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Abstract: Autonomous racing presents a challenging environment for testing the
limits of autonomous vehicle technology. Accurately modeling the vehicle dy-
namics (with all forces and tires) is critical for high-speed racing, but it remains
a difficult task and requires an intricate balance between run-time computational
demands and modeling complexity. Researchers have proposed utilizing learning-
based methods such as Gaussian Processes (GP) for learning vehicle dynamics.
However, current approaches often oversimplify the modeling process or apply
strong assumptions, leading to unrealistic results that cannot translate to real-
world settings. In this paper, we proposed DKL-SKIP, a method combining deep
kernel learning (DKL) with SKIP-GP, for vehicle dynamics modeling. Our ap-
proach outperforms standard GP methods and the Numerical algorithms for Sub-
space State Space System Identification technique (N4SID) in terms of prediction
accuracy. In addition to evaluating DKL-SKIP on real-world data, we also evalu-
ate its performance using a high-fidelity autonomous racing AutoVerse simulator.
The results highlight the potential of DKL-SKIP as a promising tool for modeling
complex vehicle dynamics in both real-world and simulated environments.

Keywords: Gaussian Processes, Vehicle Dynamics, Autonomous Vehicle, Deep
Kernel Learning

1 Introduction

The rising popularity of self-driving cars has inspired the growth of autonomous racing research
(Betz et al., 2022). Researchers are developing algorithms for high-performance race vehicles which
aim to operate autonomously at the edge of the vehicle’s limits. Competitions in autonomous racing
have been held not only in simulation (Hartmann et al., 2021; Babu and Behl, 2020), but also on pro-
totypes ranging from 1:43 scale RC cars (Carrau et al., 2016) to 1/10 scale (O’Kelly et al., 2019), and
to full-size Indy racecars (Wischnewski et al., 2022; Jung et al., 2023). To optimize racecars’ perfor-
mance and control for autonomous racing, it is essential to have a model that can precisely predict
the vehicle’s dynamics. Existing models (Althoff et al., 2017) range from simple point mass vehicle
models and single-track models to complex multi-body vehicle models. However, the construction
of high-fidelity vehicle dynamics models based on physics is difficult due to the capture of non-
linear behavior of components such as tires, suspension and steering systems. Moreover, obtaining
precise parameter values for these components can be expensive and time-consuming. For example,
obtaining tire parameters such as tire stiffness, slip angle, slip ratio, etc. involves a combination
of performing tire testing experiments on tires test rigs and building mathematical models such as
the Pacejka tire model (Pacejka, 2005). Uncertain factors such as road conditions and driver inputs,
along with complex subsystems like suspension and steering systems, further complicate the mod-
eling process. Consequentially, researchers have shown interest in using learning-based approaches
to address model-output discrepancies (Xing et al., 2020; Hermansdorfer et al., 2020). Specifically,
Van Niekerk et al. (2017) proposed Gaussian Processes (GP) models for vehicle dynamics learning,
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which has been further explored by other researchers (Jain et al., 2020; Kabzan et al., 2019; Hewing
et al., 2018). However, existing work faces limitations, including scalability issues with GP models,
reliance on simplified simulations, arbitrary GP kernel choices or no exploration of kernel learning,
and the use of unrealistic race tracks.

This paper proposes DKL-SKIP, a solution to address the mismatch between observations and state
predictions obtained with an extended-kinematic single-track model for vehicle dynamics modeling.
The main contributions of our paper are stated as follows:

1. We present DKL-SKIP, a new method that integrates deep kernel learning with the scalable
SKIP-GP approach for vehicle dynamics modeling. This combination not only overcomes
the scalability challenges associated with the traditional GP but also enhances the robust-
ness to noise, and irrelevant features.

2. We evaluated DKL-SKIP on datasets collected from a full-scale autonomous Indy racecar
in both real-world and simulating racing environments. We demonstrate our method’s ca-
pability to accurately capture the non-linear dynamics of a racecar, especially at the limits
of its performance envelope.

