
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

u-µP: The Unit-Scaled Maximal Update Parametrization

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2024

Abstract
The recent Maximal Update Parametrization (µP) enables the hyperparameters for small models

to transfer directly to large ones, substantially reducing the cost of training by avoiding expensive
sweeps at scale. We present a new scheme, u-µP, which improves upon µP by combining it with
Unit Scaling, a method for designing models that makes them easy to train in low-precision. The
two techniques have a natural affinity: µP ensures that the scale of activations is independent of
model size, and Unit Scaling ensures that the starting-scale of these activations is one (along with
weights and gradients). This synthesis opens the door to a simpler scheme, whose default values are
near-optimal. This in turn facilitates a more efficient sweeping strategy, with u-µP models reaching
a lower loss than comparable µP models and working out-of-the-box in FP8.

1. Introduction

Finding good hyperparameters (HPs) is critical to effective training, yet doing so for modern
large language models (LLMs) is challenging. The huge scale of models and datasets makes
performing multiple runs over a set of candidate HPs prohibitively expensive. The Maximal Update
Parametrization (µP) aims to make HP values consistent across model sizes, allowing practitioners to
sweep HPs on a small-scale proxy model and transfer them to a larger target model [27, 30].

µP has become a popular choice for LLM pre-training [4, 5, 9, 13] (though recent leading
models have not disclosed this training information). Unfortunately users have not always found

2.8

3.0

3.2

3.4

3.6

3.8

4.0

T
ra

in
in

g
L

os
s

2−11 | 2−2 2−9 | 20 2−7 | 22 2−5 | 24 2−3 | 26

Learning Rate

Width

128

256

512

1024

2048

4096

Model

µP

u-µP

0 2000 4000 6000 8000

Step

3

4

5

6

7

8

T
ra

in
in

g
L

os
s

µP

u-µP

FP32

FP8

Figure 1: (Left) Using default HPs, u-µP models have lower losses and wider basins than µP models,
while still transferring the optimal learning rate across width. (Right) FP8 training via a simple cast.
µP uses HPs found by random grid search here, whereas u-µP uses default HPs, only sweeping the
LR. Width = 4096, η = (2−7.5, 21.5) for (µP, u-µP).

© .

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

µP to provide effective transfer in practice [1, 12], with a gap between the theory and its effective
application. We propose an improved scheme: Unit-Scaled Maximal Update Parametrization (u-µP).

Our method combines µP with another recent training innovation, Unit Scaling [3]. Originally
designed to facilitate simple low-precision training, Unit Scaling proposes the principle of unit
variance at initialization for activations, weights and gradients. In doing so it relies on the same
mechanism as µP: applying scalar multipliers to linear layers to counteract the effects of changing
model size. This allows for a synthesis of the two methods and facilitates several improvements. u-µP
retains the HP-transfer property of µP and the out-of-the-box FP8 training of Unit Scaling (Figure 1),
but also simplifies the scaling rules (Table 1) and provides a more principled and interpretable set of
HPs (Appendix D). The default values of these HPs are near-optimal, giving lower losses than for µP
(Figure 1) and opening up more efficient sweeping strategies (Figure 2, right).

2. Background

2.1. The Maximal Update Parametrization

As model sizes have grown, the behavior of neural networks during training in the limit of infinite
width has become an active field of research. One of the most important results in this area is
the classification of infinite-width limits under all possible abc-parametrizations [27]. An abc-
parametrization assumes that the training dynamics for a weight W of a model are given by

W (t) = Aw(t), w(0) ∼ N (0, B), w(t+ 1)− w(t) = CΦt(∇L0, ...,∇Lt),

and provides a scheme for scaling the weight multiplier A, the initial variance B, and the learning
rate C with some exponent of the network width.

The authors prove that the only abc-parametrization (up to symmetry) that allows all model
features to evolve non-trivially in the infinite-width limit without blowing up, is µP. We outline µP’s
parametrization rules in Table 1. This has significant implications for training at scale, as it suggests
that non-µP approaches will eventually be ineffective.

Another consequence of µP is that optimal hyperparameters transfer between different model
sizes, a process known as µTransfer [30]. This is not the case under the Standard Parametrization
(SP) and has led to its adoption for LLM training. Yang et al. [31] introduce a similar scheme for
depth known as depth-µP1, based on residual branch multipliers and learning rates (also see Table 1).

2.2. Unit Scaling

Unit Scaling is a paradigm to facilitate training with low-precision number formats. The use of these
formats on modern AI hardware can bring substantial efficiency gains [7, 18], but requires extra care
to guarantee stable numerics. As explained in Section E, existing efforts on FP8 training employ
per-tensor scaling techniques, which are cumbersome to implement and incur additional overheads.

Unit Scaling takes a different approach, offering a paradigm for designing models that makes
them inherently less likely to generate out-of-range values during training. It does so by ensuring that
all activations, weights and gradients have unit scale (i.e. σ = 1) at initialization. As a consequence,
unit scaled models can be trained in low-precision via a simple cast operation.

This is achieved through the application of scalar multipliers to every operation in the forward and
backward passes, counteracting the scale-changing effect of operations like matrix multiplications.

1. When we refer to µP elsewhere in the paper we implicitly assume the modifications introduced in depth-µP.

2

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

For example, the rule when multiplying a vector by a square matrix of length d is to re-scale the
result by 1/

√
d.

3. Combining µP with Unit Scaling

In this section we derive our new u-µP scheme. The final set of scaling rules is given in Table 1.

Table 1: The µP and u-µP schemes (expressed in absolute terms)

Weight type Input Output Hidden Residual

µP

Init. Var. σ2
init σ2

init σ2
init

base-fan-in
fan-in —

Multiplier 1
base-fan-in

fan-in 1

√
base-depth

depth
*

Adam LR Mult. 1 1
base-fan-in

fan-in

√
base-depth

depth

u-µP

Init. Var. 1 1 1 —
Multiplier 1

1
fan-in

† 1√
fan-in

1√
depth

*

Adam LR Mult. 1√
fan-out

1
1√

fan-in
1√

depth

µP Associated HPs (8): η, η̂emb, base-width, base-depth, σinit, αemb, αattn, αoutput

u-µP Associated HPs (6): η, αresidual, αresidual-attn-ratio, αffn-act, αattn, αoutput

*Residual mults are applied to the end of each branch, rather than the output of linear layers.
†To maintain unit scale we apply 1/

√
fan-in scaling in the backward pass (see Appendix A.4).

3.1. From relative to absolute scaling

We seek to implement the rules specified by µP in a way that maintains unit scale for all tensors at
initialization. Our first challenge is that whereas Unit Scaling provides absolute initialization values
and multipliers, µP only specifies a parametrization. Yang et al. [30] define a parametrization as ‘a
rule for how to change hyperparameters when the widths of a neural network change, [not] how to
set the hyperparameters for any specific width’. To satisfy Unit Scaling we require our u-µP scheme
to provide absolute scaling rules2, so our first step is to derive an absolute-value implementation of
µP. We do this by combining µP’s ‘base shapes’ and initialization HPs with its standard scaling rules,
resulting in Table 1.

The non-unit initialization of µP here violates Unit Scaling. However, due to the symmetry of
abc-parametrizations (see Section 2.1), we can move scales between the initialization, multiplier and
learning rate to attain any desired initialization, choosing variance of 1 to give unit-scaled weights.
This results in the intermediate scheme shown in Table 2, Appendix A.1.

We impose two further changes to simplify the scheme and facilitate better transfer: dropping the
‘base shapes’ and σinit HPs, and changing the input LR rule to 1/

√
fan-out (these changes are justified

in Appendices A.2 and A.3). This results in the final u-µP scheme given in Table 1.
The input and hidden multiplier rules that result from this scheme are exactly those specified by

Unit Scaling (a reflection of its close relationship with µP). The u-µP output multiplier breaks Unit
Scaling temporarily, but this is not a problem in practice as output mis-scaling does not propagate in

2. In this sense u-µP is not strictly a parametrization, but we retain the term for simplicity.

3

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

23 24 25 26 27 28 29

η̂emb

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

Width

128

256

512

1024

2048

4096

100 101 102

Run Count

3.3

3.4

3.5

3.6

3.7

M
in

im
u

m
T

ra
in

in
g

L
os

s

µP

u-µP

Random Search

Independent Search

↪→ LR

↪→ Mults

↪→ Combined Mults

Figure 2: (Left) µP width transfer of the input LR multiplier η̂emb, showing poor transfer and motivat-
ing the change to 1/

√
fan-out scaling in u-µP. (Right) a comparison of random versus independent HP

search strategies on µP and u-µP, showing that u-µP parameters are more amenable to independent
search, and that combining the results of independent searches of µP mults harms performance.

the forward pass and output gradients can be corrected by 1/
√
fan-in scaling thanks to the cut-edge rule

(see Appendix A.4). The only other point at which Unit Scaling is violated is the 1/dhead attention
scaling, but this again is temporary. Otherwise, our resulting u-µP scheme has unit-scale weights,
gradients and activations, while satisfying µP.

