, we further discuss the empirical spectra reported in Figure f] (middle and right columns).

Computation of spectra. The normalized Gram matrices K /n (where K = (k(x;, z;))1<i j<n)
reported in Figure [ are computed from n = 3000 i.i.d. samples x; € S. We compare the spectra

obtained with k € {ky, kave, kf’)} with D = {4, ..., x,} and each x; being chosen uniformly in
S = [—1, 1]. We also report the spectrum of &}, when observations ; are instead sampled from an

alternative domain S’ of reduced volume, chosen such that vol(S’) = vol(S)/|G|. Finally, note that

because D is a set of i.i.d. observations, the spectrum of k@ approximates the one of £, on S (see
Appendix [C.3)) so our observations transfer to k.
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on S vs. k, on S’. For the base kernels &y, and groups G considered, the spectrum of k:( ) o

S = [—1, 1] exactly matches that of k;, on the reduced domain S’. This indicates that ks_ ) falthfully

incorporates the extra similarities induced by G-invariance: it retains the eigendecay of &y, but as if it
were defined on the quotient space S/G of effective volume vol(S)/|G|

k)

k:(f)) on S vs. kave on S, From Figure @ (middle and right columns) , it is clear that the spectrum

of kavg decays at least as fast as that of k f). They coincide for the RBF kernel and £, decays even

faster for the Matérn kernel. In principle, this suggests that k., should admit tighter information-gain
bounds and thus better regret guarantees. However, our empirical results contradict this prediction, as
k(f)) consistently outperforms k.. This discrepancy highlights the fact that eigendecay alone does
not fully explain BO performance, as pointed out in Sections [5]and [6}

D.2 SCHATTEN NORM INEQUALITIES

While the empirical spectra in Appendix [D.1]already highlight a mismatch between eigendecay and
observed BO performance, one may ask whether formal inequalities between the operators induced
by kave and k. can be established. We record here for completeness that it is possible to control the
Schatten class of k. in terms of the one of k,yg.

Assume: (S, p) is a probability space on which a finite group G acts measurably, and the base kernel
ky, is bounded, symmetric, PSD, and nonnegative. Define

kave (T, ') ky(g9z, g'x") kmax(x, ') := max ky(gx, g2’
avg( |g‘2 ggze:g b g g max( ) Pnzere b(g g )

and k. as the kernel corresponding to the positive part of T : Tk, = (Thpar)+-

Schatten norm interpolation. Let H = L?(p) be the separable Hilbert space of squared integrable
functions on (S, u), T : H — H a compact operator, and write s;(7T") for the singular values of T', i.e.
$i(T) = \/Ai(T*T), arranged in nonincreasing order and counted with multiplicity. The Schatten-p
norm is defined as

1/p
ITlls, == (Yo sm?) . 1<p<oo, T, i=supsi(T).
N 7

?

Lemma 15 (Monotonicity for pointwise kernels). If two kernels k, k' are bounded and satisfy
0 < k < K pointwise, then ||Ty||s, < ||Tj|s, for p = 2,00. If k and k" are also PSD, then
1Txlls, < | Twls, for p = 1 too.

Proof. For p = oo, the Schatten p-norm is the operator norm ||7'||op = sup |, =1 |7 f|| - Point-
wise 0 < k < K" implies | Tk fllz < |Tw|flllz < I|Tw|ls.. || fllz, so taking the supremum over
£z = 1yields | Tk ||ls.. < | Twrlls... If T = Ty is the integral operator associated with a nonnega-
tive kernel k, then ||Tk||s, = ||kHL2(u®u) Hence pointwise 0 < k < &’ gives | Tk|ls, < [Tk ||s,

for p = 2 as well. Finally when k is PSD, we have ||T}||s, = [, k(x, x)dpu(x) (and similarly for ')
and again a pointwise comparison yields the result. O

From this we immediately obtain, for our specific kernels that for p = 2, co, and also p = 1 if kp,x
is PSD:
kavg < kmax < |G kave = Thaells, < 1Thnulls, < 1617 [Tk, lls,

Lemma 16 (Interpolation inequalities for Schatten norms). For any nonnegative sequence a =
(@i)i>1 one has

1-2
o < lla)|ZP llal <% (0> 2),

lal

2— 2(p—1
lall?, < lla| 27 allZ7~" (1 <p<2).

