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Abstract
Composed Image Retrieval (CIR) retrieves rel-
evant images based on a reference image and
accompanying text describing desired modifi-
cations. However, existing CIR methods only
focus on retrieving the target image and disre-
gard the relevance of other images. This limi-
tation arises because most methods employing
contrastive learning–which treats the target im-
age as positive and all other images in the batch
as negatives–can inadvertently include false neg-
atives. This may result in retrieving irrelevant
images, reducing user satisfaction even when the
target image is retrieved. To address this issue, we
propose Query-Relevant Retrieval through Hard
Negative Sampling (QURE), which optimizes a
reward model objective to reduce false negatives.
Additionally, we introduce a hard negative sam-
pling strategy that selects images positioned be-
tween two steep drops in relevance scores fol-
lowing the target image, to effectively filter false
negatives. In order to evaluate CIR models on
their alignment with human satisfaction, we create
Human-Preference FashionIQ (HP-FashionIQ), a
new dataset that explicitly captures user prefer-
ences beyond target retrieval. Extensive exper-
iments demonstrate that QURE achieves state-
of-the-art performance on FashionIQ and CIRR
datasets while exhibiting the strongest alignment
with human preferences on the HP-FashionIQ
dataset. The source code is available at https:
//github.com/jackwaky/QuRe.

1. Introduction
Composed Image Retrieval (CIR) retrieves images from a
large corpus using text and image inputs, enabling precise
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Figure 1. Comparison of existing CIR methods and QURE. Tradi-
tional CIR approaches treat all non-target images as negatives in
contrastive learning. In contrast, QURE ranks the image corpus
using a learned relevance score to identify a hard negative set. It
then applies preference-based optimization to distinguish not only
the target image but also other relevant images from hard negatives,
leading to improved retrieval performance.

search capabilities in scenarios where textual descriptions
alone are insufficient. This task is critical for applications
such as e-commerce and Internet search, where users often
seek results that match complex, visually nuanced specifica-
tions. For instance, as shown in Figure 1, a query combin-
ing an image of a shirt with the text ‘blue t-shirt with short
sleeves’ requires CIR to retrieve matching images, including
variations in style or color.

Existing CIR methods focus on retrieving the target image
and overlook the broader relevance of other images. This
limitation arises from the structure of CIR datasets, which
typically annotate only a single target image per query and
lack annotations for false negatives–relevant images not
marked as targets. Furthermore, most CIR methods (Bai
et al., 2024; Li et al.; Zhang et al., 2024) adopt contrastive
learning, treating the target image as positive and all other
images in the batch as negatives, inevitably including false
negatives. While effective at ranking the target image within
the top-k results, this approach frequently retrieves irrele-
vant images, as illustrated in Figure 1. Such irrelevance
can reduce user satisfaction, as retrieval experience largely
depends on the proportion of relevant items in the retrieved
set (Al-Maskari & Sanderson, 2010).

We propose Query-Relevant Retrieval through Hard Neg-
ative Sampling (QURE), which aims to retrieve not only

1

https://github.com/jackwaky/QuRe
https://github.com/jackwaky/QuRe


QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval

the target image but also other relevant images with high
ranks, thereby improving user satisfaction. To mitigate the
inclusion of multiple false negatives, QURE adopts a reward
model training objective (Ouyang et al., 2022), optimizing
the likelihood of ranking a positive image above a single
negative image, with the target image designated as positive
for each query. A key challenge lies in sampling appropri-
ate negatives, excluding false negatives while incorporating
hard negative.

Hard negatives are generally defined as samples that (1) be-
long to a different class than the anchor and (2) have embed-
dings close to the anchor (Robinson et al., 2020; Ma et al.,
2020; Tabassum et al., 2022; Huynh et al., 2022). Tradi-
tional hard negative selection relies on class labels, but in
CIR, each query has a unique target, making class-based
distinctions impractical. Moreover, randomly selecting neg-
atives from the entire corpus or choosing those too similar to
the target often leads to suboptimal training (Figure 4). To
address these challenges, we redefine the first condition as
‘less relevant to the query than the target,’ ensuring that hard
negatives differ from the query in at least one key attribute,
such as color or shape.

To balance both conditions for selecting proper hard neg-
atives in CIR, QURE periodically sorts the images in the
corpus based on their relevance scores, calculated using
the training model. During training, with the target image
marked as positive, visually similar images (false negatives)
tend to rank near the top of the sorted list. The sorted im-
ages are then divided into three groups: (1) false negatives,
including the target image, (2) hard negatives, and (3) easy
negatives. Hard negatives are defined as images that fall
between two sharp declines in relevance scores, which occur
after the target image. These steep drops indicate signifi-
cant changes in relevance (Xia et al., 2024), ensuring that
hard negatives differ from the query in at least one key at-
tribute (Figure 6). This distinction makes hard negatives
particularly valuable as challenging examples for training.

