

000 001 SCIENTIFIC ALGORITHM DISCOVERY BY AUGMENTING 002 ALPHAEVOLVE WITH DEEP RESEARCH 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Large language models hold promise as scientific assistants, yet existing agents
012 either rely solely on algorithm evolution or on deep research in isolation, both
013 of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve,
014 depends only on the internal knowledge of LLMs and quickly plateaus in complex
015 domains, while pure deep research proposes ideas without validation, resulting
016 in unrealistic or unimplementable solutions. We present DeepEvolve, an agent
017 that integrates deep research with algorithm evolution, uniting external knowledge
018 retrieval, cross-file code editing, and systematic debugging under a feedback-driven
019 iterative loop. Each iteration not only proposes new hypotheses but also refines,
020 implements, and tests them, avoiding both shallow improvements and unproductive
021 over-refinements. Across nine benchmarks in chemistry, mathematics, biology,
022 materials, and patents, DeepEvolve consistently improves the initial algorithm,
023 producing executable new algorithms with sustained gains. By bridging the gap
024 between unguided evolution and research without grounding, DeepEvolve provides
025 a reliable framework for advancing scientific algorithm discovery.

027 1 INTRODUCTION 028

029 Large language models (LLMs) are emerging as foundation models for building AI scientists,
030 automating processes such as lab work, mathematical discovery, and ML research (Boiko et al., 2023;
031 Chan et al., 2024). Many scientific problems are difficult to solve but easy to evaluate (Romera-
032 Paredes et al., 2024), raising hope that LLMs can drive algorithm discovery through reasoning,
033 planning, and execution. Recent progress shows advances in ML benchmarks (Chan et al., 2024),
034 mathematical discovery (Novikov et al., 2025), and experimental design (Boiko et al., 2023). However,
035 it is still challenging for LLM-based agents to push algorithmic frontiers by not only generating new
036 hypotheses (Gottweis et al., 2025) but also implementing them as working code.

037 The combination of hypothesis generation with code execution and evaluation has been explored in
038 systems such as FunSearch (Romera-Paredes et al., 2024) and AlphaEvolve (Novikov et al., 2025),
039 with the latter achieving breakthroughs in 4×4 matrix multiplication. AlphaEvolve uses an ensemble
040 of LLMs to generate code that encodes new scientific hypotheses. However, its generalization
041 to broader domains such as chemistry, biology, and materials remains uncertain. These domains
042 present vast, unbounded search spaces, where relying solely on LLMs themselves is unlikely to yield
043 substantive algorithmic advances. A preliminary study of molecular property prediction is shown
044 at the top of Figure 1. Pure algorithm evolution with AlphaEvolve¹ yields limited improvement
045 ($0.791 \rightarrow 0.797$), only 0.6% after 100 iterations. Surprisingly, the best algorithm appears in the first
046 generation evolved from the initial algorithm, outperforming the other 24 candidates with deeper
047 generations. Some deeply evolved algorithms, including the second-best one, show only marginal
048 improvements after multiple refinements of the initial idea.

049 From the figure, we find that high-quality idea generation can be a bottleneck for algorithm evolution
050 in broader scientific domains. To address this, we augment the evolution system with deep research, a
051 framework designed for intensive knowledge work that requires thorough and reliable retrieval from
052 the internet. General deep research methods (Xu & Peng, 2025) synthesize information from diverse
053 online sources for scientific hypothesis generation but lack feedback from hypothesis testing. This

¹The code of AlphaEvolve is unavailable; we follow an open-source reproduction (Sharma, 2025).

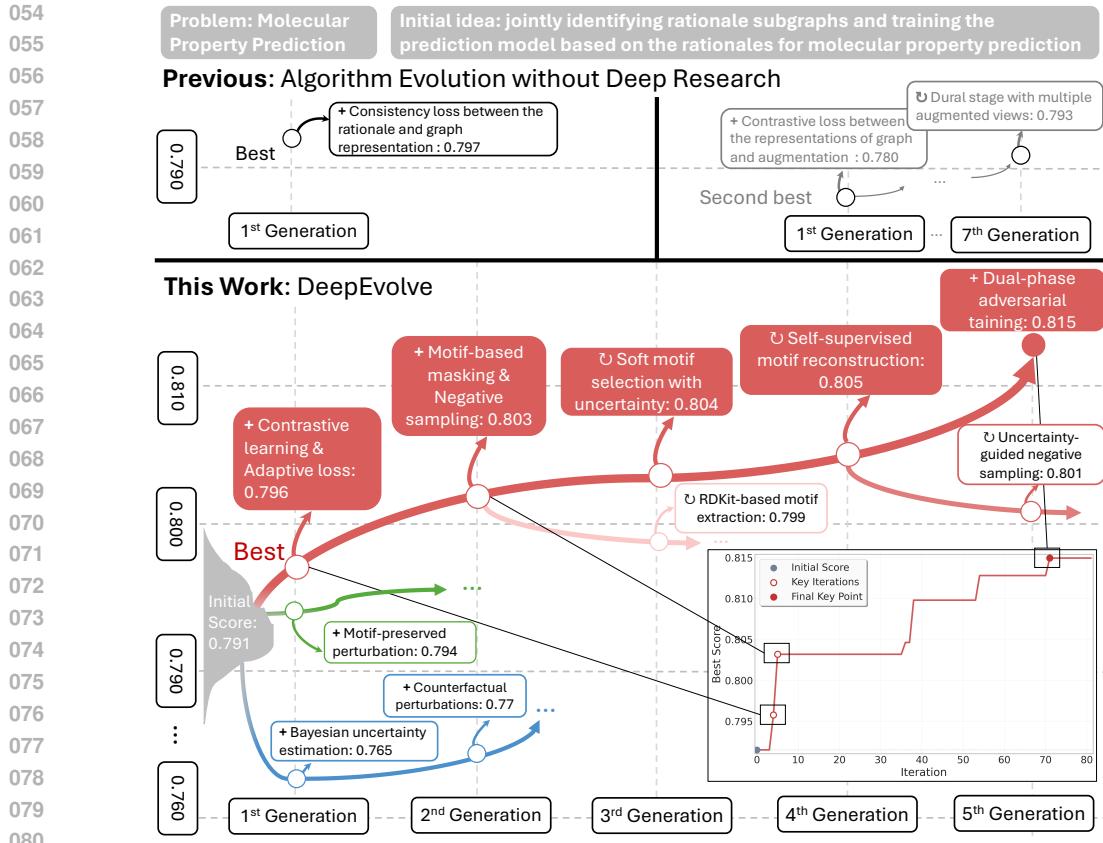


Figure 1: The top panel shows AlphaEvolve-style pure algorithm evolution without deep research, where the best improvement appears in the first generation and later iterations have marginal gains. The bottom panel shows DeepEvolve, which integrates deep research. DeepEvolve avoids shallow or excessively deep but unproductive evolutions, achieving sustained progress with clear performance jumps at key iterations. + denotes adding a new idea, and \circlearrowright denotes refining a previous idea.

may lead to proposals that are too difficult or unrealistic to implement. To address this limitation, we perform deep research on a specific algorithm, accompanied by inspiring algorithms that have been successfully implemented in past discoveries. We instruct deep research to generate research proposals with pseudo-code that are easy to implement in the early stages, while moving toward higher-impact ideas in later stages. Proposals for an algorithm often involve modifying multiple code files, such as those for data preprocessing or model architecture. This requires the coding agent to parse and analyze across files, a capability added to our design but absent in AlphaEvolve, which substantially increases coding difficulty. A debugging agent is thus introduced to resolve errors during execution, further improving the success rate of algorithmic implementation (Table 3). Finally, the evaluation function tests the algorithm proposal and provides feedback to deep research for the next proposal. As shown at the bottom of Figure 1, this approach produces clear improvements over both the initial algorithm and pure algorithmic evolution. Unlike shallow evolutions or overly deep but marginal ones, deep research balances depth and yields clear performance jumps at key iterations.

In this work, we propose DeepEvolve to orchestrate algorithmic deep research, implementation, evaluation, and evolution. The workflow, shown in Figure 2, has six components. The first three generate a research proposal by planning research questions, searching for answers online, and composing a proposal. This is then used as a prompt for the coding agent, which performs cross-file edits and multiple rounds of debugging. Each algorithm is evaluated and stored in a database that serves as long-term memory, providing candidates and inspiration for the next round of evolution.

