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Abstract

In this paper we explore training models to an-
swer the question, Where are you from? at
a global scale. In other words, we are train-
ing models to geolocate speech based on lan-
guage, accent and dialect. By leveraging ra-
dio broadcasts with known geographic loca-
tions, we train interpretable models for geolo-
cation from audio and demonstrate that solv-
ing this task also provides a simple, but novel
method for language identification (LID). We
show that our method can outperform standard
self-supervised models.

1 Introduction

LID is a critical component in many modern multi-
lingual speech technologies (Barrault et al., 2023).
In order to make more accurate predictions or gen-
erate more fluent outputs, speech technologies of-
ten condition their predictions on class labels de-
scribing the language, dialect, or accent of the input
speech. As a result, tasks aimed at producing these
class labels have been extensively explored (Ziss-
man, 1996; Chen et al., 2023; Watanabe et al., 2017;
Alumde et al.). State-of-the-art systems perform
remarkably well on common benchmarks for these
tasks, including on the FLEURS (Conneau et al.,
2023) and VoxLingua (Valk and Alumaée, 2021)
corpora.

However, many speech phenomena are problem-
atic for LID systems. Code-switching, receptive
bilingualism, and symmetric and asymmetric mu-
tual intelligibility of languages, challenges LID
systems, but also the notion of using categorical
labels for a phenomenon that occurs on a contin-
uum (Haugen, 1966). Is a Hindi speaker who says
a few words in English really switching to English?
or are those words effectively part of the Hindi
vernacular? and who makes that decision?

Geolocation of speech may be preferable to LID
in many such circumstances. For instance, a code-

* equal contribution

switched Hindi-English utterance may cause prob-
lems for an LID system, but it is still likely to have
occurred somewhere in India; a conversation be-
tween receptive English-Spanish bilinguals in the
United States is still likely to have occurred in the
United States regardless of which language was
spoken. Furthermore, while some standard corpora
for LID cover about 100 languages and dialects,
evaluating LID on every accent and dialect is in-
tractable.

Audio, however, often comes geolocated for free.
For instance, the current location of a cell phone
or home assistant can be passed as metadata along
with any audio recordings on that device. IP ad-
dresses also correlate fairly well with geolocation
(Li et al., 2012). These data can serve as soft la-
bels for language, dialect, and accent. In this work,
however, we use audio from radio stations (primar-
ily FM broadcasts) that are simultaneous streamed
on the web. Because FM radio generally travels
only up to about 70 km (FCC), it is reasonable that
speech heard on FM stations is at least understood
by most people within a 70 km radius of the sta-
tion, and possibly even representative of the local
vernacular.

Our contributions are:

1. We demonstrate that geolocation associated
with data collected from radio stations, can be
used to train models that predict where people
speak particular languages / dialects, or with
specific accents.

2. We propose an interpretable model for speech
geolocation whose predictions appear in-
formed primarily by phonetics and accent.

3. We demonstrate simple methods by which the
model can be repurposed for LID.

2 Related Work
Van Leeuwen and Orr (2016) first proposed the
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Figure 1: The geolocation model described in this paper.
See Section 3 for more details. x is the input utterance.
€] 18 a trained embedding representing the geolocation
task. h is the sequence of extracted embeddings. h is
a vector representation of audio produced via cross-
attention with ej,.. In the attention block e is the
query, q, and outputs of the pretrained model are the
keys, k, and values, v. Linear/, transforms h into
Cartesian coordinates, y, used to compute the angular
distance, L, (y,y™), between the predicted and ground-
truth locations. Linear xent, produces scores, s,
for L possible locations, from which either the cross-
entropy or binary cross-entropy loss, L. (S, Yidz ), over

the set of possible locations is computed. S (x)" is the
set of ground truth locations for input x.

task of accent location in the context of identifying
Dutch accents in the Sprekend Nederland corpus
and presented various formulations for describing
a person’s linguistic origins. Lohfink (2017) used
regression and classification-based approaches to
locate accent from i-vectors (Dehak et al., 2010).
To our knowledge this is the only other work on
geolocation of audio from the linguistic context of
speech, i.e., not the background noise, or channel,
which, on the other hand, have been previously
explored (Kumar et al., 2016).