Our approach achieves state-of-the-art performance on the
FashionIQ and CIRR datasets. To further evaluate alignment
with human preferences, we created the Human-Preference
FashionIQ (HP-FashionIQ) dataset, where human annota-
tions indicate preferences between two retrieved sets for a
given query. Experiments on HP-FashionIQ demonstrate
that QURE achieves the best alignment with human prefer-
ences compared to baseline methods.

Our contributions are as follows:

• We propose QURE, a CIR algorithm that retrieves not
only the target image but also other relevant images with
high ranks to enhance user satisfaction.

• We introduce a novel hard negative sampling strategy that

identifies images between two sharp declines in relevance
scores after the target image. It optimizes model training
by leveraging highly challenging samples while ensuring
they are less relevant to the query than the target.

• We achieve state-of-the-art performance on the FashionIQ
and CIRR datasets, and demonstrate superior alignment
with human preferences on the newly introduced Human-
Preference FashionIQ (HP-FashionIQ) dataset.

2. Related Work
Vision-language foundation model. Vision-Language
Models (VLMs) have gained attention for their ability to
integrate multimodal data. Transformer-based architectures
effectively handle both visual and language inputs (Li et al.,
2019; Lu et al., 2019). Contrastive learning methods, which
align visual and language modalities, have significantly im-
proved performance in VLMs (Jia et al., 2021; Radford
et al., 2021). New architectures combine features from both
modalities. For instance, Flamingo (Alayrac et al., 2022)
and BLIP (Li et al., 2022) use cross-attention, where visual
hidden states from the vision encoder are inserted into cross-
attention layers within the text encoder layers. BLIP-2 (Li
et al., 2023) and QWEN (Bai et al., 2023) utilize pre-trained
image and text encoders with learnable networks that bridge
the gap between modalities.

QURE fine-tunes BLIP-2, using its image and text encoders
with the Q-former module to handle modality gaps. We
chose BLIP-2 for its efficient combination of image and
text processing, requiring minimal training of the Q-former
module.

Composed image retrieval. The CIR task fetches im-
ages using multimodal input features. A common approach
is feature fusion, where the reference image and text are
jointly embedded and compared against embeddings of can-
didate images (Vo et al., 2019; Dodds et al., 2020; Liu et al.,
2021; Baldrati et al., 2023). Bi-BLIP4CIR (Liu et al., 2024)
trains the text encoder using bi-directional training to cap-
ture both text directions of a given relation. CASE (Levy
et al., 2024) leverages BLIP (Li et al., 2022) cross-attention
architecture to perform an early fusion between the modali-
ties. Other approaches transform images into pseudo-word
embeddings or sentence-level prompts for text-to-image re-
trieval (Liu et al., 2023; Saito et al., 2023; Bai et al., 2024).
MGUR (Chen et al., 2024) introduces an uncertainty loss for
coarse-grained retrieval, and SPN4CIR (Feng et al., 2024)
proposes a data generation method to scale positive and
negative samples using multimodal LLMs.

However, all previous works trained models using con-
trastive loss, treating the target image as positive and all
other images in the batch as negatives. This approach risks
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Figure 2. Overview of QURE. During training, QURE periodically ranks corpus images by relevance score using the current model. Hard
negatives are selected from the range between two sharp drops in relevance scores following the target image. A KL divergence loss is
then used to train the model to assign higher relevance to the positive image than to a randomly chosen hard negative.

including false negatives as negatives, which may lead to
irrelevant retrieval results. QURE overcomes this issue by
employing the reward model objective, pairing each positive
image with a sampled single hard negative.

Hard negative sampling. Hard negative sampling is a
common technique in contrastive learning that selects more
informative negatives rather than treating all images in the
batch equally. HCL (Robinson et al., 2020) suggests that
hard negatives should (1) belong to a different class than
the anchor, and (2) have embeddings closer to it. However,
in unsupervised settings like the CIR dataset, the lack of
annotations makes it challenging to identify appropriate
hard negatives. Embedding similarity alone can lead to
including false negatives, prompting some approaches to
incorporate model uncertainty, as higher uncertainty often
indicates proximity to class boundaries (Ma et al., 2020).
UnReMix (Tabassum et al., 2022) addresses this by combin-
ing embedding similarity with model uncertainty to identify
suitable hard negatives. Meanwhile, FNC (Huynh et al.,
2022) uses a predefined threshold to filter out false nega-
tives and treats such samples as positives.