3.2. A maximally independent set of hyperparameters

The original set of µP HPs in Table 1 is convoluted and there is complex interplay and redundancy
between some HPs (see Appendix F.1), in the sense that they effectively control the same scale in
the model. We aim for a set of HPs that is maximally expressive while having no such redundancy.
Besides the global learning rate parameter η, we end up with the following HPs:

• Residual branch multipliers: αresidual and ratio αresidual-attn-ratio (see eq. (19)).

• Multipliers before non-homogeneous operations: αattn, αffn-act, αloss-softmax (see eq. (25)).

This set of HPs, although smaller than the set of original µP HPs, generates a rich set of training
dynamics. Furthermore, it has no redundancy and each multiplier controls a meaningful scale in the
model. For a more detailed explanation, see Appendix D.

4. Experiments

We provide empirical results to support our claim that u-µP’s HPs facilitate more efficient sweeping
than µP while retaining good HP transfer, and demonstrate that it provides out-of-the-box FP8 training
without dynamic scaling. Our experiments use the Llama [23] architecture, trained on WikiText-103
[15] and evaluated using final training cross-entropy loss. Further details on experiments are given in
Appendix F, and a guide to new unit-scaled ops required for this architecture in Appendix B.

Hyperparameter search The set of u-µP HPs has been chosen such that their effects should be
independent (see Appendix F.1), with their default (= 1) values also providing unit-scale inputs
to associated functions. To test the benefit of this, we evaluate two sweeping strategies on µP and
u-µP. First, a random grid search following [4, 5, 9, 30], which should perform well in the presence
of HP interactions. Second, an independent search which performs a line search for each HP in
parallel, then combines the optima. Figure 2 (right) shows the results: u-µP is amenable to both

4

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

input

E4M3E5M2 E4M3

weight

output

grad

2−24 2−16 2−8 20 28

RMS

µP

u-µP
input

E4M3E5M2 E4M3

weight

output

grad

2−24 2−16 2−8 20 28

RMS

µP

u-µP

Figure 3: Per-tensor RMS =
√

σ2 + µ2 across u-µP and µP models at initialization (left) and after
training (right). u-µP tensors have RMS that starts close to 1 and remains within E4M3 range at the
end of training. Dashed and solid red lines show each format’s min. normal and subnormal values.

methods, while µP does not perform well under independent search. Hence u-µP enables more
efficient sweeping strategies than µP, with near-optimal loss after just the LR portion of the search.

Hyperparameter transfer Figure 1 (left) and Figure 6 demonstrate that u-µP retains the learning
rate transfer properties of µP. Using the default mult values, u-µP models are able attain the optimal
loss for µP models of twice the width. Figure 2 (left), Figures 4 and 5 show that u-µP’s change to the
input scaling rule improves width transfer and absolute loss.

Numerical properties u-µP’s scaling rules and multipliers are designed to maintain unit variance of
activations, weights and gradients at initialization. Hence, these tensors are initialized well within the
range of FP8 formats and, empirically, do not drift out of range during training (see Figure 3). Based
on this, we propose and test a simple proof-of-concept scheme for FP8 training with u-µP. For every
linear module, we cast input, weight and grad-output tensors to FP8—without any scaling—prior to
the matrix multiplication. Some extra care is required for the inputs to FFN and self-attention final
projections; the details of our scheme may be found in Appendix E. Figure 1 (right) and Figure 7
show that FP8 u-µP converges close to the baseline value, while µP fails to train.

5. Related work

The Tensor Programs series of papers [24–31] introduce the mathematical framework from which
µP is derived. [4, 5, 9, 13] employ µP to derive the HPs for LLM training, with [12] exploring the
transfer properties of µP variants. [3] introduce Unit Scaling, which has similarities to [10, 33] in its
activation function scaling, and to [6, 8] in its approach to initialization.

6. Conclusions

We demonstrate the effectiveness of our improved scheme, which applies the principles of Unit
Scaling to µP to form u-µP. We retain the HP transfer property of µP and benefit from the simple low-
precision training brought by Unit Scaling. This allows FP8 via a simple cast, bringing substantial
efficiency gains. Our u-µP HP scheme is more principled than that used for µP, leading to a simpler
sweeping strategy. Indeed the default multipliers associated with u-µP models are near-optimal in our
experiments, reaching a lower loss than heavily-tuned µP models. The combination of these benefits
indicates that u-µP can be a valuable component in the simple, stable and efficient training of LLMs.

5

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

References

[1] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The
Falcon series of open language models. CoRR, abs/2311.16867, 2023. doi: 10.48550/ARXIV.
2311.16867. URL https://doi.org/10.48550/arXiv.2311.16867.

[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. volume 116, page 15849–15854.
Proceedings of the National Academy of Sciences, July 2019. doi: 10.1073/pnas.1903070116.
URL http://dx.doi.org/10.1073/pnas.1903070116.

[3] Charlie Blake, Douglas Orr, and Carlo Luschi. Unit scaling: Out-of-the-box low-precision
training. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 2548–2576. PMLR, 2023. URL https://proceedings.mlr.
press/v202/blake23a.html.

[4] Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-GPT: Open compute-optimal language
models trained on the cerebras wafer-scale cluster. CoRR, abs/2304.03208, 2023. doi: 10.48550/
ARXIV.2304.03208. URL https://doi.org/10.48550/arXiv.2304.03208.

[5] Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant Khachane,
Shaheer Muhammad, Zhiming Chen, Robert Myers, Jacob Robert Steeves, Natalia Vassilieva,
Marvin Tom, and Joel Hestness. BTLM-3B-8K: 7B parameter performance in a 3B parameter
model. CoRR, abs/2309.11568, 2023. doi: 10.48550/ARXIV.2309.11568. URL https:
//doi.org/10.48550/arXiv.2309.11568.

[6] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and D. Mike Titterington, editors, Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia La-
guna Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceedings, pages 249–256.
JMLR.org, 2010. URL http://proceedings.mlr.press/v9/glorot10a.html.

[7] Graphcore. C600 IPU-Processor PCIe Card, 2022. URL https://www.graphcore.ai/
products/c600.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1026–1034. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.123. URL https:
//doi.org/10.1109/ICCV.2015.123.

[9] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi

6

https://doi.org/10.48550/arXiv.2311.16867
http://dx.doi.org/10.1073/pnas.1903070116
https://proceedings.mlr.press/v202/blake23a.html
https://proceedings.mlr.press/v202/blake23a.html
https://doi.org/10.48550/arXiv.2304.03208
https://doi.org/10.48550/arXiv.2309.11568
https://doi.org/10.48550/arXiv.2309.11568
http://proceedings.mlr.press/v9/glorot10a.html
https://www.graphcore.ai/products/c600
https://www.graphcore.ai/products/c600
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential
of small language models with scalable training strategies. CoRR, abs/2404.06395, 2024.
doi: 10.48550/ARXIV.2404.06395. URL https://doi.org/10.48550/arXiv.2404.
06395.

[10] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
971–980, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html.

[11] Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case, and Paulius
Micikevicius. OpenSeq2Seq: extensible toolkit for distributed and mixed precision training of
sequence-to-sequence models. CoRR, abs/1805.10387, 2018. URL http://arxiv.org/
abs/1805.10387.

[12] Lucas D. Lingle. A large-scale exploration of µ-transfer. CoRR, abs/2404.05728, 2024.
doi: 10.48550/ARXIV.2404.05728. URL https://doi.org/10.48550/arXiv.2404.
05728.

[13] Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao,
Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao
Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen,
Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim
Baldwin, and Eric P. Xing. LLM360: towards fully transparent open-source llms. CoRR,
abs/2312.06550, 2023. doi: 10.48550/ARXIV.2312.06550. URL https://doi.org/10.
48550/arXiv.2312.06550.

[14] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

[15] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Byj72udxe.

[16] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

[17] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats

7

https://doi.org/10.48550/arXiv.2404.06395
https://doi.org/10.48550/arXiv.2404.06395
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
http://arxiv.org/abs/1805.10387
http://arxiv.org/abs/1805.10387
https://doi.org/10.48550/arXiv.2404.05728
https://doi.org/10.48550/arXiv.2404.05728
https://doi.org/10.48550/arXiv.2312.06550
https://doi.org/10.48550/arXiv.2312.06550
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

for deep learning. CoRR, abs/2209.05433, 2022. doi: 10.48550/ARXIV.2209.05433. URL
https://doi.org/10.48550/arXiv.2209.05433.

[18] Nvidia. Nvidia H100 Tensor Core GPU, 2022. URL https://www.nvidia.com/
en-gb/data-center/h100.

[19] NVIDIA. Using fp8 with transformer engine. https://docs.nvidia.com/
deeplearning/transformer-engine/user-guide/examples/fp8_
primer.html, 2024.

[20] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=Hkuq2EkPf.

[21] Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL
https://arxiv.org/abs/2002.05202.

[22] Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568:
127063, 2024. doi: 10.1016/J.NEUCOM.2023.127063. URL https://doi.org/10.
1016/j.neucom.2023.127063.

[23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

[24] Greg Yang. Tensor programs I: wide feedforward or recurrent neural networks of any archi-
tecture are gaussian processes. CoRR, abs/1910.12478, 2019. URL http://arxiv.org/
abs/1910.12478.