Prior work (Ye et al., 2016) has shown that ge-
olocation can be used to improve ASR systems,
as geolocation tends to be correlated with accent
and also device preference. A similar line of work
(Xiao et al., 2018) described how geolocation can

be used in language modeling to bias ASR predic-
tions towards locally relevant lexical items, includ-
ing points-of-interest.

A key challenge we address is how to train neu-
ral networks to produce points on a sphere. This
problem has been previously addressed in the lit-
erature on audio source localization. Perotin et al.
(2019), for instance, examined whether regression
based, or classification approaches were best suited
for localization.

There has been a significant amount of work
on language, dialect, and accent ID. Perhaps the
most similar effort to ours from this body of work
was Pratap et al. (2023), which attempted to scale
speech technologies to thousands of languages by
relying primarily on recordings of religious texts.
The primary challenge of that effort was to see
whether models trained on clean, single speaker
recordings with known language labels would gen-
eralize to out-of-domain scenarios. In contrast, we
are examining whether models can be trained on
heterogenous data collected from radio with soft
language labels in the form of geolocations. To
our knowledge this is the first attempt at language,
dialect, or accent localization on a global scale and
the first to apply it to language ID.

3 Method

3.1 The Task of Speech Geolocation

Van Leeuwen and Orr (2016) proposed a proba-
bilistic formulation of the speech geolocation task.
Let x be an input audio sample spoken by a single
speaker. Let z be a point estimate of that speaker’s
origin and x be an input speech utterance. Then
the task of speech geolocation is to estimate the
distribution,

p(ylx). ey
Given a model, p (y|x), and the ground truth

distribution over locations, p (y), one can use point
estimates,

y* = IEp(y) [Y] (2)
y = IE’p(y|x) [Y] ) 3)

of the ground-truth and prediction locations re-
spectively to evaluate model quality. The angu-
lar distance between points can be used to this
end”). Note that we have not specified a coordinate

“The spherical law of cosines formulation can suffer from
loss of precision at small distances (~1 km). The Haversine

formulation does not. Both versions seemed to work equally
well, nor is this level of precision needed for our application



system for y. As a convention in this paper, y,
represents Cartesian coordinates of point using a
spherical approximation of the Earth with radius,
p = 6378.1 km. Approximating the shape of the
earth as a sphere incurs minor errors in location
(< 30 km) which we consider negligible for our
purposes. Let © = (¢, A) be the corresponding
point on a sphere specified by latitude, ¢, and lon-
gitude, A. Then the angular distance between two
points is

dg (©,0%) = arccos{sin ¢ sin ¢
+ cospcosp* cos (A — A} (4)

The corpus error, D (-, -), between a set of N paired
predictions, @{V , and targets, @*]1\7 , can be evalu-
ated by the average angular distance,

N
D (@{V, @*{V) - %Zda (0,0%). 5
=1

Given the near impossibility of labeling speech
with all perceptible origins of influence, this is
likely the only realistic evaluation metric for this
task. However, in some circumstances, modeling a
speaker’s origins with a single point is insufficient:
the speech of bilingual speakers will likely reflect
two disparate origins; an audio sample may contain
more than one speaker; a person’s speech is likely
influence by two parents.

Therefore, we extend the formulation in (van
Leeuwen and Orr, 2016) to include the possibility
of multiple points of origin. We achieve this by
specifying a closed set of locations, S, e.g., a list
of cities with population > p, or in our case, the
set of locations broadcasting radio stations. The
problem is then to estimate the subset, S (x) C S,
of locations associated with speech, x, i.e., we want
to estimate the distribution,

p(S(®)[x%), (6)

over these locations. Unfortunately, to our knowl-
edge, there exist no data in sufficient quantities and
annotated in any consistent way with this informa-
tion, so evaluating such models requires default-
ing to Eq. 5. Point estimates from p (S (x) | x)
can be estimated by averaging over the locations
s € S (x). Note that we want the spherical mean,

y = ZSES(X) s
|| ZSES(X) SH ’

i.e., the MLE estimate of the Von Mises distribution
mean parameter.