To address these challenges, QURE introduces a novel hard
negative sampling strategy. It selects hard negatives from
images positioned between two sharp drops in relevance
scores following the target image. The steep drop after the
target ensures that the selected image differs from the query
in at least one key attribute (e.g., color or shape), making it
a suitable hard negative for training.

3. Methodology
We denote a CIR dataset as D = {di | i = 1, . . . , Ndata},
where each data point consists of a reference image, relative
text, and a target image, i.e., di = {xIi , xTi

, yIi}. The goal
of CIR is to retrieve a set of images from the image corpus
I = {Ij | j = 1, . . . , Nimg}, including the target image yI ,
where the retrieved images reflect the specified relative text
xT while preserving the visual properties of the reference
image xI . The training algorithm of QURE is provided in
Appendix A.

3.1. QURE: Query-Relevant Retrieval through Hard
Negative Sampling

Relevance score. For each image in corpus I ∈ I, we define
the relevance score to the query as the inner product of the
bi-modal query and image embeddings:

s(xI , xT , I) =
Q(Eimg(xI), xT ) ·Q(Eimg(I))

τ
. (1)

Here, Eimg is the BLIP-2 image encoder, Q denotes the Q-
Former, and τ is the learned BLIP-2 temperature. Q-Former
processes the reference image embedding and relative text
to align image and text modalities through cross-attention.

Training objective. QURE is trained to maximize the prob-
ability of preferring the highly relevant image, positive, over
the less relevant image, negative. We model the latent prefer-
ence distribution p∗ using the Bradley-Terry model (Bradley
& Terry, 1952), where Ip and In denote the positive and
negative images, respectively.

p∗(Ip ≻ In | xI , xT ) = σ(s(xI , xT , Ip)− s(xI , xT , In)).
(2)
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We set the target image as positive Ip = yI . To in-
clude the negative image In, we construct the dataset
D∗ = {(xI , xT , Ip, In) | (xI , xT , Ip) ∈ D, In ∈ H},
where In is drawn from the hard negative set H, defined
in Section 3.2. The model is optimized by minimizing the
negative log-likelihood (NLL) loss:

L = −E(xI ,xT ,Ip,In)∼D∗ [log(p∗(Ip ≻ In | xI , xT ))]. (3)

This objective is equivalent to minimizing the KL diver-
gence between p∗ and a target distribution p = [1, 0], ensur-
ing the model prefers the positive image over the negative.

3.2. Hard Negative Set Sampling

Defining hard negative set. We defined the conditions
for an appropriate negative image In in the CIR setting as
follows:

C1. The negative image In should be less relevant to the
query than the target image Ip.
C2. The relevance score of the negative image In should be
similar to that of the target image Ip.

However, identifying false negatives is practically infeasible
as the CIR dataset annotates only the target image for each
query. Additionally, selecting images that are overly dissim-
ilar from the target may satisfy C1 but fail to meet C2, or
vice versa, further complicating the selection process.

To balance these conditions, we sort the images in corpus I
by their relevance scores obtained from the training model,
forming an ordered set:

Si = {si,1, . . . , si,Nimg}, where si,1 ≥ · · · ≥ si,Nimg

(4)
where Si represents the relevance scores sorted in descend-
ing order for the i-th query.

Based on the ordered set, we categorize images into three
groups: (1) false negatives, which include the target image,
(2) hard negatives, and (3) easy negatives. To identify hard
negatives, we select images positioned between two steep
relevance score drops occurring after the target image.
The steep drop in relevance score indicates a noticeable shift
in semantic similarity (Xia et al., 2024), helping to exclude
false negatives while selecting negatives that are still chal-
lenging for the model. By focusing on this transition zone,
we ensure that the selected negatives maintain a balance
between similarity and distinction from the target image.

The subset of scores lower than the target score is defined
as:

S<targ
i = {si,j | si,j < s(xIi , xTi , yi)}. (5)

From this subset, the indices of the top two largest degrada-
tions are identified as:

k1, k2 = arg top-2j(si,j − si,j+1 | si,j ∈ S<targ
i ). (6)

Finally, the hard negative set for the i-th query is defined as:

Hi = {Ij |j ∈ [min(k1, k2) + 1,max(k1, k2)],

si,j < s(xIi , xTi , yi)}. (7)

Sampling hard negatives. To ensure diverse and informa-
tive negatives, a single image is sampled from the defined
hard negative set for every epoch based on a uniform distri-
bution.

