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Abstract
In this paper we explore training models to an-001
swer the question, Where are you from? at002
a global scale. In other words, we are train-003
ing models to geolocate speech based on lan-004
guage, accent and dialect. By leveraging ra-005
dio broadcasts with known geographic loca-006
tions, we train interpretable models for geolo-007
cation from audio and demonstrate that solv-008
ing this task also provides a simple, but novel009
method for language identification (LID). We010
show that our method can outperform standard011
self-supervised models.012

1 Introduction013

LID is a critical component in many modern multi-014

lingual speech technologies (Barrault et al., 2023).015

In order to make more accurate predictions or gen-016

erate more fluent outputs, speech technologies of-017

ten condition their predictions on class labels de-018

scribing the language, dialect, or accent of the input019

speech. As a result, tasks aimed at producing these020

class labels have been extensively explored (Ziss-021

man, 1996; Chen et al., 2023; Watanabe et al., 2017;022

Alumäe et al.). State-of-the-art systems perform023

remarkably well on common benchmarks for these024

tasks, including on the FLEURS (Conneau et al.,025

2023) and VoxLingua (Valk and Alumäe, 2021)026

corpora.027

However, many speech phenomena are problem-028

atic for LID systems. Code-switching, receptive029

bilingualism, and symmetric and asymmetric mu-030

tual intelligibility of languages, challenges LID031

systems, but also the notion of using categorical032

labels for a phenomenon that occurs on a contin-033

uum (Haugen, 1966). Is a Hindi speaker who says034

a few words in English really switching to English?035

or are those words effectively part of the Hindi036

vernacular? and who makes that decision?037

Geolocation of speech may be preferable to LID038

in many such circumstances. For instance, a code-039

∗ equal contribution

switched Hindi-English utterance may cause prob- 040

lems for an LID system, but it is still likely to have 041

occurred somewhere in India; a conversation be- 042

tween receptive English-Spanish bilinguals in the 043

United States is still likely to have occurred in the 044

United States regardless of which language was 045

spoken. Furthermore, while some standard corpora 046

for LID cover about 100 languages and dialects, 047

evaluating LID on every accent and dialect is in- 048

tractable. 049

Audio, however, often comes geolocated for free. 050

For instance, the current location of a cell phone 051

or home assistant can be passed as metadata along 052

with any audio recordings on that device. IP ad- 053

dresses also correlate fairly well with geolocation 054

(Li et al., 2012). These data can serve as soft la- 055

bels for language, dialect, and accent. In this work, 056

however, we use audio from radio stations (primar- 057

ily FM broadcasts) that are simultaneous streamed 058

on the web. Because FM radio generally travels 059

only up to about 70 km (FCC), it is reasonable that 060

speech heard on FM stations is at least understood 061

by most people within a 70 km radius of the sta- 062

tion, and possibly even representative of the local 063

vernacular. 064

Our contributions are: 065

1. We demonstrate that geolocation associated 066

with data collected from radio stations, can be 067

used to train models that predict where people 068

speak particular languages / dialects, or with 069

specific accents. 070

2. We propose an interpretable model for speech 071

geolocation whose predictions appear in- 072

formed primarily by phonetics and accent. 073

3. We demonstrate simple methods by which the 074

model can be repurposed for LID. 075

2 Related Work 076

Van Leeuwen and Orr (2016) first proposed the 077
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Figure 1: The geolocation model described in this paper.
See Section 3 for more details. x is the input utterance.
eloc is a trained embedding representing the geolocation
task. h is the sequence of extracted embeddings. h̄ is
a vector representation of audio produced via cross-
attention with eloc. In the attention block eloc is the
query, q, and outputs of the pretrained model are the
keys, k, and values, v. Linear∠, transforms h̄ into
Cartesian coordinates, y, used to compute the angular
distance, L∠ (y,y∗), between the predicted and ground-
truth locations. Linear xent, produces scores, s,
for L possible locations, from which either the cross-
entropy or binary cross-entropy loss, Lce (s,yidx), over
the set of possible locations is computed. S (x)

∗ is the
set of ground truth locations for input x.