(7

3.2 Model

Our model is depicted in Figure 1. We describe the
depicted components below.

3.2.1 Speech representations

The only prior work on geolocation from audio (Lo-
hfink, 2017), relied on i-vectors to contain all neces-
sary information for predicting geographic location.
More recently, self-supervised representations have
become the state-of-the-art representation used in
speaker identification. For this reason we build our
geolocation models from various pretrained mod-
els. We limited ourselves to various versions of
the Wav2Vec2 (Baevski et al., 2020) architecture
as many multilingually pretrained models exist, in-
cluding XLLSR-53 (Conneau et al., 2020), XLS-R
(Babu et al., 2021), and MMS (Pratap et al., 2023)
models.

3.2.2 Interpretable Pooling

Once a sequence of embeddings, h, has been ex-
tracted from a pretrained model, those representa-
tions need to be pooled to produce a single class
label. While average pooling is commonplace, we
take inspiration from (Girdhar and Ramanan, 2017),
and use an attention based pooling mechanism in-
stead to let the model learn which embeddings are
relevant for the task of geolocation. The advan-
tage of this approach is its interpretability — we
can inspect the attention weights to see which se-
quence positions contributed most to the location
prediction.

This is important as we are explicitly aim-
ing to classify the audio based on linguistic fea-
tures and not channel artifacts. If the model
places high attention weights on regions of si-
lence, the model is likely cuing on channel arti-
facts, whereas high weights on specific recurring
phonemes, or phoneme sequences indicates the
model has learned to associate those phonemes, or
phoneme sequences with a particular location.

To this end, we train a task-specific embedding
vector, e),. that encodes the task of geolocating
audio. This vector is treated as a query, q, against
which keys, k, are compared. For this task, we
use a single-headed, scaled-dot-product attention
(Vaswani et al., 2017). The resulting attention
weights are used to select which embeddings, i.e.,
the values, v, to pool for subsequent prediction of
location. We denote the pooled representation as
h.



3.2.3 Regression-based Prediction

As discussed in Section 3.1, a practical evaluation
metric is the average angular distance. We there-
fore also explore training models to produce single
point estimates for the origin of x. We use a simple
classifier, Linear/, responsible for converting
the pooled representation h into Cartesian coordi-
nates.

Since we are restricted to produce points on the
surface of the Earth, we project z onto the unit-
sphere representing the Earth and denote this quan-
tity

8
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We also experimented with directly producing
latitude and longitude. However, the results were
not substantially different, except for the the train-
ing was less stable and appeared more sensitive to
the learning rate. We train using the angular dis-
tance as the objective function, £, (y,y™*), where
convert Cartesian coordinates y into spherical co-
ordinates © as

o [qf)] _ [arctan g} . 8)

A arcsin z

3.2.4 Classification-based Prediction

Rather than directly producing a point estimate, we
can try to predict the posterior p (y|x). We achieve
this by training a classifier, Linear xent, to
produce a vector of scores, s, for each location in
our set S. For S, we use the set of all locations
in the training data. We use as a loss function,
Lce (s,s*), which in this case is the cross-entropy,

L (s,s") = H (Sofmax (s),s"), )

between predicted locations and the one-hot
ground-truth location s*.

3.3 Multi-label Binary Classification

In the event that multiple ground truth locations,
S (x)*, exist, we can train using the binary cross-
entropy between s and S (x). In other words, we
assume that the prediction for each location is made
independently. In practice, no available data are
labeled with multiple ground-truth locations. How-
ever, we none-the-less experiment with the multi-
label loss. To induce multiple ground-truth loca-
tions from our labels, we pick the top-k closest
locations to the ground-truth and include those as

additional ground-truth locations. This may serve
to regularize the model slightly as in densely pop-
ulated regions, i.e., where there are many radio
stations, the top-k locations will cover a narrow re-
gion, whereas areas where radio stations are sparse,
and where the model should not over-fit to specific
locations, the top-k location will cover a broad
area.