We benchmark nine scientific problems across chemistry, mathematics, biology, materials, and patent domains, covering diverse data modalities such as molecules, geometries, partial differential

108 equations, and images (Table 1). Results show consistent improvements over existing algorithms,
 109 generating original and promising new methods (Figure 3) with high performance scores (Table 2).
 110
 111

112 2 PROBLEM DEFINITION FOR ALGORITHM DISCOVERY

113
 114 Let $P = (D, g)$ denote a scientific problem in domains such as mathematics, chemistry, or biology.
 115 Each problem has evaluation data $D = \{(q_i, a_i)\}_{i=1}^N$, where q_i are questions and a_i are ground-
 116 truth answers, and an evaluation function g that compares the ground-truth answers with predicted
 117 answers. The score is computed as $s = g(\{a_i\}_{i=1}^N, \{\hat{a}_i\}_{i=1}^N)$. Here \hat{a}_i are the outputs of an algorithm
 118 $f : Q \rightarrow A$ that maps each question q_i to an answer $\hat{a}_i = f(q_i)$. Both computation and evaluation
 119 should be completed within bounded time (e.g., minutes or hours). We define a textualization function
 120 τ that converts structured objects into text. For example, $\tau(P)$ is the problem description as τ_P and
 121 $\tau(f)$ is the algorithm description as τ_h . The goal of algorithm discovery is to optimize f for higher s .
 122

123 A problem instance in mathematics and geometry is the circle packing. The evaluation is to maximize
 124 the sum of radii for n circles placed within a unit square. This can be formalized as a constrained
 125 problem P . The algorithm f is a Sequential Least Squares Programming (SLSQP) solver, as shown
 126 in an open-source reproduction of AlphaEvolve (Novikov et al., 2025; Sharma, 2025). Different
 127 evaluation data correspond to different values of n , such as $n = 26, 27, \dots$

128 A second example is molecular property prediction. The goal is to develop ML algorithms that train
 129 models to generalize well. They should also yield interpretable predictions for each molecule. We
 130 study automated discovery of such algorithms across domains using research and coding agents.
 131

132 3 DEEPEVOLVE FOR ALGORITHM DISCOVERY

133
 134 DeepEvolve takes as input three things: a problem P , an initial algorithm f , and user instructions u .
 135 From these, DeepEvolve produces an updated algorithm. For a fixed problem and user instruction, we
 136 can think of an update operator that takes the current algorithm and returns a new one. This operator
 137 is built from six modules, applied in sequence: plan, search, write, code, evaluation, and evolutionary
 138 selection. Together, they transform the algorithm in a systematic way. The algorithm evolves by
 139 repeatedly applying this update operator. Starting with the initial version $f^{(0)} = f$, each new version
 140 is produced from the previous one. After K rounds, we obtain a final candidate $f^{(K)}$. The best
 141 algorithm is chosen from all the intermediate versions $\{f^{(0)}, f^{(1)}, \dots, f^{(K)}\}$ by selecting the one
 142 that achieves the highest evaluation score on the given problem. In the following subsection, we first
 143 describe how the input context is built Section 3.1. We then introduce each component in Section 3.2
 144 corresponding to Figure 2, detailing the synergy between deep research and algorithm evolution.
 145

146 3.1 INPUT OF PROBLEM, ALGORITHMS, AND INSTRUCTIONS

147
 148 **Problem as Input.** The input context of problem $P = (g, \mathcal{D}, \tau_P)$ includes three parts: the evaluation
 149 function g implemented as code, the evaluation data \mathcal{D} , and a textual problem description τ_P .
 150 Evaluation metrics associated with g are summarized in Table 1. Given g and \mathcal{D} , the optimization
 151 direction of the algorithm can be specified. The problem description τ_P consists of one or more
 152 paragraphs that define the task, relevant terminology, notations, equations, and evaluation metrics.
 153

154 **User Instructions.** The user instructions u contain a textual specification of user-defined require-
 155 ments, providing additional guidance for algorithm evolution. While the evaluation metrics g and
 156 data \mathcal{D} determine the primary optimization objective, users may express auxiliary preferences or
 157 constraints such as desired research directions (e.g., efficiency, interpretability, generalizability),
 158 available software dependencies, hardware constraints, and runtime budgets.
 159

160 **Algorithm as Input.** The algorithm f consists of both the code implementation and its textual
 161 description τ_h . Compared to AlphaEvolve (Novikov et al., 2025), we consider the algorithm imple-
 162 mentation spanning multiple files with an entry point that computes the outputs for evaluation. Each
 163 algorithm description τ_h includes the motivation, a summary, pseudo-code, the performance s , and
 164 qualitative assessments such as originality, future potential, and implementation difficulty.
 165

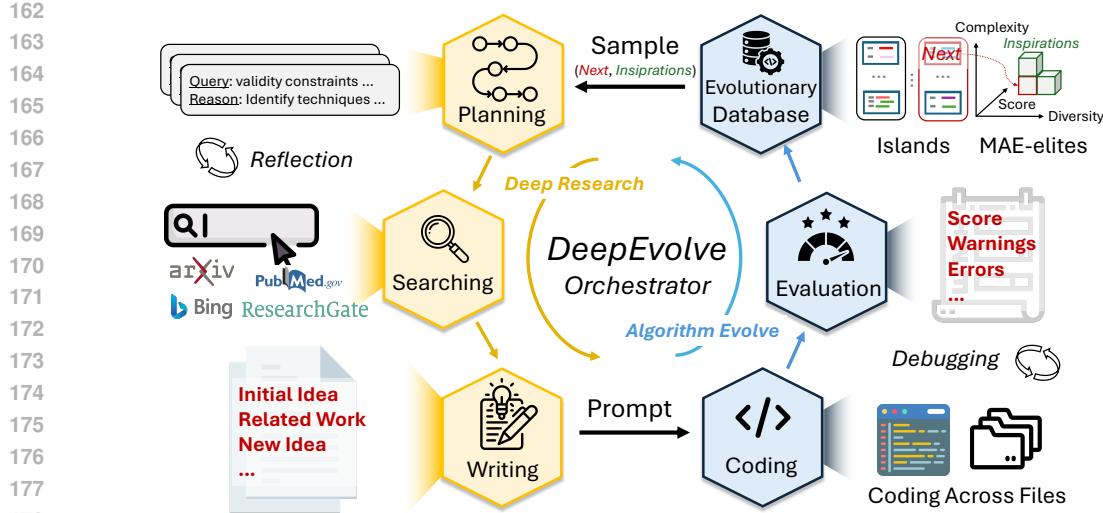


Figure 2: DeepEvolve is structured around six collaborative modules that alternate between deep research and algorithm evolution. Deep research generates informed hypotheses through planning, retrieval, and synthesis, while algorithm evolution translates these hypotheses into code, evaluates them, and applies evolutionary strategies for selection.

3.2 FRAMEWORK DESIGNS

In an iteration from t to $t + 1$, we start from a candidate algorithm f together with a set of inspiring algorithms $\{f_1^{\text{insp}}, f_2^{\text{insp}}, \dots, f_n^{\text{insp}}\}$ and their evaluations to conduct deep research. This differs from a direct implementation (Xu & Peng, 2025), which brainstorms ideas without feedback. After proposing a new algorithm, it is implemented with functions distributed across multiple files and supported by automatic debugging. In contrast, AlphaEvolve (Novikov et al., 2025) designs algorithms directly with LLMs, evolves code within a single file, and lacks a code correction mechanism.

Algorithmic Deep Research. The planning step generates a small set of research questions that guide the direction of the next improvement. The agent is instructed to be more exploratory if the algorithm has already undergone multiple updates. These questions are then searched on websites, including sources such as PubMed and arXiv, and the results are summarized in a few paragraphs. Finally, a writing agent proposes a new algorithm by integrating the retrieved evidence with the input context (i.e., problem, algorithm, and inspirations). It is instructed to compare different methods and identify promising directions. A group of new ideas is generated with self-evaluation, and the most promising one is chosen as the final proposal based on the current evolutionary progress. In early stages, it prioritizes feasible ideas, while in later generations it emphasizes higher-impact ideas. Finally, it writes a short proposal for the new algorithm, including pseudo-code to guide the implementation.

Algorithmic Implementation. We use a coding agent to implement the proposed algorithm. It parses multi-file codebases using delimiters. It then localizes the minimal set of code regions that require modification and applies targeted updates to implement the proposed algorithm. However, it is easy for new code to contain bugs, especially when modifying different files such as those for data preprocessing and model architecture. During execution, error and warning messages provide valuable information for debugging. Therefore, we introduce a debugging agent to handle failures based on program execution feedback. Given a budget (e.g., five attempts), if execution remains unsuccessful after debugging, the algorithm is assigned a score of zero.