4. HP-FashionIQ Dataset
The commonly used evaluation metric, Recall@k, fails to
capture user satisfaction. While user satisfaction increases
with the number of relevant items retrieved (Al-Maskari &
Sanderson, 2010), Recall@k only checks whether the target
image is retrieved, disregarding the relevance of other im-
ages in the fetched result. However, assessing the relevance
of retrieved images is challenging, as it requires evaluating
how well the images align with both the text and image in-
puts, which in CIR involves considering numerous complex
attributes.

Human evaluation remains the most reliable way to measure
image relevance, as humans can accurately assess how well
an image matches a multi-modal query. To facilitate such
evaluation, we created the Human-Preference FashionIQ
(HP-FashionIQ) dataset, using the validation set of the Fash-
ionIQ dataset (Wu et al., 2021) with 61 participants. We
selected the FashionIQ dataset for its high relevance and
broad applicability, mirroring the search functionalities of
e-commerce platforms.

Table 1. Statistics of HP-FashionIQ Dataset: Each query has two
sets of retrieved images from different CIR models, annotated
based on their preferences.

# Total
Queries

# Shirts
Queries

# Toptee
Queries

# Valid
Queries

3,050 1,800 1,250 2,715

Data collection setting. Each question consisted of two
retrieved image sets, each with the top 5 results from differ-
ent CIR models. For every question, two CIR models were
randomly selected from the following four: CLIP4CIR (Bal-
drati et al., 2023), Bi-BLIP4CIR (Liu et al., 2024), CoVR-
BLIP (Ventura et al., 2024b), and SPRC (Bai et al., 2024).
We provided queries and retrieved images from the ‘shirts’
or ‘top tees’ categories of the FashionIQ dataset to partici-
pants. Each participant was given 50 questions with a total
of 100 sets of retrieved images, covering 3,050 queries in
the FashionIQ validation set.

Annotation methodology. For each question in the survey,
participants chose the preferred set between the two pro-
vided sets, assessing the alignment with human preferences.
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Table 2. Performance comparison on the FashionIQ validation dataset across different methods. The best results are highlighted in bold,
and the second-best are underlined.

Method
Dress Shirt Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

CoSMo (Lee et al., 2021) 23.60 49.18 18.11 43.18 24.63 54.31 22.11 48.89 35.50

MGUR (Chen et al., 2024) 23.15 48.74 18.99 43.47 25.55 52.83 22.56 48.35 35.46

CLIP4CIR (Baldrati et al., 2023) 38.32 63.90 44.31 65.41 47.27 70.98 43.30 66.76 55.03

Bi-BLIP4CIR (Liu et al., 2024) 39.12 62.92 39.21 62.81 44.37 67.06 40.90 64.26 52.58

CoVR-BLIP (Ventura et al., 2024b) 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25 60.24

SPRC (Bai et al., 2024) 45.71 70.00 51.37 72.77 55.48 77.46 50.86 73.41 62.13

QURE 46.80 69.81 53.53 72.87 57.47 77.77 52.60 73.48 63.04

To our knowledge, this is the first CIR dataset with human
preference-annotated retrieved images. An example of data
from HP-FashionIQ is shown in Figure 3, with a detailed
explanation of the data collection process in Appendix C.

Figure 3. An example from the HP-FashionIQ dataset: Given a
query, two retrieved image sets are presented. In this example, the
user preferred Set 2, as it better preserves the visual properties of
the reference image.

Modality redundancy check. While CIR should consider
both image and text, some examples focus solely on the
image or the text. CASE (Levy et al., 2024) highlighted
modality redundancy in FashionIQ, indicating that text is
sometimes more influential than the image. We instructed
participants to consider both input modalities equally. We
asked them to flag instances where one modality seemed
irrelevant to the retrieved images to exclude data that was
unclear for human evaluation. A total of 307 queries were
treated as irrelevant and excluded.

Sanity check. To identify instances of decreased user con-

centration during the annotation period, users rated the rel-
evance of the retrieved sets before annotating for their pre-
ferred choice. Users rated each set on a 5-point Likert
scale (Likert, 1932), with a score of 5 indicating a strong
match with the query. Queries were discarded if the user
did not prefer the set with the higher relevance score. As a
result, 28 queries were excluded, leaving 2,715 valid queries.
The total number of queries in the HP-FashionIQ dataset is
shown in Table 1.

5. Experiments
5.1. Experimental Setup

Datasets. We evaluate the models on widely used CIR
datasets, FashionIQ (Wu et al., 2021) and CIRR (Suhr et al.,
2018), to assess their ability to retrieve the target image.
Additionally, we evaluate them on the HP-FashionIQ dataset
to assess their alignment with human preferences.