Whether the model is trained to produce one or
more labels, point estimates for the distributions
can be computed by Eq. 7, possibly restricting
the summation to only the top-k most probably
locations. Finally, as it may be advantageous to
combine both objective functions, we experiment
by interpolating both of them via a constant pa-
rameter, «, controlling the extent to which each
function is used.

4 Data

4.1 Training

As previously mentioned, we rely on data col-
lected from radio broadcasts to train our net-
works. Streams were recorded using an API to
the radio.garden aggregator which provides user-
submitted geographic coordinates for radio stations.
Two separate sets of data were used. The first set
consists of ~400 hours of speech collected August
9, 2023 to August 13, 2023. The second set con-
sists of ~4000 hours of speech collected between
September 27, 2023 to October 1, 2023.

Stations were randomly sampled from the ag-
gregator and recorded for 30 seconds. The first
set of recordings were sampled uniformly at ran-
dom among all possible station locations. During
the second collection, data were sampled propor-
tional to the linguistic diversity since the primary
application of this method is to support LID tasks.

We evenly distribute k points on a sphere each
corresponding to the center of a region from which
we sample radio stations to record. Specifying
evenly spaced points on a sphere has no analytical
solution for all k, but can be efficiently approxi-
mated by mapping the Fibonacci lattice to points on
the sphere. Each possible radio station is mapped
to the closest such point according to the angular
distance.

When recording radio stations, each point on
the Fibonacci lattice is sampled proportionally to
the language density of that region. We used the
set of languages and their coordinates list in the
Phoible database to this end (Moran and McCloy,
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Figure 2: The distribution of the radio training data. Each circle represents a location with at least one training
sample. The size of the circle is proportional to the number of utterances from a particular location.

2019). Specifically, the Gaussian kernel using the
angular distance is used to compute scores for each
language-lattice point pair, (I, f;), where [ € L, is
a language in the set of languages, £, from Phoible,
and f; is the i*" Fibonacci lattice point. The sum of
scores across all languages determines the weight
of that Fibonacci lattice point. Here, [ is repre-
sented by the canonical longitude, latitude coordi-
nates for that language.

wizg e

This heavily biases samples toward south-east
Asia, Africa, and North and South America. Un-
fortunately, many of the radio stations in Australia,
North America, and South America, are not broad-
casting the indigenous languages responsible for
the high linguistic density in these regions. This
likely leads to more English, Spanish, and Por-
tuguese than desired.

These chunks were then segmented using the
inaSpeechSegmenter (Doukhan et al., 2018)
as in (Pratap et al., 2023). Segments are labeled
as male, female, music, or NoEngery. Segments
which were primarily labeled as male or female
were kept, converted to the FLAC files and resam-
pled to 16kHz. The other segments were discarded.
On a subset of 1000 manually annotated samples
the precision of this speech detection system was
95%. In total of 3748 hrs of audio remained af-
ter discarding music and keeping only the subseg-
ments that the inaSegmenter labeled as speech.
Figure 2 shows the global distribution of collected
samples.
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Figure 3: Averaging the Multi-label predictions

Pretrained Model ‘ Radio Valid FLEURS 11 Dev FLEURS 11 Test

XLSR-53 3248 km 2345 km 2253 km
XLS-R-300m 2893 km 2576 km 2509 km
mms-300m 2563 km 818 km 780 km
mms-300 v2.0 2614 km | 774 km | 741 km

Table 1: Average prediction error (km) of models built
starting from different pretrained models.

4.2 Evaluation

We use 3 different datasets for evaluation.