task of accent location in the context of identifying078

Dutch accents in the Sprekend Nederland corpus079

and presented various formulations for describing080

a person’s linguistic origins. Lohfink (2017) used081

regression and classification-based approaches to082

locate accent from i-vectors (Dehak et al., 2010).083

To our knowledge this is the only other work on084

geolocation of audio from the linguistic context of085

speech, i.e., not the background noise, or channel,086

which, on the other hand, have been previously087

explored (Kumar et al., 2016).088

Prior work (Ye et al., 2016) has shown that ge-089

olocation can be used to improve ASR systems,090

as geolocation tends to be correlated with accent091

and also device preference. A similar line of work092

(Xiao et al., 2018) described how geolocation can093

be used in language modeling to bias ASR predic- 094

tions towards locally relevant lexical items, includ- 095

ing points-of-interest. 096

A key challenge we address is how to train neu- 097

ral networks to produce points on a sphere. This 098

problem has been previously addressed in the lit- 099

erature on audio source localization. Perotin et al. 100

(2019), for instance, examined whether regression 101

based, or classification approaches were best suited 102

for localization. 103

There has been a significant amount of work 104

on language, dialect, and accent ID. Perhaps the 105

most similar effort to ours from this body of work 106

was Pratap et al. (2023), which attempted to scale 107

speech technologies to thousands of languages by 108

relying primarily on recordings of religious texts. 109

The primary challenge of that effort was to see 110

whether models trained on clean, single speaker 111

recordings with known language labels would gen- 112

eralize to out-of-domain scenarios. In contrast, we 113

are examining whether models can be trained on 114

heterogenous data collected from radio with soft 115

language labels in the form of geolocations. To 116

our knowledge this is the first attempt at language, 117

dialect, or accent localization on a global scale and 118

the first to apply it to language ID. 119

3 Method 120

3.1 The Task of Speech Geolocation 121

Van Leeuwen and Orr (2016) proposed a proba- 122

bilistic formulation of the speech geolocation task. 123

Let x be an input audio sample spoken by a single 124

speaker. Let z be a point estimate of that speaker’s 125

origin and x be an input speech utterance. Then 126

the task of speech geolocation is to estimate the 127

distribution, 128

p (y|x) . (1) 129

Given a model, p (y|x), and the ground truth 130

distribution over locations, p (y), one can use point 131

estimates, 132

y∗ = Ep(y) [y] (2) 133

y = Ep(y|x) [y] , (3) 134

of the ground-truth and prediction locations re- 135

spectively to evaluate model quality. The angu- 136

lar distance between points can be used to this 137

end*). Note that we have not specified a coordinate 138

*The spherical law of cosines formulation can suffer from
loss of precision at small distances (∼1 km). The Haversine
formulation does not. Both versions seemed to work equally
well, nor is this level of precision needed for our application
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system for y. As a convention in this paper, y,139

