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ABSTRACT

Bayesian Optimization (BO) is a powerful framework for optimizing noisy,
expensive-to-evaluate black-box functions. When the objective exhibits invari-
ances under a group action, exploiting these symmetries can substantially improve
BO efficiency. While using maximum similarity across group orbits has long been
considered in other domains, the fact that the max kernel is not positive semidefinite
(PSD) has prevented its use in BO. In this work, we revisit this idea by considering
a PSD projection of the max kernel. Compared to existing invariant (and non-
invariant) kernels, we show it achieves significantly lower regret on both synthetic
and real-world BO benchmarks, without increasing computational complexity.

1 INTRODUCTION

Many real-world problems can be framed as the optimization of a noisy, expensive-to-evaluate
black-box function f* : S ¢ R? — R. Bayesian Optimization (BO) provides a principled and
sample-efficient framework for tackling this problem, with asymptotic guarantees of global optimality
complementing its empirical success. As a result, BO has been widely adopted across diverse domains
such as robotics (Lizotte et al.,|2007), computational biology (Gonzalez et al.||2015]) and computer
networks (Bardou et al., 2025).

For a black-box function f* belonging to the Reproducing Kernel Hilbert Space (RKHS) H
associated with a kernel k£ : § x & — R, BO proceeds by placing a Gaussian Process (GP) prior
f ~ GP(0, k) over functions in Hy. The kernel k determines the covariance structure of the GP and
thus encodes prior assumptions about f*. Incorporating suitable prior knowledge can substantially
improve convergence and sample efficiency. In many applications, the objective is known to be
invariant under the action of a group G, that is,

f(x) = f*(gx) forallgeg.

For instance, in molecular property prediction, f* may be invariant to rotations of the underlying
molecular structure (Glielmo et al.,2017). In such cases, designing kernels that explicitly incorporate
G-invariance becomes essential.

Ginsbourger et al.| (2012) showed that for a centered GP to be G-invariant, its covariance function
must also be invariant under G. Motivated by this, we revisit a simple idea—+keep the best alignment
over each orbit—and apply it to BO.

Given a base kernel &}, and a symmetry group G, define

Emax(x, ') = ku(gzx, ¢g'x’), 1
ax(@, ") nax. (g, g'z’) (1)

so that the similarity between x and @’ is the best alignment over their orbits.

The intuition for using the max-alignment is that when the objective is invariant under a group of
transformations, two inputs can become very similar after applying the right group element, even if
they differ a lot in their original positions. For instance, in an image-based problem with rotation
invariance, two rotated images of the same object (e.g., cats) should in principle be treated similarly
by the optimizer since they correspond to the same objective value. However, most rotations will not
align the images well; and if the optimizer compares images with 2 distances, only a small number
of them can give a good match. In such settings, taking the maximum similarity over all group actions
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is natural: among all transformations, typically only one (or a few) reveal a true alignment. Averaging
over all rotations would dilute this information—most transformed pairs look different—whereas
the max retains the one transformation that matters. This “best-alignment” principle is the core
motivation behind k.« and is expected to provide a clearer signal to the optimizer about which
inputs should be treated similarly, compared, e.g., to an averaging approach.

While k., is symmetric and G-invariant, it is however not guaranteed to be positive semi-definite
(PSD), a property required for the standard Gaussian-process machinery underlying BO (see Sec-
tion[2.1)). To address this, we introduce a PSD version of k..

A PSD, invariant surrogate via projection + Nystrom. On a finite design set D, we form the Gram
matrix of kp,,x and project it onto the PSD cone (eigenvalue clipping), obtaining K, . Denoting by

K l the Moore-Penrose pseudo-inverse of K |, we then define the G-invariant, PSD kernel
ks_p) (.’13, $/) = kmax(x7 D) KI- kmax(Dy .’13,). (2)

Equivalently, kip)(nm’) = ¢(x) " p(x') with features ¢(x) = Ki/Q kmax (D, x), which makes

positive semidefiniteness immediate. By construction, kS_D) (i) coincides with k.« on D whenever
kmax 1s already PSD, and (ii) has per-iteration asymptotic cost comparable to orbit-averaged kernels;
details in Section[3.2]

Results. The max-alignment heuristic does translate into concrete benefits for BO, which we
observe throughout the paper. The resulting kernel is geometrically better aligned with the true
structure of the problem (Figures [I|and [2). In practice, this makes (i) the acquisition function more
faithful as it avoids redundant exploration of points that are already explored up to symmetry, and
(i) uncertainty modeling also more faithful: it gains confidence in unexplored regions that correspond
to symmetry-equivalent points. Across synthetic benchmarks with finite and continuous groups and a

wireless-network design task, we show that k:(f)) consistently attains lower cumulative and simple
regret than both the base kernel and the orbit-averaged alternative, with gains increasing with |G|.

Relation with spectral-based theory. Mainstream BO theory links fast eigendecay of the kernel to
small regret upper bounds (Srinivas et al., 2012} |Valko et al.,|2013} [Scarlett et al., 2017; |Whitehouse

et al., [2023). Surprisingly, we find the opposite trend in our setting: kS_D) typically has a slower
empirical eigendecay than k.., yet consistently achieves better (lower) regret in practice. This
directly challenges the usual spectral intuition: our results reveal a clear mismatch between spectral
predictions and empirical performance, suggesting that eigendecay alone does not capture the

advantages of ksrp). As we discuss later, geometric considerations (the alignment of the kernel
eigenvectors with the directions that matter for optimization) and approximation hardness of the
blackbox f* in the RKHS likely play an essential role beyond pure spectral rates.

Summary of the contributions. We propose k,.x as a max-alignment route to G-invariance, turn it
into a valid GP kernel for BO via PSD projection and Nystrom, and show kS_D) is G-invariant, equals
kmax on D when k.« is PSD, and matches the asymptotic cost of orbit-averaged kernels (Section .
We demonstrate consistent BO gains over orbit averaging across BO benchmarks (Section ), and we

analyze why eigendecay alone does not explain these gains (Section [3).

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION IN A NUTSHELL

Problem. We seek to maximize an expensive-to-evaluate, black-box objective f* : S — R under the
assumption that f* is in the RKHS Hj, of a PSD kernel £ : S x & — R. Each query = € S returns a
noisy observation y = f*(x) + ¢, where ¢ ~ N(0,03). Let Z; = {(x;, y;)}!_; denote the dataset
after ¢ evaluations, and write D; = (@1, ..., @) and y: = (y1,...,Yt)

Surrogate model: the GP prior. BO maintains a probabilistic surrogate f over functions in Hj to
guide sampling of new queries & € S with the goal of converging to arg max,cg f*(). A common
choice is a zero-mean Gaussian process (GP) (Rasmussen & Williams), |2006)),

f~GP(0,k),
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Conditionally on the dataset of queried points Z; after ¢ evaluations, the posterior f | Z; is still a GP
with posterior mean and covariance

pe(x) = k(z, Dy) (Kt + U(Q)It)_lyh 3)
Covy (@, @) = k(z, @) — k(w, Dy) (K, + 02L,) " k(D 2'), )
where K; = k(D;, D;) € R, I, is the t x t identity, and k(x, D) = [k(z, x1), ..., k(z,x)].

The GP posterior plays the role of a refined surrogate for f* throughout the optimization process. At
iteration ¢, a BO algorithm:

1. forms the Gram matrix K; = k(D;, D;) using all past queries;

2. computes the inverse of K; + 021, (with fixed hyperparameter o) and plugs it into (3)-@) to
obtain the posterior mean and covariance functions (p;, Covy);

3. selects the next query by maximizing an acquisition function o;; : S — R built from (p, Covy)
(e.g., GP-UCB (Srinivas et al., |2012) or Expected Improvement (Jones et al.,|{1998)). This is where
BO balances exploration (learning f*) and exploitation (sampling near current optima). The pair
(ut,02) can be viewed as the algorithm’s current best estimate of the unknown function and its
uncertainty.

The dataset is then updated with the new query:

Ti41 € arg H;ax ai(x), Yrr1 = [ (@eg1) + 11,
xe

and the loop repeats until a stopping criterion is met.

Why PSDness of k£ matters. In this paper, we consider & = k.« and then project it onto a PSD
kernel. Although there is no technical impossibility in running a BO loop with a kernel k that is not
PSDP_-I doing so is poorly motivated: the fundamental assumptions underlying BO no longer apply,
and the key quantities lose their meaning. In particular:

* the assumption f* € H} no longer makes sense because #y, is not defined for non-PSD kernels;

* the usual interpretation of BO as maintaining a GP prior whose posteriors provide increasingly
refined approximations of f* no longer holds (in particular y; and Cov, are no longer GP posterior
mean or covariance), since k is not a valid covariance structure for the prior;

* acquisition functions (UCB, EI, etc.) lose their principled exploration-exploitation meaning and
may now behave unpredictably.

Measuring performance with regret. We follow the common practice in BO: for experiments where
f* is known, we measure the regret on the deterministic f* € Hy, and when discussing theoretical
regret bounds we refer to the regret on f ~ GP(0, k) (Garnett, 2023). In both cases, for h = f or
h = f*, the instantaneous regret at timestep ¢ is ry = maxzes h(x) — h(x:), the cumulative regret
at horizon T is Ry = Zthl ¢, and the simple regret is sy = maxges h(x) — maxi<i<7 h(xy).
A BO algorithm with a sublinear regret (i.e., Ry € o(T)) is called no-regret and offers asymptotic
global optimization guarantees on f*. Most standard cumulative regret upper bounds are established
in terms of the eigendecay of the operator spectrum of the kernel & (Srinivas et al.,[2012} |Valko et al.|
2013 Scarlett et al., [2017; [Whitehouse et al.|, [2023)).

2.2 INVARIANCE IN BAYESIAN OPTIMIZATION

In many applications, the objective function f* is invariant under the action of a known symmetry
group G on S, ie., f*(x) = f*(gx) for all ¢ € G. When such invariances are ignored, BO
algorithms may waste evaluations by treating all points within the same |G|-orbit as distinct. Given
a non-invariant base kernel ky, and an arbitrary symmetry group G, both provided by the user, this
section reviews existing strategies for incorporating group invariance into BO and positions our
contribution within this literature.

Data augmentation. A popular way to enforce symmetry is to expand the dataset Z itself, as it is
often done in computer vision (Krizhevsky et al.| [2012). For each acquired observation (x4, 31 ), one

!Only step (2) may fail if K; + o021 is non-invertible. One can use a pseudo-inverse or a very large o, but
the latter makes the posterior variance nearly flat, degenerating the procedure into blind exploitation.
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augments Z with all transformed copies { (g, y¢) } geg, While leaving the base kernel ki, unchanged.
However, since BO scales as O(| Z|?), this approach quickly becomes computationally prohibitive
and is inapplicable to continuous symmetry groups. For completeness, we include in Appendix [F]
a numerical comparison of our approach with data augmentation, showing that data augmentation
scales poorly with the size of the group, and does not meet the performance of the average or max
kernel even when using all symmetry augmentations.