Radio Valid: We held-out all segments from
50 randomly selected radio stations among the col-
lected data. Segments shorter than 2 seconds were
discarded leaving 4.47 hrs of audio. Holding out
broadcasts reduces the risk of speaker overlap be-
tween the train and test sets. These data were only
used for evaluation of geolocation. This set was
also used as a development set on which geoloca-
tion model parameters were tuned.

We note that while ground-truth locations of the
radio stations are generally trust-worthy, i.e., the
problem of rebroadcasts is relatively minor, a mul-
titude of speakers of sometimes disparate origin
speak during broadcasts. For instance, an Amer-
ican may regularly speak on an Australian news



‘ Radio Valid FLEURS 11 Dev FLEURS 11 Test

CE 3720 1982 1848
BCE (1) 3792 1959 1913
BCE (10) 3289 1483 1427
BCE (3) 3285 1286 1278
BCE (3) avg 3056 932 919
Z dist 2614 774 741

Table 2: Error of models trained with different objective
functions. CE is cross-entropy, BCE (k) is binary cross-
entropy, using the k nearest locations as targets. £ dist
is regression using the angular distance. For the BCE
(3) avg model, point estimates are the average of the
top-100 predictions, rather than taking the single best
prediction.

program. Furthermore, some expatriate and immi-
grant communities also have broadcasts in certain
cities. These kinds of stations artificially deflate
the reported accuracy of models.

FLEURS: We use the FLEURS corpus to evalu-
ate both LID and geolocation. While the FLEURS
utterances are not annotated with geolocation, or
speaker demographic information to our knowl-
edge, they are guaranteed to be labeled with the
correct language, contrary to the radio data.

We therefore create a simulated geolocation eval-
uation set by assigning a point location to each lan-
guage and using that as the ground-truth. We use
the language locations from the Phoible (Moran
and McCloy, 2019) database where applicable. For
US English, Brazilian Portuguese, and Russian,
we the population center of the country where the
language was spoken. In the case of Latin Ameri-
can Spanish, a single point in Peru was chosen as
an approximate geographic center of Latin Ameri-
can Spanish. We primarily focused on a subset of
11 FLEURS languages: US English, Latin Amer-
ican Spanish, Brazilian Portuguese, French, Pol-
ish, Macedonian, Russian, Malayalam, Hong Kong
Yue, Filipino, and Japanese. We refer to this subset
as FLEURS 11.

5 Experiments

5.1 Geolocation
5.1.1 Pretrained Models

We first ran experiments to determine the sensi-
tivity of the geolocation model to the underlying
pretrained model. To this end we explored using
3 different 300M parameter Wav2Vec2.0 models
(Baevski et al., 2020): XLSR-53 (Conneau et al.,
2020), XLS-R(Babu et al., 2021), and the 300M
parameter MMS model (Pratap et al., 2023). They

are all of the same size and architecture, but trained
on increasing amounts of multilingual data.

For these experiments we trained on 4, A100
GPUs using a batch size of 400s of audio. All
radio segments longer than 10s were cut into 10s
windows, and any chunks shorter than 2s were
discarded. We use the Radio Valid set to determine
when the model had converged. We trained using a
learning rate of 3 x 10~6. We update all parameters
in the model except for the convolutional layers of
the pretrained base, as in Baevski et al. (2020).

We also froze the entire pretrained model for the
first 1000 steps, and trained the attention pooling
module using a fixed learning rate of 1 x 107°.
We use the OneCycle (Smith and Topin, 2019)
learning-rate schedule, where the learning rate is
warmed-up for the first 8% of of the steps. Models
were trained for up to 800000 steps, but in practice
they converged around 136000 steps, which is the
checkpoint for which we reported results.

Subsequently, we trained a new model using the
best pretrained model with a higher learning rate
(3 x 1079, and faster warm-up (4% of iterations),
and fewer total steps (140000), as it sped up con-
vergence and slightly improved performance.

5.1.2 Pretrained Model Results

Table 1 shows the effect of the pretrained model on
the geolocation performance. Bolded values are the
best among the first set of models, while bolded and
underlined values indicate the best overall scores.
We see that the MMS model was responsible for all
of the best results on the three test conditions, out-
performing both the XILSR-53 and XLS-R models
by a wide margin.