Implementation. We used BLIP-2 (Li et al., 2023) with a
ViT-L image encoder. Following previous work (Baldrati
et al., 2023), we resized images to 224×224 with a 1.25
padding ratio. QURE is trained using the AdamW opti-
mizer (Loshchilov, 2017) for 50 epochs on CIRR and 30
epochs on FashionIQ. The hard negative set H was defined
ndef times, starting with a warm-up phase where H initially
included the entire corpus except for the target during the
first ⌊nepoch/ndef⌋ epochs. The hard negative set H is up-
dated every ⌊nepoch/ndef⌋ epochs. We set ndef to six for
both FashionIQ and CIRR. All experiments were conducted
using a single Nvidia RTX 3090 GPU.

5.2. Comparison with State-of-the-art CIR Models.

Table 7 presents the evaluation of CIR models on the Fash-
ionIQ dataset. QURE consistently achieves the best or
second-best performance across all categories, attaining
the highest overall average. Notably, QURE demonstrates

5



QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval

Table 3. Performance comparison on the CIRR test dataset across different methods, where Recalls@K represents Recallsubset@K. The
best results are highlighted in bold, and the second-best are underlined.

Method
Recall@K Recalls@K Average

K=1 K=5 K=10 K=50 K=1 K=2 K=3 R@5 + Rs@1

CosMo (Lee et al., 2021) 6.48 23.11 34.63 67.33 20.29 40.22 60.80 43.55

MGUR (Chen et al., 2024) 5.78 21.45 33.42 67.06 20.29 40.22 60.80 42.91

CLIP4CIR (Baldrati et al., 2023) 44.12 77.23 86.51 97.95 73.11 89.11 95.42 75.17

Bi-BLIP4CIR (Liu et al., 2024) 32.55 64.36 76.53 91.61 63.54 82.46 92.48 63.95

CoVR-BLIP (Ventura et al., 2024b) 39.76 70.15 80.89 95.01 72.46 87.86 94.77 71.30

SPRC (Bai et al., 2024) 50.75 80.58 88.72 97.59 79.57 91.76 96.70 80.07

QURE 52.22 82.53 90.31 98.17 78.51 91.28 96.48 80.52

significant improvements over SPRC (Bai et al., 2024) when
the retrieved set size is small, such as in Recall@10, with
gains of 1.09%, 2.16%, and 1.99% for the dress, shirt, and
toptee categories, respectively. Previous work (Levy et al.,
2024) has identified high modality redundancy in the Fash-
ionIQ dataset, where text dominates the retrieval process,
favoring text-based methods such as Bi-BLIP4CIR (Liu
et al., 2024) and SPRC (Bai et al., 2024). Despite this bias,
QURE achieves state-of-the-art performance, improving the
overall average recall by 10.46% and 0.91% compared with
Bi-BLIP4CIR and SPRC, respectively. These results high-
light QURE’s effectiveness in accurately retrieving the target
image, even in the presence of modality redundancy.

Table 3 shows the evaluation results on CIRR, a general-
domain dataset. QURE achieves the highest performance
across all Recall@k metrics, particularly excelling in Re-
call@1 and Recall@5, surpassing the current state-of-the-art
method, SPRC (Bai et al., 2024), by 1.47% and 1.95%, re-
spectively. Regarding Recalls@k, which measures retrieval
performance from a subset containing relevant images and
the target, QURE achieves the second-best results. This
result is attributed to the design of QURE, where even false
negative images can receive higher scores than the target as
they closely match the query. This behavior arises from our
hard negative set definition, which excludes false negatives,
ensuring that relevant images are not treated as negatives
and can be ranked higher than the target. Notably, QURE
achieves state-of-the-art performance on the combined Re-
call@5 + Recalls@1 average.

5.3. Evaluation with the HP-FashionIQ Dataset

We evaluate the alignment of CIR models with human pref-
erences. Given a query {xI , xT }, each participant was pre-
sented with two different sets of retrieved images, Set 1 and

Set 2, and annotated their preferences between them. To
calculate the overall relevance score of a CIR model for each
set, we averaged the relevance scores of the five retrieved
images within the set:

srel(Set i) =
1

5

∑
I∈Set i

srel(xI , xT , I). (8)

where srel denotes the relevance score (e.g., cosine similar-
ity) computed by CIR models.