Search space restriction. Another approach is to restrict the search domain to a fundamental region
Sg C S whose G-orbit covers S: Ugeg gSg = S (e.g., |Baird et al.| (2023b)). For example, if
S = [-1,1]? and G is the group of 7 /2-rotations, one may work on Sg = [0, 1]? while keeping the
kernel unchanged. This viewpoint corresponds to working directly with the quotient S/G embedded
inS.

This line of work is complementary to ours. In BO, one must choose both a search domain and a
kernel: fundamental domains address the former, while our construction helps with the latter. Even if
we decide to run BO on Sg, one still needs a good invariant kernel on Sg, and our invariant kernels
can be used in that setting as well. We refer to Appendix |G| for a short example illustrating the
practical difficulties of explicitly optimizing over a fundamental domain, and how the design of the
kernel is complementary to that decision.

Invariant kernels. A principled way to incorporate prior G-invariance of f* is to consider a G-
invariant GP prior f, i.e., a GP whose sample paths € S — f(,w) obtained by fixing one outcome
w in the probability space are themselves invariant under G. |Ginsbourger et al.| (2012)) established that
such GPs necessarily admit a G-invariant covariance functio meaning k(gx, g'x’") = k(x, ") for
all z, ' € S and g,¢’ € G. The central question then becomes: how can one construct an invariant
kernel k from an arbitrary base kernel kp, and symmetry group G? An elegant solution, dating back to
Kondor| (2008) and recently advocated for BO by Brown et al.|(2024), is to average ki, over G-orbits:

1

=GP Z kn(gz,g'x’). 5

9.9'€G

Koy (z, ')

This construction is not only guaranteed to be G-invariant, but also admits a clean functional in-
terpretation: if Hy, and Hy,,, denote the RKHS induced by ki, and k. respectively, then Hy, .
coincides exactly with the subspace of G-invariant functions in Hy, (Theorem 4.4.3 in |Kondor
(2008)). Consequently, k,yg (up to normalization) has gained popularity as the standard off-the-shelf
kernel for BO in symmetric settings (Glielmo et al., {2017} |Kim et al., 2021; Brown et al., 2024).

A complementary idea in kernel methods is to retain the best latent alignment between two orbits via
a maximum, as in convolution/best-match kernels for structured data (Gértner, [2003; |Vishwanathan
et al., 2003) and follow-up work across domains (Frohlich et al., 2005; Zhang, |2010; |Curtin et al.,
2013)). Max-alignment kernels, however, are not PSD in general, leading to indefinite Gram matrices.
This has motivated two families of remedies: (i) explicit Krein-space formulations (Ong et al.| 2004
Oglic & Gartner, |2018)), and (ii) simple PSD corrections such as eigenvalue clipping/flipping in
SVMs (Luss & D' aspremont, [2007; |Chen et al., |2009), which are empirically effective.

Our adaptation to BO. Guided by the above, we adopt the max-alignment view for BO. To ensure

positive definiteness, we project kmax (see (I)) onto a PSD kernel k'S_D), which coincides with K, ax
whenever the latter is already PSD. This preserves the sharp, high-contrast orbit alignments of k,ax
while ensuring compatibility with the BO framework. Moreover, it maintains a per-iteration BO
complexity comparable to that of orbit-averaged kernels (see Section . In our experiments, k(f)
better reflects the intended symmetries of standard synthetic objectives and achieves substantially
lower cumulative regret. Interestingly, these empirical gains are not mirrored by existing eigendecay-

based upper bounds, a point we return to in Section [5

?Up to modification, i.e., there is another GP f such that for every = € S, P(f(x) = f'(x)) = 1 and f’
has invariant paths and invariant covariance, see Property 3.3 in|Ginsbourger et al.|(2012).
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3 THE MAX KERNEL

We have introduced the max-alignment kernel k.« and its PSD surrogate k:(f) in (). This section
explains why kp,.x is a natural G-invariant covariance, clarifies how it differs from orbit averaging
through examples, and records the practical PSD construction we use in BO.

3.1 MOTIVATION: kpax AS A VALID COVARIANCE

A natural way to motivate k. is to exhibit G-invariant GPs whose covariance equals Ay, ax.

Construction. Let h ~ GP(0, ky,) with an isotropic base kernel ky, (x, ') = k(||z — &'||2) with &
nonincreasing (e.g., popular ones such as RBF, Matérn). Consider a map ¢¢ such that (i) ¢g(x) =
dg(g) forall g € G and (ii) | 6g () —dg (/)2 = ming,g gz —g'a’||. Define f(x) = h(dg()).
Then f is G-invariant and:

Proposition 1. Under the construction above, f ~ GP(0, kmax) With kmnax given by ().

. : y deff (i) .
Proof sketch, details in Appendix|A} Cov(f(x), f(x')) = ku(¢g(x), pg(x’)) = k(ming o ||gx —
g'x'||2), and monotonicity of x converts the min-distance into max, ¢ ki (g, g'x’). O

This shows that k. naturally arises as the covariance of valid G-invariant GPs. In contrast, the
common approach to invariance in BO is to build ks by averaging a base kernel as in (3). But
averaging and maximization induce fundamentally different geometries:

Lemma 2. For any base kernel ky, and any (double) orbit O(x,x') := {(gx,¢d'x’),9,9" € G},
kavg = kmax on O(x, x') if and only if ky, = kmax on that orbit.

Indeed, an average reaches the maximum only when every term is maximal. Thus k., can never
reproduce the geometry of kax, except in the degenerate case where the base kernel is already
kmax, making averaging redundant. One might wonder whether this limitation of ks could be
circumvented by building it from a different base kernel than the one used for ky,,x. In Appendix
we show that, under mild assumptions satisfied by standard kernels (upper-bounded by 1, with
equality k(x, z) = 1 along the diagonal), kave and kmax can coincide only in the trivial case where
the base kernel of £, is already invariant for pairs of points belonging to the same orbit. Thus, even
in this more general setting, averaging does not reproduce the geometry of maximization (except if
the base kernel already had invariances).

To make this contrast concrete, we now examine a simple example (radial invariance with an RBF
base kernel) where k.« and k,ye can be computed in closed form.

Example 3 (Radial invariance with ky,ax). Let G be the group of planar rotations and ky,(x, ') =
exp(—||@ — @'||3/21%) be an RBF kernel. With ¢g(x) = ||

25
xr 2 m, 2 €| m, ‘
kmax($7$/) _ eXp(—(HCUHQ o ||$/H2)2/2l2) ’ kavg(mam/) _ eXp(— I Hzgy H2)]0(H H2l|2|) HZ))

with 1y the modified Bessel function (derivation in Appendix [B). As illustrated in Figure[I} the
two kernels kmax and kayg induce qualitatively different similarity structures. By construction,
kmax assigns large similarity whenever ||x||2 = ||&'||2. If ||z||2 = ||&’||2, the function f* satisfies
f*(x) = f*(&') since it is invariant under rotations, and k.5 exactly recovers this invariance by
assigning maximal similarity kmax(x, ") = 1. In contrast, kayg only approximates this behavior:
its iso-similarity curves as a function of (||x||2, ||Z'||2) correspond to distorted balls, and two points
with identical norms may be ranked as highly dissimilar (see the diagonal ||x||2 = ||x'||2 of the right
plot in Figure[l). This mismatch highlights that while both constructions enforce rotation invariance,
only kpy.x preserves the correct notion of similarity.

3.2 A PSD EXTENSION OF kp.x: WHAT WE USE IN PRACTICE

Because ky,ax is not PSD in general, we apply a standard projection step on the finite design set
D = {xy1,...,2,}. Let K = kyax(D, D) with eigendecomposition K = QAQ " and deﬁneE]

3K does not depend on the choice of the eigendecomposition, see Lernrnain the appendix.
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Radial-Invariant Function Kavg(X, X)

[1x']12

[1x']12

_— y lxIT2

Figure 1: (Left) A two-dimensional function f*(x) invariant under planar rotations (see (I6)): if
lz]l2 = ||'||2, then f*(x) = f*(«’). (Center/Right) Rotation-invariant kernels derived from an
RBF base kernel (lengthscale 1/2), visualized as a function of (||||2, ||’||2). kmax (center) captures
the correct invariance, while k., (right) only approximates it.

[Ix1l2

Table 1: Complexity per BO iteration. Here |G/[* denotes either |G| or |G| depending on whether the
orbit terms reduce to a single sum (when &y, (g, ) suffices) or require a double sum over (g, ¢'); m
is the number of candidate points used in acquisition optimization. The row Per-candidate acquisition
evaluation gives the cost of a single acquisition evaluation; for one BO iteration this row is multiplied
by m and added to the other rows to obtain the total.

Base kernel &y, Averaged kayg Projected k(f)
Gram matrix (n x n) O(n?) O(n?|GJ) O(n?|G[)
SVD / inversion O(n?) O(n?) O(n?
PSD projection - - o(n?
Per-candidate acq. eval. o(1) O(IGT") O(n|G

Total for 1 BO iteration O(m +n2+n?) O((m+n?)|Gf +n3)  O((mn+ n?)|Gf + n?)

(with the max applied elementwise)
K, = Qmax(0,A)Q". (6)

We then use the Nystrém extension| (Williams & Seeger}, 2000) to evaluate cross-covariances with

new points, yielding the PSD, G-invariant surrogate kip) given in (2) and that we reproduce here:
k(f)) (;1:, ;1;’) = k‘max(il:, D) Ki kmax(D, IB/). %

Key properties of ker):

e PSD & invariance. k’f) is PSD and inherits argumentwise G -invarianceﬂ of kmax.

* Consistency with kyax. If K > 0, then K, = K and k;(f)) agrees with k. on D x D.
* Cost. Each BO iteration involves (i) building the Gram matrix on D, (ii) inverting the Gram matrix
to build the acquisition function, and (iii) m kernel evaluations when optimizing the acquisition

function. Step (ii) has the same cost as the SVD of K needed to compute both K| and K ", which

makes kf’) having the same asymptotic per-iteration cost as k,y; its per-query evaluations are
more expensive, but this difference is negligible as long as we keep m < n. A concise complexity
summary is provided in Table[T} and example of runtimes in Table 3]

* Regularity. For finite groups, knmax is @ max of finitely many smooth maps and is almost every-
where (a.e.) differentiable; the Nystrom extension preserves a.e. differentiability in each argument.
For continuous groups, smoothness can sometimes be obtained via closed-form formulas (e.g., as
in Example[3).

We now illustrate the behavior of kﬁrp) versus k,yve (in this situation, K. is not PSD and the

projection step is indeed needed to restore positive semidefiniteness).

“It indeed extends K since k™) (zi,x;) = Ki. Kl K.; = (KK K)i; = (K1)i;.

>One SVD of K suffices to obtain both K, and K ", so the extra PSD projection does not increase
asymptotic cost.

 kmax (g, ') = Emax (2, ') implies kmax (g2, D) = kmax (2, D), hence invariance of kf)).
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(D)
Jr

Example 4 (Ackley function with k). Figurecompares k"’ and kayg on the one-dimensional

Ackley function (see (13))). The projected kernel kg_D) preserves the expected pairwise symmetries
(invariance along x = y and x = —y) and spreads mass more evenly across the symmetric regions,
whereas kg concentrates covariance mostly near the origin. Thus, kf’ better reflects the symmetry
geometry of the problem, echoing the qualitative difference observed in Example 3]

Ackleyld

- Objective f /\
x  Observations D
Post. Mean (k{?)