Evaluation and Evolutionary Database. The algorithm is scored ($s > 0$) once it is successfully executed and evaluated. We add it with the score to a database, which is maintained with evolutionary methods for sampling the next candidate and inspiring algorithms. We use island-based populations (Tanese, 1989) as the candidate pool for the next iteration. At each step, we sample an island and then select f from it, favoring high-score candidates while retaining exploration. For inspirations, MAP-Elites (Mouret & Clune, 2015) samples nearby algorithms of f based on three

Table 1: Benchmark tasks, data types, domains, and evaluation metrics. New scores are used for evaluation such that higher values indicate better performance.

Problem	Description	Data Type	Domain	Original Metric	New Score	Source
Molecular Prediction	Molecular property prediction	Small molecule	Chemistry	AUC over multiple model initializations	$0.5 \cdot \text{AUC}_{\text{mean}} + 0.5 \cdot \text{AUC}_{\text{std}}$	OGB (Hu et al., 2020)
Molecular Translation	Image-to-text translation of chemical structures	Image–molecule pair	Chemistry	Levenshtein distance	$1 - \text{Levenshtein distance}$	Kaggle (Howard et al., 2021)
Circle Packing	Packing circles inside a unit square to maximize sum of radii	Geometry	Mathematics	Mean sum of radii with 26 to 32 circles	Same as Original	AlphaEvolve & Erich's Packing Center (Novikov et al., 2025)
Burgers' Equation	Solving Burgers' equation	Partial Differential Equation	Mathematics	Normalized RMSE (nRMSE)	$\frac{1}{\text{nRMSE} \cdot 10^3}$	CodePDE (Li et al., 2025)
Parkinson's Disease	Disease progression prediction	Time series	Biology	Symmetric Mean Absolute Percentage Error (SMAPE)	Same as Original	Kaggle (Kirsch et al., 2023)
Nuclei Image	Nuclei segmentation from images	Image	Biology	Mean average precision (mAP)	Same as Original	Kaggle (Goodman et al., 2018)
Open Vaccine	mRNA vaccine degradation prediction	mRNA sequence	Biology	Mean column-wise RMSE (MCRMSE)	$\frac{1}{1 + \text{MCRMSE}}$	Kaggle (Das et al., 2020)
Polymer Prediction	Prediction of polymer properties	Polymer	Materials	Weighted MAE (wMAE) and R^2	$\frac{1}{1 + \text{wMAE}} \cdot 0.5 + R^2 \cdot 0.5$	Kaggle (Liu et al., 2025)
USP P2P	Phrase-level semantic matching in patents	Text	Patent	Pearson correlation	Same as Original	Kaggle (Cenkci et al., 2022)

features: performance score, code diversity, and code complexity. These features are mapped to cells in a grid, and neighboring cells are used as inspiration for future candidates f .

Reflection The reflection mechanism is applied in both algorithmic deep research and implementation as a quick checkpoint for potential issues. For deep research, a reflection agent decides whether to continue planning, continue searching, or update the writing report, subject to a maximum number of reflections. For coding, the agent performs self-reflection to check whether its code aligns with the proposed algorithm and to detect potential syntax errors.

In DeepEvolve, algorithmic deep research, implementation, and evaluation are coupled across multiple iterations. Deep research alone provides knowledge but no tested progress, while implementation and iteration alone explore ideas blindly without grounding in recent research. By linking the two, the process mirrors human discovery: informed by existing knowledge, tested through implementation, refined with feedback, and improved through repeated cycles. To integrate the iterations more compactly, we instruct the deep research agents based on evolutionary progress (early or mature) and algorithmic history with evaluation feedback. We also use multiple checkpoints (e.g., code modification, self-reflection, debugging) for the coding agent to verify whether its implementation aligns with the proposed algorithm. Empirically, we study how deep research, implementation, and evaluation reinforce each other through evolutionary optimization in Section 4.3.

4 EXPERIMENTS

We investigate three research questions (RQs): RQ1: Can DeepEvolve discover new algorithms that improve both effectiveness and efficiency across diverse tasks? RQ2: How do the deep research and coding agents interact during the discovery process? RQ3: We conduct ablations and case studies to examine the designs and performance of DeepEvolve.

4.1 SET-UPS

We include nine research problems spanning chemistry, mathematics, biology, and materials as summarized in Table 1. These problems involve diverse data modalities, including molecules, images, mRNA, text, time series, geometric structures, and multi-modal inputs. For consistent evaluation, we standardize evaluation metrics (e.g., AUC-ROC, RMSE, precision, Pearson correlation) defined in each problem into a common form as the new scores, where higher values indicate better performance.

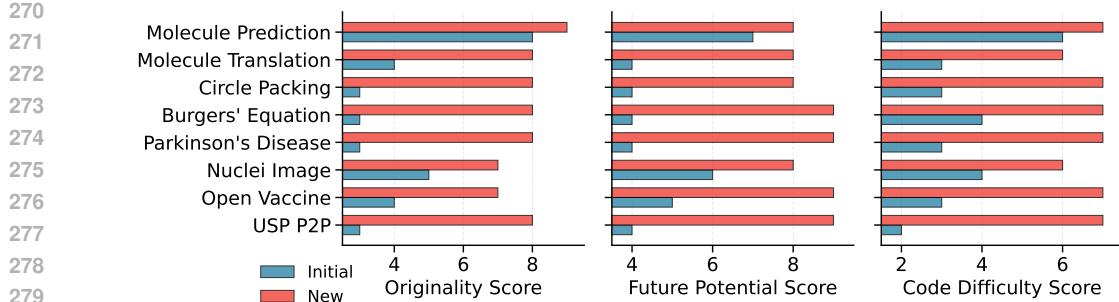


Figure 3: Evaluation of the idea from initial and new algorithms with LLM-as-a-judge.

Table 2: Quantitative comparison of new algorithms discovered by DeepEvolve with the initial ones in terms of effectiveness (new scores; see Table 1) and efficiency (runtime in minutes). Efficiency is not the primary optimization objective in DeepEvolve; it could be included in the user query.

Problem	Performance with New Scores (↑)			Runtime in Minutes		
	Initial Algorithm	New Algorithm	Improvement (%)	Initial Algorithm	New Algorithm	Reduced Time (Minutes)
Molecular Prediction	0.7915	0.8149	2.96	5.06	7.64	-2.58
Molecular Translation	0.1885	0.2562	35.94	21.42	5.44	15.98
Circle Packing	0.3891	2.9806	666.02	1.46	3.54	-2.08
Burgers' Equation	0.6638	0.6666	0.42	12.77	23.35	-10.58
Parkinson's Disease	0.5317	0.5876	11.82	1.26	22.05	-20.79
Nuclei Image	0.3185	0.3405	6.91	11.37	10.61	0.76
Open Vaccine	0.7187	0.7214	0.39	26.68	14.40	12.28
Polymer Prediction	0.6770	0.7714	13.94	9.37	5.75	3.62
USP P2P	0.8036	0.8146	1.36	14.36	5.85	8.51

For each problem, we designate an initial algorithm as the baseline and apply DeepEvolve to optimize and generate new algorithms. For the molecule and polymer tasks, we improve the graph rationalization method GREAs (Liu et al., 2022) in different directions specific to each problem. For the circle packing problem, we adapt the SLSQP algorithm from OpenEvolve (Sharma, 2025), an open-source implementation of AlphaEvolve. For the Burgers equation, we use the baseline provided by CodePDE (Li et al., 2025). For problems derived from Kaggle competitions, including molecular translation, Parkinson's disease progression, nuclei image segmentation, Open Vaccine, and USP P2P, we use baseline solutions provided by competition participants. More details are in appendix B.

To discover new algorithms, we define the primary optimization objective as the new scores in Table 1, with efficiency specified as a secondary objective in the prompt. The algorithm development process is constrained to a 30-minute time budget and a single GPU (2080-Ti or A6k). We evaluate both baseline and generated algorithms using quantitative metrics and qualitative analysis.

4.2 RQ1: EFFECTIVENESS AND EFFICIENCY FOR THE NEWLY DISCOVERED ALGORITHMS

We conduct a quantitative analysis of how DeepEvolve improves the initial algorithms in terms of both effectiveness and efficiency. As shown in Table 2, DeepEvolve achieves improvements in both aspects on six of the nine tasks. In the remaining three cases, DeepEvolve generates algorithms that improve the primary performance objective while satisfying the 30-minute runtime constraint.