Somewhat surprisingly, the XLSR-53 model
slightly outperformed the XLS-R model as seen
comparing rows 1, and 2 of Table 1, despite being
trained on significantly fewer data. One possibility
is that the XLS-R model, which is trained primarily
on European Parliamentary speech from the Vox-
Populi (Wang et al., 2021) corpus, is better suited
for European languages, or is biased towards that
channel.

The MMS model, is very similar to the XLS-R
model, except for it was additionally trained on
55k hrs of audio in 1,362 languages. This language
coverage appears to play an important role in im-
proving geolocation.



5.1.3 Objective Functions

We then explored training using different objective
functions. We used the exact same training config-
uration as during the pretrained model experiments
and swapped out objective functions. We trained
using cross-entropy (CE) and a single ground-truth
location, using binary cross-entropy (BCE) where
either the 1, 3, or 10 closests neighbors where con-
sidered to be the ground truth. The classifier pro-
duce one or more of 9449 unique locations.

During inference we averaged the top-k most
probable locations to create a point-estimate of the
distribution used for model comparison. We swept
this parameter on the Radio Valid and FLEURS 11
dev sets to determine the optimal parameter. Figure
3 shows the results of this experiment. Using the
top-100 candidates gave the best results so that is
what we used on the FLEURS 11 test set.

Table 2 shows the effect of training with various
objective functions on model performance. The
rows are ordered by performance. First, looking at
the top row, we see that cross-entropy (CE), and
binary cross-entropy using a single ground-truth lo-
cation were worst performing models. We noticed
that model training was somewhat unstable, and
we hypothesized that this may be due to similar, of-
ten very nearby locations, which can cause model
confusions. There is likely little signal in the audio
that could differentiate between two such areas.

Training using multiple ground truth locations
(10) and (3) appears to help. Finally producing
a point estimate by averaging the most likely 100
locations improves over picking the single mostly
likely location and comes close, but does not out-
perform the best regression-based approach (bot-
tom row).

5.2 Language Identification

A potential downstream use-case for geolocation
models is as a strong initialization for LID models.
To this end, we ran several experiments in order to
explore the use of geolocation in language identifi-
cation. To first ascertain how well location on its
own is predictive of language, we ran two simple
experiments using the FLEURS 11 subset and a
fine-tuned XL.SR-53 model which we trained on
the first data collection (~ 400 hr see Section 4).
Our first approach was to use the point estimates
produced for each location as fixed parameters in a
classifier. We refer to this approach as y™*. We can
improve slightly on this approach by calibrating

‘ ‘ y* ‘ Hgeo Hp

|Lang | PR | PR PR
en_us | 93,577 |93.7,58.7 | 96.0,48.3
es_419 | 99.2,95 | 99.1,97.0 | 927, 98.5
ptbr | 948,84 | 96.3,86.7 | 95.4,88.4
fr_fr 68,75.6 | 52.2,91.0 | 51.9,90.7
plpl |56.2,31.7 | 45.0,44.9 | 379,383
mk_mk | 44.6,45 | 58.3,30.3 | 58.6,20.3
ruru | 42,939 | 74.1,77.3 | 62.3,77.8
ml_in | 77.7,98.7 | 82.9,984 | 822,98.5
yue_hk | 787,98 | 83.2,99.2 | 84.9,99.2
fil_ph | 98.580.3 | 97.9,87.3 | 96.1,90.9
jajp | 52.5,32 | 23.2,249 | 27.6,27.1
avg | 73.2,694 | 72.3,72.3 | 71.4,70.7

Table 3: Precision (P) and recall (R) of Language ID
on the subset of the FLEURS languages when using
the geographical means (Geo-mean), and Calibrating
Embeding

our point location estimates on some small amount
of data, in this case the FLEURS 11 dev set, and
update point estimates according to our model’s
predictions on the entire development set. This
enables us to correct of any consistent biases in
location predictions. We use fi4¢, to denote this
approach since we are reéstimating the geographic
mean locations from data.