represents Cartesian coordinates of point using a140

spherical approximation of the Earth with radius,141

ρ = 6378.1 km. Approximating the shape of the142

earth as a sphere incurs minor errors in location143

(< 30 km) which we consider negligible for our144

purposes. Let Θ = (ϕ, λ) be the corresponding145

point on a sphere specified by latitude, ϕ, and lon-146

gitude, λ. Then the angular distance between two147

points is148

dθ (Θ,Θ∗) = arccos{sinϕ sinϕ∗149

+ cosϕ cosϕ∗ cos (λ− λ∗)}. (4)150

The corpus error, D (·, ·), between a set of N paired151

predictions, ΘN
1 , and targets, Θ∗N

1 , can be evalu-152

ated by the average angular distance,153

D
(
ΘN

1 ,Θ∗N
1

)
=

1

N

N∑
i=1

dθ (Θi,Θ
∗
i) . (5)154

Given the near impossibility of labeling speech155

with all perceptible origins of influence, this is156

likely the only realistic evaluation metric for this157

task. However, in some circumstances, modeling a158

speaker’s origins with a single point is insufficient:159

the speech of bilingual speakers will likely reflect160

two disparate origins; an audio sample may contain161

more than one speaker; a person’s speech is likely162

influence by two parents.163

Therefore, we extend the formulation in (van164

Leeuwen and Orr, 2016) to include the possibility165

of multiple points of origin. We achieve this by166

specifying a closed set of locations, S, e.g., a list167

of cities with population > p, or in our case, the168

set of locations broadcasting radio stations. The169

problem is then to estimate the subset, S (x) ⊆ S,170

of locations associated with speech, x, i.e., we want171

to estimate the distribution,172

p (S (x) |x) , (6)173

over these locations. Unfortunately, to our knowl-174

edge, there exist no data in sufficient quantities and175

annotated in any consistent way with this informa-176

tion, so evaluating such models requires default-177

ing to Eq. 5. Point estimates from p (S (x) |x)178

can be estimated by averaging over the locations179

s ∈ S (x). Note that we want the spherical mean,180

y =

∑
s∈S(x) s

∥
∑

s∈S(x) s∥
, (7)181

i.e., the MLE estimate of the Von Mises distribution182

mean parameter.183

3.2 Model 184

Our model is depicted in Figure 1. We describe the 185

depicted components below. 186

3.2.1 Speech representations 187

The only prior work on geolocation from audio (Lo- 188

hfink, 2017), relied on i-vectors to contain all neces- 189

sary information for predicting geographic location. 190

More recently, self-supervised representations have 191

become the state-of-the-art representation used in 192

speaker identification. For this reason we build our 193

geolocation models from various pretrained mod- 194

els. We limited ourselves to various versions of 195

the Wav2Vec2 (Baevski et al., 2020) architecture 196

as many multilingually pretrained models exist, in- 197

cluding XLSR-53 (Conneau et al., 2020), XLS-R 198

(Babu et al., 2021), and MMS (Pratap et al., 2023) 199

models. 200

3.2.2 Interpretable Pooling 201

Once a sequence of embeddings, h, has been ex- 202

tracted from a pretrained model, those representa- 203

tions need to be pooled to produce a single class 204

label. While average pooling is commonplace, we 205

take inspiration from (Girdhar and Ramanan, 2017), 206

and use an attention based pooling mechanism in- 207

stead to let the model learn which embeddings are 208

relevant for the task of geolocation. The advan- 209

tage of this approach is its interpretability – we 210

can inspect the attention weights to see which se- 211

quence positions contributed most to the location 212

prediction. 213

This is important as we are explicitly aim- 214

ing to classify the audio based on linguistic fea- 215

tures and not channel artifacts. If the model 216

places high attention weights on regions of si- 217

lence, the model is likely cuing on channel arti- 218

facts, whereas high weights on specific recurring 219

phonemes, or phoneme sequences indicates the 220

model has learned to associate those phonemes, or 221

phoneme sequences with a particular location. 222

To this end, we train a task-specific embedding 223

vector, eloc that encodes the task of geolocating 224

audio. This vector is treated as a query, q, against 225

which keys, k, are compared. For this task, we 226

use a single-headed, scaled-dot-product attention 227

(Vaswani et al., 2017). The resulting attention 228

weights are used to select which embeddings, i.e., 229

the values, v, to pool for subsequent prediction of 230

location. We denote the pooled representation as 231

h̄. 232

3



3.2.3 Regression-based Prediction233

As discussed in Section 3.1, a practical evaluation234

metric is the average angular distance. We there-235

fore also explore training models to produce single236

point estimates for the origin of x. We use a simple237

classifier, Linear∠, responsible for converting238

the pooled representation h̄ into Cartesian coordi-239

nates.240

Since we are restricted to produce points on the241

surface of the Earth, we project z onto the unit-242

sphere representing the Earth and denote this quan-243

tity244

y =

xy
z

 .245

We also experimented with directly producing246

latitude and longitude. However, the results were247

not substantially different, except for the the train-248

ing was less stable and appeared more sensitive to249

the learning rate. We train using the angular dis-250

tance as the objective function, L∠ (y,y∗), where251

convert Cartesian coordinates y into spherical co-252

ordinates Θ as253

Θ =

[
ϕ
λ

]
=

[
arctan y

x
arcsin z

]
. (8)254

3.2.4 Classification-based Prediction255

Rather than directly producing a point estimate, we256