The performance improvement achieved by DeepEvolve varies from 0.39% to 666.02%, depending on the problem type and the maturity of the initial algorithm. In Circle Packing, the initial algorithm is designed for a fixed configuration (i.e., packing 26 circles) (Sharma, 2025) and fails to generalize to variable-sized constructions, often producing invalid solutions. In contrast, DeepEvolve discovers a new algorithm that generalizes across a broader range of circle counts while maintaining valid packings, resulting in a substantial performance gain. In other tasks, the improvement is relatively marginal due to different factors. The baseline for Burgers' Equation is based on a very recent state-of-the-art method (Li et al., 2025), leaving limited room for further improvement. For

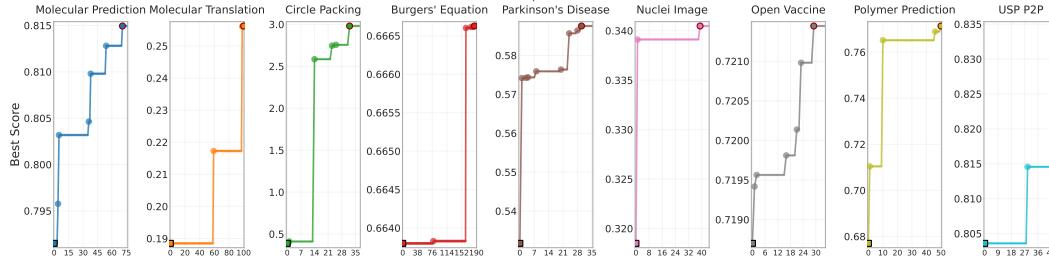
Figure 4: The new model.`forward()` for Molecular Prediction. DeepEvolve proposes contrastive learning in Line 29-34, motif-aware masking in Line 8, and additional modules (see Figure 1) to improve the algorithm. The code of these functions is in appendix C.3.

Open Vaccine, model training requires more time and GPU resources, and we observe that evolving algorithms frequently exceed the 30-minute runtime budget, constraining DeepEvolve's search space.

DeepEvolve improves algorithm originality and future potential, while the more complex implementation is handled through automatic code debugging. We evaluate the quality of algorithmic ideas using an LLM-as-a-judge approach, assessing each from three dimensions: originality, future potential, and implementation difficulty. Language models (o3-mini) perform deep research with web search and evaluate the initial and newly generated algorithms separately. For each, it provides both positive and negative justifications, along with a rating on a scale from 0 to 10. Results from Figure 3 show that DeepEvolve can propose novel ideas with great potential. For instance, in the Molecular Prediction task as presented in Figures 1 and 4, the initial algorithm decomposes molecules into rationale substructures that explain and support model predictions, while the new algorithm incorporates contrastive learning and motif-aware masking to improve rationale identification. Novel ideas may have higher implementation difficulty, but DeepEvolve improves execution and evaluation. For example, it raises the success rate from 0.13 to 0.99 on the Open Vaccine task, as shown in Table 3.

378 Table 3: Success rate of algorithm execution and average debugging counts during evolution.
379

Metric	Molecular Prediction	Molecular Translation	Circle Packing	Burgers' Equation	Parkinson's Disease	Nuclei Image	Open Vaccine	Polymer Prediction	USP P2P
w/o Debug	0.650	0.190	0.540	0.956	0.760	0.360	0.130	0.560	0.327
w/ Debug	1.000	0.490	1.000	0.992	0.980	0.740	0.990	0.980	0.592
Average count	0.47	3.08	0.64	0.09	0.32	2.14	2.30	0.64	2.67

386 Figure 5: Changes of scores over iterations.
387
388
389
390
391
392
393
394395 4.3 RQ2: ITERATIVE SYNERGY BETWEEN DEEP RESEARCH AND CODING AGENTS
396397 We analyze the algorithmic evolution across nine tasks (detailed trajectories in appendix C.2). We
400 find that the deep research and coding agents iteratively reinforce each other through evolution.
401402 **Deep research guides algorithm design through domain-specific inductive biases:** In Molecular
403 Prediction, Molecular Translation, and Polymer Prediction, domain priors such as molecular motifs,
404 polymer periodicity, and chemical grammars inform algorithm choices. These include motif-aware
405 message passing, motif reconstruction objectives, and grammar-constrained tokenization. Similarly,
406 Parkinson's Disease and USP P2P incorporate Neural Controlled Differential Equations (CDEs) and
407 low-rank adaptation (LoRA), respectively, along with auxiliary features such as Cooperative Patent
408 Classification (CPC) embeddings and physiological waveforms.409 **Evolutionary feedback shifts design from heuristics to principled methods:** Feedback from
410 performance evaluations guides subsequent deep research, transitioning algorithm development from
411 heuristic-based tuning to methods with theoretical or physical guarantees. This progression is evident
412 in certified global optimization for circle packing, Krylov subspace solvers for partial differential
413 equations, and physics-informed regularization for disease dynamics. This reflects a trend where
414 research insights motivated a transition from incremental fixes to physically grounded methods.415 **Cross-cutting methodological patterns emerge across tasks:** DeepEvolve consistently discovers
416 reusable design patterns instantiated in task-specific modules. These include uncertainty estimation,
417 dynamic loss reweighting, and self-supervised representation learning. For instance, uncertainty-
418 guided refinement is used in Molecular Prediction (soft motif selection) and Nuclei Image (boundary
419 adjustment), while adaptive loss weighting is used in Open Vaccine, Parkinson's Disease, and USP
420 P2P, among others. These recurring strategies suggest that the deep research agent not only extracts
421 task-specific insights but also steers the coding agent toward generalizable algorithmic principles.422 4.4 RQ3: ABLATION AND CASE STUDIES FOR ALGORITHM IMPROVEMENT
423

Case	Initial				Without Deep Research				With Deep Research			
	Score	Score of Best	Gen. of Best	# Outperform	Score of Best	Gen. of Best	# Outperform	Score of Best	Gen. of Best	# Outperform	Score of Best	Gen. of Best
Molecule	0.791	0.797	1	24.0	0.815	5	100.0	0.815	5	100.0	0.815	5
Circle Packing	0.389	2.735	10	100.0	2.981	4	100.0	2.981	4	100.0	2.981	4

425 Table 4: Ablation studies on deep research in DeepEvolve. We report the initial algorithm scores.
426 During evolution, we maintain 25 candidate algorithms and report the score/generation of the best
427 program, as well as the number of programs that outperform the initial score.
428

432 Figure 5 visualizes best scores over iterations. Improvements are not continuous but often appear
 433 as sudden jumps. The current best algorithm is not always sampled as the next candidate but can
 434 inspire further exploration. We complement Figure 1 with additional studies on deep research
 435 in Table 4. Algorithm evolution based solely on LLM internal knowledge shows limited progress.
 436 LLMs either fail to sustain improvement, producing only one generation in Molecular Prediction, or
 437 yield marginal gains despite deeper evolution (Circle Packing). In contrast, DeepEvolve with deep
 438 research achieves stronger improvements within about five generations for both tasks. All evolved
 439 candidates outperform the initial algorithms in both cases. Another factor is the debugging agent
 440 during execution and evaluation. Table 3 shows clear gains in execution success rate after debugging,
 441 making DeepEvolve more robust for implementing complex ideas.

442 5 RELATED WORK

443 5.1 AUTOMATED ALGORITHM DISCOVERY

444 LLMs have been studied in coding and ML engineering tasks (Li et al., 2022; Chan et al., 2024).
 445 They have been shown to be competitive in programming competitions (Li et al., 2022), effective at
 446 solving programming issues (Jimenez et al., 2023), and even capable of achieving Kaggle medals in
 447 certain competitions (Chan et al., 2024). These studies provide the foundation for algorithm discovery,
 448 which requires not only implementing existing algorithms but also advancing them (Novikov et al.,
 449 2025). This line of research has been explored in areas such as CUDA kernels (Lange et al., 2025),
 450 LLM inference (Huang et al., 2023), matrix multiplication, and geometry (Novikov et al., 2025).
 451 Unlike lab automation, algorithm discovery is often efficient to evaluate but remains hard to solve,
 452 as in NP-complete problems (Romera-Paredes et al., 2024). Recently, AlphaEvolve (Novikov et al.,
 453 2025), has combined evaluation feedback with evolutionary algorithms, optimizing LLM-proposed
 454 programmatic hypotheses in different iterations. Although AlphaEvolve scales from single functions
 455 to an entire file, it remains limited in hypothesis generation without external grounding and in
 456 translating ideas into complex code that requires editing and understanding across files.