8For a finite group G of isometries, one indeed has vol(S/G) = vol(S)/|G| (Petersen, 2006).
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Proof. Forp >2,3.a’ = 3. a?"%a? < |ja||)=? Y, a2, giving the stated inequality. For 1 < p <
2, write
St = Tt
i i
Let r = 2% and s = p%l (with the usual convention 1/0 = o0). For 1 < p < 2 we have

1 < r,s < oo and by Holder,
Sar < (Y ) (@) = () ()

Since 1/r =2 —pand 1/s = p — 1, this gives

2(p—1
lallfe < flall& llall 2.
The endpoint cases p = 1, 2 follow by continuity (and are trivial directly). O

Applied to a; = s;(T), Lemma yields the standard Schatten interpolation inequalities:
1-2
ITls, < ITIS7 1T, (0= 2),

2 _ _1
ITlls, < (ITs,)" " (IT12,) "%, (1<p<2)

Since the spectrum of T} is the positive part of the one of T
We deduce the next lemma.

Lemma 17. Forp > 2:
1-2
1T, N5, < 1 Thmaclls, < 1GIN T 127 1 Th 1527
and if kmax is already PSD then for 1 < p < 2:

2/p—1 1-1/
1Tk Nls, = 1 Thmae s, < 1G1 (1 Traglls)™”" " (I Thag )"

we have [Ty, |5, < [Tk ls,-

max >

and
T lls, < (ITenlls) " (T |2,) 7

E BENCHMARKS

In this appendix, we describe the experimental setting and all the benchmarks used to produce the
numerical results of Section[4]

E.1 EXPERIMENTAL DETAILS

In our experiments, every BO algorithm is implemented with the same BO library, namely
BOTorch (Balandat et al.| |2020). All of them are initialized with five observations sampled uniformly
in S. After that, at each iteration ¢, every BO algorithm must:

* Fit its kernel hyperparameters. This is done by gradient ascent of the Gaussian likelihood, as
recommended by BOTorch. The hyperparameters are the signal variance )\, the lengthscale [ and
the observational noise level 3.

* Optimize GP-UCB to find z;. This is done by multi-start gradient ascent, using the
optimize_acqgf function from BOTorch. As values of §3; recommended by [Srinivas et al.
(2012)) turn out to be too exploratory in practice, we set 3; = 0.5d log(t).

* Observe y(x;) = f(x;) + €. Function values are corrupted by noise whose variance is 2% of the
signal variance.

We optimize over 50 iterations and typically measure the cumulated regret along the optimizer’s
trajectory.

All experiments are replicated across ten independent seeds and are run on a laptop equipped with
an Intel Core i9-9980HK @ 2.40 GHz with 8 cores (16 threads). No graphics card was used to
speed up GP inference. The typical time for each maximization problem ranged from ~1 minute
(two-dimensional Ackley, |G| = 8) to ~15 minutes (five-dimensional Rastrigin, |G| = 3840).
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E.2 BENCHMARKS

As GP-UCB is naturally formulated for maximization tasks, all benchmarks that require minimization
have been multiplied by —1 to produce benchmarks on maximization.

Ackley. The d-dimensional Ackley function is defined on S = [—16, 16]¢ with a global minimum
at fackiey(0) = 0 and has the following expression:

d

1

y Zx? — exp < Zcos (cz;) ) +a+ exp(l), (15)
i=1

where we set @ = 20, b = 0.2 and ¢ = 27 as recommended.

fAckley (:B) =

The d-dimensional Ackley is invariant to the hyperoctahedral group in d dimensions, which includes
permutations composed with sign-flips. Consequently, in d dimensions, |G| = 24 d!

sign flips permutations

Griewank. The d-dimensional Griewank function is defined on S = [—600, 600]¢ with a global
minimum at fGiewank (0) = 0 and has the following expression:

d
l’
fGnewdnk Z 2000 - H COS ( > + 1.