2 Related Work

2.1 Gaussian processes for vehicle dynamics modeling

Hewing et al. (2018) pioneered the use of GP models to learn vehicle dynamics in a miniature
autonomous racecar, demonstrating their effectiveness in capturing lateral dynamics and developing
a model predictive controller. Building on this, Kabzan et al. (2019) applied GP models to learn
vehicle dynamics in a driverless electric racecar and developed a contouring model predictive control
approach. Additionally, Jain et al. (2020) utilized exact GP models for vehicle dynamics learning in
autonomous racing simulations at both 1:43 and 1:10 scales.

However, these methods have the following limitations: (i) The conducted experiments were limited
to a small-scale or formula student racecar (Kabzan et al., 2019) unlike our use of a full-sized fully
autonomous racecar. (ii) Lack of real-world track layouts, limiting model generalizability. Ning
and Behl (2023) have demonstrated that racetrack configurations and choices highly influence the
accuracy of the GP-based model. In this paper, we demonstrate that our method works on data
obtained from a real racecar running at real racetracks. (iii) The exact GP used in Bayesrace is not
scalable to the volume of real-world data samples. In this paper, the training data is 50 times larger,
rendering the Bayesrace method intractable. (iv) Previous work lacks of kernel learning exploration,
and authors arbitrarily used kernel functions such as RBF or Matérn kernel, while research indicates
(Ning and Behl, 2023) that the choice of the kernel can substantially impact GP model performance.
Therefore, in this work, we implement a deep neural network (DNN) for kernel learning for the GP
models.

2.2 Gaussian processes with deep learning

The idea of deep kernel learning, which combines deep learning with Gaussian processes, was
introduced by Wilson et al. (2016), who demonstrated the potential of DKL-GP to achieve state-
of-the-art results on several benchmarks. Bradshaw et al. (2017) investigated the robustness of
DKL-GP models against adversarial examples and transfer learning scenarios. Although the DKL-
GP method has been employed for robotics and control tasks (Lee et al., 2022), to the best of our
knowledge, this paper is the first work of integrating GPs with deep learning approaches for vehicle
dynamics modeling. Specifically, we propose DKL-SKIP to learn the dynamics of a full-sized,
real-world racecar by incorporating deep kernel in conjunction with sparse GPs.



Notation Vehicle Dynamics
x,y: Vehicle position Kinematic Dynamic E-Kin
§: Steering angle [rad] T = vcosy T = vy COSY — vy SinY T = vz COSY — vy sin
1: Heading angle [rad] Yy = vsiny Y = Vg sin1) + vy cos P Y = Vg siny + vy cos P
w: Yaw rate [rad/s] 5=A6 5=A6 5=As
lg,1r: C.O.G. to front/rear axle [m] w = ﬁ tan § 1,2) =w w =w
v, Longitudinal velocity [m/s] V= ag Vp = %(F‘I — Fyysind + moyw) Ve = Qg
vy Lateral velocity [m /s] Uy = %(Fry + Ffy cosd — mugzw) by = lTLTTlf(amw + vpw)
ay: Longitudinal acceleration [m/sz] w = i(lfny cosd — 1 Fry) w= ITLLTllf sin &
Fy,, Fry: Tire lateral forces Fy, = Dsin(C arctan(Bay — E(Bay — arctan(Bay))))
F,: Longitudinal force F,y = Dsin(C arctan(Boa, — E(Ba, — arctan(Ba.))))

Table 1: Mathematical descriptions of different vehicle dynamics models. The vehicle dynamics
models have three components:(1) the kinematic single-track model, (2) the dynamic single-track
model, and (3) the extended-kinematic model used in this paper.

3 Vehicle Dynamics Background

Kinematic and dynamic single-track models are widely used based on a good trade-off between
simplicity and accuracy. The single-track models simplify the vehicle by lumping the front and rear
wheel pairs into one wheel, similar to a bicycle configuration (Althoff et al., 2017). The details of
differential equations for the kinematic model are shown in the second column of Table 1. x and
y are the coordinates of the vehicle’s center of gravity (C.0.G.) with respect to the inertial frame.
Velocity at C.O.G. of the vehicle is denoted by v. v is vehicle inertial heading, and a,, is longitudinal
acceleration. ¢ is the steering angle that represents the angle between the vehicle heading and the
front wheel heading. The model states are {z,y, v, d, 1}, the inputs to the model are acceleration
and steering rate {a,, Ad}, and the parameters of the model are the distance between front axle and
vehicle C.0.G., I, and the distance between rear-axle and vehicle C.0.G., [,.