[25] Greg Yang. Tensor programs II: neural tangent kernel for any architecture. CoRR,
abs/2006.14548, 2020. URL https://arxiv.org/abs/2006.14548.

[26] Greg Yang. Tensor programs III: neural matrix laws. CoRR, abs/2009.10685, 2020. URL
https://arxiv.org/abs/2009.10685.

[27] Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pages 11727–11737. PMLR, 2021. URL
http://proceedings.mlr.press/v139/yang21c.html.

[28] Greg Yang and Etai Littwin. Tensor programs IIb: Architectural universality of neural tangent
kernel training dynamics. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 11762–11772. PMLR, 2021.
URL http://proceedings.mlr.press/v139/yang21f.html.

8

https://doi.org/10.48550/arXiv.2209.05433
https://www.nvidia.com/en-gb/data-center/h100
https://www.nvidia.com/en-gb/data-center/h100
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://openreview.net/forum?id=Hkuq2EkPf
https://arxiv.org/abs/2002.05202
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.48550/arXiv.2302.13971
http://arxiv.org/abs/1910.12478
http://arxiv.org/abs/1910.12478
https://arxiv.org/abs/2006.14548
https://arxiv.org/abs/2009.10685
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21f.html

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

[29] Greg Yang and Etai Littwin. Tensor programs IVb: Adaptive optimization in the infinite-
width limit. CoRR, abs/2308.01814, 2023. doi: 10.48550/ARXIV.2308.01814. URL https:
//doi.org/10.48550/arXiv.2308.01814.

[30] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: tuning large neural
networks via zero-shot hyperparameter transfer. CoRR, abs/2203.03466, 2022. doi: 10.48550/
ARXIV.2203.03466. URL https://doi.org/10.48550/arXiv.2203.03466.

[31] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: feature learning
in infinite-depth neural networks. CoRR, abs/2310.02244, 2023. doi: 10.48550/ARXIV.2310.
02244. URL https://doi.org/10.48550/arXiv.2310.02244.

[32] Chao Yu and Zhiguo Su. Symmetrical gaussian error linear units (sgelus). CoRR,
abs/1911.03925, 2019. URL http://arxiv.org/abs/1911.03925.

[33] Peiwen Yuan and Changsheng Zhu. Normalized activation function: Toward better convergence.
CoRR, abs/2208.13315, 2022. doi: 10.48550/ARXIV.2208.13315. URL https://doi.
org/10.48550/arXiv.2208.13315.

[34] Biao Zhang and Rico Sennrich. Root mean square layer normalization. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12360–
12371, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

9

https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.02244
http://arxiv.org/abs/1911.03925
https://doi.org/10.48550/arXiv.2208.13315
https://doi.org/10.48550/arXiv.2208.13315
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Contents

1 Introduction 1

2 Background 2
2.1 The Maximal Update Parametrization . 2
2.2 Unit Scaling . 2

3 Combining µP with Unit Scaling 3
3.1 From relative to absolute scaling . 3
3.2 A maximally independent set of hyperparameters 4

4 Experiments 4

5 Related work 5

6 Conclusions 5

A From µP and Unit scaling to u-µP 11
A.1 An intermediate scheme . 11
A.2 Dropping base shapes . 11
A.3 A new embedding scaling rule . 12
A.4 Forward multipliers vs. backward multipliers . 13

B Additional Unit-Scaled Ops 14

C Unit scaled pre-norm residual layers 17
C.1 Scale growth in pre-norm residual networks . 17
C.2 Residual symmetry in pre-norm architectures . 17
C.3 Unit Scaling for transformer residuals . 19
C.4 Proof of Lemma C.1 . 19

D Hyperparameters for u-µP 20
D.1 Residual branch multipliers αresidual, αresidual-attn-ratio 20

D.1.1 Improved HPs for transformer residuals 21
D.1.2 The full u-µP residual scheme . 23

D.2 Multipliers for non-homogeneous ops αattn-softmax, αffn-act, αloss-softmax 24

E Details on FP8 training 26
E.1 Background . 26
E.2 Details on FP8 scheme . 27

F Experimental Details 27
F.1 Hyperparameter Independence . 28
F.2 Hyperparameter Transfer . 29
F.3 Numerical Properties . 29

10

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Appendix A. From µP and Unit scaling to u-µP

Although u-µP provides the benefits of both µP and u-µP and is faithful to almost all of their rules,
it includes some specific changes that deviate from the parent schemes. In this section we give
additional details about u-µP as well as highlighting and explaining the changes from µP and Unit
Scaling.

A.1. An intermediate scheme

The first step from µP to u-µP is enabled by the abc-symmetry (see Lemma J.1 in [30]). The initial
hidden weight variance base-fan-in/fan-in from Table 1 can be replaced by 1 if we change at the same
time:

• Multiplier: 1 →
√

base-fan-in
fan-in

• Adam LR Mult.: base-fan-in
fan-in →

√
base-fan-in

fan-in

Together with setting σinit = 1 we get the intermediate scheme shown in Table 2.

Table 2: µP scheme after abc symmetry and normalized init. variance

Weight type Input Output Hidden Residual

µP

Init. Var. 1 1 1 —

Multiplier 1
base-fan-in

fan-in

√
base-fan-in

fan-in

√
base-depth

depth

Adam LR Mult. 1 1

√
base-fan-in

fan-in

√
base-depth

depth

A.2. Dropping base shapes

The next step in our transition from the µP scheme in Table 2 to our u-µP scheme in Table 1 is the
removal of the ‘base shapes’ HPs, base-fan-in and base-depth. It should be noted that although we
refer to base-fan-in and base-depth in the same way as the multiplier HPs, these are not intended
to be swept, but rather chosen according to taste. The stated purpose of the ‘base shapes’ in Yang
et al. [30] is to enable a model to behave unchanged at a particular size, yet still scale according to
µP rules as the model-size changes.

We argue that this is not necessary or desirable for u-µP based on the following:

1. Though in some cases it may be useful to align a µP model to some ‘base’ model in the manner
described above, all uses of µP in the literature simply set the base shapes those of a small
model and perform an HP sweep on top of it. This sweep alters the dynamics of the base
model before scaling-up, so there is little sense in which the base shapes maintain the behavior
of some smaller model as we scale. At best the base shapes can be seen as giving a useful
starting point to the HP sweep.

2. In contrast u-µP offers a principled approach to the base dynamics of the model: that all
tensor-scales should have unit variance. This can be seen as an alternative to the ‘base shapes’
approach, which substitutes this principle for alignment with non-µP models at a particular
scale.

11

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

3. The effect of base shapes on the weight multipliers is a constant. Our set of u-µP multipliers is
able to express any set of constant weight multipliers in the network, so our HP sweep is in
effect testing what might happen were we to introduce base shapes into u-µP.

4. The effect of base shapes on the LR multipliers is again a constant factor, which is applied to
all hidden weights for width, and residual weights for depth. This applies to the large majority
of weights in the model in a similar fashion, making it closely linked to a global shift in the
LR. As the LR is swept anyway, we conjecture that the effect of base shapes on the model’s
LRs is minimal.

5. Finally, we argue for simplicity. If we can remove these additional HPs without detriment,
then our scaling rules become much simpler: each depends on a single factor.

With this change implemented, our scaling rules become those shown in Table 3.

Table 3: µP scheme after abc symmetry, normalized init. variance and dropping of base shapes

Weight type Input Output Hidden Residual

µP

Init. Var. 1 1 1 —
Multiplier 1

1
fan-in

1√
fan-in

1√
depth

Adam LR Mult. 1 1
1√

fan-in
1√

depth

A.3. A new embedding scaling rule

Our only fundamental deviation from µP in terms of scaling is changing the embedding LR (η̂emb)
from not being scaled to being scaled by

√
1/fan-out (i.e.

√
1/width). This is based on an empirical

observation: in our u-µP experiments we noticed that the embedding learning rate parameter does
not transfer well with width.

This is shown in Figure 4 (left), where our best η̂emb at the 256 width (2−2.5) does not transfer
to the 2048 width. However, applying a

√
1/width scaling arrives at the optimal LR for 2048 width

(2−4). The same experiment with our new scheme is shown in Figure 4 (right). This effect can be
seen more strongly with µP, which we demonstrate in the body of the paper in Figure 2 (left).

2−6 2−5 2−4 2−3 2−2 2−1 20

η̂emb

2.8

3.0

3.2

3.4

3.6

T
ra

in
in

g
L

os
s

Width

128

256

512

1024

2048

4096

2−3 2−2 2−1 20 21 22 23

η̂emb

2.8

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

Width

128

256

512

1024

2048

4096

Figure 4: Transfer of the input LR multiplier η̂emb over width. (Left) Modified u-µP without our
1/
√
fan-out input LR scaling rule. (Right) Standard u-µP with our 1/

√
fan-out input LR scaling rule.

12

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−1 20 21 22 23 24 25

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

T
ra

in
in

g
L

os
s

Width

128

256

512

1024

2048

4096

2−1 20 21 22 23 24 25

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

T
ra

in
in

g
L

os
s

Width

128

256

512

1024

2048

4096

Figure 5: LR transfer over width. (Left) Standard u-µP with our 1/
√
fan-out input LR scaling rule.