—e— Post. Mean (Kayg)

Kavg(X, X)

kP)(x, x')

1.0

|
—

0.5

|
N

*x 0.0

Function Value
X'

|
w

-0.5 -0.5

|
o

—-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 719. . . . 1.0 _191.0 -05 0.0 0.5 1.0
X

X X

Figure 2: (Left) One-dimensional Ackley function f* (see (13)), invariant up to coordinate-wise
sign-flips, and GP posterior means /() as in (3) for kS_D) (orange diamond) and k. (green circles)

built from D (black crosses). (Center) Covariance structure induced by kS_D). (Right) Covariance
structure induced by k,,.. Both kernels are invariant to reflections across x = y and x = —y, but

kave concentrates covariance near 0, while kip) better reflects the underlying symmetry geometry.
Consequently, the GP posterior mean induced by k;er) is the best at fitting the objective (left).

Beyond the finite view (details in Appendix[C). The PSD projection with Nystrém in Equation (7) is
a practical, data-dependent construction. It can be seen as the finite-sample face of a broader, intrinsic
definition that does not depend on D. Since ky,,x is symmetric, it admits a spectral decomposition
kmax(z, ') =3, \igi()d;(x') in L?, and we can always define (a.e.)

ki (m,2') = Zmax(o, Ai) (@) di(x'),

with k4 = kpax Whenever £y, is already PSD. On finite domains, this precisely reduces to the
matrix PSD projection in (€). In Appendix [C| we formalize the infinite-domain construction via
integral operators, prove that k. is G-invariant, and show that the finite projection + Nystrom in (7)
converges to k4. at the spectral (Hilbert-Schmidt) level under iid sampling (Appendix [C.3).

Takeaway. k.. is the exact covariance of a natural class of G-invariant GPs and induces a search
geometry that preserves high-contrast orbit alignments (Examples [3]and ). The PSD projection +

Nystrom step yields a valid GP kernel kg_D) without introducing extra asymptotic complexity. We
now measure its practical impact in Section @}

4 EXPERIMENTS

We evaluate kiD) against two baselines: (i) the off-the-shelf kernel k}, (no symmetry handling), and
(ii) the orbit-averaged kernel k.., (Brown et al.l [2024). Benchmarks include standard synthetic
objectives and two real-world tasks with known invariances (a wireless network design task and a
particle packing problem). We ask: (Q1) Does k(f) reduce simple/cumulative regret vs. kayg ? and
(Q2) How does performance scale with the size of the symmetry group and dimension? The full
experimental setup is described in Appendix [E]

Headline: k;(f)) wins on every task. Across all benchmarks (Table k:(f) achieves the best
performance with up to 50% of improvement. This answers Q1 positively. Regarding Q2, we will see
that as the group size increases, k(f) stays strong, while k,,, degrades and can even underperform
the non-invariant base kernel kj,.

Setup in one glance. We run GP-UCB with each kernel k € {kp, kavg, k:f))}, using the same acqui-
sition and optimization budgets. We report results averaged over 10 seeds. All the hyperparameters
and group actions are detailed in Appendix [E]
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Table 2: Performance of ky, Kavg, and kg?) across benchmarks. For each kernel k € {ky, kave, k:er)}

we report m =+ Serr, Where m is the empirical mean over 10 seeds (lower is better) and s is the
empirical standard error. Best mean is bold; means m whose 95% confidence interval (m £ 1.965¢)
confidence interval overlap with the best are underlined. Performance is measured by cumulative
regret on synthetic benchmarks and by negated simple reward on real-world experiments.

Benchmark |G| ki, kave k:(f)
Synthetic (Cumulative Reg.)
Ackley2d 8 382.7 £ 5.7 128.24+10.4 126.4 + 3.6
Griewank6d 64 3840.3 £ 177.7 3067.4£841.9 1832.6+146.3
Rastrigin5d 3,840  3568.5+£91.3 1583.5 £ 341.9 813.4+70.6
Radial2d 00 388.6 +20.3 480.9 £ 76.4 199.7+11.6
Scaling2d o0 1820.6 £ 1135.4 3361.8 £ 742.9 254+64
Real-World (Neg. Simple Rew.)
WLANSd 24 —65.0+ 3.2 —51.8 £ 1.7 —74.44+0.7
PartPack6d 00 —0.79 £0.10 —0.69 £ 0.01 —-0.92+£0.10
Griewank6d Radial2d WLAN8d
4000 o .

& & 500] ¢ RBF —+— kP 3-30 —¢— Matérn-5/2 —*— kP

@ o —8— Kayg 5 —8— Kavg

5,3000 5400 g 40

Z 2000 ; 300 E -50

B 200 ‘g‘ _60

£ 1000 —%— Matérn-5/2 —*— kP E 100 &

o —@— Kavg (@] % -70

0 0
0 20 40 0 20 40 0 20 40
Iteration T Iteration T Iteration T

Figure 3: Cumulative regret and negated simple reward under GP-UCB with ky, (blue crosses),
kavg (orange diamonds), and k:SrD) (green circles) on a selection of benchmarks (all benchmarks in

Appendix . Shaded regions show the standard error (£s.,,.) over 10 seeds.
4.1 SYNTHETIC BENCHMARKS

We consider synthetic functions f* (Ackley, Griewank, Rastrigin, etc.) that exhibit symmetries
(such as permutations, coordinate-wise sign-flips, rotations, rescaling) and are classically considered
as challenging to optimize in the BO literature (Qian et al., 2021} [Bardou et al., |2024). We cover
dimensions d = 2 to d = 6 and group sizes |G| = 8 to |G| = oco. We evaluate performance
using the cumulative regret Ry = >.._ (f*(x*) — f*(a;)) since the global maximizer z* =
arg max, g f*(x) is known.

Finite groups: the gap widens as |G| grows. With Matérn-5/2 base ki, on Ackley2d (|G|=8), kavg
and kg_p) are tied; both dominate ky,. As |G| increases (Griewank6d, |G|=64; Rastrigin5d, |G|=3,840),

k;(f)) increasingly outperforms k., achieving cumulative regrets that are, on average, 40% and 49%
lower respectively (Table 2] Figure[3]left panel, and Appendix [E] for the whole set of figures).

Continuous groups: k., can underperform even £y,. For radial and scaling invariances (continuous

groups; RBF base), k., degrades relative to ky,, while kS_D) remains strong (Figurecenter panel,
and Appendix [E] for the whole set of figures).

4.2 REAL-WORLD EXPERIMENTS

We consider two real-world experiments that are described in detail in Appendix [E} the design of
a wireless network (8-dimensional, invariant to permutations of pairs of parameters) and a particle
packing problem (6-dimensional, invariant to the rescaling of some parameters and to permutations
of pairs of parameters). For both benchmarks, performance is evaluated using the negated best reward
min, e[y —f* () attained during optimization (the regret cannot be computed because the max of
f* is unknown). Note that we consider min, e[ —f*(x;) instead of the cumulated — » _, f*(x¢)
because the goal is to assess the quality of the best combination of parameters discovered by the
optimizer, rather than the cumulative negative reward across all explored combinations.
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Figure 4: Left column: Final average regret Ry /T for ki, (blue crosses), kayg (orange diamonds),

and ksrp) (green circles) on Ackley (top) and Rastrigin (bottom), averaged over 10 seeds with standard
error bars. Middle and right columns: Empirical eigendecays under different bases and groups
(ordered eigenvalues of the Gram-matrix divided by n), typical behavior on a single seed.

k(f) finds better combinations of parameters. For the design of a wireless network or for the

particle packing problem, kiD) consistently discovers combinations of parameters with larger utility
than both kqg and ki, (Figure [3|right; Appendix [E|for more figures).

4.3 ROBUSTNESS TO GROUP SIZE

when

Both synthetic and real-world benchmarks suggest that £, performs comparably to kSrD)

the group size |G| is small, but its performance deteriorates as |G| grows, whereas k:(f)) remains
stable. To investigate this effect more systematically, we conduct additional experiments on the
d-dimensional Ackley and Rastrigin benchmarks, each invariant under the hyperoctahedral group
G of size |G| = 2¢d! (permutations x coordinate-wise sign-flips). We compare the average regret

of kavg and k;SrD) after 50 iterations of GP-UCB for dimensions d = 1,...,5, and include ki, as a
baseline to control for the effect of increasing d.

The results are shown in Figure [] (left column) . Both experiments reveal the same trend: while
kavg consistently outperforms ki, its performance also deteriorates as |G| increases. In contrast, kS_D)
remains largely unaffected by the growing number of symmetries, demonstrating a clear robustness
to group size. In the next section, we discuss several explanations for these empirical observations.

Takeaway. kg_D) consistently matches or outperforms k,y, and ki, with the largest gains at large |G]|.
The evidence suggests that (i) how a kernel encodes orbit alignments matters as much as whether
it is invariant, and (ii) averaging across many alignments can dilute informative similarities. These

themes reconnect with our discussion in Section [5|and motivate analyses beyond eigendecay rates.

5 SPECTRAL ANALYSIS AND REGRET BOUNDS

So far, k;(f)) has shown consistently lower regret than %, despite comparable computational cost.
A natural question is: can existing BO theory account for such a gap? Current regret bounds for GP
surrogates proceed via the information gain, which is shaped by the decay of the operator spectrum
of the kernel. In particular, faster spectral decay leads to tighter regret upper bounds in standard
analyses (Srinivas et al.,2012; |Valko et al.;|2013; Scarlett et al., [2017; [Whitehouse et al.| 2023). We

now compare the eigendecay of k(f) and k.., and ask whether it can explain the empirical gap.

Empirical eigendecays: similar or faster decay for k... Across our benchmarks, the empirical

spectra of k:(f) and kg exhibit very similar log—log slopes (decay rates). In several settings, kayg’s
eigenvalues decay even faster than those of k. ; see Figure ] (middle and right columns). Under
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the usual theory, this would translate into similar, or potentially fighter, upper bounds for methods
run with k,,, compared to those with kip). A more detailed discussion of the empirical spectra in

Figure ] and further insights are in Appendix D}

Limitations of eigendecay as an explanation. Since k,,; matches or exceeds k:SrD) in empirical
decay rate, standard theory would predict similar or better regret upper bounds. Yet in practice we

consistently observe lower regret for k(f) (Section . This suggests that eigendecay alone does not

capture the structural advantages of kSFD). We outline possible explanations in the conclusion.

6 CONCLUSION

Our spectral analysis highlights a gap between theory and practice: although k.., often exhibits faster
empirical eigendecay than kf)), the latter consistently achieves lower regret. Standard eigendecay
arguments thus fail to explain the observed advantage of kS_D). We hypothesize two complementary
explanations.