Finally, languages may be better separated in
our model’s latent representations, h, since these
ultimately have to be mapped down to the surface
of a sphere, and many languages may map to simi-
lar locations. Therefore, we similarly can estimate
language-specific mean embeddings. We use pif, to
denote this approach since in this case we are re€s-
timating embedding means from data. If languages
are geographically localized and well-separated
this simple approach should work well.

The results of these approaches are shown in Ta-
ble 3. We also compute precision, P, and recall, R,
for each language treating each language separate
using a one-versus-all binary classifier.

First, for some languages (Spanish, Portuguese,
Filipino, Malayalam, and Hong Kong Yue) these
approaches work well. Second, calibrating the
mean geographic location appears to improve re-
call in most cases. Over all, these methods give an
accuracy of around 70% and in the case of y*, no
training is required. In both experiments, precision
and recall for Japanese was low, possibly due to
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Figure 4: The geolocation model predictions on FLEURS 11 dev.

| FLEURS 11 Dev | FLEURS 11 TEST

89.4 89.6
99.1 99.4

MMS
MMS+Geoloc

Table 4: The language ID accuracy using geolocation
based pretrained models. MMS is the MMS-300M
model. Geoloc is our best performing geolocation
model.

scarcity of Japanese radio in the training data. The
low precision and recal for many of the European
languages is likely explained by the close prox-
imity of these test languages to each other which
can cause false positive and negative detections.
English in particular had a low recall, likely be-
cause it is spokenacross the globe and so the model
produced less precise geolocation estimates for En-
glish.

5.2.1 Geolocation as Pretraining

Finally, we preliminarily explore using our best
geolocation model as an initialization for an LID
system. In these experiments, we train two LID
models on the FLEURS 11 Training data, both with
a learning rate of 1 x 1075, freezing pretrained
model for the first 1000 steps, while using a fixed
learning rate of 1 x 107°. In these experiments
we also initialized ej,. with the value from the
geolocation model. All segments 20 s or longer
were discarded from training.

Table 4 shows the results of this experiment on
the 11 FLEURS languages we trained on. When
training from scratch (row 1), the model converges
more slowly and gives about 90% accuracy on
the FLEUR 11 dev and test sets. However, train-
ing when initializing from the geolocation model

© Carto © OpenSreethap contributors o

Figure 5: The binary-cross entropy geolocation model
predictions on a radio station in the Radio Valid set. The
red dot marks the broadcast location.

trained on radio data, the model converged more
quickly to very close to 100% accuracy.

6 Interpreting Geolocation Predictions

While quantitative analysis of this task is difficult, it
is very amenable to qualitative analysis. In Figures
4 and 5, we show example corpus level predictions
for speech for the FLEURS 11 dev set, as well as
a single heat-map produced from the multi-label
prediction models.*

7 Conclusion

We have demonstrated that radio stations with ge-
olocation can be harvested to train language, di-
alect, and accent models at a global scale. Fur-
thermore, because geolocation and language are
so correlated, training models using geolocations
can be used to initialize language ID models. Fu-
ture work should scale up these experiments and
examine their application to accent recognition.

“Interactive  examples can be  found at
geolocation-from-speech-demo.github.io


geolocation-from-speech-demo.github.io

8 Ethical Considerations and Limitations

The primary limitation of our work is the availabil-
ity of geolocated audio. We resorted to using radio
stations for this purpose, but in general we cannot
release the data collected from these stations to the
public as it is almost certainly copyrighted. Fur-
thermore, while our work covers a large portion of
the world, we are ultimately limited by the avail-
ability of radio stations and what they choose to
broadcast. We have no control over the content,
which is often religious in nature, and the speakers
tend to be male.

Furthermore, while identifying an individual’s
origins from speech is an interesting linguistic ques-
tion, on its own, it could cause issues of data pri-
vacy. However, it could have broad applications
in forensic analysis of speech, or biometric based
security.
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