can try to predict the posterior p (y|x). We achieve257

this by training a classifier, Linear xent, to258

produce a vector of scores, s, for each location in259

our set S. For S, we use the set of all locations260

in the training data. We use as a loss function,261

Lce (s, s
∗), which in this case is the cross-entropy,262

Lce (s, s
∗) = H (Sofmax (s) , s∗) , (9)263

between predicted locations and the one-hot264

ground-truth location s∗.265

3.3 Multi-label Binary Classification266

In the event that multiple ground truth locations,267

S (x)∗, exist, we can train using the binary cross-268

entropy between s and S (x). In other words, we269

assume that the prediction for each location is made270

independently. In practice, no available data are271

labeled with multiple ground-truth locations. How-272

ever, we none-the-less experiment with the multi-273

label loss. To induce multiple ground-truth loca-274

tions from our labels, we pick the top-k closest275

locations to the ground-truth and include those as276

additional ground-truth locations. This may serve 277

to regularize the model slightly as in densely pop- 278

ulated regions, i.e., where there are many radio 279

stations, the top-k locations will cover a narrow re- 280

gion, whereas areas where radio stations are sparse, 281

and where the model should not over-fit to specific 282

locations, the top-k location will cover a broad 283

area. 284

Whether the model is trained to produce one or 285

more labels, point estimates for the distributions 286

can be computed by Eq. 7, possibly restricting 287

the summation to only the top-k most probably 288

locations. Finally, as it may be advantageous to 289

combine both objective functions, we experiment 290

by interpolating both of them via a constant pa- 291

rameter, α, controlling the extent to which each 292

function is used. 293

4 Data 294

4.1 Training 295

As previously mentioned, we rely on data col- 296

lected from radio broadcasts to train our net- 297

works. Streams were recorded using an API to 298

the radio.garden aggregator which provides user- 299

submitted geographic coordinates for radio stations. 300

Two separate sets of data were used. The first set 301

consists of ∼400 hours of speech collected August 302

9, 2023 to August 13, 2023. The second set con- 303

sists of ∼4000 hours of speech collected between 304

September 27, 2023 to October 1, 2023. 305

Stations were randomly sampled from the ag- 306

gregator and recorded for 30 seconds. The first 307

set of recordings were sampled uniformly at ran- 308

dom among all possible station locations. During 309

the second collection, data were sampled propor- 310

tional to the linguistic diversity since the primary 311

application of this method is to support LID tasks. 312

We evenly distribute k points on a sphere each 313

corresponding to the center of a region from which 314

we sample radio stations to record. Specifying 315

evenly spaced points on a sphere has no analytical 316

solution for all k, but can be efficiently approxi- 317

mated by mapping the Fibonacci lattice to points on 318

the sphere. Each possible radio station is mapped 319

to the closest such point according to the angular 320

distance. 321

When recording radio stations, each point on 322

the Fibonacci lattice is sampled proportionally to 323

the language density of that region. We used the 324

set of languages and their coordinates list in the 325

Phoible database to this end (Moran and McCloy, 326
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Figure 2: The distribution of the radio training data. Each circle represents a location with at least one training
sample. The size of the circle is proportional to the number of utterances from a particular location.

2019). Specifically, the Gaussian kernel using the327

angular distance is used to compute scores for each328

language-lattice point pair, (l, fi), where l ∈ L, is329

a language in the set of languages, L, from Phoible,330

and fi is the ith Fibonacci lattice point. The sum of331

scores across all languages determines the weight332

of that Fibonacci lattice point. Here, l is repre-333

sented by the canonical longitude, latitude coordi-334

nates for that language.335

wi =
∑
l∈L

e−
d(l,fi)

2

σ2 (10)336

This heavily biases samples toward south-east337

Asia, Africa, and North and South America. Un-338

fortunately, many of the radio stations in Australia,339

North America, and South America, are not broad-340

casting the indigenous languages responsible for341

the high linguistic density in these regions. This342

likely leads to more English, Spanish, and Por-343

tuguese than desired.344

These chunks were then segmented using the345

inaSpeechSegmenter (Doukhan et al., 2018)346

as in (Pratap et al., 2023). Segments are labeled347

as male, female, music, or NoEngery. Segments348

which were primarily labeled as male or female349

were kept, converted to the FLAC files and resam-350

pled to 16kHz. The other segments were discarded.351

On a subset of 1000 manually annotated samples352

the precision of this speech detection system was353

95%. In total of 3748 hrs of audio remained af-354

ter discarding music and keeping only the subseg-355

ments that the inaSegmenter labeled as speech.356

Figure 2 shows the global distribution of collected357

samples.358
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Figure 3: Averaging the Multi-label predictions

Pretrained Model Radio Valid FLEURS 11 Dev FLEURS 11 Test

XLSR-53 3248 km 2345 km 2253 km
XLS-R-300m 2893 km 2576 km 2509 km
mms-300m 2563 km 818 km 780 km

mms-300 v2.0 2614 km 774 km 741 km

Table 1: Average prediction error (km) of models built
starting from different pretrained models.