The alignment with human preferences is measured through
the preference rate, which represents the conditional prob-
ability that Set 1 is preferred when its relevance score is
greater than that of Set 2. Formally, we define the prefer-
ence rate as:

P(Set 1 ≻ Set 2 | srel(Set 1) > srel(Set 2)). (9)

Table 4 shows that the ranking of CIR models based on their
alignment with human preferences on the HP-FashionIQ
dataset differs from their performance rankings on the Fash-
ionIQ dataset (Table 7) using the Recall@k metric. For in-
stance, MGUR achieves performance comparable to CosMo
in retrieving the target image but aligns more closely with
human preferences. This discrepancy stems from MGUR’s
additional coarse-grained loss, which considers both the
target image and visually similar alternatives as positives.
Moreover, while SPRC, CoVR-BLIP, and Bi-BLIP4CIR
surpass CLIP4CIR in terms of Recall@k on the FashionIQ
dataset, CLIP4CIR aligns better with human preferences
on the HP-FashionIQ dataset, despite its lower accuracy in
retrieving the exact target image.

QURE achieves the best alignment with human preferences,
which shows that Set 1 is preferred 74.55% of the time
when its relevance score exceeds that of Set 2. This result
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Table 4. Preference rate comparison on HP-FashionIQ dataset
across different methods. The best results are highlighted in bold,
and the second-best are underlined.

Method Preference Rate (%)

CosMo (Lee et al., 2021) 72.96

MGUR (Chen et al., 2024) 73.99

CLIP4CIR (Baldrati et al., 2023) 74.45

Bi-BLIP4CIR (Liu et al., 2024) 67.33

CoVR-BLIP (Ventura et al., 2024b) 73.15

SPRC (Bai et al., 2024) 73.82

QURE 74.55

Figure 4. Average recall on the FashionIQ validation set using four
hard negative set definitions. After the initial hard negative set is
established (e.g., at epoch 4), the choice of definition significantly
influences average recall throughout training.

demonstrates QURE’s ability not only to retrieve the correct
target image but also relevant images that best align with
human preferences.

5.4. Ablation Studies

We present ablation results under various scenarios, with
additional experiments included in Appendix B.

Zero-shot performance comparison. We evaluated the
zero-shot performance of the models on the CIRCO dataset
using those pre-trained on the CIRR dataset. Although
QURE and baseline methods are not explicitly designed
for zero-shot tasks, models that effectively retrieve relevant
images are expected to perform well in such scenarios. Fur-
thermore, CIRCO is the first CIR dataset to include multiple
ground truths, addressing the issue of false negatives in ex-
isting datasets. Thus, evaluating the mean average precision
at k (mAP@k) on this dataset provides a reliable measure
of the model’s ability to retrieve relevant items.

Table 5 reveals that QURE achieves the best performance
among all baselines, outperforming the second-best method,
CoVR-BLIP, by an average margin of 5.13 mAP. While

Table 5. Zero-shot performance comparison on the CIRCO dataset
across different methods. The best results are highlighted in bold,
and the second-best are underlined.

Method mAP@5 mAP@10 mAP@25 mAP@50

CosMo 0.31 0.40 0.47 0.53

MGUR 0.14 0.17 0.25 0.30

CLIP4CIR 10.58 11.18 12.32 12.96

Bi-BLIP4CIR 4.74 4.97 5.69 6.10

CoVR-BLIP 18.35 19.25 21.02 21.88

SPRC 17.57 18.48 20.14 20.98

QURE 23.22 24.23 26.26 27.24

Figure 5. Average size of the hard negative set per epoch on Fash-
ionIQ and CIRR. This plot shows how the average number of
hard negatives per query evolves across epochs in which the set is
defined.

Table 3 indicates SPRC (Bai et al., 2024) significantly out-
performs CoVR-BLIP (Ventura et al., 2024b) on the CIRR
dataset, CoVR-BLIP shows better performance in the zero-
shot setting. This suggests that CoVR-BLIP generalizes un-
seen tasks better. The results highlight that QURE achieves
the highest generalizability, significantly improving over
other baselines.

Effect of hard negative set definition strategy. To assess
the effectiveness of the hard negative set definition approach,
we compare four strategies on the FashionIQ dataset. The
hard negative set is defined as follows: (1) the entire image
corpus (All corpus), (2) the top-k images based on relevance
scores (Top-k), (3) the top-k images with relevance scores
lower than the target (After target, top-k), and (4) images
between sharp drops in relevance scores, occurring after the
target (QURE).