Although, easier to construct, kinematic models lack
accuracy at higher speeds as they neglect tire slip,
thereby overlooking crucial effects like understeer
and oversteer (Rajamani, 2011). On the other hand,
a dynamic single-track model (Fig. 1) takes into ac-
count the complex dynamics of a vehicle, including
the effects of tire slip and the interaction between
tire forces and vehicle motion (Hwan Jeon et al.,
2011). It considers additional factors such as lateral
acceleration, yaw rate, and tire forces. This model
is more accurate and suitable for high-speed maneu-
vers and scenarios where the vehicle operates closer
to its physical limits. The state equations are denoted
in the third column of Table 1, where F, is the lon-
gitudinal force, and F,, F;.,, are the lateral forces at
the front axle and rear axle, respectively. In addition
to the states in kinematic models, the dynamic mod-
els consider lateral speed, vy, as well as the slip angle of the tire, o, or oy, which is defined as the
angle between the heading of the wheel and the velocity vector of the wheel, and used for deriving
tire lateral forces F'yy, I, using the Pacejka equations (bottom rows in Table 1). However, the
model coefficients, BC'D E, are expensive to obtain and need to be recalibrated every time for every
new racetrack, which increases the cost of implementing such a dynamic model.

Figure 1: Dynamic single-track vehicle
model. Reference point: C.O.G.



Extended kinematic model In this work, we use an extended kinematic single-track (E-kin) model,
as shown in Table 1, which preserves the simplicity of a kinematic model but has identical states to a
dynamic model. However, the states of the E-kin model and dynamic model differ in velocities and
yaw rate, {0, 0y, w}. Specifically, unlike the dynamic models, the E-kin model uses measurable
variables, such as a,, 1, d, and two parameters, ¢, ,, to approximate the longitudinal and lateral
forces. Therefore, the E-kin model requires less effort in model calibration than a dynamic single-
track model. On the other hand, these approximations cause the E-kin model to diverge from the
real dynamics. Therefore, when using the E-kin model to estimate the vehicle dynamics, we employ
GP models to calculate the discrepancies between the E-kin model and the racecar observations.

4 Problem Statement

In this paper, our goal is to construct an extended kinematic single-track model for an autonomous
racecar and use GPs to learn the mismatch between the E-kin model and the observed racecar dy-
namics. In particular, we use racecar state measurements, denoted by set D := {dy,...,d,} for
n data samples, to address the differences between the E-kin model and the observed racecar dy-
namics. Every data sample, d;, consists of states, s; := {x;, Y, Vzi, Uyi,wi, ¥4, 6; }, and inputs,
u; = {agi, Ad;}. The E-kin model is represented as fgy,, and the model output at time step ¢ is
created using the identical states, and inputs from the racecar measurements noted as fgin (S¢, Ut)-
Therefore, at time ¢, the model residual r; can be expressed as in Eq(1).

vy = dit1 — [Erin(St,ut) 1)
We then use GPs for model residual learning:
€(dt) = Q'P(dt) =T —|— Uy (2)

where e(d;) is the GP function given data sample d;, and v; ~ N'(0,1) is the additive Gaussian
noise. By doing so, we can construct a corrected dynamics model, f..,, which is the combination
of fprin and GP, to approximate the racecar’s observed dynamics. For instance, at time ¢, the
corrected model feo.(s¢, us) can be used to approximate racecar’s observed dynamics d;1 as:

Jeorr(St;ut) = fERin(St,ut) + e(dy) = diy1 3)

As shown in Table 1, it is worth noting that the model differences between the observation and E-
kin model outputs only occur in the velocity, v;, v,, and yaw rate w states. This implies that, in this
work, R = [0,0, ¢€,,, €y, , €,,,0,0,0,0], R is the set of model residuals, R := {ry,...r,_1} There-
fore, we learn three GP models, namely e, , €y, , €., to approximate model residuals in €,_, €,,, €.
In the next section, we describe the implementation of the DKL-SKIP method to learn these GPs.