(Right) Modified u-µP without our 1/
√
fan-out input LR scaling rule. Without our proposed rule, u-µP

would have worse transfer and absolute loss at large width.

Without this rule-change u-µP models have degraded performance, as demonstrated in Figure 5.
Note that this phenomenon of poor embedding LR transfer only has a minor effect on the global LR
transfer, but significantly degrades the loss at scale. We have observed similar issues for µP models,
where sweeping an embedding LR multiplier can also impair the performance of the scaled-up model.
We leave a potential theoretical explanation of why the original µP rules do not give transfer here
to future work. It may be the case that at much larger scales the original rule is more appropriate,
though this is unlikely to be of practical use.

A.4. Forward multipliers vs. backward multipliers

Table 1 shows the scaling rules for weight multipliers in u-µP. If we are more precise, these values
are actually post-op forward multipliers, i.e. a multiplier α in a linear layer f gets applied as
h 7→ α · f(h). This is because for low-precision training, we cast the input h to FP8 in the forward
pass and a pre-op multiplication α · h might go out of FP8 range if the multiplier is too small or
too large. Conversely, we want α to act as a pre-op multiplier in the backward pass, so we have
gh 7→ α · gradf (gh) because in this case the gradient gh gets cast to FP8. The same logic applies to
residual multipliers, with the branch multiplier implemented after the residual path in the forward
pass, and before the residual path in the backward pass.

This is straightforward when the forward and backward multipliers are the same, but nevertheless
crucial to implement correctly in order to enable stable FP8 forward and backward passes. However,
there are two instances in u-µP where forward and backward multiplier are different:

1. Weight gradients. While model weights under Unit Scaling are correctly scaled in the forward
pass, the weight gradient computation involves a summation over the batch size b, hence from
a Unit Scaling perspective we need to apply a scaling in b to keep the weight gradient unit
scaled. We choose the scaling

gw 7→ b−
1
2 gw,

that works well in practice. The discrepancy between forward and backward computation can
be easily resolved post-hoc in the optimizer function that calculates the weight update from

13

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

its gradients. In the case of Adam, no adjustment is needed because of its scale invariance
property.

2. Readout layer. In order to satisfy µP and prevent logits from blowing up as the network
width increases, the readout layer has a forward multiplier of 1/fan-in. This contradicts Unit
Scaling, but is not too problematic in the forward pass since we are only under-scaled at the
first step of training and then have logits of order 1. Also, this happens at the very end of the
network and has no significant effect on any subsequent operations, since the loss computation
usually stays in higher precision. In the backward pass however, using this multiplier leads
to all gradients in the model becoming under-scaled throughout training. The fix is to use
the backward multiplier

√
1/fan-in instead. Again, this produces "mathematically incorrect"

gradients. Because the readout layer is not on a residual branch and the backward pass is linear,
we can again easily compensate for this static factor in the optimizer.

A unified explanation for why different forward and backward scale are admissible for weights and
readout layer, but not for operations on residual branches, is given by the cut-edge-rule (see Section
5.1 in [3]).

Appendix B. Additional Unit-Scaled Ops

For the sake of our experiments, a set of unit-scaled ops are required for Llama-style [23] transformer
architectures. We are able to utilize many of the ops given in the Unit Scaling paper [3]. However,
this selection lacks some of the features required to implement modern LLMs. To address this, in
this section we outline a series of new unit-scaled ops for each of our required architectural features.

The presentation here is derived from that of the Unit Scaling Compendium given in Blake et al.
[3, appendix G]. This makes reference to the factors α, β1, . . . , βk. α is the output scaling factor in
the forward pass, and βi are the scaling factors for the gradient of the op’s inputs in the backward
pass. For each op, a value or rule is provided for determining the required mult to ensure unit scale.
The correct value for these multipliers is derived by analyzing the scaling behavior of each op, given
some reasonable distributional assumptions about the input and incoming gradient tensors.

We provide a summary of these results in Table 4, which can be seen as an extension of Table
A.2. from the Unit Scaling paper.

Unit scaled dot-product attention The Unit Scaling paper considers the attention layer scaling in
terms of its separate components: the various matmul operations and the internal softmax. Linear
operations are scaled using the standard rule, and the softmax scaling is given a α = β = s factor.

From an implementation perspective, the self-attention layer is more typically broken down into
weight-matmuls and a fused scale-dot-product attention operation. This is the case we handle here,
accounting for three complicating factors not considered in the Unit Scaling paper:

1. As we use a decoder-style transformer in our experiments, our softmax operation has a causal
mask applied to its input.

2. We follow the µP guidance of using 1/dhead scaling in our self-attention layer, rather than the
usual 1/

√
dhead.

3. We place a αattn multiplier immediately before the softmax, which is an HP that users may
tune.

14

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Table 4: Table of unit scaling factors for ops required for Llama, building on Table A.2. from the
Unit Scaling paper [3].

Op Unit scaling factors

attention(q, k, v) = α = βq = βk = βv =

softmax
(
αattn d

−1
head (qk

⊤) cmask
)
v 1/ log_interpolate

(
1

1+
4dhead
α2
attn

, 1,

√
log(s)

s

)
gated_silu(xin, xgate) = α = βxin = βxgate =

xin ⊙ xgate ⊙ sigmoid(αffn-act xgate) 1/ log_interpolate
(

1
1+ 1

α2
ffn-act

, 1√
2
, 12

)
residual_add(xresid., xskip) = a xresid. + b xskip a =

√
τ

τ+1 , b =
√

1
τ+1 (see D.1.2 for full

details, inc. values for τ .)

RoPE(x) α = β = 1 (i.e. no scaling)

RMSNorm(x) (non-trainable, see [12]) α = β = 1 (i.e. no scaling)

As a result our dot-product attention takes the form:

attention(q, k, v) = softmax
(
αattn · d−1

head · (q · k⊤) · cmask

)
· v

The addition of an HP before the softmax introduces an additional challenge for Unit Scaling, as our
scaling multipliers will need to account for this value when preserving unit scale.

This operation is sufficiently complex that we found an empirical model of its scale to be more
accurate than any mathematically-derived rule (future work may consider justifying our model
mathematically). We find that the scale of dot-product attention is approximately

σ(attention(q, k, v)) = log_interpolate

 1

1 + 4dhead
α2
attn

, 1,

√
log(s)

s

where

log_interpolate(α, bupper, blower) = eα log(bupper)+(1−α) log(blower).

The corresponding scaling rule is therefore to divide by this factor in both the forward and backward
pass, as outlined in Table 4.

SwiGLU FFN Llama uses a SwiGLU [21] layer for its FFN, which introduces two new operations
for us to unit-scale: a SiLU [32] (a.k.a. swish [20]) operation and an element-wise multiplication.
We take a similar approach to our dot-product attention, and consider unit-scaling the following fused
operation:

gated_silu(xin, xgate) = xin ⊙ xgate ⊙ sigmoid(αffn-act xgate)

For the surrounding weight-matmuls we follow the standard Unit Scaling rules.

15

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Again, we use an empirical model of the scale of this op, which is surprisingly similar to the
dot-product attention model:

σ(gated_silu(xin, xgate)) = log_interpolate

 1

1 + 1
α2
ffn-act

,
1√
2
,
1

2

 ,

dividing through by this factor to get our scaling rule.

Residual layers Our implementation of residual layers for u-µP is more complex than other
operations, as adjustments are required to:

1. Make pre-norm residual networks support Unit Scaling (see Appendix C).

2. Introduce our new, principled residual HPs (see Appendix D).

Our residual layer scheme is presented in full in D.1.2. For readers interested in our justification for
this, see the sections noted above.

As mentioned in Appendix A.4, we also follow the example of Unit Scaling and delay the
application of our residual multiplier in the backward pass to the base of the branch (see Blake et al.
[3], Figure 3c). This does not change the model, and enables unit scale to be maintained on the
residual branch regardless of the value of the multiplier.

RoPE embeddings We also require a unit-scaled implementation of Rotary Position Embeddings
(RoPE [22]), which are applied just before the scaled dot-product attention operation. As RoPE
essentially consists of pair-wise rotations of elements by different degrees, we observe no meaningful
scale-change as a result of it’s application, and hence leave it unchanged.

RMSNorm Following Lingle [12] we opt to use a non-trainable version of RMSNorm [34], in
order to facilitate better transfer. As a result, we also leave this operation unchanged. Were a trainable
RMSNorm to be used, the recipe would follow closely that of the LayerNorm presented in the
original Unit Scaling Compendium.

Scale constraints One final, minor deviation from the scheme outlined in the Unit Scaling paper is
the way in which we apply scale constraints (see their Section 5.2). The essence of scale constraints
is that for perfect unit scaling, sometimes the ideal scale for the forward pass differs from those in
the backward pass. In some special cases (e.g. at the ends of the network) the use of different scales
can be valid, but in the general case a single scale must be agreed upon. The solution in the Unit
Scaling paper is to use the geometric mean of the forward and backward scales.

We propose instead to simply use the forward scale over the backward scale(s) in these cases.
We do so for the following reasons:

1. For these architectures we find empirically that where there is a disparity in ideal forward and
backward scales, it is not large.