Figure 4 presents the average recall of each strategy across
training epochs. The results indicate that the All corpus
approach shows consistent improvement; however, it ul-
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Figure 6. Hard negative set examples for two shirt-category queries in FashionIQ. Each set contains images that are semantically similar
to the target but deemed less relevant by the model.

timately leads to suboptimal performance as the selected
negatives from the entire corpus may be too irrelevant. In-
spired by HCL (Robinson et al., 2020), we define a hard
negative set by selecting the top-100 images based on rele-
vance scores (Top-k). This approach occasionally enhances
model performance (e.g., at epochs 10 and 20), but it of-
ten degrades due to the inclusion of false negatives. As
training progresses, since the target image is treated as posi-
tive, visually similar images (false negatives) tend to rank
higher. To mitigate the issue in the Top-k approach, we
analyze the performance of the After target, top-k strategy,
which excludes false negatives by selecting the top-k images
following the target. Unlike Top-k, this method provides
consistent improvements without fluctuations but gradually
leads to slight performance degradation over time. This
decline results from the heuristic assumption that all images
right after the target are reliable hard negatives. In contrast,
QURE identifies points where relevance drops sharply and
selects images between two such points, resulting in stable
performance improvements throughout training. These re-
sults show that, with a novel hard negative sampling method,
QURE effectively balances the conditions C1 and C2 of se-
lecting proper hard negatives.

Size of hard negative set. The number of hard negative
images varies significantly depending on the complexity of
bi-modal queries and the corpus. For instance, when the
input text contains fewer attributes, such as ‘blue shirt with
short sleeves’, the hard negative set may include images that
match either ‘blue’ or ‘short sleeves’, resulting in a larger
set. Therefore, it is crucial to define a query-specific hard
negative set size (Xia et al., 2024).

Figure 5 shows the average size of the hard negative set
across all queries in the FashionIQ and CIRR datasets.
While QURE does not explicitly define the size of the
hard negative set, the results indicate a consistent decrease

throughout training. Initially, the model identifies a broader
range of images as hard negatives due to lower confidence.
As training progresses, it refines this selection, yielding a
smaller yet more challenging hard negative set. This dy-
namic resembles curriculum learning, where increasingly
difficult samples accelerate model convergence.

Visualization of hard negative set. To evaluate our hard
negative set sampling strategy, we present qualitative ex-
amples from the FashionIQ dataset in Figure 6, illustrating
two queries. In the first query, the hard negatives either lack
a collar or text from the reference image ‘ECK’ or depict
shirts instead of t-shirts, differing from the input image. In
the second query, all retrieved shirts contain only vertical
stripes while successfully retrieving darker shirts. These
examples demonstrate that the hard negative sets defined
by our method consist of images that are less relevant than
the target (C1) while remaining semantically similar (C2),
thereby satisfying both conditions outlined in Section 3.2.

6. Conclusion
We present QURE, a CIR model designed to retrieve both
target and relevant images to enhance user satisfaction. Ex-
isting CIR datasets typically annotate only the target image
per query, leading prior methods to rely on contrastive learn-
ing that treats all non-target images as negatives. QURE mit-
igates false negatives by leveraging reward model objectives
and introduces a novel hard negative sampling strategy, se-
lecting images between two sharp relevance score drops af-
ter the target. To evaluate the alignment of CIR models with
human preferences, we introduce the Human-Preference
FashionIQ (HP-FashionIQ) dataset. QURE achieves state-
of-the-art performance on both the FashionIQ and CIRR
datasets and demonstrates the highest alignment with human
preferences on the HP-FashionIQ dataset.
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A. Algorithm

Algorithm 1 Training Flow of QURE

1: Input: Parameters θ, CIR dataset D, Image corpus I, Number of defining negative set ndef, Total epochs nepoch
2: for each epoch e do
3: if e == 0 then
4: H← I \ yI // Warmup: using all candidates as the negative set
5: else if e > 0 and e mod ⌊nepoch/ndef⌋ == 0 then
6: H← {I | s(xI , xT , yI) < s(xI , xT , I), I ∈ range between two largest score degradations} // Equation (7)
7: end if
8: for each batch b do
9: Inb

← Sample(Hb) // Sample one negative for every query
10: L ← − log(σ(s(xIb , xTb

, Ipb
)− s(xIb , xTb

, Inb
))) // Equation (3)

11: θ ← θ − η∇θL
12: end for
13: end for

B. Additional Experiments
B.1. Ablations with Consistent Model Backbone

In Section 5, we compare QURE with existing baselines on FashionIQ, CIRR, HP-FashionIQ, and CIRCO. However, model
backbones are not unified, as we follow the comparison settings used in prior CIR methods (Baldrati et al., 2023; Liu et al.,
2024; Bai et al., 2024). To ensure a fairer comparison, we conduct experiments using both BLIP and BLIP-2 backbones.
Specifically, we train QURE with the BLIP backbone to compare against Bi-BLIP4CIR. We also identify CoVR-2 (Ventura
et al., 2024a), the latest version of CoVR-BLIP that adopts BLIP-2, and compare it with our original QURE model.

Table 6, Table 7, and Table 8 present results on the CIRR, FashionIQ, HP-FashionIQ, and CIRCO datasets. QURE with
a BLIP backbone consistently outperforms Bi-BLIP4CIR. Moreover, CoVR-2, which adopts a BLIP-2 backbone, still
underperforms compared to our original QURE model with the same backbone.