5 DKL-SKIP

In this section, we describe the DKL-SKIP method, which is a combination of deep kernel learning
and a scalable GP, SKIP-GP. This combines the advantages of both DKL and SKIP-GP, and allows
us to apply it to capture the non-linear relationship for vehicle dynamics modeling mismatch.

5.1 Deep kernel learning

The goal of deep kernel learning is to learn a kernel function for GPs. This is achieved by applying
a deep learning neural network for feature extraction before it is fed into the GPs, transforming the
inputs into a higher-level representation. In GP, a kernel function is used to measure the similarity
between inputs, which influences the predictions of GP models. One of the most commonly used
kernel functions in GP is the RBF kernel, denoted in Eq( 4).

lldi — d;|”

k(d;,d;) = o exp <— T

) vi,7 €4{1,...,n} “)



where d;, d; are the input data sample, i.e., racecar state measurements in this paper, o2 is the
variance, ||d; — d;|| is the Euclidean distance between inputs, { is the length-scale. Further details of
GP can be referred to Rasmussen (2003). In this paper, we transform a kernel k(d;, d;; ) to a deep
kernel function, as shown in Eq( 5).

k(di,dj;0) — k(g(di, w), g(d;, w)|0, w) &)
where g(d,w) is a deep learning model, such as a deep neural network. 6 is the kernel hyperpa-
rameters, e.g., the length-scale (/) of RBF kernel, and the w is the DNN weight. The deep kernel
hyperparameters, denoted as v = {6, w}, can be learned jointly by maximizing the log marginal
likelihood. Moreover, DKL acts as a feature extractor, which transfers each input sample (d) into a
lower-dimensional feature expression (d). Hence, the transformation of a kernel into a deep kernel
can then be expressed as in Eq(6). This enables DKL to capture the most representative information
from the input data as well as reduce the data dimensionality.

k(d;, dj; 0) — k(dy, dj; ) (6)
52 SKIP-GP

The kernel learning process of GPs involves using the Cholesky decomposition of the kernel ma-
trix, Kpp, which is a matrix composed of kernel functions of n data points {d1,...,dy}. In this
paper, we use DKL to transform input data into lower-dimensional features (d) leading to a deep
kernel matrix, K %egp which improves the scalability of GPs. However, computing this decompo-
sition requires matrix-vector multiplies (MVMs), which still leads to O(n?) time and O(n?) space
complexity (Rasmussen, 2003). Therefore, we use SKIP-GP, proposed by Gardner et al. (2018), to
reduce the computing complexity. There are two key components in SKIP-GP: (i) Structured kernel
interpolation (SKI) (Wilson and Nickisch, 2015); and (ii) Product kernel structure. First, given a set
of m inducing points, U = {dy, ..., dm}, where m < n, the SKI computes kernel functions between
inducing points and then approximates the true kernel functions:

k(d;, d;) mwg Kyow? i,j € {1,...,m} (7a)
v J
nggp ~W Ky W (7b)

where W 5 is the sparse matrix composed of sparse vector (w;) that contains approximation
weights. And thus, Eq(7b) denotes applying the approximation for all data. This method allows
SKI to achieve linear time and storage complexity. However, it leads SKI to an exponential time
complexity in the dimensionality of the inputs. The SKIP-GP uses product kernel structure to ad-
dress the curse of dimensionality in SKI: given the data with p dimensions, the kernel matrix of the

product kernel structure can be expressed as K %egp =K ,(51,)5 X .. x K ,(51),)5 where X is element-wise
multiplication. And each component, K’ g%, is approximated using SKI: K g% = Wg) K UUWg)T.
This ensures SKIP-GP achieves linear time complexity even with high-dimensional inputs.