=1

The d-dimensional Griewank is invariant to sign-flips of all d coordinates. Therefore, in d dimensions,

IG| = 2.

Rastrigin. The d-dimensional Rastrigin function is defined on S = [—5.12,5.12]% with a global
minimum at fragigin(0) = 0 and has the following expression:

d
fRastrigin(iL') = 10d + Z (CL‘ZQ — 10 cos (27‘(‘3%‘)) .

i=1

The d-dimensional Rastrigin is invariant to the hyperoctahedral group in d dimensions, which includes
permutations composed with sign-flips. Consequently, in d dimensions, |G| = 24 d!
~— =~

sign flips permutations

Radial. Our radial benchmark is defined on S = [—10, 10]? with a global minimum at fragia (*) =
0, where * is any « € S such that ||x||2 = ab. It has the following expression:

fRadial(x) = fRastrigin <|a;|2 — b) (16)

where we set ¢ = 10v/2, b = 0.8 and where fRastigin 18 the one-dimensional Rastrigin benchmark.

Our radial benchmark is invariant to planar rotations. Consequently, G comprises an uncountably
infinite number of symmetries.

Scaling. Our scaling benchmark is defined on S = [0.1,10]? with a global minimum at
fscating(*) = 0, where &* is any * = (z1,22) € S such that z; = z5. It has the following

expression:
. 2
1
fScaling(m) = ( - 1) .
X2

Our scaling benchmark is invariant to rescaling of both coordinates. Consequently, G comprises an
uncountably infinite number of symmetries.
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Figure 5: WN with the best positions of APs found by GP-UCB with ker). APs are depicted by red

triangles and users with blue circles. The throughput for each user is shown in Mbps.

WLAN. The WLAN benchmark consists of p users scattered in an area A = [—50, 50]? and
m access points (APs) to be placed in A. Therefore, the search space is S = A™, which is 2m-
dimensional. Given a placement {(zi,¥;)};c(,, for the m APs, each user is allocated to the AP

closest to it. Each AP i has now a set U (z;, y;) of associated users.

Assume the AP ¢ is associated to the user j € U(x;,y;). The quality of service (QoS) of the AP-user
association is given by the Shannon capacity in Mbps:

Cij = Wlogy(1 + i),
where W is the bandwidth of the signal (in MHz), ;; is the signal to interference-plus-noise ratio
(SINR) defined by
N+ ZZ;Z Pr; '
Here, N is the background noise (in mW) while F;; is the power (in mW) received by user j from
AP i. The power received is computed using the well-known log-distance path-loss:

Py =10~/ min(d;}, 1).

Yij

where d;; is the Euclidean distance between AP ¢ and user j and where L and ) are positive constants.

Finally, the objective function to maximize is the cumulated sum of Shannon capacities for every

AP-user association:
Swian(z,y) = Z Z Cijs
=1 jeU(xi,yi)
where © = (21, ,x,,) and y = (y1, - , Ym) are the positions of the m APs on the x-axis and
y-axis, respectively. In our experiment, we set W = 1 MHz, L = 46.67dBm, A = 3, N = —85 dBm,
m = 4 APs and p = 16 users.

Because the main goal of this task is to optimize the QoS by placing a set of APs, our objective
fwLaN is invariant to any permutation of the coordinates in the vectors & and y. Therefore, |G| = m/!.

Figure [5|shows a depiction of the WLAN and the best placement of APs inferred by GP-UCB using
kP,

F USE oF LLMS

We made limited use of large language models (GPT-5) during the preparation of this manuscript.
Their role was strictly restricted to grammar correction, improving clarity and conciseness, emphasiz-
ing text (e.g., bolding), and formatting tables. They were not used for generating technical content,
suggesting new concepts, or contributing to proofs or results. All ideas, proofs, experiments, and
findings are entirely our own. Every rephrased passage was carefully reviewed and validated by the
authors to ensure correctness and faithfulness to our original intent. No unverified or plagiarized
content was introduced.
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