First, geometry vs. rates: eigendecay quantifies how fast spectra shrink but ignores which eigenfunc-
tions are emphasized. In practice, k¢ often introduces similarity reversals, distorting the search

geometry (Figure , whereas kip) preserves high-contrast alignments between orbits, inherited from

max-

Second, approximation hardness: BO theory typically assumes that the black-box f* lies in the
RKHS #;; of the chosen kernel k. Existing work on misspecification (Bogunovic & Krause), 2021}
shows that the cumulative regret can be bounded from below by a linear term that involves the
distance between f* and Hj. Yet even when this distance is zero, different kernels may yield
very different approximation rates, affecting how quickly BO can optimize f*. This distinction
matters: in our experiments with the RBF kernel as ki, (Section ), #y, is universal (property
of the RBF kernel, see Micchelli et al.| (2006))), hence invariant functions f* always lie in Hhone
(consider (Pf)(z) = > 5 [(g9x)/]G] the projection onto Hy,,, (Brown et al., 2024, Appendix
A) and observe that if f,, — f* with f, € Hy, then Pf, — f* with Pf, € Hk,,,)- There is
no misspecification in the sense of Bogunovic & Krause|(2021) since d(f*, H,,,) = 0, yet kayg

still performs worse than kS_D). This suggests that f* is simply harder to approximate in Hy,,

thanin Hy, . A plausible reason why Brown et al.| (2024) report strong performance for £,y is
that they focus on functions that are explicit linear combinations of relatively few kg (:, -) atoms
(between 64 and 512, depending on dimension; see their Appendix B.1). In such settings, kayg l0oks
very effective since its GP posterior mean can in principle recover the function exactly once those
x; are sampled. Typical BO objectives do not share this structure, which may explain why in our

experiments k., sometimes underperforms even the base kernel, while %P) remains more reliable.
Developing regret bounds that also measure approximation hardness, capturing both the distance to
‘Hi. and approximation rates, seems a promising way to obtain guarantees that align more closely
with empirical performance.

Finally, while our focus has been empirical, we note that the intrinsic data-independent version of
k(f), which we called k. and which we mentioned at the end of Section (introduced formally

in Appendix , provides a natural, data-independent analogue of the practical kernel kS_D). We see
k4 as a convenient object for future theoretical work, as it cleanly isolates the PSD projection of
kmax from the additional data dependence introduced by Nystrom. We believe that it makes & a
convenient starting point for any future theoretical work, in the same spirit as gradient flow serving as
an idealized analogue of gradient descent.
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A PROOFS FOR SECTION[3]

A.1 FULL STATEMENT AND PROOF OF PROPOSITION[]

We state Proposition ] formally and give a slightly more detailed proof.

Proposition 5 (Max-kernel covariance for invariant GPs). Let S, Sy, C R? be measurable spaces and
let a (finite or compact) group G act measurably on S. Let h ~ GP(0, ky,) be a GP on Sy, with an
isotropic base kernel ky, : (z,2') € S xS — k(|| —a'||2) where k : R>g — Rxq is nonincreasing.
Assume there exists ¢g : S — Sy, satisfying (i) invariance: ¢g(x) = ¢g(gx) forallg € G,x € S;
and (ii) minimal-distance representativity: ||¢g(x) — ¢g(x')|2 = ming grcg ||gx — g'@’||2. Define
f(x) = h(¢pg(x)). Then f ~ GP(0, kmax) and it is G-invariant.

Proof. Since g is a GP, f is also a GP, and invariance follows from (i). Its covariance kernel is k,ax
since:

Cov [f(z), f(x')] = Cov [h(¢pg(x)), h(¢g(z))]
= ku(¢g(x), pg(x'))

— ; Y 8
H(ggl,lgg llgz — g'x'|2) (®)

! !
= - 9
g{r;%ﬁ(Ilgw g'z'[|2) ©
- kmax(m7m/) (10)

where we used (ii) in Equation (8], and monotonicity of  in Equation (9). Note that compactness of
G guarantees that the minimum in (ii) is indeed achieved, which makes Equation (9) true even when
K is not necessarily continuous. [

A.2 AVERAGING VS MAXIMIZATION WITH DIFFERENT BASE KERNELS

We extend Lemmato the case where K,y¢ and kmax are built from different base kernels. The result
shows that even in this more flexible setting, the coincidence of kayg and kyax can only occur in
degenerate situations.

Lemma 6. Let ki, and ki, be two base kernels such that ||ky || = ||kt || = 1 and ki (z, ) = 1 for
all x. Let kyyg be the group-averaged kernel built from ki, and kuax be the maximization kernel built
from ki.. It holds

Kave = kmax on the orbit O(z, gz) := {(hx,h'gx), h,h' € G}
forevery x € X and g € G, if and only if
ky(x, g) = kmax(,g2) =1 foreveryx and g € G.

In particular, this forces ky, to already exhibit a form of G-invariance on pairs (x, gx).
Proof. (=) Fix x and g € G. Since by assumption %, is bounded by 1 and & (x, ) = 1:
1> kmax = ki (hxz, B > K =1
> (z, gz) Jmax p(ha, B gz) > ki (x, )
80 kmax(x, gx) = 1.
Now consider k,y,. By definition,

Z ky(hx,h' gz).

h,h'€G

1
kavg(wagw) = |2

‘?
Each summand is bounded by 1 and the average is equal to 1 as kayg (T, ) = kmax(, gz) = 1.

Therefore each term is equal to 1, which proves ky, = kmax = 1 on O(x, gx). As this is true for
every x, g € G, this shows the result. The converse is immediate. [

This shows that even when allowing different base kernels for kaye and kp,ax, equality between
the two kernels requires ky, to already be argumentwise G-invariant on pairs (x, gx). This fails for
standard choices (e.g. RBF kernels with translation or rotation groups), so averaging cannot replicate
maximization in practice.
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B RADIAL INVARIANCE: CLOSED FORM FOR kavg

We prove the formulas provided in Example 3| Let G = SO(2) act on R? by in-plane rotations,
and let ky, be the RBF kernel with lengthscale I: ky(x,@') = exp( — |l@ — «'||3/(2(%)). Writing
x = (r,0) and ' = (s, ) in polar coordinates, we have

N (m m/) B 1 27 27 o (7 r2+5272rscos(97<p+a7,3)) da dp
avg ) - (27T>2 o o p 212 .

Integrating out the absolute angle and keeping only the relative angle v = 6 — ¢ + a — 3 yields

2 2 1 2 2 2
kayg(z, x') = exp(—r;{f ) . g/o exp(55 cos ) dip = exp(—%) Io(%2),

where Io(z) = 5= fOQﬂ €* 5% dy) is the modified Bessel function of order 0.

C AN INTRINSIC PSD PROJECTION k; AND ITS PROPERTIES

In the main text we defined a data-dependent kernel ksrp), corresponding to a PSD projection of kyy,.x

on a finite set of samples D, extended by Nystrom. This finite-sample construction kf)) is the star

of the show in practice (as it is convenient to compute, and shows strong performance in practice).
However, its data-dependence might make theoretical analysis quite involved. In this appendix, we
show that k(j’) is the finite-sample facet of a broader, intrinsic data-independent PSD projection
k. of kpax which (i) preserves the G-invariance of Ky ax, (ii) coincides with kp,, Whenever kypax
is already PSD. Since the PSD projection of ky,,x discussed here can also be applied to any other
indefinite kernel k, we directly introduce it for an arbitrary kernel k.

We begin as a warmup with the finite-domain “matrix” construction to build intuition, and then lift it
to general domains via integral operators.

C.1 WARMUP: FINITE DOMAINS

We start on a finite domain S to build intuition. In that case, k. is simply Frobenius-nearest PSD
truncation of the Gram matrix on the full domain S, which is unique, basis-independent, preserves
G-invariance, and coincides with k& when k is already PSD.

Let S = {x,...,x N} be finite, and let G act on S. Consider any symmetric kernel £ on S with
Gram matrix K € RY*¥ (possibly indefinite) given by K;; = k(x;, x;). We define k, as the
kernel corresponding to the Frobenius-nearest PSD projection of K (Highaml [1988)).

Lemma 7 (Frobenius PSD projection and explicit form (Higham, |1988)). The optimization problem
K, = argming, [|P — K||[r has a unique solution and, for any eigendecomposition K =
QAQT, it is given by

K. = Qmax(0,A)Q,
where max(0, ) acts entrywise on A. In particular, the matrix K depends only on K (not on the
chosen eigenbasis), satisfies K >~ 0, and K, = K iff K > 0.

We define k., the (Frobenius) PSD projection of k, as:
ki(zi, ;) = (K4)ij, i,j € [N]. (11)

Inheritance of G-invariance. Each element g € G induces a permutation of the elements of S: let

74 be the permutations of the integers j € {1,..., N} defined by gx; = =, _(;). Denote by P, the

permutation matrix associated with 7. For every vector v, the matrix Py acts as (Pyv); = v, -1,
g

which is equivalent to the action on canonical vectors Pye; = ey ;) or (Py)ij = Li—r ().

Invariance in the first component guarantees Kmax (T, (i); Tj) = Fmax(9T;, ) = kmax (i, ;) for
every i,j € {1,..., N}, ie., the rows of K = (k(x;,x;)); ; are invariant under the permutation 7,
hence P, K = K. Thus, for any positive integer m, P,K™ = (P,K)K™~! = K™ so for any
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polynomial p such that p(0) = 0, P,p(K) = p(K). Now consider a sequence (p,, ), of polynomials
such thaﬂ pn(0) = 0 and |p,(N) — max(0, \)| = 0 for any A in the spectrum of K. In the
limit P, K = K, hence k. is invariant under the action of G on the first variable (k; (g, ') =
k4 (z,x')), and invariance along the second one follows by symmetry (K +Pg—'— = K ). This shows

that k. inherits from the G-invariance of k£ (equivalently, Py K = K = K PgT for all g). We collect
this result in the next lemma.

Lemma 8 (Invariance is preserved by the projection). Consider g € G. If PJK = K, then
PK, =K, = K+PgT. Hence the projected kernel k. is G-invariant on S x S.

Relation to the practical Nystrom kernel. If the set D = {x1,...,x, } used to build kSFD) (Equa-
tion H equals the whole domain D = S, then k(f) = k4. Indeed, k:SrD) (x5, x;) = KZ-;KIFK:j =
(KK!K);; = (K4)i; on D x D, and the latter is the definition of k. on finite domains.

We now generalize the matrix considerations above using integral operators. The finite-domain
construction is recovered as a special case.

C.2 GENERAL DEFINITION (VIA INTEGRAL OPERATORS THEORY)

We lift the finite-domain construction of the previous subsection to general domains by viewing
k as a Hilbert—Schmidt operator and defining &k, as the positive part of T}; this yields a PSD,
data-independent kernel that inherits any G-invariance and equals & whenever k is PSD.

Let (S, T, 1) be a probability space. For a measurable, symmetric kernel k£ : S x § — R with
k € L?(u ® p), let the (compact, self-adjoint) Hilbert-Schmidt operator T} : L?(u) — L*(p) be

(Tof)(x /km 2} du(x').