Combining DKL with SKIP-GP by using inducing points to approximate the deep kernel matrix,

K%egp , the resulting kernel is denoted as K{”. Then we can use this inducing kernel matrix

to approximate the deep kernel matrix: K%egp ~ WK 365’7 W ;T Therefore, the DKL-SKIP
achieves linear time complexity while maintaining robustness and expressiveness.

6 Experiment Setup

We validate our method using both real-world data and data obtained from AutoVerse, a high-fidelity
racing simulator. All experiments were conducted on a Linux-based system equipped with sixteen
3.8 GHz CPU cores, 16 GB of RAM, and a single NVIDIA GeForce RTX 3080 GPU.

6.1 Real-world autonomous racing setup

The real data is obtained from a full-scale, fully autonomous racecar, shown in Figure 2 O . These
racecars are engineered for the high-speed, autonomous racing competition in the Indy Autonomous
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Challenge (IAC). These vehicles have been customized with sensors such as LIDAR, GNSS, cam-
eras, and radar, computing hardware, and other autonomy-enabling components. The data was col-
lected during solo runs at speeds 80 mph at the Las Vegas Motor Speedway, Figure 2 e . During
these runs, state measurements were obtained by the Extended Kalman filter algorithm and logged
as ROS2 bag files. These bag files were processed to construct the data set, D4, consisting of
{vg, vy, ¥, 0, w, ag, AS, up, up }, which are longitudinal and lateral velocities, vehicle heading, yaw
rate, steering angle, longitudinal acceleration, steering velocity, throttle command, and braking pres-
sure. This dataset is recorded at 25 Hz, divided into a training set encompassing 15,789 samples (631
seconds) and a testing set, unseen to the model, comprising 6,432 data samples (257 seconds).

6.2 Simulated autonomous racing setup

For more repeatable analysis, we also conduct experiments using AutoVerse, designed to replicate
the racing environment for data collection (Autonoma, 2023). As shown in Figure 2 e , AutoVerse
can simulate vehicle simulator for the IAC racecars. We set up a single racecar scenario on the Texas
Motor Speedway racetrack, shown in Figure 2 o , where the car utilizes a pure pursuit algorithm
and runs at higher speeds, 130 mph, than those recorded during real-world data collection. This
approach aims to validate our method’s performance in learning vehicle dynamics at the limits of the
vehicle’s performance. The data set, Dy, recorded at 25 Hz is composed of training set consisting
of 11,737 data samples (469 seconds), the testing set has 7,153 data samples (286 seconds).

6.3 DKL-SKIP setup

Here, we describe the setup of deep neural network feature extractor used to define the deep kernel
of the GP model. In this work, we used a fully connected DNN with a [9 — 800 — 300 — 50 — 4] archi-
tecture, where the numbers indicate the number of neurons in each layer. Specifically, the first layer
has 9 inputs corresponding to 9 features in the dataset, which are {v, vy, 1, 6, w, @z, Ad, up, up}.
The final layer has 4 outputs, which is determined based on the experiments and means that the
DNN maps to 4 final features. These output features are then passed to the SKIP-GP. ReLU acti-
vation layers and dropout layers with 20% rate have been integrated into the DNN. Moreover, we
consider the scalable deep kernel learning with the RBF base kernel, as shown in Eq(4), which is a
popular choice of base kernel. During the training process, we run 60 epochs of training using the
Adam optimizer, and the learning rate is 0.02. Besides, both the hyperparameters of the deep kernel,
6, and the parameters of the DNN, w, are learned using Type-II maximum likelihood estimation.
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Figure 3: Comparison of prediction performance among various models using mean prediction
values: (1) The SKIP-GP model is represented by blue dotted lines; (2) Red dashed lines indicate
the DKL-SKIP model; and (3) The N4SID model is shown by purple dashed lines.