2. By taking the forward scale, we can ensure strict unit-scale in the forward pass.

The value of the latter point is in terms of what it means for the interpretation of our u-µPmultiplier
HPs. Consider the αffn-act multiplier; with strict unit scale we can say that the standard deviation of
activations immediately before this multiplier is 1. Therefore the standard deviation immediately

16

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

after is αffn-act. As this multiplier is (by design) the last operation before the ffn activation function,
we can say that the interpretation of αffn-act is simply to set the input standard deviation to the FFN’s
activation function. Similar arguments can be made for other u-µP multiplier HPs. This interpretation
only holds because we use the forward-scale in our constraints.

Appendix C. Unit scaled pre-norm residual layers

The popular pre-norm residual network architecture is simple to implement, but problematic to
combine with Unit Scaling. It exhibits scale-growth in the skip-stream at initialization, due to the
repeated addition of residual connections without subsequent normalization. Here we present a
surprising and useful finding: that for any pre-norm model there exists a mathematically-equivalent
model where this scale-growth is eliminated, through the careful re-scaling of residual connections.
This is a crucial preliminary step for our u-µP HP scheme, which is discussed in Appendix D (readers
only interested in the final result may skip ahead to D.1.2).

C.1. Scale growth in pre-norm residual networks

Let’s consider a pre-norm residual network of depth L:

R0(x) = r0x, (1)

Rl(x) = rlfl(Rl−1(x)) +Rl−1(x), l = 1, .., L (2)

RL+1(x) = fL+1(RL(x)) (3)

with embedding multiplier r0 and residual branch multipliers rl for l = 1, .., L. To satisfy pre-norm,
all fl are zero-homogeneous functions, i.e. fl(λx) = fl(x).

The scale of the skip-stream at initialization as a result of Equation (2) is

σ(Rl) =
√
r2l σ(fl)

2 + σ(Rl−1)2 > σ(Rl−1), l = 1, .., L (4)

assuming r2l σ(fl)
2 > 0. This shows that scale inevitably grows with the addition of each residual

layer.
This scale-growth is clearly incompatible with unit scaling, which aims for σ(Rl) = 1 for

l = 0, .., L + 1. In the following we present an elegant solution to this problem making use of a
symmetry transformation available in pre-norm residual architectures.

C.2. Residual symmetry in pre-norm architectures

To resolve the problem of scale shift in residual networks demonstrated by eq. (4), we try a slightly
more general ansatz:

R̂0(x) = x, (5)

R̂l(x) = alfl(R̂l−1(x)) + blR̂l−1(x), (6)

R̂L+1(x) = fL+1(R̂L(x)) (7)

with coefficients al, bl. We want to choose these coefficients so that the outputs of R̂l are unit-scaled
if the outputs fl, R̂l−1 are. A similar calculation as in eq. (4) leads to the sufficient condition

a2l + b2l = 1,

17

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

which can be easily satisfied. Having restored Unit Scale, we are faced with another issue. It seems
that Equations (5) to (7) describes a different network than Equations (1) to (3), whereas ideally the
relation from input to final output should be unchanged when converting the network to Unit Scaling.

Note that the coefficients al, bl are not uniquely defined yet, so our mathematical intuition tells
us that we should find an additional constraint to get a unique solution. To find this constraint,
let us consider our original residual network in Equations (1) to (3) and analyze how the variance
propagates through the network if we assume all operations fl satisfy Unit Scaling and σ(x) = 1.
Let σ2

l−1 denote the variance of Rl−1. Then a simple inductive calculation shows that

σ2
l−1 =

l−1∑
i=0

r2i .

By Equation (2) the output of Rl adds a quantity of variance r2l from the residual connection and a
quantity of variance σ2

l−1 from the skip connection. Intuitively, the ratio of these variances should
be more important for the overall network dynamics than the absolute scales. Thus our constraint
becomes preserving the ratio of variances from the original model, through our choice of al, bl:

a2l
b2l

=
σ(rlfl)

2

σ2
l−1

=
r2l∑l−1
i=0 r

2
i

=: τl,

which (up to sign) uniquely defines our multipliers al, bl as

al =

√
τl

τl + 1
, bl =

√
1

τl + 1
(8)

In summary, we propose the modified residual network

R̂0(x) = x, (9)

R̂l(x) =

√
τl

τl + 1
fl(R̂l−1(x)) +

√
1

τl + 1
R̂l−1(x), (10)

R̂L+1(x) = fL+1(R̂L(x)), (11)

τl =
r2l∑l−1
i=0 r

2
i

. (12)

Our main result of this section is that this transformation is indeed a mathematical equivalence under
a simple additional structural assumption:

Lemma C.1 Consider Rl, R̂l defined as in Equations (2) and (10). Then R̂l = Rl/
√∑l

i=0 r
2
i for

all l = 0, .., L.

Remarkably, this result does not assume the individual network operations fl to actually satisfy Unit
Scaling. It is purely a consequence of the pre-norm residual structure. However, only under Unit
Scaling can the factors τl be interpreted as the ratio of variances between skip and residual branch.

As a consequence of the lemma, the final residual output RL(x) is the same as in our original
network up to a fixed multiplier. Due to the zero-homogeneity of the final output function fL+1 this

gives R̂L+1 = fL+1

(
RL(x)/

√∑l
i=0 r

2
i

)
= fL+1(RL(x)) = RL+1, proving the mathematical

equivalence of our residual scheme.
Modern LLM architectures like Llama [23] are pre-norm residual networks of this kind. Hence

they admit a faithful unit-scaled reparametrization.

18

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

C.3. Unit Scaling for transformer residuals

The above scheme describes Unit Scaling for arbitrary pre-norm residual networks. We now apply it
to the case of (pre-norm) transformer residual layers.

We can describe a transformer in terms of the residual network given in Equations (1) to (3). Our
fl functions alternate between self-attention layers and feed-forward layers. Implementations differ
in the handling of how residual multipliers rl correspond to HPs. In many cases practitioners simply
ignore these rl, but for the sake of expressivity we assume the two types of residual layer each have
their own HP, as well as the embedding. In other words,

rl =

αemb l = 0

αattn-residual l is odd
αffn-residual l is even, and l > 0.

To convert this to a Unit Scaled network we apply Equations (9) to (12), from which can derive
the following closed-form expression for τl:

τl =

αattn-residual

αemb + ℓαattn-residual + ℓαffn-residual
l is odd

αffn-residual

αemb + (ℓ+ 1)αattn-residual + ℓαffn-residual
l is even.

where ℓ = ⌊ l−1
2 ⌋.

C.4. Proof of Lemma C.1

Proof This is proved by induction. For the base-case l = 1, we have τ1 = r21/r
2
0, giving

R̂1(x) =

√
τl

τl + 1
f1(x) +

√
1

τl + 1
x

= (r1f1(x) + r0x)/
√
r20 + r21

= R1/
√

r20 + r21.

19

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Then if the statement holds for l − 1 we have

R̂l(x) =

√
τl

τl + 1
fl(R̂l−1(x)) +

√
1

τl + 1
R̂l−1(x)

=
rl√∑l
i=0 r

2
i

fl(R̂l−1(x)) +

√∑l−1
i=0 r

2
i√∑l

i=0 r
2
i

R̂l−1(x)

=

rlfl(R̂l−1(x)) +

√√√√ l−1∑
i=0

r2i R̂l−1(x)

 /

√√√√ l∑
i=0

r2i

=

rlfl(Rl−1(x)) +

√√√√ l−1∑
i=0

r2i
Rl−1(x)√∑l−1

i=0 r
2
i

 /

√√√√ l∑
i=0

r2i

= (rlfl(Rl−1(x)) +Rl−1(x)) /

√√√√ l∑
i=0

r2i

= Rl(x)/

√√√√ l∑
i=0

r2i

Appendix D. Hyperparameters for u-µP

Here we explain the HPs from Section 3.2 in more detail. Our desiderata for the u-µP HPs are as
follows:

1. Unit scale: For every choice of HPs we satisfy Unit Scaling, meaning that the variance at
initialization throughout the entire model is 1.

2. Interpretable HPs: Each HP value determines a dynamic of the model at initialization that
we consider important, giving them a clear interpretation.

3. Fully expressive: They result in a model which is as expressive as a standard pre-norm
transformer network, meaning that for any model expressed by Equations (1) to (3), there is a
choice of HPs that forms a mathematically-equivalent u-µP residual model.

4. No redundancy: Removing any HP results in a strictly less expressive model.

D.1. Residual branch multipliers αresidual, αresidual-attn-ratio

In this section we present our u-µP residual branch multipliers. They can be viewed as a reparametriza-
tion of the original residual multipliers in C.3. We begin by explaining our heuristic for our new set
of residual HPs and then combine this with the residual branch re-scaling derived in the previous
section, which gives our u-µP residual scheme.

20

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

D.1.1. IMPROVED HPS FOR TRANSFORMER RESIDUALS

In Section 3.2 we refer to a new pair of u-µP HPs, αresidual and αresidual-attn-ratio, which we use
for residual layers. Here we define them and make the case for including them as part of our u-µP
scheme. To avoid cluttered notation, in this section we rename

αresidual = αr, αresidual-attn-ratio = αρ.