(Note that in the finite-domain case, f is a vector indexed by the domain and if 4 is the uniform
measure then 7}, is simply multiplication by the Gram matrix K normalized by the domain size.) By
the spectral theorem, there exist (\;, ¢;);>1 with {d)z} orthonormal in L?(p) and (\;) € ¢2 (possibly
of mixed signs) such that Tj, = >,5, A\i ¢; ® ¢; in L?(p) where for every u,v € L?(u), u ® v is

the rank-one operator L2(p) — L?(u) such that (u ® v) f := (f,v) u for every f € L?(u).

Generic definition of & via operator theory. Define the positive part of T}, = >, A; ¢; ® ¢; by
T = 3,(\)+ ¢i ® ¢, where () = max{t,0}. Since _,((X\i)+)? < >, A? < oo, the series

k(za') == ) (N4 di(@) di(@) (n® prae). (12)

i>1

converges in L?(y @ 1) and defines a kernel p ® p-almost everywhere. By constructio Ty, = T,j ,
hence k. is PSD as a kernel a.e., and PSD in the operator sense: <f, Tk+f> > 0forall f € L?(p).
In particular, if £ was already PSD (all A\; > 0), then k; = k (up to null sets). It also inherits
G-invariance of k if k is indeed invariant (the proof mimics the finite-domain case, we give the full
details for completeness in Appendix [C.6).

C.3 FROM THE FINITE-SAMPLE PROJECTION TO THE INTRINSIC LIMIT: WHAT CONVERGES TO
WHAT?

We relate the practical, data-dependent Nystrom kernel kSrD) (Equation ) to the intrinsic &k : under

iid sampling, the empirical spectra of k:(f) /|D| converge to that of T}, , with rates under mild moment
assumptions. This shows that eigendecay-based regret analysis

"We can impose p, (0) = 0 since £(0) = 0. Indeed, take p,, (A) = gn()) — ¢»(0) where ¢, is a sequence
given by Weierstrass’ theorem, which converges to f(A) = max(0,\) on the spectrum of K. We have
Ipn(X) = F(N)] < [gn(X) = F(A)] 4 [¢-(0)] and because f(0) = 0 we get [¢n (0)] = |¢2(0) — £(0)] = 0.

®Indeed, by definition (T, f)(x) = fs( i1 (M) 4 i )¢i(m/)) F@)du(e) =
S Qs (£,60) 6u(@) = (D1 W)+ 000 6:) ) (@) = (T ) (@):

16
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Notations. Let X1, Xo,--- ~ piid. and D, = {X1,...,X,}. We write K,, :== k(D,,,Dy,),
K, := argminpy |P — K, | r, K,, := K,/n, and recall that the practical (data-dependent)
kernel defined in Equation (7) is

EP (@, @) = k(x,D,) (K1) k(D,, o).

We denote by A(T') the (ordered, nonincreasing, each counted with its multiplicity) sequence of eigen-

values of a compact self-adjoint operator T, and by d3(A(T), A(S)) := (3; [X:(T) — Xi(9)[?) 1/2
the spectral /5 distance. For symmetric matrices M, A(M) denotes the nonincreasing sequence
of eigenvalues of M (with multiplicity) padded with an infinite number of zeros. For a bounded
operator A, ||A|lus and || A||op denote the Hilbert-Schmidt and operator norms, respectively. We
include in Appendix [C.4]a reminder on the different notions of norms and convergence, and we now
recall the essentials.

Relations between convergence notions. For compact self-adjoint operators: @)
max (62(A(T,), M), [T — Tllop) < T — Tllus (Reed & Simon, |1972; Bhatia & El4
sner, [1994); (ii) converse inequalities do not hold in infinite dimension (see Appendix [CE] for
examples). Thus, HS convergence is the strongest notion of convergence we manipulate here.

We now present convergence guarantees of the data-dependent construction k(f") /n to the intrinsic
k. under progressively stronger assumptions. With minimal assumptions we obtain almost-sure
spectral consistency in the §, metric; with stronger assumptions we obtain quantitative rates in HS
norm (hence also spectral {5 in probability).

(a) Weak a.s. spectral consistency of positive parts (minimal assumptions).
Proposition 9. Assume the symmetric (not necessarily PSD) kernel k is in L*(u ® ) so that Ty, is

Hilbert-Schmidt. Let Sy, : L*(jn) — L2(u) be the integral operator with kernel ks_D")(a:, z')/n
defined by:

Dn
ST (@, X;) F(X5). (13)

j=1

Assume the X; are pairwise distinct almost surely. Then, almost surely,

5(X50), NT,)) — 0.
Proof. Let K,, be the empirical operator on R" with matrix 2 (k(X;, X;));; and let A(K,,) be
its ordered spectrum (nonincreasing, with multiplicity) padded with an infinite number of zeros.
Theorem 3.1 of Koltchinskii & Ging|(2000) shows that d3(A( K, ), A(T%)) — 0 as n — oo.

Let K, be the positive part of K,, (i.e., its Frobenius PSD projection). Since A — max(0, \) is
1-Lipschitz, we have for any operators 7, S:

2(A(T4), A(S4)) = Z | max(0, Ai(T)) —max(0, Ai(5))] < Z IA(T)=Ai(S)] = 02 (MT), A(5))-

We deduce that d2(A(K}), A(Tk,)) — 0as n — oo.

It remains to observe that the spectrum of K :{ as an operator on R” is the same as §n 1 L? (tn) —
L2 (1. This identification is standard (e.g., see above Equation 1.2 in [Koltchinskii & Giné|(2000)).
For completeness, we include the formal arguments of |[Koltchinskii & Giné|(2000) in Lemma |12}
which shows that we can identify the spectrum of kiD") (D, Dy) /n with the one of K a.s. if the
iid X; ~ p are pairwise distinct a.s, which is true as soon as p is non-atomic; otherwise one can
index the distinct atoms and work in R™ with m = #supp(u.,, ), obtaining the same spectral identity
on that subspace. O

(b) Expected HS convergence with (’)(n‘l/ 2) rate (stronger assumption). Define the empirical
integral operator (T}, f)(z) := Sor k(z, X;) f(X;) and D, :=T,, — Ty, Let (\;, ¢;);>1 be an

T n
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eigensystem of T}, in L?(1). Assume the following fourth-order summability condition holds:

C= 3 a2 /S 6:(2)? 6;(2)? du(a) < . (14)

i,52>1

Proposition 10 (Expected HS rate). Under k € L?(u @ p) and (14),

C
E[|Dalfis] < —  E[|Dallus] < NG

D, |lus = Op(n~"?) and therefore using the same notations as in Proposition @]

BOEDANT) = 0en2), 5 NE.) A(Tk,)) = Os(n'12).

Consequently,

Proof. Fix any f € L?(u1). By Fubini-Tonelli for non-negative functions, we have:

BID. 1] = [ E[(Daf)(@)’] dute).

By definition
1 - ! ! !/
(Duf)@) = 3K X)F(X) ~ [ Ke.a)f(a) duta)
i=1
where the randomness comes from the i.i.d. X; ~ p. Hence E[(D,, f)()] = 0 and for any fixed =

E[((an)(w))ﬂ = Var((D,f)(x)) = %Var(k(w,X)f(X)) < % / k(x,x')2f(x')? du(z’).

s
The Hilbert-Schmidt spectral theorem gives the expansion k(z, ') = >, X\i¢;(z)d; (x') in L? (u ®

), with ();); € €2 and (¢;); an orthonormal set of L? (1) (see Equation 3.2 in Koltchinskii & Giné
(2000), Corollary 5.4 in /Conway|(2007)). Thus

LE[(an@)]auta) < 1 [ w210 dute)dute)

n

gk“j/s@(x'>¢j<w’>f<w/> (1, ¢4) du(=’)

=1i—;

IN

[
&
&
L
=

_ /\2 i N2 / Zd / .
>  ROCSRICIR e
Taking f = ¢; for a fixed j yields
1 / / !
B0 0] < 3y N [ a6 (e

Since || Dy, fllfis = 22, [1Dnd;l72 (. We get the main claim:

C

Jensen gives the bound for E||D,, ||us. Finally, d2(A(K},), A(Tx)) < || D»|lus (Hoffman-Wielandt
inequality in infinite dimension (Bhatia & Elsner, 1994)), and A\ — max (0, ) is 1-Lipschitz on R,
hence the spectral bound probability claim using Markov’s inequality, and Lemma [I2]transfers this
claims to S,,. L]
Remark 11 (On assumption (T4)). Condition is a fourth-order integrability requirement that
controls eigenfunction overlaps. It is standard in random Nystrom analyses (see, e.g., Equations (4.3)
and (4.11) of Koltchinskii & Giné|(2000)) and stronger than k € L2, but it yields a dimension-free
O(n~"?) rate in HS norm.

(c) High-probability HS rates (heavier but more precise). Under slightly stronger L*-type
conditions on eigenfunctions, the section 4 in |Koltchinskii & Giné|(2000) gives more more precise
statements on the rates in Proposition[I0] and we directly refer the reader to it.
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Application to k..., and to the BO kernels in the paper. When k = k.« is bounded on a
compact domain S (as in all our experiments), k € L?(u ® p) for any probability measure 2 on S,
s0 T},,... is Hilbert-Schmidt and Proposition [9]applies. In particular, the integral operator associated

with kS_D”) /n, called §n (Equation ) satisfies
6(A(50)s NTk,) ) =22 0.

This clarifies the two objects introduced in the main text: the intrinsic k4 is the unique data-

independent target, while the practical kernel kS_D"') (finite PSD projection + Nystrom) is an on-path
approximation whose spectrum converges (once normalized by n) to that of k£ under i.i.d. sampling.

The following subsections are only optional complementary materials added to help building intuitions
on the convergence results stated above.

C.4 REMINDERS ON THE DIFFERENT TYPE OF CONVERGENCES FOR BOUNDED LINEAR
OPERATORS

This subsection recalls standard notions of operator convergence, included only as background to
help build intuition for the convergence results above.

Definitions (operator norm, HS norm, spectral distance). Let H be a separable Hilbert space
with orthonormal basis {e; }; >1. For a bounded linear operator 1" : H — H,

1/2
ITllop = sup [T, Tl = (3 ITerli3)
I fll=1 i>1

The HS norm is basis-independent. When T is an integral operator with kernel & € L?(;u ® p1) on
L?(p) (Reed & Simon, |1972)

17l = [ /S k)P ditz) du(s),

For finite matrices, ||A|lus = ||A||r (Frobenius). We say 7,, — T in HS norm if ||T}, — T'||us —
0, and we say T, — T spectrally if d2(A(T,,), A(T')) — 0, where we recall that \(T) is the
ordered eigenvalues of a compact self-adjoint operator 7', and where the spectral ¢5-distance is

52(MT), A(S)) i= (X, I(T) = M) [2) /2.

Which convergences matter, and how they relate (reminders on well-known facts). We compare
three notions: (i) operator norm convergence |1, — T||op, — 0; (ii) Hilbert-Schmidt (HS) convergence

[T — T|las — 0; (iii) spectral convergence in 8y, i.e., 62(A(Tn), A(T)) = (X, |Ni(T}) —
Ai(T)]?) V2, 0, where A(-) denotes the ordered eigenvalues of a compact self-adjoint operator. We
recall the following well-known facts, useful to grasp the convergence results we state next.