6.4 Data preparation

To address the mismatch between the real racecar observations and the extended kinematic model
data, we use the collected data D.,,,, comprising of both the real-world data and the simulator data,
Deyzp = Dyrear U Dy Given the parameters (I¢, [,.) of the E-kin model fgy;, are known, we can
construct a dataset, Dgg;n, to capture the model outputs when excited with the same inputs and
initial conditions, Dggin = { fErin(si,ui)}, Vi € {1,...,n}, where s;, u; represent data sample of
state measurements and control input of D.,,,. For GPs training and testing, the input states consist
of {vg, vy, ¥, 0,w, az, Ad,ur,up}, and the outputs are €, , €, , €, respectively.

7 Results

In this section, we evaluate DKL-SKIP, SKIP-GP, and a system identification technique, N4SID,
proposed by Van Overschee and De Moor (1994). Our comparison focuses on their capabilities in
predicting the mismatch between the extended kinematic single-track model and observation.

7.1 Real-world results

Figure 3a shows the comparison between DKL-SKIP, SKIP-GP and N4SID for each error term
(€v,, €v,» €w), and we can see that DKL-SKIP is able to accurately predict the mismatch between
observed states and E-kin model output. In addition, we compare these models on mean absolute
error, root mean square error, normalized root mean square error, and the coefficient of determination
(R?), left table of Table 2. When examining the R?, DKL-SKIP outperforms N4SID and SKIP-
GP methods by 99%, 62% for error €,, and 24%, 32% for error ¢, , respectively. N4SID slightly
outperforms DKL-SKIP in the €, error term by a margin of 0.16% in terms of the coefficient of
determination. However, it does poorly at predicting the other two error terms. Overall, the results
on real data show DKL-SKIP superior predictive capabilities across the three error terms.

7.2 Simulation results

The comparison between the models on simulated data is shown in Figure 3b and in the right side
of Table 2. Once again, DKL-SKIP model consistently performs well across all error terms. This
indicates the effectiveness of DKL-SKIP and its ability to predict the non-linear error terms under
high-speed situations. In terms of k2, DKL-SKIP outperforms N4SID and SKIP-GP methods by
99%, 2% for error ¢,, and 63%,34% for error ¢, , respectively. The SKIP-GP is able to make
accurate predictions on error terms €, and €, but it is not as accurate in predicting €,,. Although



Errors in long. velocity, €, (real-world) Errors in long. velocity, €, (Simulation)

Method MAE RMSE | NRMSE R? Method MAE RMSE | NRMSE RZ
N4SID 0.00527 | 0.00680 | 0.15956 | 0.0020 N4SID 0.00754 | 0.00882 | 026283 | -2.463
SKIP-GP 0.00405 | 0.00538 | 0.12662 | 0.3720 SKIP-GP 0.00094 | 0.00094 | 0.02801 | 0.9606
DKL-SKIP | 0.00103 | 0.00111 | 0.02607 | 0.9733 DKL-SKIP | 0.00057 | 0.00064 | 0.01874 | 0.9823
Errors in lateral velocity, €,,, (real-world) Errors in lateral velocity, €,,, (Simulation)
Method MAE RMSE | NRMSE RZ Method MAE RMSE | NRMSE RZ
N4SID 0.00609 | 0.00787 | 0.11236 | 0.7347 N4SID 0.00985 | 0.01215 | 020140 | 0.3230
SKIP-GP 0.00730 | 0.00891 | 0.12733 | 0.6590 SKIP-GP 0.00816 | 0.00926 | 0.15363 | 0.6141
DKL-SKIP | 0.00172 | 0.00246 | 0.03516 | 0.9739 DKL-SKIP | 0.00216 | 0.00301 | 0.04998 | 0.9592
Errors in yaw rate, €,, (real-world) Errors in yaw rate, €, (Simulation)
Method MAE | RMSE | NRMSE R? Method MAE RMSE | NRMSE | R?
N4SID 496¢-6 | 6.78¢-6 | 0.010001 | 0.9985 N4SID 271¢-06 | 9.47¢-06 | 0.00448 | 0.9971
SKIP-GP 3.83¢-5 | 4.51e-5 | 006757 | 0.8837 SKIP-GP 3.91e-05 | 5.18¢-05 | 0.02456 | 0.9133
DKL-SKIP | 577e-6 | 7.26e-6 | 0.01088 | 0.9969 DKL-SKIP | 1.95¢-05 | 29e-05 | 0.01374 | 0.9829

Table 2: Evaluation of N4SID, SKIP-GP, DKL-SKIP (our method), in real-world setup (left table)
and simulation setup (right table): The tables show these models’ performance evaluated in four
metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root
Mean Square Error (NRMSE), and Coefficient of Determination (R?).