4.2 Evaluation 359

We use 3 different datasets for evaluation. 360

Radio Valid: We held-out all segments from 361

50 randomly selected radio stations among the col- 362

lected data. Segments shorter than 2 seconds were 363

discarded leaving 4.47 hrs of audio. Holding out 364

broadcasts reduces the risk of speaker overlap be- 365

tween the train and test sets. These data were only 366

used for evaluation of geolocation. This set was 367

also used as a development set on which geoloca- 368

tion model parameters were tuned. 369

We note that while ground-truth locations of the 370

radio stations are generally trust-worthy, i.e., the 371

problem of rebroadcasts is relatively minor, a mul- 372

titude of speakers of sometimes disparate origin 373

speak during broadcasts. For instance, an Amer- 374

ican may regularly speak on an Australian news 375
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Radio Valid FLEURS 11 Dev FLEURS 11 Test

CE 3720 1982 1848
BCE (1) 3792 1959 1913
BCE (10) 3289 1483 1427
BCE (3) 3285 1286 1278
BCE (3) avg 3056 932 919
∠ dist 2614 774 741

Table 2: Error of models trained with different objective
functions. CE is cross-entropy, BCE (k) is binary cross-
entropy, using the k nearest locations as targets. ∠ dist
is regression using the angular distance. For the BCE
(3) avg model, point estimates are the average of the
top-100 predictions, rather than taking the single best
prediction.