(1) HS = spectral §,. For compact self-adjoint operators the (infinite-dimensional) Hoffman-

Wielandt inequality yields (Bhatia & Elsner,|1994)
02(AM(Tn), M(T)) < || Tn = Tllus.

(2) HS = operator norm. For every Hilbert-Schmidt operator S, ||S|lop < ||S|lus. Indeed
for unit vectors z,y € H, using x = ) (z,e;)e;, we have (Sx,y) = > . (7, e;) (Ses,y). By

Cauchy-Schwarz:
/ /
seal < (CleedP) (X lsean )"
icl

iel
The first factor equals ||z|| = 1, and for the second we use |(Se;, y)| < [|Se;|| ||y]| = ||Se:]| to get
S (Sen ) < 3 1Sedl = 1S
el icl
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Hence |(Sz,y)| < ||S||us. Taking the supremum over all unit y gives

1Sz = Sup, [(Sz,9)| < [[S]us;
y =

and then taking the supremum over all unit = yields

[Sllop = sup_[[Sz[| < |[S]us-
B

(3) Spectral > does not imply HS nor operator norm. Even if eigenvalues match in /s, the
operators may be far in norm because eigenvectors can rotate. Let T = diag(1,1/2,1/3,...) in the
canonical basis (e;);>1, and let U,, swap ey and e,,. Set T}, := U,,TU:. Then A(T;,) = A(T") for all
n (same ordered spectrum), so d2(A(T,,), A(T)) = 0. Yet |(T, — Tex|| = (U TUS — T)eq|| =
I(1/n —1)es|| =1 —1/n, hence |T;, — T'||op > 1 —1/n — 1 and, a fortiori, ||}, — T||us # 0.

(4) Operator norm does not imply spectral . Let 7' = 0 and T;, be diagonal with the first m,,
entries equal to ¢, and the rest 0. Choose ¢,, := n~'/2 and m,, := n. Then ||T},|op = £, — 0 but

52 (MT), AN(T)) = (S e2)Y? = /- (I/n) = 1.

(5) Two useful corollaries. (a) Spectral Jo-convergence implies convergence of the largest eigenvalue,
since sup, |\ (Ty) — M\i(T)| < 62(A(Ty), M(T)). (b) Operator-norm convergence forces uniform
eigenvalue deviations to vanish by Weyl’s inequality: sup; |X;(T,,) — Ai(T)| < || Ty, — T'|op, but it
does not control the ¢5-sum of all deviations.

Takeaway. HS is the strongest notion here: it simultaneously implies spectral §-convergence (and
thus convergence of eigenvalue-based quantities) and operator-norm convergence. The converses fail
in infinite dimension because eigenvectors can drift and an infinite number of tiny eigenvalue errors
can accumulate.

C.5 IDENTIFICATION OF THE SPECTRUM OF AN EMPIRICAL OPERATOR IN L?(11,,) AND ITS
MATRIX COUNTERPART

Here we show how the spectrum of the empirical operator can be identified with that of its matrix
form. This is complementary material meant to clarify how operator-level and matrix-level viewpoints

connect (which is useful, e.g., in the proof of Proposition E])

Lemma 12 (Empirical Nystrém spectral identity). Let K,, := X (k(z;, a:j))zjzl and let K& be
its spectral positive part (the Frobenius-nearest PSD projection). Define the empirical measure
fin =L 37" | 6s, and the Nystrom kernel

K2 (@, a') = k(@ Du) (KD KDy, ).
Let Sy, : L*(pin) — L2(u) be the integral operator with kernel k(f)")(a:, x')/n, ie.

n

~ 1

D,
(Sul)@) = = D K (o)) f ().
j=1
The map E : L*(u,) — R", Ef = ﬁ(f(acl), . .,f(:cn))T, is an isometry: ||Ef||g» =
Il fIlz2(u,,)> and we have the intertwining identity
ES, = K} E.
If, in addition, the sample points 1, . . . , x,, are pairwise distinct, then E is an isometric isomorphism

(hence invertible) and

XS.) = NK) = XKD, D) /n).
Proof. First note the on-sample identity k(f")(:vi,:vj) = (KT);; for the unscaled K =
(k(x4,x;))i ;» which follows from K (K )T K = K+. Hence kiD") (D, D) = K™ and therefore
kP (D, D) /n = K.
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For f € L*(py,) and each i € {1,...,n},

Vi (BS,f), = (Suf)(z;) = Zk(D @i ay) fs) = Y (K f(X;) = Vi (K ES),,

Jj=1

which proves E §n = K'E. Since E is an isometry by definition of the L?(p,,) inner product, if

the X; are pairwise distinct then E is bijective and conjugates S,, with K, so the spectra (with
multiplicities) coincide. O

C.6 PROOF OF G-INVARIANCE OF k4 FOR GENERAL DOMAINS

We conclude this appendix with the formal proof that k£, defined in inherits from any group-
invariance of k. This proof is not needed for the main results but is included for completeness. It
makes explicit why k. preserves any G-invariance of k. The proof follows the one for finite domains
but is heavier in notations because it is now stated using integral operators to generalize the matrix
manipulations of finite domains. For finite domains, denoting by K the Gram matrix of k over
the whole domain and P, the permutation matrix induced by the action of g € G on the domain,

invariance of k is equivalent to P, K = K Pg—'— = K. Thus any polynomial p(K) of K such that

p(0) = 0 inherits from this invariance since we still have Pyp(K) = p(K)P,’ = p(K). And at the
limit, we get invariance of K, . Here, we mimic this proof, and we start by introducing the equivalent
integral operator form of the characterization P, K = K PqT = K for general domains.

Lemma 13 (Kernel invariance <> operator commutation). Let (S, T, u) be a probability space
and let G act measurably on S. Assume  is G-invariant. Let U, : L*(u) — L?(p) be the unitary
representation (U Hx) = f(g 1w) Letk € L*(p @ u) be a symmetric kernel with integral
operator (Ty. f)(x fs ') du(x’). Then the following are equivalent:

(i) k is argumentwise G-invariant: k(giL’, ') = k(z,g2’) = k(x, &) for p ® p-a.e. (x,x') and all
gegqg.
(ii) Ty satisfies UyTy, = TpUy = T}, on L?(u) forallg € G.

Proof. (i)=(ii). For any f € L?(u),

(%ﬂjmw:Cmﬂ@”w%=/k@”wmﬁﬂfNM@7

By invariance of £ in the first argument U, T}, = T},. Hence T*U o =Ty and T} = T}, (self-adjoint)
and Ug = Uy-1 s0 TxUy—1 = Tj,. This is trueforallg S ghence U, Tk =TyUy = Ty.

(ii)=(i). For ¢, € L*(p),

// k(z,z') p(x)y(x') du(z)du(x") = (p, Tep) = (o, TiUy).

Expanding the last inner product, we get by change of variable and invariance of p

J[ ) cl@its e duteiduta’) = [[ kenge') olwiie!) du@dnte).

Hence for all ¢,v, [[[k(z,z') — k(z,gx’)] p(x)y(x’) du(x)dp(z’) = 0, which implies
k(x,gx') = k(x,z’') p ® p-a.e. Symmetry implies argumentwise G-invariance. O

We now show that U,T" = T is preserved if we apply a function f such that f(0) = 0 to the spectrum
of T

Lemma 14 (Borel functional calculus preserves invariance). Let T be a self-adjoint compact operator
on a Hilbert space H with eigendecomposition T = Y, \i; ® ¢;, and let {Ugy} 4cg be a unitary
representation such that U,T = TU, =T for all g € G. For a bounded Borel function f : R — R,

define f(T) =", f(Ni)¢; ® ¢i. Then for such f with f(0) = 0, we have
Ugf(T) = f(T)Ug = f(T)  forallge g
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Proof. Proof sketch: The assumption U,T" = T forces U, to act as the identity on each nonzero
eigenspace of T, which directly yields U, f(T') = f(T') for any bounded Borel f with f(0) = 0.

Step 1 (spectral decomposition for compact self-adjoint 7" without measures). Since 7" is compact
and self-adjoint, its spectrum is o(T) = {0} U {\,, : n € I} where I is finite or countable, each
An # 01is an eigenvalue of finite multiplicity, and A,, — 0 if infinite. Let F\ denote the eigenspace
for A # 0, and let Ey = ker T'. We have the orthogonal decomposition

H=Ee& P BE.
Aeo(T)\{0}

and T acts as scalar multiplication on each Ey: T|g, = Aldg,, T|g, = 0. Let P\ be the
orthogonal projector onto Ey (for A # 0) and Py onto Ey. Then for every v € H with expansion
v =1y + Z/\#O vy (vy = Pyv), we have

Tv = Z)\v,\.

A0
Step 2 (U, fixes each nonzero eigenspace pointwise). From U,T" = T we get, for any v € E) with
A#£0,

AUgv = Uy(Tv) = Tv = Av,

hence Uyv = v. Thus Uy acts as the identity on each E (A # 0). Equivalently, Uy Py = P\Uy, = P,
for all A # 0. (There is no restriction on U, inside Ey = ker T".)

Step 3 (defining f(7") for bounded Borel f with f(0) = 0). Because o(7T) \ {0} is at most
countable and T is diagonal on { £ }, we can define f(7') by applying f on the spectrum of T as

fMv = Z F(A) vy, UZU()-}-ZU)\, vy € Ey.
A€o (T)\{0} A#0

The series converges in norm since the E) are mutually orthogonal and ||f(T)v|? =

Yoazo FPIoall? < (supaso [F(NIP) Yo loall® < FI% 0] Thus f(T) is a bounded
operator with || f(T)|| < || fllco- (When f(0) = 0, there is no contribution on Ej.)

Step 4 (invariance and commutation). For v = vy + ) A£0 Ux S above and any g € G, Step 2
gives Ugv = Ugvg + ZA;ﬁO vy and P\U, = P, for A # 0. Hence

Upf(T) v =Us (DN 0r) = 3 FN Uy = D7 F(N or = £(T) v,
A#0 A0 A0

ie., Uy f(T) = f(T). In particular U, f(T) = f(T)U, = f(T) forall g € G. O

Consequence. If k is G-invariant, then so is k. (Equation (12)).

D EIGENDECAY COMPARISON

In this appendix, we discuss in more details the empirical observations made in Section[5|and formally
derive some inequalities between Schatten norms of integral operators associated with kaye and k..

D.1 EMPIRICAL OBSERVATIONS

Here, we further discuss the empirical spectra reported in Figure f] (middle and right columns).