N4SID marginally performs better on e, by 1%, it again struggles to accurately predict the other
error terms, particularly €,,. DKL-SKIP’s ability to provide accurate predictions under conditions
when the vehicle operates at high speeds further demonstrates its robustness and effectiveness in
learning the mismatch between Ekin model and observed dynamics for autonomous racing.

8 Limitations

The DKL-SKIP model has shown promise in learning vehicle dynamics in the context of au-
tonomous racing, but a few limitations are noteworthy. First, DKL-SKIP still faces computational
challenges, mainly impacted by the deep learning component, which is computationally expensive,
especially for large datasets. In addition, the SKIP-GP has a O(dkn) space complexity which will
limit GPU performance when the number of copies of dataset, k, increases. These factors limit the
model’s performance in real time. In this paper, without any code optimization, DKL-SKIP has an
inference time ranging from 20 to 40 ms. Since it has not been verified in closed-loop evaluations,
and thus, the computing time may limit its suitability for real-time prediction. This will be addressed
in future work as we implement DKL-SKIP-based model predictive control for autonomous racing.
Second, as a supervised learning method, the predictive accuracy of DKL-SKIP depends on the
distribution of the training data. The model’s performance will be impaired by unseen input data
samples, such as abrupt changes in vehicle speed or direction. Finally, the states v, vy, w in the
E-kin model are simply approximations. We have not explored different variable settings in their
differential equations, which could impact DKL-SKIP prediction ability.

9 Conclusion and Discussion

This paper introduces DKL-SKIP, a scalable GP model combined with the deep kernel learning for
learning the mismatch between an Ekin model and observed dynamics for autonomous racing. We
conduct both real-world and simulation experiments to compare DKL-SKIP against SKIP-GP, and
N4SID. In real-world evaluation, in terms of R?, DKL-SKIP outperforms competitors by 99%, 62%
for €,, and 24%, 32% for ¢, , respectively. DKL-SKIP also outperforms other models on simulated
data by 99%, 2% for €, and 63%, 34% for ¢, , respectively. Besides, DKL-SKIP performs well
on predicting €, specifically, in terms of R2, archives 0.9969 in real-world data, and 0.9829 in
simulated data. Our future work involves implementing model predictive control and evaluation in
closed-loop experiments as well as extending this methodology to multi-agent autonomous racing.
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In this supplementary material, we present a generalized overview of the N4SID system identifica-
tion technique. In addition, we include the details of the ablation studies that were undertaken in the
development of DKL-SKIP.

A N4SID System Identification Algorithm

In this paper, we implement an alternative technique known as N4SID, a data-driven approach
designed for system identification (Van Overschee and De Moor, 1994). This method utilizes a
subspace-based strategy, which segregates the data into deterministic and stochastic elements by
projecting them onto distinct orthogonal subspaces. The algorithm calculates the system’s state se-
quence, state-transition matrid, input matrid, and output matrix from these subspaces, offering a
concise and effective depiction of the inherent dynamical system. Essentially, N4SID is capable of
directly approximating system behavior using input-output data in a state-space format. A descrip-
tion of the algorithm is shown below:

Algorithm 1 N4SID Algorithm

1: procedure N4SID

2: Normalize input-output data.

3 Estimate a covariance matrix by applying QR decomposition.

4 Compute a singular value decomposition (SVD) of the covariance matrix.

5: Divide the SVD output into observable and unobservable subspaces.

6: From the observable subspace, compute the system matrices A, B, C, and D.
7.