There is no clear convention for the set of multipliers in a standard residual model. Hence we adopt
the most generous and straightforward group of multipliers, (αemb, αattn-residual, αffn-residual), as in
Section C.3. For simplicity we rename

αemb = αe, αattn-residual = αa αffn-residual = αf .

To make the presentation more clear, we derive our new HPs using the standard residual scheme from
Equations (1) to (3). For the actual unit scaled implementation one needs to transform the multipliers
following Equations (9) to (12), which we do in Section D.1.2.

Our new multipliers satisfy the following properties that (αe, αa, αf) do not:

1. They have an intuitive interpretation for the multiplier values in the context of the residual
output RL(x), such that each controls a dynamic in the model that we consider important.

2. The number of multipliers is minimized, under the constraint that expressivity is maintained.

3. The most effective choice of one multiplier depends as little as possible on the choice of the
other multiplier(s).

To facilitate our analysis, we can view the transformer residual output as the sum of three terms:

RL = R
(e)
L +R

(a)
L +R

(f)
L ,

R
(e)
L := αex,

R
(a)
L :=

L/2∑
l=1

αa√
L
f2l−1(R2l−1(x)),

R
(f)
L :=

L/2∑
l=1

αf√
L
f2l(R2l(x)),

R
(r)
L := R

(a)
L +R

(f)
L ,

Note that we have added in the depth-µP multipliers here, though a similar analysis can be performed
for non-depth-µP models. As above, fl functions alternate between self-attention layers and feed-
forward layers.

With respect to point 1., we propose two new multipliers that correspond to dynamics in the
network which we suggest are important to control at initialization. The first is the ratio of the scale
of the residuals’ contributions to those of the embedding, αr = σ(R

(r)
L)/σ(R

(e)
L). The second is

the ratio of the scale of the attention-residuals’ contributions to those of the feed-forward-residuals,
αρ = σ(R

(a)
L)/σ(R

(f)
L). We now demonstrate how the existing (αe, αa, αf) multipliers can be

replaced by (αr, αρ).

21

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Let us first examine these two quantities under the standard set of HPs. Residual functions of the
same kind have the same expected output scale at initialization in pre-norm networks. Hence we
denote the output scale σ(fl(Rl)) of self-attention functions as σa, and of feed-forward functions as
σf . We thus have the following scales at the output:

σ(R
(e)
L) = αeσ(x),

σ(R
(a)
L) =

αa√
L
σ

L/2∑
i=1

f2l−1(R2l−1)

 =
αaσa√

2
,

σ(R
(f)
L) =

αf√
L
σ

L/2∑
i=1

f2l(R2l)

 =
αfσf√

2
,

σ(R
(r)
L) =

√
σ(R

(a)
L)2 + σ(R

(f)
L)2 =

√
(αaσa)2 + (αfσf)2√

2
,

meaning our new multipliers are equal to:

αρ =
αa

αf

σa
σf

,

αr =

√
(αaσa)2 + (αfσf)2√

2αeσ(x)
,

=

√
α2
ρ + 1

2

σf
σ(x)

αf

αe
.

The original αa, αf multipliers can then be written in terms of αr, αρ:

αa = αραf
σf

σ(σa)

αf = αrαe
σ(x)

σf

√
2

α2
ρ + 1

We have replaced two of the three original multipliers, but still have a dependence on αe here in our
expressions for αf and R

(e)
L , which we now remove by dividing it out of our residual branches and

embedding. We use the hat (̂·) symbol to denote terms that have been divided-through by αe. This
new system of equations is equivalent to our old one thanks to the zero-homogeneity of the final
post-residual layer:

RL+1(x) = fL+1(R
(e)
L +R

(r)
L)

= fL+1((R
(e)
L +R

(r)
L)/αe)

= fL+1(R̂
(e)
L + R̂

(r)
L)

This gives R̂(e)
L = αex/αe = x, removing our first occurrence of αe. Following the division

through R̂
(r)
L results in:

22

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

R̂
(r)
L = R̂

(a)
L + R̂

(f)
L ,

R̂
(a)
L :=

L/2∑
l=1

α̂a√
L
f2l−1(R2l−1),

R̂
(f)
L :=

L/2∑
l=1

α̂f√
L
f2l(R2l),

α̂a = αρα̂f
σf
σa

,

α̂f = αr
σ(x)

σf

√
2

α2
ρ + 1

.

This system of equations is the same as the original, but with the two αe terms dropped, meaning
our model’s multipliers can be expressed in terms of only αr and αρ. Using the above equations,
any pair of values for (αr, αρ) can be translated back into an equivalent set of values for (αe, αa, αf)
such that the output RL+1(x) is the same, meaning that our multipliers are no less expressive than
the original set. This satisfies our desired property of minimizing the number of multipliers while
maintaining expressivity.

We can simplify further in the case of unit-scaled models, which are designed such that
σ(x), σa, σf are all 1 at initialization. In this case our re-parametrization becomes:

α̂a = αρα̂f , (13)

α̂f = αr

√
2

α2
ρ + 1

, (14)

α̂e = 1. (15)

This is the basis of our claim that Unit Scaling enables this more intuitive set of multipliers. Not
only do the multipliers αr and αρ represent important dynamics in the network at initialization (the
ratio of residual-to-embedding scales, and the ratio of attention-to-feed-forward scales), but it’s only
via unit scaling that these equations become simple enough to implement in practice. Using equations
Equations (13) to (15) for a non-unit scaled network may still be effective, but the interpretation
we’ve given to αr and αρ no longer hold.

Our final desired property is an empirical one: that the most effective choice of one multiplier
depends as little as possible on the choice of the other multiplier(s). We demonstrate that our
multipliers satisfy this property better than the standard set of residual multipliers (see Fig 10 and
Fig 11).

D.1.2. THE FULL U-µP RESIDUAL SCHEME

Here we give the full definition of our u-µP residual scheme, summarizing the results of previous
sections. A general pre-norm transformer is implemented as:

23

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

R0(x) = c x, (16)

Rl(x) = alfl(Rl−1(x)) + blRl−1(x), l = 1, .., L (17)

RL+1(x) = fL+1(RL(x)), (18)

where al, bl and c are scalar multipliers, and the fl alternate between self-attention and feed-forward
layers. We consider our baseline set of residual HPs here to be (αemb, αattn-residual, αffn-residual),
which we implement (assuming depth-µP branch scaling) as:

al =

αattn-residual√

L
l is odd (self-attention)

αffn-residual√
L

l is even (feed-forward)

bl = 1

c = αemb.

The corresponding u-µP set of residual HPs is (αresidual, αresidual-attn-ratio), which we implement as:

al =

√
τl

τl + 1
(19)

bl =

√
1

τl + 1
(20)

c = 1, (21)

τl =
1√
L

·

α̂a

1 + ℓα̂a + ℓα̂f
l is odd

α̂f

1 + (ℓ+ 1)α̂a + ℓα̂f
l is even

, ℓ =

⌊
l − 1

2

⌋
(22)

α̂a = α̂f αresidual-attn-ratio (23)

α̂f =

√
2

α2
residual-attn-ratio + 1

αresidual. (24)

This is the u-µP residual scheme. It satisfies the three properties that we initially set out to achieve:
the variance at initialization of our Rl(x) is always 1, our HPs have a clear and useful interpretation,
and our scheme is as expressive as the baseline (which is neither unit-scaled or has interpretable
HPs).

D.2. Multipliers for non-homogeneous ops αattn-softmax, αffn-act, αloss-softmax

In this section we derive the rest of our u-µP multipliers. We want to identify the minimal set of
multipliers that can still express all different choices of pre-op scales in the model. The crucial
observation is that every pre-scale multiplier α of an operation h 7→ f(αh) can be propagated
through the network if f is k-homogeneous for some k > 0, i.e. f(αx) = αkf(x). We can iterate
this along the computational path until either the next operation is non-homogeneous, we are at
the end of a residual path, or the next operation is 0-homogeneous (e.g. a norm). In the first case

24

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

the accumulated scales are absorbed in the pre-op scale of the non-homogeneous operation (where
we introduce a multiplier), in the second case they are absorbed in the residual addition for that
branch (where we again introduce a multiplier), and in the final case the scale disappears (so we start
over). We now go through the Llama forward computation and follow this paradigm to identify our
multipliers in Table 5.

Table 5: A walkthrough of the Llama architecture, showing how our αattn-softmax, αffn-act and
αloss-softmax multipliers are derived via an analysis of scale-propagation.

Op Scale propagation behavior

Embedding We already saw in the previous section that the embedding multiplier can
be absorbed in the residual multipliers.

Attention RMSNorm This operation is 0-homogeneous and thus we start over.

Query and key Query and key itself are linear, hence their weight multipliers get propa-
gated.

Query-Key matmul The query-key matrix multiplication is 2-homogeneous when viewed as
function of the concatenated query-key vector. Hence it propagates the
scale.

Softmax The softmax operation is non-homogeneous. Thus the pre-op scale of
the softmax becomes our first multiplier αattn-softmax.

Value The value layer is linear and hence propagates its scale.

Softmax-value matmul This operation is linear in all arguments and hence propagates the scale.

Attention projection This operation is linear and lies at the end of the attention residual path.
Hence there are no more multipliers in the attention block.