program. Furthermore, some expatriate and immi-376

grant communities also have broadcasts in certain377

cities. These kinds of stations artificially deflate378

the reported accuracy of models.379

FLEURS: We use the FLEURS corpus to evalu-380

ate both LID and geolocation. While the FLEURS381

utterances are not annotated with geolocation, or382

speaker demographic information to our knowl-383

edge, they are guaranteed to be labeled with the384

correct language, contrary to the radio data.385

We therefore create a simulated geolocation eval-386

uation set by assigning a point location to each lan-387

guage and using that as the ground-truth. We use388

the language locations from the Phoible (Moran389

and McCloy, 2019) database where applicable. For390

US English, Brazilian Portuguese, and Russian,391

we the population center of the country where the392

language was spoken. In the case of Latin Ameri-393

can Spanish, a single point in Peru was chosen as394

an approximate geographic center of Latin Ameri-395

can Spanish. We primarily focused on a subset of396

11 FLEURS languages: US English, Latin Amer-397

ican Spanish, Brazilian Portuguese, French, Pol-398

ish, Macedonian, Russian, Malayalam, Hong Kong399

Yue, Filipino, and Japanese. We refer to this subset400

as FLEURS 11.401

5 Experiments402

5.1 Geolocation403

5.1.1 Pretrained Models404

We first ran experiments to determine the sensi-405

tivity of the geolocation model to the underlying406

pretrained model. To this end we explored using407

3 different 300M parameter Wav2Vec2.0 models408

(Baevski et al., 2020): XLSR-53 (Conneau et al.,409

2020), XLS-R(Babu et al., 2021), and the 300M410

parameter MMS model (Pratap et al., 2023). They411

are all of the same size and architecture, but trained 412

on increasing amounts of multilingual data. 413

For these experiments we trained on 4, A100 414

GPUs using a batch size of 400s of audio. All 415

radio segments longer than 10s were cut into 10s 416

windows, and any chunks shorter than 2s were 417

discarded. We use the Radio Valid set to determine 418

when the model had converged. We trained using a 419

learning rate of 3×10−6. We update all parameters 420

in the model except for the convolutional layers of 421

the pretrained base, as in Baevski et al. (2020). 422

We also froze the entire pretrained model for the 423

first 1000 steps, and trained the attention pooling 424

module using a fixed learning rate of 1 × 10−5. 425

We use the OneCycle (Smith and Topin, 2019) 426

learning-rate schedule, where the learning rate is 427

warmed-up for the first 8% of of the steps. Models 428

were trained for up to 800000 steps, but in practice 429

they converged around 136000 steps, which is the 430

checkpoint for which we reported results. 431

Subsequently, we trained a new model using the 432

best pretrained model with a higher learning rate 433

(3× 10−05, and faster warm-up (4% of iterations), 434

and fewer total steps (140000), as it sped up con- 435

vergence and slightly improved performance. 436

5.1.2 Pretrained Model Results 437

Table 1 shows the effect of the pretrained model on 438

the geolocation performance. Bolded values are the 439

best among the first set of models, while bolded and 440

underlined values indicate the best overall scores. 441

We see that the MMS model was responsible for all 442

of the best results on the three test conditions, out- 443

performing both the XLSR-53 and XLS-R models 444

by a wide margin. 445

Somewhat surprisingly, the XLSR-53 model 446

slightly outperformed the XLS-R model as seen 447

comparing rows 1, and 2 of Table 1, despite being 448

trained on significantly fewer data. One possibility 449

is that the XLS-R model, which is trained primarily 450

on European Parliamentary speech from the Vox- 451

Populi (Wang et al., 2021) corpus, is better suited 452

for European languages, or is biased towards that 453

channel. 454

The MMS model, is very similar to the XLS-R 455

model, except for it was additionally trained on 456

55k hrs of audio in 1,362 languages. This language 457

coverage appears to play an important role in im- 458

proving geolocation. 459
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5.1.3 Objective Functions460

We then explored training using different objective461

functions. We used the exact same training config-462

uration as during the pretrained model experiments463

and swapped out objective functions. We trained464

using cross-entropy (CE) and a single ground-truth465

location, using binary cross-entropy (BCE) where466

either the 1, 3, or 10 closests neighbors where con-467

sidered to be the ground truth. The classifier pro-468

duce one or more of 9449 unique locations.469

During inference we averaged the top-k most470

probable locations to create a point-estimate of the471

distribution used for model comparison. We swept472

this parameter on the Radio Valid and FLEURS 11473

dev sets to determine the optimal parameter. Figure474

3 shows the results of this experiment. Using the475

top-100 candidates gave the best results so that is476

what we used on the FLEURS 11 test set.477

Table 2 shows the effect of training with various478

objective functions on model performance. The479

rows are ordered by performance. First, looking at480

the top row, we see that cross-entropy (CE), and481

binary cross-entropy using a single ground-truth lo-482

cation were worst performing models. We noticed483

that model training was somewhat unstable, and484

we hypothesized that this may be due to similar, of-485

ten very nearby locations, which can cause model486

confusions. There is likely little signal in the audio487

that could differentiate between two such areas.488

Training using multiple ground truth locations489

(10) and (3) appears to help. Finally producing490

a point estimate by averaging the most likely 100491

locations improves over picking the single mostly492

likely location and comes close, but does not out-493

perform the best regression-based approach (bot-494

tom row).495

5.2 Language Identification496

A potential downstream use-case for geolocation497

models is as a strong initialization for LID models.498

To this end, we ran several experiments in order to499

explore the use of geolocation in language identifi-500

cation. To first ascertain how well location on its501

own is predictive of language, we ran two simple502

experiments using the FLEURS 11 subset and a503

fine-tuned XLSR-53 model which we trained on504

the first data collection (∼ 400 hr see Section 4).505

Our first approach was to use the point estimates506

produced for each location as fixed parameters in a507

classifier. We refer to this approach as y∗. We can508

improve slightly on this approach by calibrating509

y∗ µgeo µh̄

Lang P, R P, R P, R

en_us 93, 57.7 93.7 , 58.7 96.0, 48.3
es_419 99.2, 95 99.1, 97.0 92.7, 98.5
pt_br 94.8, 84 96.3, 86.7 95.4, 88.4
fr_fr 68, 75.6 52.2, 91.0 51.9, 90.7
pl_pl 56.2, 31.7 45.0, 44.9 37.9, 38.3
mk_mk 44.6, 45 58.3, 30.3 58.6, 20.3
ru_ru 42, 93.9 74.1, 77.3 62.3, 77.8
ml_in 77.7, 98.7 82.9, 98.4 82.2, 98.5
yue_hk 78.7, 98 83.2, 99.2 84.9, 99.2
fil_ph 98.5 80.3 97.9, 87.3 96.1, 90.9
ja_jp 52.5, 3.2 23.2, 24.9 27.6, 27.1

avg 73.2, 69.4 72.3, 72.3 71.4, 70.7

Table 3: Precision (P) and recall (R) of Language ID
on the subset of the FLEURS languages when using
the geographical means (Geo-mean), and Calibrating
Embeding