8

9:

Perform the balancing transformation and reduction of the state-space model.
: Return the state-space model.
end procedure

In this paper, considering the collected input-output data set u(k), y(k)szl, with u(k) € R™ repre-
senting the input data sample,{vyx, Vyk, Yk, Ok, Wk, Gzk, AOk, Urk, Bk}, and y(k) € RP denoting
the output vector, €,,, , €4, , €w, » at time k, N4SID can effectively approximate the system’s dynam-
ics using a state-space representation, as demonstrated in 8.

{x(t +1) = Az(k) + Bu(k) ®)

y(t) = Cx(k) + Du(k)

B DKL-SKIP setup

B.1 Architecture of neural network

The architecture of our DNN was inspired by the work on Deep Kernel Learning by Wilson et al.
(2016). While we adopted their layered approach, we made modifications to make it suitable for our
tasks.

One key adaptation is the configuration of the first layer, which comprises nine neurons, mirroring
the nine input features in our dataset. The output layer dimensionality is decided through experimen-
tation. Through our tests, we identified an optimal configuration for the output layer that balances
maintaining prediction accuracy and simplifying the computational task. Specifically, we reduced
the output dimensionality to four neurons. This design choice aids the SKIP-GP model in producing
more accurate predictions by reducing the complexity it needs to handle. This is also the reason our
DKL-SKIP performs better than SKIP-GP in terms of prediction accuracy.

The number of hidden layers (network capacity) was decided based on the experiment. Below, we
compare the R2 score as model performance across different architectures, and the results are shown
in Table 3. As shown in the results, it is clear to see that as the capacity of the DNN is augmented,
there’s a typical trend of enhancement in our model’s performance. This improvement is attributed
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Architecture R2 scores (v;) | R2scores (vy) | R2 scores (w)
9 — 50—4 0.96095 0.95242 0.89471
9—300—50—4 0.97435 0.96716 0.99369
9—800—300—50—4 0.97489 0.96347 0.99522
9—1200—800—300—50—4 0.95730 0.93647 0.91790

Table 3: R2 scores for different architectures. As DNN capacity increases, performance generally
improves, but it can decline if capacity becomes excessive.

R2 Score vs Learning Rate

0.980 1

0.978

R2 Score

0.974 4

0.972 4

T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Learning Rate

Figure 4: Performance comparison across different learning rates (0.001 to 0.035) with the optimal
R2 score of 0.9806 achieved at a rate of 0.02.

to the increased ability of the DKL to capture complex patterns and relationships in the dynamics
data. However, it’s essential to strike a balance. If the DNN’s capacity becomes overly large, it may
start to overfit the training data, which eventually degrades the overall performance of our model.

In addition, we also carried out an ablation study to determine the optimal learning rate for tuning
the DNN and the Gaussian Process (GP) kernel function. The results are shown in Figure 4. In our
study, we executed a range of experiments, testing learning rates between 0.001 and 0.035. We used
the R2 score as our benchmark for model performance. Our findings revealed that a learning rate of
0.02 yielded the highest performance, achieving an R2 score of 0.9806. Moreover, this rate ensured
consistent stability during training.

B.2 Input data features

In this paper, the DKL-SKIP model was not exposed to the testing data during the training process.
The training and testing data were collected during distinct runs on the racetrack. The variations in
throttle/braking and steering between these datasets resulted in differing vehicle dynamics. To offer
a clearer understanding, we’ve depicted each input data set in Figure 5.

The input features of our data sets consisting of {v,, vy, ¥, 0, w, az, Ad, ur, up}, representing lon-
gitudinal and lateral velocities, vehicle heading, yaw rate, steering angle, longitudinal acceleration,
steering velocity, throttle command, and braking pressure, respectively.

These features serve as the initial input for the DKL feature extractor. Within the DKL framework,
a series of processes occur: First, the dimensionality of this input data is significantly reduced to
simplify the data structure. This condensed data is then transformed, mapping it to a more abstract
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Figure 5: Distinct racetrack runs for training and testing data collection, highlighting differences in
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vehicle dynamics due to variations in throttle/braking and steering.

feature space. Out of this transformed data, DKL identifies and selects the top four most significant
and representative features. These features are then forwarded as the input for the GP model, which

is responsible for making the final target predictions.
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