Table 6. Performance comparison on the CIRR test dataset with consistent model backbones, where Recalls@K represents Recallsub-
set@K. The best results are highlighted in bold.

Method Backbone
Recall@K Recalls@K Average

K=1 K=5 K=10 K=50 K=1 K=2 K=3 R@5 + Rs@1

Bi-BLIP4CIR BLIP 32.55 64.36 76.53 91.61 63.54 82.46 92.48 63.95

QURE BLIP 51.52 80.29 88.89 97.74 78.02 91.23 96.55 79.16

CoVR-2 BLIP-2 42.80 74.60 83.90 96.22 69.49 86.22 93.98 72.05

QURE BLIP-2 52.22 82.53 90.31 98.17 78.51 91.28 96.48 80.52

B.2. Visualization of Score Steepness

QURE defines a query-specific hard negative set by excluding false and easy negatives, aiming to enhance training
effectiveness. Specifically, it selects images between the two largest drops in relevance scores following the target image. To
analyze this steepness, we visualize the sorted relevance scores.

Figure 7 illustrates the relevance scores for a sample query from the FashionIQ dataset at two stages: before training and
after the warm-up phase. QURE identifies hard negatives as the images between the red and green lines, determined by
the top two largest drops in relevance scores after the target. These steep declines-visible immediately before the red line
and after the green line-suggest substantial drops in relevance (Xia et al., 2024), effectively separating false negatives, hard
negatives, and easy negatives.

11



QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval

Table 7. Performance comparison on the FashionIQ validation dataset with consistent model backbones. The best results are highlighted
in bold.

Method Backbone
Dress Shirt Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

Bi-BLIP4CIR BLIP 39.12 62.92 39.21 62.81 44.37 67.06 40.90 64.26 52.58

QURE BLIP 40.80 64.90 45.93 65.90 52.07 72.87 46.27 67.89 57.08

CoVR-2 BLIP-2 46.41 69.51 49.75 67.76 51.86 72.46 49.34 69.91 59.63

QURE BLIP-2 46.80 69.81 53.53 72.87 57.47 77.77 52.60 73.48 63.04

Table 8. Comparison of HP-FashionIQ Preference Rate and CIRCO zero-shot performance with consistent model backbones. The best
results are highlighted in bold.

HP-FashionIQ

Method Backbone Preference Rate (%)

Bi-BLIP4CIR BLIP 67.33

QURE BLIP 75.28

CoVR-2 BLIP-2 71.99

QURE BLIP-2 74.55

CIRCO (Zero-shot)

Method Backbone m@5 m@10 m@25 m@50

Bi-BLIP4CIR BLIP 4.74 4.97 5.69 6.1

QURE BLIP 20.85 21.48 23.35 24.31

CoVR-2 BLIP-2 23.18 23.59 25.57 26.49

QURE BLIP-2 23.22 24.23 26.26 27.24

Since Figure 7 shows only a single query, we also present aggregated results across all queries in Figure 8. This aggregated
visualization shows that, after the warm-up phase, hard negatives shift toward higher-ranked positions, likely capturing
more true hard negatives. This supports our design choice of introducing a warm-up stage prior to hard negative selection.
Without this stage, the selected negatives tend to include many easy examples, as observed in the left panel of the figure.

Figure 7. Visualization of sorted relevance scores for a FashionIQ query at two stages: prior to training and after completing the warm-up
phase.

C. HP-FashionIQ Dataset
C.1. Data Annotation Examples

We conducted a data collection via Google Forms. Each form consisted of instructions and 25 questions, with each question
including a query and two different sets of retrieved images. Each participant completed two forms, covering 50 queries
from the FashionIQ validation dataset, with no overlap between participants.
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Figure 8. Visualization of sorted relevance scores aggregated over all FashionIQ queries at two stages: before training and after the
warm-up phase.

Fig 9 shows the guidelines provided to participants, who were asked to score the retrieved image sets based on relevance to
the query using a 5-point Likert scale. We gave participants a relatable scenario that required them to evaluate the results
from two different online shopping malls based on their input. Figure 10 illustrates an example of a reference image (original
image), relative text (user text), and two sets of retrieved images from different CIR models (Shopping Mall 1 and 2).
Participants (1) rated the relevance of each set, (2) indicated which set they preferred, and (3) noted whether any results
were irrelevant to the reference image or text, as shown in Figure 11.

Figure 9. Guidelines for user survey.
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Figure 10. Example of query and two set of retrieved images in user survey.
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Figure 11. Example of questions in user survey.
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