FFN RMSNorm This operation is 0-homogeneous and thus we start over.

FFN input scale The input layer is linear, hence its weight multiplier gets propagated.

Sigmoid input This function is non-homogeneous and thus we have another multiplier
αffn-act.

SiLU weight This layer is also linear and propagates the scale.

Product The entry-wise multiplication of the outputs of sigmoid, input layer and
SiLU weight is homogeneous and thus propagates the scale.

FFN output This layer is linear and at the end of the residual path. Hence there are
no more multipliers in the FFN residual block.

Output RMSNorm This operation is 0-homogeneous and thus we start over.

Output head This layer is linear, hence its weight multiplier gets propagated.

Loss The cross-entropy loss is non-homogeneous and leads to our final multi-
plier αloss-softmax.

25

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

In summary, we have three multipliers αattn-softmax, αffn-act, αloss-softmax that are applied in
the softmax, sigmoid and loss function via:

fsoftmax(q, k) = softmax(αattn-softmax · d−1
head · (q · kt)), (25)

fact(h) = sigmoid(αffn-act · h), (26)

floss-softmax(h, xtargets) = CE(αloss-softmax · h, xtargets) (27)

We do not explicitly show the derivation of the residual multipliers here, as they undergo a change in
accordance with D.1.1 before we get our final αresidual and αresidual-attn-ratio.

Our analysis from above shows that these three multipliers together with the residual multipliers
are as expressive as the full set of pre-ops multipliers in the whole transformer architecture while
having no redundancy, i.e. a change in one of the multipliers cannot equivalently be expressed in
terms of changes to the other multipliers.

Appendix E. Details on FP8 training

E.1. Background

While full precision (FP32) floating point arithmetic has been the default in the machine learning
community for many years, the ever-growing scale of models and datasets has led to a push towards
lower-precision formats. Training involving FP16 formats has seen major uptake in large-scale
Transformer training, but requires extra care to guarantee stable numerics. Certain quantities, such as
optimizer states, are routinely kept in full precision and loss scaling techniques [11, 16] are employed
to keep gradients in the representable range of the FP16 format. More recently, BFLOAT16 training
has mitigated these scaling issues for 16-bit formats. However, no such alternative is available for
narrower formats, such as FP8.

Recently released AI accelerators have introduced native hardware support for FP8 arithmetic
[7, 18]. However, the further reduced precision and range of these formats introduces additional
numerical challenges which have not been addressed conclusively by the literature.

While FP16 arithmetic can be used throughout the complete forward-backward pass through
the model, efforts on FP8 training have focused on performing the computationally most expensive
operations, matrix multiplications, in FP8. This means that input tensors are cast to an FP8 format
prior to a matrix multiplication, the result of which is produced in a higher-precision format again.

Micikevicius et al. [17] propose two different FP8 formats for deep learning, assigning different
numbers of bits to the exponent and the mantissa, respectively. The E4M3 format uses 4 bits for
the exponent and 5 bits for the mantissa, whereas the E5M2 format uses 5 bits for the exponent,
prioritizing range over relative precision. (The maximum representable value of E5M2 is 57344
compared to 448 for E4M3.) The authors recommend to cast activations and weights to E4M3 and
activation gradients (computed during the backward pass) to E5M2.

Finally, existing attempts at FP8 training employ per-tensor scaling techniques [17]. A scalar
factor is extracted prior to casting a tensor to FP8 and multiplied back onto the output. In pseudo-code
that reads:

a = scale(A)
b = scale(B)
A = to_fp8(A / a)

26

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

B = to_fp8(B / b)
C = (a * b) * matmul(A, B)

where we assume that matmul takes inputs in FP8 and directly produces the output in higher
precision. An obvious choice for the scaling factor is to rescale the maximum absolute value of a
tensor to the maximum value representable by the FP8 format [17]. However, this requires computing
“absmax” prior to performing the matrix multiplication, which hinders an efficient implementation.
To circumvent that, a so-called delayed scaling technique has been proposed [19], which tracks the
scale of each tensor over time, allowing us to implement the rescaling and matrix multiplication in
an efficient fused kernel.

E.2. Details on FP8 scheme

We demonstrate that u-µP enables a simple scheme for FP8 training, without the need for cumbersome
per-tensor scaling. Each linear module in a model induces three matrix-matrix products: one during
the forward pass to compute the output and two during the backward pass, computing gradients
w.r.t. the weights and the inputs, respectively. The tensors participating in these matrix-matrix
products are the input activations, the weights and the gradients w.r.t. the output activations. Unit
scaling ensures unit scale for all three tensors at initialization.

Empirically, the scales of these tensors do not drift too much during training with the exception
of the input tensors to the FFN and self-attention final projections, which grow considerably (see
Appendix F.3, in particular Figure 8). This is consistent across different HP settings (see Figure 9).

Based on this observation, we test a simple scheme for FP8 training. For every matrix multipli-
cation, we cast the input, weight and grad-output tensors to E4M3, with the exception of the inputs
to FFN and self-attention final projections, which are cast to E5M2 to accommodate their growing
scale. The output of each matrix multiplication is produced directly in the higher-precision format
(FP32 in our case). No loss scaling or per-tensor scaling is applied.

Note that we conducted our experiments with simulated FP8 numerics, quantizing inputs to a
matrix multiplication as if they were cast to FP8, while allowing the multiplication to be computed
on hardware that does not have native FP8 support.

Appendix F. Experimental Details

Our experiments are all in the setting of autoregressive language model training, a domain that
has proven a useful testing ground for general machine learning techniques in the model-capacity
constrained regime (the under-fitting regime described by Belkin et al. [2]). Our evaluation metric is
final training cross-entropy loss. This has the benefits of low variance and of separating the concerns
of downstream training and regularization, which are not in scope for this work. This follows the
precedent of Yang et al. [30] who also report training loss. As our model training is not in the
over-fitting regime, we expect training loss to track validation (and have seen so empirically). Default
training settings are given in Table 6.

To compare µP and u-µP with the Llama architecture on a larger dataset, we modify the imple-
mentation provided by Yang et al. [30] for µP and implement u-µP in the same framework.

27

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Dataset WikiText-103 [15]

Sequence Length 256

Vocab Size 32000

Training Set Tokens 138 M

Architecture Llama [23] (Transformer, PreNorm, RMSNorm, SwiGLU, RoPE,
“untied” embeddings), non-trainable RMSNorm parameters.

Width 256

Depth 4

Head Dimension 64

Batch size 64

Training steps 8192 (0.97 epochs)

LR schedule Cosine to 10%, 2000 steps warm-up

Optimizer AdamW (β1, β2, ϵ) = (0.9, 0.999, 10−8)

Weight Decay 2−13, independent [14]

Dropout 0.0

µP HP Search Range η ∈ [2−10, 2−6]

η̂emb ∈ [20, 28]

σinit, αemb, αattn, αoutput ∈ [2−2, 22]

u-µP HP Search Range η ∈ [2−1, 23]

αattn ∈ [2−2, 22]

αresidual, αresidual-attn-ratio, αffn-act, αoutput ∈ [2−3, 23]

µP HP Defaults σinit = αemb = αattn = αoutput = η̂emb = 1

u-µP HP Defaults αresidual = αresidual-attn-ratio = αffn-act = αoutput = αattn = 1

Table 6: Default hyperparameters and training settings.

F.1. Hyperparameter Independence

Our analysis indicates that µP’s hyperparameters have overlapping effects on dynamics-defining
scales within the model, while u-µP attempts to isolate their effect. We hypothesize that this effect
should be visible in the final loss—the effects of u-µP’s hyperparameters should be more separable
than that of µP’s.

In our first test of this hypothesis, we construct pairs of hyperparameters, and perform a coarse 2D
sweep for each pair (Figure 10, Figure 11). These results show some visual dependence between µP
hyperparameters as a diagonal structure in the grids, such as (η̂emb, σinit) and (η, αattn). We quantify
this difference by evaluating the increase in loss on a given row by using the argmin hyperparameter
from a different row of the grid, compared with the actual minimum and averaged over all grids. This
metric gives an average loss increase of 0.08 for µP versus 0.03 for u-µP. This suggests a quantifiable
improvement in hyperparameter separability, but note that the metric may conflate this with the
flatness of the optimum.

28

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

The second test is more directly practical. We compare two hyperparameter search methods on
µP and u-µP. The first is a random grid search, which samples configurations without replacement
from a grid defined over all hyperparameters. After performing a single search, we can simulate
the effect of a shorter search by taking a random sample of the results. The second method is an
independent search, which consists of the following phases:

1. Perform a 1D line search for an optimal learning rate, with other hyperparameters set to their
default (9 runs).

2. For each hyperparameter in parallel, perform a 1D line search (330 runs).

3. Combine the best settings from step 2, and re-evaluate (6 runs).

Each 1D line search can be done on an iteratively refined grid, to provide an incremental
improvement as the number of runs increases.

Our results from this test in Figure 2 (right) show that the first LR sweep is much more efficient for
u-µP since the default hyperparameters are better. For this reason, the 1D line search can outperform
a random grid. We also observe that the final step of combining optimum hyperparameters is very
harmful to µP, while it shows only a slight degradation for u-µP, which was expected as a regression
to the mean.