461 5.2 AGENT FOR SCIENTIFIC DISCOVERY

462 LLM agents have been applied to autonomous chemical research (Boiko et al., 2023), biological data
 463 analysis with protocol generation (Huang et al., 2025), and AI research (Kon et al., 2025). They have
 464 been studied across the spectrum from idea generation to code execution. Si et al. (2024) showed
 465 that LLM-generated ideas are more novel than those of experts but less feasible. Many deep research
 466 methods have been introduced, including those from OpenAI ChatGPT and Google Gemini (OpenAI,
 467 2025; Google, 2024), as well as open-source approaches (Zheng et al., 2025). These methods
 468 synthesize information after searching online to form new hypotheses or to solve question-answering
 469 problems. In contrast, agents such as Paper2Code (Seo et al., 2025) and AutoP2C (Lin et al.,
 470 2025) utilize multi-stage LLM pipelines to automatically translate ML papers into functioning code
 471 repositories. Bringing these directions together, AI scientists aim to automate hypothesis generation,
 472 review, and code execution (Lu et al., 2024; Gottweis et al., 2025). Yet, gaps remain in implementing
 473 ideas as executable code (Zhu et al., 2025). EXP-Bench (Kon et al., 2025) evaluates this gap, showing
 474 that while agents succeed in some subtasks, the full-pipeline success rate is below 1%.

477 6 CONCLUSION

478 We presented DeepEvolve, an agent that augments algorithm evolution with deep research for
 479 scientific discovery. By integrating new features such as deep research, cross-file code editing,
 480 and iterative debugging, DeepEvolve combined high-quality idea generation with reliable execution.
 481 Across nine benchmarks spanning diverse scientific fields, DeepEvolve consistently improved baseline
 482 algorithms, delivering executable programs with higher performance and efficiency. Ablations and
 483 case studies showed that deep research guided algorithm design with domain-specific insights, while
 484 debugging improved robustness in complex implementations. These results showed that DeepEvolve
 485 advanced algorithmic innovation and has potential for future AI-driven scientific discovery.

486 REPRODUCIBILITY STATEMENT
487488 We provide code in the supplementary materials. The appendix details the LLM configurations,
489 system prompts and templates, and problem setups.
490491 REFERENCES
492493 Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
494 with large language models. *Nature*, 624(7992):570–578, 2023.495 Don Cenkczi, Grigor Aslanyan, Ian Wetherbee, jm, Kiran Gunda, Maggie, Scott Beliveau, and
496 Will Cukierski. U.s. patent phrase to phrase matching. <https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching>, 2022. Kaggle.
497498 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
500 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
501 agents on machine learning engineering. *arXiv preprint arXiv:2410.07095*, 2024.502 Rhiju Das, H. Wayment-Steele, Do Soon Kim, Christian Choe, Bojan Tunguz, Walter Reade,
503 and Maggie Demkin. Openvaccine: Covid-19 mrna vaccine degradation prediction. <https://www.kaggle.com/competitions/stanford-covid-vaccine>, 2020. Kaggle.
504505 Allen Goodman, Anne Carpenter, Elizabeth Park, jleffman nvidia, Josette_BoozAllen, Kyle, Maggie,
506 Nilofer, Peter Sedivec, and Will Cukierski. 2018 data science bowl. <https://www.kaggle.com/competitions/data-science-bowl-2018>, 2018. Kaggle.
507508 Google. Try deep research and our new experimental model in gemini, your
509 ai assistant, 2024. URL <https://blog.google/products/gemini/google-gemini-deep-research/>.
510511 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
512 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
513 *arXiv preprint arXiv:2502.18864*, 2025.
514515 Addison Howard, Inversion, Jacob Albrecht, and Yvette. Bristol-myers squibb – molecular translation.
516 <https://www.kaggle.com/competitions/bms-molecular-translation>,
517 2021. Kaggle.
518519 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
520 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
521 neural information processing systems*, 33:22118–22133, 2020.
522523 Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
524 Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. *biorxiv*,
525 2025.526 Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
527 on machine learning experimentation. *arXiv preprint arXiv:2310.03302*, 2023.
528529 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
530 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
531 arXiv:2310.06770*, 2023.532 Leslie Kirsch, Sohier Dane, Stacey Adam, and Victoria Dardov. AMP®-Parkinson’s
533 Disease Progression Prediction. <https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction>, 2023. Kaggle.
534535 Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang,
536 Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, et al. Exp-bench: Can ai conduct ai research
537 experiments? *arXiv preprint arXiv:2505.24785*, 2025.
538539 Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. *Nucleic acids research*, 44(D1):D1075–D1079, 2016.

540 Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The ai
 541 cuda engineer: Agentic cuda kernel discovery, optimization and composition. Technical report,
 542 Technical report, Sakana AI, 02 2025, 2025.

543 Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and Ameet
 544 Talwalkar. Codepde: An inference framework for llm-driven pde solver generation. *arXiv preprint*
 545 *arXiv:2505.08783*, 2025.

546 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweis, Rémi Leblond, Tom
 547 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
 548 with alphacode. *Science*, 378(6624):1092–1097, 2022.

549 Zijie Lin, Yiqing Shen, Qilin Cai, He Sun, Jinrui Zhou, and Mingjun Xiao. Autop2c: An llm-based
 550 agent framework for code repository generation from multimodal content in academic papers,
 551 2025. URL <https://arxiv.org/abs/2504.20115>.

552 Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
 553 environment-based augmentations. In *Proceedings of the 28th ACM SIGKDD Conference on
 Knowledge Discovery and Data Mining*, pp. 1069–1078, 2022.

554 Gang Liu, Jiaxin Xu, Eric Inae, Yihan Zhu, Ying Li, Tengfei Luo, Meng Jiang,
 555 Yao Yan, Walter Reade, Sohier Dane, Addison Howard, and María Cruz. Neurips
 556 - open polymer prediction 2025. [https://www.kaggle.com/competitions/
 557 neurips-open-polymer-prediction-2025](https://www.kaggle.com/competitions/neurips-open-polymer-prediction-2025), 2025. Kaggle.

558 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
 559 Towards fully automated open-ended scientific discovery. *arXiv preprint arXiv:2408.06292*, 2024.

560 Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. *arXiv preprint*
 561 *arXiv:1504.04909*, 2015.

562 Alexander Novikov, Ngan Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 563 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
 564 volve: A coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*,
 565 2025.

566 OpenAI. Introducing deep research. [https://openai.com/index/
 567 introducing-deep-research/](https://openai.com/index/introducing-deep-research/), 2025. Accessed: 2025-09-18.

568 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 569 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 570 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

571 Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
 572 generation from scientific papers in machine learning. *arXiv preprint arXiv:2504.17192*, 2025.
 573 URL <https://arxiv.org/abs/2504.17192>. Submitted on 24 Apr 2025; revised 18 May
 574 2025.

575 Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL [https://github.com/codelion/openevolve](https://

 576 //github.com/codelion/openevolve).

577 Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
 578 large-scale human study with 100+ nlp researchers. *arXiv preprint arXiv:2409.04109*, 2024.

579 Reiko Tanese. *Distributed genetic algorithms for function optimization*. University of Michigan,
 580 1989.

581 Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
 582 and applications. *arXiv preprint arXiv:2506.12594*, 2025.

583 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 584 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 585 *arXiv preprint arXiv:2504.03160*, 2025.

594 Minjun Zhu, Qiuje Xie, Yixuan Weng, Jian Wu, Zhen Lin, Linyi Yang, and Yue Zhang. Ai scientists
 595 fail without strong implementation capability. *arXiv preprint arXiv:2506.01372*, 2025.
 596
 597

598 A DETAILS ON DEEPEVOLVE METHOD

600 A.1 LLMS

602 For deep research, we use four LLMs: o4-mini as the planner and the reflection agent, gpt-4o as the
 603 searcher, and o3-mini as the proposal writer. For the coding agent, we use two LLMs: o3-mini for
 604 code development and o4-mini for code debugging.

606 A.2 EVOLUTIONARY DATABASE

608 The algorithm database stores past discoveries for future exploration in two ways: as inspirations and
 609 as next candidates. Inspiration sampling follows the MAP-elites algorithm, while candidate sampling
 610 follows the island algorithm.