Computation of spectra. The normalized Gram matrices K /n (where K = (k(x;, z;))1<i j<n)
reported in Figure [ are computed from n = 3000 i.i.d. samples x; € S. We compare the spectra

obtained with k € {ky, kave, kf’)} with D = {4, ..., x,} and each x; being chosen uniformly in
S = [—1, 1]. We also report the spectrum of &}, when observations ; are instead sampled from an

alternative domain S’ of reduced volume, chosen such that vol(S’) = vol(S)/|G|. Finally, note that

because D is a set of i.i.d. observations, the spectrum of k@ approximates the one of £, on S (see
Appendix [C.3)) so our observations transfer to k.
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on S vs. k, on S’. For the base kernels &y, and groups G considered, the spectrum of k:( ) o

S = [—1, 1] exactly matches that of k;, on the reduced domain S’. This indicates that ks_ ) falthfully

incorporates the extra similarities induced by G-invariance: it retains the eigendecay of ky, but as if it
were defined on the quotient space S/G of effective volume vol(S)/|G|

k)

k:(f)) on S vs. kave on S, From Figure @ (middle and right columns) , it is clear that the spectrum

of kavg decays at least as fast as that of k f). They coincide for the RBF kernel and £, decays even

faster for the Matérn kernel. In principle, this suggests that k., should admit tighter information-gain
bounds and thus better regret guarantees. However, our empirical results contradict this prediction, as
k(f)) consistently outperforms k.. This discrepancy highlights the fact that eigendecay alone does
not fully explain BO performance, as pointed out in Sections [5]and [6}

D.2 SCHATTEN NORM INEQUALITIES

While the empirical spectra in Appendix [D.1]already highlight a mismatch between eigendecay and
observed BO performance, one may ask whether formal inequalities between the operators induced
by kave and k. can be established. We record here for completeness that it is possible to control the
Schatten class of k. in terms of the one of k,yg.

Assume: (S, p) is a probability space on which a finite group G acts measurably, and the base kernel
ky, is bounded, symmetric, PSD, and nonnegative. Define

kave (T, ') ky(g9z, g'x") kmax(x, ') := max ky(gx, g2’
avg( |g‘2 ggze:g b g g max( ) Pnzere b(g g )

and k. as the kernel corresponding to the positive part of T : Tk, = (Thpar)+-

Schatten norm interpolation. Let H = L?(p) be the separable Hilbert space of squared integrable
functions on (S, u), T : H — H a compact operator, and write s;(7T") for the singular values of T', i.e.
$i(T) = \/Ai(T*T), arranged in nonincreasing order and counted with multiplicity. The Schatten-p
norm is defined as

1/p
ITlls, == (Yo sm?) . 1<p<oo, T, i=supsi(T).
N 7

?

Lemma 15 (Monotonicity for pointwise kernels). If two kernels k, k' are bounded and satisfy
0 < k < K pointwise, then ||Ty||s, < ||Tj|s, for p = 2,00. If k and k" are also PSD, then
1Txlls, < | Twls, for p = 1 too.

Proof. For p = oo, the Schatten p-norm is the operator norm ||7'||op = sup |, =1 |7 f|| - Point-
wise 0 < k < K" implies | Tk fllz < |Tw|flllz < I|Tw|ls.. || fllz, so taking the supremum over
£z = 1yields | Tk ||ls.. < | Twrlls... If T = Ty is the integral operator associated with a nonnega-
tive kernel k, then ||Tk||s, = ||kHL2(u®u) Hence pointwise 0 < k < &’ gives | Tk|ls, < [Tk ||s,

for p = 2 as well. Finally when k is PSD, we have ||T}||s, = [, k(x, x)dpu(x) (and similarly for ')
and again a pointwise comparison yields the result. O

From this we immediately obtain, for our specific kernels that for p = 2, co, and also p = 1 if kp,x
is PSD:
kavg < kmax < |G kave = Thaells, < 1Thnulls, < 1617 [Tk, lls,

Lemma 16 (Interpolation inequalities for Schatten norms). For any nonnegative sequence a =
(@i)i>1 one has

1-2
o < lla)|ZP llal <% (0> 2),

lal

2— 2(p—1
lall?, < lla| 27 allZ7~" (1 <p<2).

“For a finite group G of isometries, one indeed has vol(S/G) = vol(S)/|G| (Petersen| 2006).
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Proof. Forp >2,3.a’ = 3. a?"%a? < |ja||)=? Y, a2, giving the stated inequality. For 1 < p <
2, write
Yt = Yl
i i
Let r = ﬁ and s = p%l (with the usual convention 1/0 = o0). For 1 < p < 2 we have

1 < 7,s < oo and by Hoélder,
1/r 1/s r s
S < (@) (e ) T = (e (e
Since 1/r =2 —pand 1/s = p — 1, this gives
2(p—1
lallz, < llallA™ lallz”~".

The endpoint cases p = 1, 2 follow by continuity (and are trivial directly). O

Applied to a; = s;(T), Lemmayields the standard Schatten interpolation inequalities:
1-2
I7ls, < ITISITIS* . (0= 2),

2 _ _ 1
ITls, < (ITs,)* " (IT12,)" %, (1<p<2)

max ?

Since the spectrum of T} is the positive part of the one of Ty
We deduce the next lemma.

Lemma 17. Forp > 2:

we have || Tk, [|s, < [|Tkpalls,-

1-2
T, s, < | Tkmaills, < 1G1Tue |77 1 T 15277
and if kmax is already PSD then for 1 < p < 2:

2/p—1 1-1/
1T s, = 1 Tkmae s, < 1GI (1 Tk lls) "™ (1T 13,)" 7"
and

T lls, < (ITealls) > (1T 12,) 7

E BENCHMARKS

In this appendix, we present additional results and describe the experimental setup of Sectiond]in
detail.

E.1 EXPERIMENTAL FIGURES

We provide the whole set of figures generated from our experiments on synthetic benchmarks
(Figure[5) and on real-world problems (Figure[6).

E.2 EXPERIMENTAL DETAILS

In our experiments, every BO algorithm is implemented with the same BO library, namely
BOTorch (Balandat et al.,|2020). All of them are initialized with five observations sampled uniformly
in S. After that, at each iteration ¢, every BO algorithm must:

* Fit its kernel hyperparameters. This is done by gradient ascent of the Gaussian likelihood, as
recommended by BOTorch. The hyperparameters are the signal variance ), the lengthscale [ and
the observational noise level o3.

* Optimize GP-UCB to find z;. This is done by multi-start gradient ascent, using the
optimize_acqgf function from BOTorch. As values of 3; recommended by [Srinivas et al.
(2012)) turn out to be too exploratory in practice, we set 3; = 0.5d log(t).

* Observe y(x;) = f(x:) + €. Function values are corrupted by noise whose variance is 2% of the
signal variance.
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Figure 5: Cumulative regret under GP-UCB with £y, (blue crosses), kaye (orange diamonds), and
kip) (green circles) on synthetic benchmarks. Shaded areas: standard error over 10 seeds.
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Figure 6: Negated simple reward under GP-UCB with £y, (blue crosses), kaye (orange diamonds),
and kS_D) (green circles) on real-world experiments. Shaded areas: standard error over 10 seeds.

We optimize over 50 iterations and typically measure the cumulated regret along the optimizer’s
trajectory.

All experiments are replicated across ten independent seeds and are run on a laptop equipped with
an Intel Core 19-9980HK @ 2.40 GHz with 8 cores (16 threads). No graphics card was used to
speed up GP inference. The typical time for each maximization problem ranged from ~1 minute
(two-dimensional Ackley, |G| = 8) to ~15 minutes (five-dimensional Rastrigin, |G| = 3840). The
particle packing problem was by far the most time-consuming experiment due to the expensive
physics simulator used for computing the objective value of each new query (~4 hours for 30 BO
iterations, which we repeated on 10 seeds for each kernel).

E.3 BENCHMARKS

We maximize the following functions.

Ackley. The d-dimensional Ackley function fackey on S = [—16, 16]d with global maximum
fackiey(0) = 0, with — fackey defined by:

_fAcklcy(m) = —aexp

d
1
chos(cxi) +a+exp(l), (15)
i=1
where we set a = 20, b = 0.2 and ¢ = 27 as recommended.
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The d-dimensional Ackley is invariant to the hyperoctahedral group in d dimensions, which includes

permutations composed with coordinate-wise sign-flips. Consequently, in d dimensions, |G| =
27 d!

=~ =~

sign-flips permutations
Griewank. The d-dimensional Griewank function frewank On S = [—600, 600]d with global
maximum fGriewank(O) = 0, with _fGriewank defined by

2
)

d d
X xX;
— JGriewank () = — cos | — | + 1.
forosn@) = 3~ gt~ [ ()

The d-dimensional Griewank is invariant to coordinate-wise sign-flips of all d coordinates. Therefore,
in d dimensions, |G| = 2%

Rastrigin. The d-dimensional Rastrigin frasuigin On S = [—5.12, 5.12]¢ with global maximum
fRastrigin (0) = 0, With — fragrigin defined by:
d
_fRastrigin(w) = 10d + Z (1‘12 — 10 cos (277]}1*)) .
i=1

The d-dimensional Rastrigin is invariant to the hyperoctahedral group in d dimensions, which
includes permutations composed with coordinate-wise sign-flips. Consequently, in d dimensions,

— 9od !
1G] 2 d!

sign-flips permutations

Radial. Our radial benchmark is defined on S = [—10, 10]? with global maxima fragiai(z*) = 0,
where x* is any € S such that ||x||2 = ab. It has the following expression:

Jradial(€) = fRastrigin <|q;|2 - b) (16)

where we set ¢ = 10v/2, b = 0.8 and where fRastrigin 15 the one-dimensional Rastrigin benchmark.

Our radial benchmark is invariant to planar rotations. Consequently, G comprises an uncountably
infinite number of symmetries.

Scaling. Our scaling benchmark is defined on S = [0.1, 10]? with global maxima fscaling(*) = 0,
where * is any © = (x1,22) € S such that z; = x2. The function — fscaling has the following

expression:
. 2
1
_fScaling(x) = ( - 1) .

Our scaling benchmark is invariant to rescaling of both coordinates. Consequently, G comprises an
uncountably infinite number of symmetries.

WLAN. The goal of the WLAN benchmark is to place m access points (APs) inside a square
region A = [—50, 50]? so as to maximize the total communication quality over p users located in A,
a recurring problem in wireless network design (Younis & Akkaya, 2008} [Taleb et al., [2022)). Given
a set of AP positions, each user connects to its closest AP, and the resulting network throughput—
computed from the Signal to Interference plus Noise Ratio (SINR) and Shannon capacities—defines
the value of the objective function.

The user positions {(u;,v;)};e, C A and all physical parameters (W, L, A, N) are given. The
region A itself is fixed.

The variables of the problem are the AP locations

(x,y) = (1, Zm), (Y1, Yym)) €S =A™,
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Figure 7: WN with the best positions of APs found by GP-UCB with ker). APs are depicted by red

triangles and users with blue circles. The throughput for each user is shown in Mbps.

so the search space is 2m-dimensional. Every quantity below—AP—user associations, distances,
received powers, SINRs, and capacities—depends on (z, y).

For a candidate placement {(z;, y;) }, each user attaches to its nearest AP. Thus AP i serves the users
in

U(xl,yz) = {j S [p] : dij < dkj for all k 75 i},
(ties are resolved arbitrarily) where the distance to user j is

dij = (@5 — 0y)? + (i = 03)2.