F.2. Hyperparameter Transfer

We compare learning rate transfer for µP and u-µP in Figures 1 and 6, over a logarithmic grid of
spacing 21/2, with 3 runs for each point. We observe:

1. u-µP transfer of LR over width, training steps, batch size and depth is similar to or better than
µP, when starting from default parameters.

2. u-µP and µP both show increased variance when the learning rate is too high (visible in wide
confidence intervals in Figure 6).

3. The default settings for u-µP are better than those of µP, especially when scaling width and
training duration (steps or batch size).

F.3. Numerical Properties

Our analysis of the numerical properties of u-µP focuses on the RMS statistics of tensors that we
wish to cast to FP8: linear module input activations, weights and output gradients. RMS captures the
larger of the mean and scale of a distribution, and as such can be a good test of whether the tensor is
likely to suffer range (clipping) errors in low-precision number formats.

Figure 3 shows the distribution of statistics over all linear modules in the model, and Figure 8
shows RMS on a per-tensor basis, as it evolves during training. From these, we note:

1. µP has gradients and weights with low RMS, at risk of FP8 underflow, whereas u-µP starts
with RMS ≈ 1.

2. Many input activations do not grow RMS during training (due to a preceding non-trainable
RMSNorm), however the attention out projection and FFN down projection have unconstrained
input activations that grow considerably during training.

29

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

3. The decoder weight grows during training. Since it is preceded by a RMSNorm, the model
may require scale growth in order to increase the scale of softmax inputs. Other weights grow
slightly during training.

4. Gradients grow quickly but stabilize, except for attention out projection and FFN down
projection, whose gradients shrink as the inputs grow.

We also evaluate how RMS growth is affected by model and training hyperparameters in the
tensors that showed the highest end-training RMS, shown in Figure 9. This shows that the main
parameter affecting scale growth is learning rate, with end-training RMS increasing to the right of
the optimal LR basin, as training becomes unstable. End-training RMS is remarkably stable as width,
depth, training steps and batch size are independently increased.

We therefore propose the FP8 scheme described in Appendix E, which works for u-µP without
any dynamic scaling or exponent bias search (see Figure 1 (left), Figure 7).

30

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−10 2−8 2−6

Learning Rate

3.2

3.4

3.6

3.8

4.0

T
ra

in
in

g
L

os
s

Training Steps

4096

8192

16384

32768

2−10 2−8 2−6

Learning Rate

Batch Size

32

64

128

256

2−10 2−8 2−6

Learning Rate

Depth

1

2

4

8

16

2−2 20 22 24

Learning Rate

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

Training Steps

4096

8192

16384

32768

2−2 20 22 24

Learning Rate

Batch Size

32

64

128

256

2−2 20 22 24

Learning Rate

Depth

1

2

4

8

16

Figure 6: Learning rate transfer for µP (top) and u-µP (bottom), over training steps, batch size and
depth. See Figure 1 (left) for transfer over width. The default shape parameter for other panels is
shown in bold. The shaded area shows the 95% confidence interval for the mean.

0 2000 4000 6000 8000

Step

4

6

8

10

T
ra

in
in

g
lo

ss

µP

u-µP

FP32

FP8

Figure 7: FP8 training by direct cast, width 256, default hyperparameters, η = (21, 2−8) for (u-µP,
µP).

31

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−21

2−14

2−7

20

R
M

S

Attn Q Attn K Attn V Attn Out

0 2500 5000 7500

Step

2−21

2−14

2−7

20

R
M

S

FFN Up

0 2500 5000 7500

Step

FFN Gate

0 2500 5000 7500

Step

FFN Down

0 2500 5000 7500

Step

Decoder

Layer

0

1

2

3

Tensor

input

weight

grad

2−6

2−3

20

23

26

R
M

S

Attn Q Attn K Attn V Attn Out

0 2500 5000 7500

Step

2−6

2−3

20

23

26

R
M

S

FFN Up

0 2500 5000 7500

Step

FFN Gate

0 2500 5000 7500

Step

FFN Down

0 2500 5000 7500

Step

Decoder

Layer

0

1

2

3

Tensor

input

weight

grad

Figure 8: RMS during training, for all parametrized matmul inputs, for µP (top) and u-µP (bottom).
Model width 256, default hyperparameters, η = (21, 2−8) for (u-µP, µP).

32

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

3.0

3.2

3.4

T
ra

in
lo

ss

1

10

100

(a
)

R
M

S

1

10

100

(b
)

R
M

S

0 1 2 4 8

Learning Rate

1

100

(c
)

R
M

S

256 512 1024

Width
4 8 16

Depth
8192 16384 32768

Training Steps
64 128 256

Batch Size

FP32 FP8

Figure 9: The effect of hyperparameters on FP8 training loss and on the end-training RMS of
various tensors: (a) decoder weight, (b) last-layer FFN down-projection input and (c) last-layer FFN
down-projection output gradient. Only learning rate has a substantial effect on the end-training RMS.
Vertical lines show the default setting of that hyperparameter, as used for all other plots.

33

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−122−9.52−7.52−5.52−3.5

η

2−12

2−9.5

2−7.5

2−5.5

2−3.5

η

20 22 24 26 28

η̂emb

2−4 2−2 20 22 24

σinit

2−4 2−2 20 22 24

αemb

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αoutput

2−12

2−9.5

2−7.5

2−5.5

2−3.5

η

20

22

24

26

28

η̂ e
m

b

20

22

24

26

28

η̂ e
m

b

2−4

2−2

20

22

24

σ
in

it

2−4

2−2

20

22

24

σ
in

it

2−4

2−2

20

22

24

α
em

b

2−4

2−2

20

22

24

α
em

b

2−4

2−2

20

22

24

α
a
tt

n

2−4

2−2

20

22

24

α
a
tt

n

2−122−9.52−7.52−5.52−3.5

η

2−4

2−2

20

22

24

α
o
u
tp

u
t

20 22 24 26 28

η̂emb

2−4 2−2 20 22 24

σinit

2−4 2−2 20 22 24

αemb

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αoutput

2−4

2−2

20

22

24

α
o
u
tp

u
t

3.4

3.5

3.6

3.7

T
ra

in
in

g
L

os
s

Figure 10: Hyperparameter coupling sweep for µP. Note strong coupling between optima, e.g. in the
cases of (ηemb, σinit) and (η, αattn). See also: u-µP, Figure 11. Across all grids, the average training
loss degradation from using the optimum from the wrong row/column is 0.08, which is worse than
u-µP (0.03).

34

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−2.52−0.5 21.5 23.5 25.5

η

2−2.5

2−0.5

21.5

23.5

25.5

η

2−4 2−2 20 22 24

αresidual

2−4 2−2 20 22 24

αresidual-attn-ratio

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αffn-act

2−4 2−2 20 22 24

αoutput

2−2.5

2−0.5

21.5

23.5

25.5

η

2−4

2−2

20

22

24

α
re

si
d
u
a
l

2−4

2−2

20

22

24

α
re

si
d
u
a
l

2−4

2−2

20

22

24α
re

si
d
u
a
l-

a
tt

n
-r

a
ti

o 2−4

2−2

20

22

24 α
re

si
d
u
a
l-

a
tt

n
-r

a
ti

o

2−4

2−2

20

22

24

α
a
tt

n

2−4

2−2

20

22

24

α
a
tt

n

2−4

2−2

20

22

24

α
ff

n
-a

ct

2−4

2−2

20

22

24
α

ff
n
-a

ct

2−2.52−0.5 21.5 23.5 25.5

η

2−4

2−2

20

22

24

α
o
u
tp

u
t

2−4 2−2 20 22 24

αresidual

2−4 2−2 20 22 24

αresidual-attn-ratio

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αffn-act

2−4 2−2 20 22 24

αoutput

2−4

2−2

20

22

24

α
o
u
tp

u
t

3.3

3.4

3.5

3.6

T
ra

in
in

g
L

os
s

Figure 11: Hyperparameter coupling sweep for u-µP. Note less coupling than with µP, see Figure 10.
Across all grids, the average training loss degradation from using the optimum from the wrong
row/column is 0.03, which is better than µP (0.08).

35

	Introduction
	Background
	The Maximal Update Parametrization
	Unit Scaling

	Combining µP with Unit Scaling
	From relative to absolute scaling
	A maximally independent set of hyperparameters

	Experiments
	Related work
	Conclusions
	From µP and Unit scaling to u-µP
	An intermediate scheme
	Dropping base shapes
	A new embedding scaling rule
	Forward multipliers vs. backward multipliers

	Additional Unit-Scaled Ops
	Unit scaled pre-norm residual layers
	Scale growth in pre-norm residual networks
	Residual symmetry in pre-norm architectures
	Unit Scaling for transformer residuals
	Proof of Lemma C.1

	Hyperparameters for u-µP
	Residual branch multipliers residual, residual-attn-ratio
	Improved HPs for transformer residuals
	The full u-µP residual scheme

	Multipliers for non-homogeneous ops attn-softmax, ffn-act, loss-softmax

	Details on FP8 training
	Background
	Details on FP8 scheme

	Experimental Details
	Hyperparameter Independence
	Hyperparameter Transfer
	Numerical Properties