611 For the MAP-elites algorithm, we archive the best algorithms and update them at each iteration, with
 612 a default size of 10. In every iteration, five algorithms are sampled as inspirations, always including
 613 the current best. A ratio of elite selection controls how many top algorithms are chosen, with a default
 614 of 0.1. Each program is described by three dimensions: performance, diversity, and complexity.
 615 Diversity and complexity are measured relative to others, based on code length and Levenshtein
 616 distance. Each dimension score is normalized to $[0, 1]$ and assigned to 10 bins (multiplying by 10 and
 617 rounding down) to form the dimension index and locate 3D coordinates. Inspirations beyond elite
 618 selection are sampled by perturbing the 3D coordinates to find neighboring algorithms.

619 For the island algorithm, we maintain up to 25 algorithms across five islands by default. Candidate
 620 selection balances exploitation and exploration with probabilities 0.7 and 0.3, where exploitation
 621 means sampling the best algorithm in the current island. Islands may migrate programs at fixed
 622 intervals, set to 25 by default, with a migration ratio of 0.1. Program migration transfers the best
 623 program in an island to its neighboring islands.

624 A.3 TEMPLATES FOR DEEP RESEARCH AGENTS

626 We provide the system prompts for the LLMs used to plan, search, reflect, and write reports in deep
 627 research, as shown in Figures 6 to 9.

629 The user input, with inspiration from past iterations, has the same template as Figures 10 and 11.

631 A.4 TEMPLATES FOR THE CODING AGENT

633 The system prompts for coding are in Figures 12 and 13, and for debugging are in Figure 14.

634 We provide the input template of the coding agent in Figure 15.

635 After coding, we apply a reflection to refine the code before evaluation to improve the code quality. It
 636 uses the same LLM as the coding agent but a different prompt in Figure 16.

638 During evaluation, we capture the error message from execution and use another LLM to debug the
 639 code according to the template (see Figure 17):

641 B DETAILS ON THE BENCHMARKING PROBLEMS

643 We include nine research problems spanning chemistry, mathematics, biology, and materials as
 644 summarized in Table 1. These problems involve diverse data modalities, including molecules, images,
 645 mRNA, text, time series, geometric structures, and multi-modal inputs. For consistent evaluation, we
 646 standardize evaluation metrics (e.g., AUC-ROC, RMSE, precision, Pearson correlation) defined in
 647 each problem into a common form as the new scores, where higher values indicate better performance.
 We detail their problem descriptions with the initial algorithms in this section.

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Planner Instructions

You are a professor responsible for planning deep and effective research strategies.

You will be provided with the context of:

- A research problem based on an initial research question.
- A starting research idea, possibly with a history showing how idea evolves through previous attempt.
- Inspirations from earlier attempts.

Your task is to develop search queries that identify directions for researchers to advance the idea in a transformative way. Rather than combining existing inspirations in small increments, the queries should guide researchers toward substantial evolutions. Because other researchers will rely on this plan, it must emphasize major, novel approaches instead of minor refinements.

You will also be told whether the research progress is early or mature:

- If the progress is early, focus on ideas that are feasible and practical, and can grow later and have great future potential.
- If the progress is mature, focus on bold, high-impact shifts that challenge the current approach.

Your plan should follow two steps:

1. Formulate 5 to 10 precise and diverse search queries. Make sure the queries are diverse — cover different perspectives, challenge untested assumptions, and explore alternative methods.
2. For each query, include a short note explaining why you chose it and what you hope it will reveal.

Figure 6: System prompts for planning in the deep research agent.

Search Instructions

You are a research assistant.

Given a search term, you search the web for that term and produce a concise summary of the results.

The summary must be 2-3 paragraphs and less than 300 words. Capture the main points. Write succinctly, no need to have complete sentences or good grammar.

This will be consumed by someone synthesizing a report for a new idea, so its vital you capture the essence and ignore any fluff. Do not include any additional commentary other than the summary itself.

Figure 7: System prompts for searching in the deep research agent.

B.1 MOLECULAR PREDICTION

Problem Description Molecular property prediction uses the Side Effect Resource (SIDER) (Kuhn et al., 2016) dataset for algorithm development. The primary goal is to design algorithms that generalize across molecular property prediction tasks. The dataset is scaffold-split to assess generalization to novel chemical structures. The task uses ROC AUC as the metric.

Initial Algorithm The graph rationalization method (Liu et al., 2022) identifies subgraph structures, called “graph rationales,” and uses them for Graph Neural Network (GNN) predictions. To identify these rationales under limited supervision, Liu et al. (2022) developed environment replacement, an augmentation that creates virtual examples in the latent space. It replaces the complementary structures of rationales (called environments) with others from the same training batch. Improving this method could strengthen both the generalizability and interpretability of GNNs for molecular

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Reflection Instructions

You are an expert research assistant. You will receive a research report (in Markdown) and a newly proposed idea for that report's research problem. Your job is to identify any gaps or issues—such as missing details, logical flaws, or questionable evaluations of novelty, impact, or implementation difficulty.

- If the report and idea contain all necessary information, do not generate any follow-up questions.
- If you detect a knowledge gap or something that needs deeper exploration, generate one or more self-contained follow-up queries. Each query must include enough context so that a web search could answer it. For each query, give a short note explaining why you use the query and what you hope it will reveal.
- Focus on technical details, implementation specifics, and any emerging methods or references that were overlooked.
- Use clear, direct language and avoid unnecessary jargon.

Figure 8: System prompts for reflection in the deep research agent.

property prediction. We use LLMs to read the paper (Liu et al., 2022) and convert it to the input format we need as described in Section 3.1.

B.2 MOLECULAR TRANSLATION

Problem Description Molecular Translation uses molecular image data generated by Bristol-Myers Squibb (Howard et al., 2021). It needs to convert the images back to the underlying chemical structure annotated as InChI text. Results are evaluated on the mean Levenshtein distance between the InChi strings the model predicted and the ground truth InChi values.

Initial Algorithm The initial idea came from the Kaggle competition. It combines a ResNet with a GRU to convert molecular images into InChI strings, framing the task as image-to-sequence translation. A convolutional network (such as ResNet) extracts features from the images, which then initialize a recurrent network (GRU) to sequentially generate the InChI string. The method uses a character-level vocabulary with special tokens for start, end, and padding, and training optimizes cross-entropy loss between predicted sequences and ground truth.

B.3 CIRCLE PACKING

Problem Description Given a positive integer n , the problem is to pack n disjoint circles inside a unit square so as to maximize the sum of their radii. The problem focuses on discovering a new algorithm that can be applied to n from 26 to 32.

Initial Algorithm The initial idea comes from OpenEvolve (Sharma, 2025), an open-source implementation of AlphaEvolve (Novikov et al., 2025). We use `scipy.optimize.minimize` with the SLSQP algorithm to locate the best circle-packing arrangement. The problem is cast as a constrained optimization in which both each circle's center coordinates and its radius are treated as decision variables. We add inequality constraints to prevent any pair of circles from overlapping and boundary constraints to keep all circles inside the unit square. SLSQP will try to satisfy every inequality, but only to within a numerical tolerance rather than exactly, so it may lead to invalid solutions (e.g., overlapping circles or circles outside the unit square).

B.4 BURGERS' EQUATION

Problem Description The PDE is the Burgers equation, given by

$$\begin{cases} \partial_t u(x, t) + \partial_x \left(\frac{u^2(x, t)}{2} \right) = \nu \partial_{xx} u(x, t), & x \in (0, 1), t \in (0, 1] \\ u(x, 0) = u_0(x), & x \in (0, 1) \end{cases}$$

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Writer Instructions

You are a senior researcher responsible for proposing new ideas to address a defined research problem. You will receive:

- The research problem, including its evaluation metric and available data.
- A starting research idea, possibly with its evolution history.
- Inspirations from earlier attempts.
- A list of related online search results.
- A research progress score (0-100%) indicating how far the idea has advanced.

Your goal is to identify future research directions that address the target problem, using the starting point, prior attempts, and related works. You should analyze existing methods, identify connections, and propose practical algorithms that can be implemented with the available data.