For any associated pair (i, j), the power received by user j from AP 7 is

Pij = 10710 min(d; 1),

1y
and the SINR is
___ B
TN A TPy
The corresponding Shannon capacity is

Cij = Wlogy(1 + 7i5)-

Maximizing the WLAN performance amounts to maximizing the total throughput (the cumulated
sum of Shannon capacities for every AP-user association):

m

fwran(z,y) = Z Z

=1 jeU(zi,y:)

viewed as a function of the AP locations (x, y).

In our experiment, we set W = 1 MHz, L = 46.67 dBm, A = 3, N = —85 dBm, m = 4 APs and
p = 16 users.

Our objective fwpan is invariant to any permutation of the APs: permuting both  and y with the
same permutation leaves the objective value unchanged. Therefore, |G| = m!.

Figure|7|shows the best AP-placement found by GP-UCB using kg_p) on one training run.

Particle packing problem. The particle packing fraction (PPF) problem models how a mixture of
spherical particles settles under gravity inside a fixed rectangular box. This setting originates from
granular-material physics and is routinely used in materials science and civil engineering (e.g., in
the design of concrete mixes (Li et al., 2023} |Basheerudeen & Anandan| [2014)) by tuning the size
distribution and proportions of aggregates to maximize packing density; for instance to need less
cement and water, and get better mechanical properties).

People literally design concrete mixes by tuning the size distribution and proportions of aggregates to
maximize packing density (so you need less cement and water, and get better mechanical properties).
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In this problem, a mixture of particles is first instantiated inside the box according to prescribed
mixture parameters, and the particles are then allowed to fall under gravity. Collisions, frictions and
rearrangements determine the final configuration, and the packing fraction is defined as the ratio
between the total particle volume and the volume of the smallest axis-aligned box that contains all
particles after settling.

We fix the number of particle types to n. Each type i is described by:

* adiameter d; in a prescribed interval [dpin, dmax]
* ashare s; in [Smin, Smax|, representing the relative proportion of particles of that type in the mixture.

Thus the optimization variable is
x=(d1,...,dn, S1,---,8n)-

The box size and the total initial particle volume V), (which then remains constant during the
simulation) are fixed in all experiments.

Given a mixture specification * = (d1,...,dy, S1,.-.,8,), the initial particle configuration is
generated by repeatedly sampling particles until a fixed total particle volume V/, is reached. Particles
are sampled independently as follows: (i) sample a type ¢ € {1,...,n} with probability proportional
to its share s;, (ii) sample a location uniformly at random in the container and put a particle of
diameter d; there. If any overlap of particles occurs during initialization, positions are adjusted locally
so that the configuration becomes valid. From this randomized initial state, the system evolves under
gravity, in practice we use a physics-based simulator (LAMMPS (Thompson et al., 2022)) for that.
The simulation proceeds until the particles reach a mechanically stable configuration, as illustrated in
Figure If V,(x) denotes the volume of the smallest axis-aligned box enclosing all particles at the
end of the dynamics (i.e., the container volume after settling), the particle packing fraction is

Vo
Vo(xz)’
and we aim at maximizing this as a function of the mixture parameters x. To our knowledge, there is
no accurate closed-form expression for this dynamical packing fraction in our setup, so evaluating
PPF(x) requires running the full physical simulation. Indeed: PFF () is actually a random variable:
given any mixture parameters x, V,(x) depends on the random initialization of the particles in the
container, so there is observational noise induced by this random initialization. Moreover, even if the
random seed was fixed, because V, (x) depends on complex interactions during the fall—collisions,
friction, and rearrangements, there is still no closed form available: evaluating PPF () always
requires running this full physical simulation. This makes the objective function costly and genuinely
black-box, a typical regime where BO is well motivated.

PPF(x) =

Figure 8: Particles settling under gravity in a fixed-size box. A single evaluation of PPF(x) requires
simulating the fall from a randomized initial configuration (left) to a mechanically stable state (right),
making the objective expensive and simulation-based.

Two symmetries are inherent to this formulation:

1. Share scaling: multiplying all s; by the same positive factor leaves the resulting mixture unchanged
(the mixture only involves normalized shares).
2. Permutation symmetry: permuting the (d;, s;) pairs does not change the mixture either.

In practice, we take n = 3, which is the smallest setting where the problem starts to be interesting (no
easy solution) while keeping simulation costs manageable. We constrain the diameters and shares to

d; €[0.35,0.80],  s; €[0.1, 1.0],
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chosen so that (i) all particles remain sufficiently small relative to the fixed box size, and (ii) each
type is represented in non-negligible quantity.

Baird et al.|(2023a) previously applied BO to this problem (for solid rocket fuel design) and handled
these symmetries by restricting the search to a fundamental domain and applying standard kernels
there. In contrast, we keep the domain unchanged and instead use kernels that are invariant under
the symmetries of the problem. A conceptual comparison between these two symmetry-handling
strategies is provided in Appendix [G|

F COMPARISON OF SYMMETRY-INVARIANT KERNELS WITH THE
DATA-AUGMENTATION APPROACH

Given the widespread use of data augmentation (DA), we compare symmetry-invariant kernels
with the simple baseline corresponding to using the base kernel combined with DA. We find that
symmetry-invariant kernels perform better overall.

DA consists of replacing each input x in the dataset by (gx)gecg, with G, C G, and BO is run on this
augmented dataset. We consider two scenarios: (i) using all augmentations for small groups (G, = G
for all x) so that (gz)g4eg is simply the orbit of x, and (ii) using a random subset G/, C G for larger
groups (chosen independently for every =, drawn uniformly without replacement).

On the two-dimensional Ackley function (left panel of Figure[9), k;, is applied to a dataset augmented
with all symmetries (|G| = 8). In this case, k;, with DA achieves slightly better (lower) cumulative
regret than k; alone. Its performance, however, remains worse that of the average kernel k. and the

PSD projection of the max kernel kg_p). A similar pattern appears on the three-dimensional Ackley

function (right panel of Figure[J), where DA uses 20 augmentations sampled without replacement
from G (|G| = 48).

We also report the runtime of each method. These results show that k,+DA scales less favorably than
kave and k(f), even when using only a moderate random subset of augmentations. Overall, these
experiments suggest that using symmetry-invariant kernels directly is more practical for Bayesian

optimization than relying on data augmentation.
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Figure 9: Cumulative regret on the two-dimensional (resp., three-dimensional) Ackley function, with
|G| = 8 (resp., |G| = 48).

Table 3: Average wall-clock time in seconds per iteration for each method on the two-dimensional
(resp., three-dimensional) Ackley function.

Benchmark |G| iy ki, with DA Fave k(P
Ackley2d 8 0416 +£0253 0599 £ 0279 0451 £ 0273 0.924 & 0.444
Ackley3d 48 0506 +0.336 2.665+£2.950 0.590 = 0.384 1.307 & 0.724
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G WORKING WITH FUNDAMENTAL DOMAINS AND QUOTIENTS

This appendix expands on the brief discussion in Section about search-space restriction and
explains why our approach targets kernel design rather than the choice of domain. The goal is to
clarify that both ingredients, a good domain and a good kernel, are needed and complementary.

G.1 FUNDAMENTAL DOMAINS AS QUOTIENT REPRESENTATIONS

Given a domain S and a group action G, restricting the search to a fundamental domain amounts
to choosing a concrete embedded representation of the quotient space S/G in S. While this is
conceptually elegant, the practical implementation depends heavily on the pair (S, G) and must be
re-derived for each new problem.

G.2 EXAMPLE: PERMUTATIONS OF R¢

In several of our experiments, S = [a, b]? and G = S, acts by permuting coordinates. Two vectors
are equivalent if one is a permutation of the other. A natural choice of fundamental domain is the
sorted cone

C={zxela,b?: z <y <--- <4},
which is one possible representation of the quotient S/G (other equivalent views include multisets or

d-atomic probability measures, but these views does not lead to subsets of the original domain S so
they do not qualify as “fundamental domains”).

Even in this simple case, two practical issues appear.

(1) One must characterize and project onto the quotient, and check that it is “smooth enough”. Most
BO implementations assume that the search domain is a box [a, b]¢ for which enforcing feasibility of
the iterates is straightforward (via coordinatewise clipping « — max(a, min(b, z))). If we optimize
an acquisition function over the fundamental domain C instead, any gradient-based or heuristic
optimizer will typically propose points z that lie outside C, and these must be projected back. This
requires (i) describing the quotient S/G via an explicit embedded representation (here, C C S) and
(ii) figuring out how to implement the projection. For C, projecting = onto it amounts to solving

projc(z) € arg min ||y—x||2,
y1 < <yq

which can be solved efficiently using known algorithms (e.g. the pool adjacent violators algorithm).
Our point is not that this particular projection is hard, but that for each new pair (S, G) the user must
again derive an explicit model of the quotient and a practical projection operator, which can be a
burden depending on their goals and familiarity with quotients and the problem at hand.

Smoothness assumptions also need to be checked. The cone C is not a smooth manifold, implying that
the projection is not smooth everywhere and gradients are not smooth (or even properly defined) at
certain points. Here, the singularities form a zero-measure set: they occur at points with some equal
coordinates (this is because the action of G is not free; in contrast, if the action were free, proper,
and smooth, Theorem 21.10 in|Lee| (2013) would guarantee that the quotient is a smooth manifold).
For many constrained sets, singularities similarly form a negligible set and may be harmless for
optimization (initialization and gradient descent are likely to avoid them), but this depends on the
specific quotient and must be verified on a case-by-case basis.

Overall, working in the quotient means that the user must (i) characterize and project onto a potentially
non-smooth quotient, and (ii) check that its singularities do not cause difficulties for the optimization
method they use. Doing this for each new (S, G) may be burdensome. This is why, in this paper, we
choose to avoid optimizing in a fundamental domain and instead provide kernels that can be used in a
plug-and-play manner directly on S. These same kernels could also be used on the quotient space (by
interpreting them as kernels on equivalence classes), so our approach is complementary to, rather
than in competition with, the choice of the search domain.

(2) One must still choose a kernel on equivalence classes. Working on S§/G does not remove the

modelling choice: one still needs to pick a kernel k([z], [y]), and there is no canonical option even in
the permutation example. The quotient can be described in several equivalent ways (sorted vectors in
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C, multisets, or atomic measures), and each viewpoint naturally suggests different classes of kernels
or distances. This is precisely the type of question our paper addresses: how to construct a good
kernel that is invariant to the symmetries? We study a natural construction: start with a “good” kernel
on S (e.g. one that makes sense locally on S to measure similarity before accounting for symmetries),
and then make it invariant by aggregating via mean or max. The resulting kernels are G-invariant and
thus well-defined on the quotient, and our results show that the max-based construction shows good
properties, both empirically and geometrically.

H USE oF LLMS

We made limited use of large language models (GPT-5) during the preparation of this manuscript.
Their role was strictly restricted to grammar correction, improving clarity and conciseness, emphasiz-
ing text (e.g., bolding), and formatting tables. They were not used for generating technical content,
suggesting new concepts, or contributing to proofs or results. All ideas, proofs, experiments, and
findings are entirely our own. Every rephrased passage was carefully reviewed and validated by the
authors to ensure correctness and faithfulness to our original intent. No unverified or plagiarized
content was introduced.
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