our point location estimates on some small amount 510

of data, in this case the FLEURS 11 dev set, and 511

update point estimates according to our model’s 512

predictions on the entire development set. This 513

enables us to correct of any consistent biases in 514

location predictions. We use µgeo to denote this 515

approach since we are reëstimating the geographic 516

mean locations from data. 517

Finally, languages may be better separated in 518

our model’s latent representations, h̄, since these 519

ultimately have to be mapped down to the surface 520

of a sphere, and many languages may map to simi- 521

lar locations. Therefore, we similarly can estimate 522

language-specific mean embeddings. We use µh̄ to 523

denote this approach since in this case we are reës- 524

timating embedding means from data. If languages 525

are geographically localized and well-separated 526

this simple approach should work well. 527

The results of these approaches are shown in Ta- 528

ble 3. We also compute precision, P, and recall, R, 529

for each language treating each language separate 530

using a one-versus-all binary classifier. 531

First, for some languages (Spanish, Portuguese, 532

Filipino, Malayalam, and Hong Kong Yue) these 533

approaches work well. Second, calibrating the 534

mean geographic location appears to improve re- 535

call in most cases. Over all, these methods give an 536

accuracy of around 70% and in the case of y∗, no 537

training is required. In both experiments, precision 538

and recall for Japanese was low, possibly due to 539

7



Figure 4: The geolocation model predictions on FLEURS 11 dev.

FLEURS 11 Dev FLEURS 11 TEST

MMS 89.4 89.6
MMS+Geoloc 99.1 99.4

Table 4: The language ID accuracy using geolocation
based pretrained models. MMS is the MMS-300M
model. Geoloc is our best performing geolocation
model.

scarcity of Japanese radio in the training data. The540

low precision and recal for many of the European541

languages is likely explained by the close prox-542

imity of these test languages to each other which543

can cause false positive and negative detections.544

English in particular had a low recall, likely be-545

cause it is spokenacross the globe and so the model546

produced less precise geolocation estimates for En-547

glish.548

5.2.1 Geolocation as Pretraining549

Finally, we preliminarily explore using our best550

geolocation model as an initialization for an LID551

system. In these experiments, we train two LID552

models on the FLEURS 11 Training data, both with553

a learning rate of 1 × 10−5, freezing pretrained554

model for the first 1000 steps, while using a fixed555

learning rate of 1 × 10−5. In these experiments556

we also initialized eloc with the value from the557

geolocation model. All segments 20 s or longer558

were discarded from training.559

Table 4 shows the results of this experiment on560

the 11 FLEURS languages we trained on. When561

training from scratch (row 1), the model converges562

more slowly and gives about 90% accuracy on563

the FLEUR 11 dev and test sets. However, train-564

ing when initializing from the geolocation model565

Figure 5: The binary-cross entropy geolocation model
predictions on a radio station in the Radio Valid set. The
red dot marks the broadcast location.

trained on radio data, the model converged more 566

quickly to very close to 100% accuracy. 567

6 Interpreting Geolocation Predictions 568

While quantitative analysis of this task is difficult, it 569

is very amenable to qualitative analysis. In Figures 570

4 and 5, we show example corpus level predictions 571

for speech for the FLEURS 11 dev set, as well as 572

a single heat-map produced from the multi-label 573

prediction models.* 574

7 Conclusion 575

We have demonstrated that radio stations with ge- 576

olocation can be harvested to train language, di- 577

alect, and accent models at a global scale. Fur- 578

thermore, because geolocation and language are 579

so correlated, training models using geolocations 580

can be used to initialize language ID models. Fu- 581

ture work should scale up these experiments and 582

examine their application to accent recognition. 583

*Interactive examples can be found at
geolocation-from-speech-demo.github.io

8

geolocation-from-speech-demo.github.io


8 Ethical Considerations and Limitations584

The primary limitation of our work is the availabil-585

ity of geolocated audio. We resorted to using radio586

stations for this purpose, but in general we cannot587

release the data collected from these stations to the588

public as it is almost certainly copyrighted. Fur-589

thermore, while our work covers a large portion of590

the world, we are ultimately limited by the avail-591

ability of radio stations and what they choose to592

broadcast. We have no control over the content,593

which is often religious in nature, and the speakers594

tend to be male.595

Furthermore, while identifying an individual’s596

origins from speech is an interesting linguistic ques-597

tion, on its own, it could cause issues of data pri-598

vacy. However, it could have broad applications599

in forensic analysis of speech, or biometric based600

security.601
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