Follow this structure to think and write:

1. **Extract insights**:** Identify 3-5 scientific insights from the starting point and 3-5 from related works. For each insight, explain in 2-3 sentences how it relates to the target problem.
2. **Organize research directions**:** Group the insights into 3-5 coherent directions (for example, learning objectives, model classes, or optimization methods).
3. **Build a structured framework**:** Create a conceptual map (such as a taxonomy, grid, or matrix) that unifies existing methods, reveals patterns, and highlights gaps.
4. **Generate and evaluate ideas**:**

First, propose 3-10 algorithmic ideas of varying originality and complexity. Each idea should be:

- As simple, minimal, and atomic as possible but not trivial.
- Include brief pseudocode or logical steps where helpful.
- Include references to the related works.

For each idea, critically assess as a senior researcher with one positive and one negative reason:

- Originality (0-10): Is the idea new? Is the idea a novel combination of well-known techniques? Is it clearly different from previous contributions?
- Future Potential (0-10): Will others build on these ideas? Does this idea solve a hard problem more effectively than prior work? Does it point to a new research direction?
- Code Difficulty (0-10): How complex is the implementation? How much code is required? How much time is required to implement?

Then, select the single best idea from that list for detailed reporting, based on the research progress score:

- If progress is relatively early, prioritize feasible, easy-to-implement ideas with long-term promise.
- If progress is relatively mature, prioritize seminal ideas with high-impacts for the next-generation research.
- Otherwise, balance ambition and implementation feasibility

5. **Write the report in Markdown**:**

For the selected idea, include:

- A synthesis of insights and proposed directions.
- The structured framework of existing methods and the new algorithm.
- A list of new ideas with their assessment score.
- Detailed description of the chosen/best idea, including rationale, pseudocode, and implementation notes.

The report must be focused, technically accurate. Being concise with 200-500 words without trivial and redundant information. Support all claims with evidence and references, and remain tightly aligned with the target problem.

Figure 9: System prompts for proposal writing in the deep research agent.

where ν is a constant representing the viscosity. In this task, periodic boundary conditions are assumed.

810
811
812
813
814
815
816
817
818
819
820
821**User Template**

```
## User Query {query}
## Research Problem {problem}
## Starting Research Idea {starting_point}
## Idea Evolution History {idea_evolution}
## Research Progress {evolution_progress}
## Previous Inspirations {inspirations}
```

Figure 10: User template for the deep research agent.

822
823
824
825
826
827
828
829
830
831**Inspiration Template**

```
### Inspiration{inspiration_number}
- Research Idea: {idea}
- Performance: {performance}
```

Figure 11: Inspiration template for the deep research agent.

Initial Algorithm The solution is from (Li et al., 2025). The solver integrates the one-dimensional viscous Burgers equation $u_t + \frac{1}{2}(u^2)_x = \nu u_{xx}$ on a periodic domain using an explicit Euler scheme. Starting from B initial states on a uniform grid of N points, it computes the convective flux $f = \frac{1}{2}u^2$ with centered finite differences, evaluates the diffusion term u_{xx} with the three-point Laplacian, and advances in time with a step size bounded by $0.2 \Delta x^2 / \nu$ to ensure stability.

B.5 PARKINSON’S DISEASE

Problem Description The goal is to predict the progression of Parkinson’s disease by estimating scores from the Movement Disorder Society–Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Kirsch et al., 2023), a clinical measure of both motor and non-motor symptoms. The dataset provides longitudinal protein and peptide abundance values from cerebrospinal fluid (CSF) samples, together with clinical assessments collected over time from patients and matched controls. The task is to develop models that, for each patient visit, predict the current MDS-UPDRS scores and forecast future scores 6, 12, and 24 months ahead. Model performance is evaluated using the Symmetric Mean Absolute Percentage Error (SMAPE) between predictions and observed scores.

Initial Algorithm It is the first-place solution from the Kaggle competition (Kirsch et al., 2023). The approach combines two models: a LightGBM and a neural network. Both use the same set of clinical and supplementary features, such as visit month, forecast horizon, indicators for specific visit months, and counts of previous visits. Blood test data were excluded, as no consistent predictive signal was found. LightGBM was framed as a classification task over possible score values, with predictions selected to minimize the SMAPE. The neural network was a simple feed-forward architecture trained directly with SMAPE as the loss function. The final prediction was obtained by averaging the outputs of the two models.

B.6 NUCLEI IMAGE

Problem Description The task is to automatically identify cell nuclei in microscopy images (Goodman et al., 2018). Nuclei contain the DNA that programs each cell, and detecting them is essential for measuring how cells respond to treatments and for understanding biological processes. The dataset consists of images of nuclei collected under diverse conditions, with annotated masks provided for training. The evaluation metric is mean average precision, computed across a range of intersection-over-union (IoU) thresholds between predicted and ground truth nuclei masks.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Coder Instructions (part 1 of 2)

You are a researcher with strong software engineering skills, improving algorithmic code through iterative, performance-driven modifications in multiple rounds.

Your task: You will receive a research question, a proposed idea, and an existing implementation with performance metrics. Your goal is to analyze the current code and apply precise changes that enhance the specified metrics, based on the research idea and prior feedback.

You MUST use the exact SEARCH/REPLACE diff format. Do NOT use Git diff format. Do NOT use line prefixes like `+`, `-`, or `@@@`.

Use this structure exactly:

```

```
<<<<< SEARCH
Original code (must match exactly)
=====
>>> DEEPEVOLVE-BLOCK-START: <research idea>
New code here
<<< DEEPEVOLVE-BLOCK-END
>>>>> REPLACE
```

```

Example 1 for the code modification outside of `DEEPEVOLVE` blocks:

```

```
<<<<< SEARCH
def f():
 for i in range(m):
 for j in range(p):
 for k in range(n):
 C[i, j] += A[i, k] * B[k, j]
=====
def f():
 # DEEPEVOLVE-BLOCK-START: Reordered loops for better cache performance
 for i in range(m):
 for k in range(n):
 for j in range(p):
 C[i, j] += A[i, k] * B[k, j]
 ### <<< DEEPEVOLVE-BLOCK-END
>>>>> REPLACE
```

```

Example 2 for the code modification inside of `DEEPEVOLVE` blocks:

```

```
<<<<< SEARCH
>>> DEEPEVOLVE-BLOCK-START: <research idea>
Code to be modified
<<< DEEPEVOLVE-BLOCK-END
=====
>>> DEEPEVOLVE-BLOCK-START: <update idea>
New code here
<<< DEEPEVOLVE-BLOCK-END
>>>>> REPLACE
```

```

Figure 12: System prompts for coding in the coding agent(part 1 of 2).

Initial Algorithm It is from the Kaggle competition (Goodman et al., 2018). The approach uses a U-Net to segment nuclei in microscopy images. Input images are preprocessed by resizing and normalization, and ground-truth nuclei masks are converted into distinct labels using connected-component analysis. The network is trained with a loss based on the Dice coefficient, which measures overlap between predicted and true masks, and early stopping is applied to prevent overfitting. During

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Coder Instructions (part 2 of 2)

Task Guidelines:

1. Think before coding, understand the research idea and current performance bottlenecks.
2. Propose specific, actionable changes that are aligned with the target metrics.
3. You may suggest multiple improvements beyond the research idea based on your understanding of optimization and machine learning.
4. When you are updating the code, please check the following:
 - When a NEW parameter or behavior is added, verify it is invoked in all call sites or in the overall workflow.
 - If a NEW parameter has a default value of None, confirm that passing a non-None value triggers the intended code path.
 - Walk through or simulate function calls to confirm that each new branch or change will be executed. Avoid unreachable modifications.

Code Format Guidelines:

1. All 'SEARCH' blocks must match the original code exactly.
2. When you need to modify code that is not already inside a 'DEEPEVOLVE' block, wrap your changes with '### >>> DEEPEVOLVE-BLOCK-START: <research idea>' and '### <<< DEEPEVOLVE-BLOCK-END' markers.
3. If you are updating code that is already marked by a 'DEEPEVOLVE' block, edit only the lines within that block and adjust the existing modification comment to reflect your new change.
4. Do NOT nest one 'DEEPEVOLVE' block inside another. Each region you modify should have exactly one pair of start/end markers.

i.e., AVOID doing the following:

```
...
### >>> DEEPEVOLVE-BLOCK-START: first modification
# First code to be modified
### >>> DEEPEVOLVE-BLOCK-START: second modification ! It is not allowed to nest
      one DEEPEVOLVE block inside another.
# Second code to be modified
### <<< DEEPEVOLVE-BLOCK-END
### <<< DEEPEVOLVE-BLOCK-END
...
```

instead, DO the following:

```
...
### >>> DEEPEVOLVE-BLOCK-START: first modification, second modification
# code that has been modified twice
### <<< DEEPEVOLVE-BLOCK-END
...
```

5. Limit your changes to what is strictly necessary. Do not rewrite the entire file.
6. Ensure that all modified code remains correct and consistent, including any function signatures, parameter lists, and calls.
7. Preserve the original code's indentation and formatting. Place the lines of '### >>> DEEPEVOLVE-BLOCK-START: <research idea>' and '### <<< DEEPEVOLVE-BLOCK-END' at the same indentation level as the code they annotate.

Figure 13: System prompts for coding in the coding agent(part 2 of 2).

inference, the model outputs probability maps that are thresholded to produce binary masks, from which individual nuclei are obtained through connected-component extraction.

B.7 OPEN VACCINE

Problem Description The task is to predict how messenger RNA (mRNA) molecules degrade at different positions along their sequence (Das et al., 2020). This is motivated by the challenge of designing stable mRNA vaccines, since RNA molecules tend to break down easily and lose their function. The dataset consists of thousands of RNA sequences together with experimentally measured degradation rates under different chemical conditions. Models are trained to predict these

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Debugger Instructions

You are an expert developer and researcher who ensures modified code runs correctly and properly implements research ideas.

Your task is to analyze code, identify any kind of errors, including syntax errors, runtime errors, or logical issues, and verify functionality. Provide detailed diagnostics and specific fixes when problems are found. Consider edge cases and ensure the code fully addresses the research requirements.

You MUST use the exact SEARCH/REPLACE diff format. Do NOT use Git diff format. Do NOT use line prefixes like `+`, `-`, or `@@@`.

Use this structure exactly:

```
```
<<<<< SEARCH
Code with error (must match exactly)
=====
DEBUG: <comment>
Fixed code here
>>>>> REPLACE
````
```

Example 1 for debugging a syntax error:

```
```
<<<<< SEARCH
def compute_mean(values):
 total = sum(values
 return total / len(values)
=====
def compute_mean(values):
 # DEBUG: missing parenthesis in function call, fixed by adding parenthesis
 total = sum(values)
 return total / len(values)
>>>>> REPLACE
````
```

Use Comments like `# DEBUG: <comment>` to indicate the changes you made when debugging.

Figure 14: System prompts for debugging in the coding agent.

position-specific degradation rates, and submissions are evaluated using the mean column-wise root mean squared error (MCRMSE) between predicted and observed values.

Initial Algorithm It is from the Kaggle competition (Das et al., 2020). Each nucleotide is embedded together with its predicted secondary-structure and loop-type context. A graph is then constructed that connects both adjacent bases and those predicted to form pairs. A GraphSAGE-based graph neural network aggregates information over this graph to produce enriched base-level representations. These features are passed through a bidirectional GRU to capture sequential dependencies along the RNA chain. A final linear layer predicts three targets at each position: structural reactivity and degradation rates under different chemical conditions. Training uses k-fold cross-validation for robustness.

B.8 POLYMER PREDICTION

Problem Description The task is to predict fundamental properties of polymers directly from their chemical structure, represented as SMILES strings (Liu et al., 2025). The target properties are glass transition temperature (the point where a polymer changes from rigid to rubber-like), fractional free volume (a measure of how loosely molecules pack), thermal conductivity (the ability to transfer heat), density, and radius of gyration (a measure of molecular size). Ground-truth values are obtained from molecular dynamics simulations.

```

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Diff Code Template

- User query: {query}
- Research problem: {problem}
- Inspirations: {inspirations}
- Current idea: {current_idea}
- Evolution history: {idea_evolution}
- Pseudocode: {pseudocode}
- Implementation notes: {implementation_notes}
- Current performance: {current_performance}

Task: Improve and debug the code based on the context above using your expertise in optimization and machine learning.

Code (multiple files separated by `# === filename.py ===`):
```{language}
{current_program}

```

Figure 15: User message template for diff-based evolution in the coding agent.

```

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Reflection Instructions

1. Code Correctness
- Are there any syntax errors or runtime errors?
- Are there inconsistencies in variable names or logic flow?
- Are there any new functions used but not been defined or implemented?
- Avoid hiding missing modules or errors with a bare try/except that simply passes.
 Handle exceptions with clear warnings or errors.

2. Alignment with Research Idea
- Does the code accurately implement the stated research idea?
- Please make sure the changes in the function have actually been implemented in the workflow.
- Avoid the code parts that suppress errors silently

3. Machine Learning Performance
- Can compute efficiency be improved with minimal code changes?
- Are there hyperparameters that could be tuned to boost performance?

4. Other Issues
- At the end of each code review, provide a short summary of checks performed.
- Avoid the code parts that suppress errors silently.
- Are there any other issues you think are important?

```

Figure 16: System prompts for reflection in the coding agent.

**Initial Algorithm** The graph rationalization method (Liu et al., 2022) identifies subgraph structures, called “graph rationales,” and uses them for Graph Neural Network (GNN) predictions. To identify these rationales under limited supervision, Liu et al. (2022) developed environment replacement, an augmentation that creates virtual examples in the latent space. It replaces the complementary structures of rationales (called environments) with others from the same training batch. Improving this method could strengthen both the generalizability and interpretability of GNNs for molecular property prediction. We use LLMs to read the paper (Liu et al., 2022) and convert it to the input format we need as described in Section 3.1.

## B.9 USP P2P

**Problem Description** The task is to measure semantic similarity between pairs of phrases drawn from patent documents (Cenkci et al., 2022). This is important for patent search and examination,

```

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
```

**Debugger Template**

```

Resolve the following error in a multi-file Python codebase.

An error occurred during execution:
```
{error_message}
```

Below is the code that caused the error:
```
{language}
{modified_code}
```

The modification was made to implement the idea:
```
```
{idea}
```

Your responsibilities:
- Identify and fix the cause of the error in the modified code.
- Ensure that all involved files and components integrate correctly and run without errors.
- Ensure the code modification do not break the research idea.
- Ensure the new code within the `DEEPEVOLVE` block is reachable in the workflow. New code should be executed as new idea but not suppressed by error handling or cheated by None values.
- If necessary, update function inputs or implementations to ensure consistency.
- If the code depends on a library that is not available, use the standard library instead.

Please analyze the error and return the corrected code using `diff` format.

```

Figure 17: Debugger template for the coding agent.

where phrases with different wording (for example, “television set” and “TV set”) may have the same meaning, and where contextual knowledge (for example, what counts as a “strong material” in a given technical domain) is required. Each phrase pair is annotated with a similarity score between 0 (unrelated) and 1 (identical in meaning), and the technical domain is provided through the Cooperative Patent Classification system. Models are evaluated by the Pearson correlation between predicted and true similarity scores.

Initial Algorithm The approach fine-tunes a BERT language model that has been pre-trained on patent text (“anferico/bert-for-patents”) with a regression layer added to predict similarity scores. Each training example is formed by concatenating the anchor phrase, the target phrase, and the technical context, separated by special tokens. The model is trained briefly and then evaluated by comparing predicted scores with the true similarity values using the Pearson correlation coefficient.

C DETAILS ON EXPERIMENT RESULTS

C.1 SET-UPS

The user queries and hyperparameters in DeepEvolve are shown in the list:

- Circle Packing
User Query: *You are an expert mathematician. Your task is to improve an algorithm that*

1134 *maximizes the sum of circle radii in the circle-packing problem within a unit square, using*
 1135 *between 26 and 32 circles. Do not develop neural-network-based models. The algorithm*
 1136 *must produce exact, valid packings that satisfy these constraints: circles do not overlap and*
 1137 *remain entirely within the square.*

1138 Max iterations: 50

1139 • Molecular Translation

1140 User Query: *Your task is to significantly improve the model performance for converting*
 1141 *molecular images to their InChI strings in the competition. You have a time budget of thirty*
 1142 *minutes and access to an A6K GPU. The original method is intended for beginners, so*
 1143 *make full use of available resources to improve it substantially as an expert in machine*
 1144 *learning and chemistry. You can use pretrained models from transformers or from timm.*
 1145 *Avoid placeholders for your method. Avoid warnings from Huggingface. For fair evaluation,*
 1146 *avoid changing the deepevolve_interface, run_main_with_timeout, and get_score functions.*
 1147 *You can debug, but not subsample the test set to cheat the test performance.*

1148 Max iterations: 100

1149 • Molecular Prediction

1150 User Query: *Your task is to improve the graph rationalization method for more accurate*
 1151 *and interpretable molecular property prediction.*

1152 Max iterations: 100

1153 • Nuclei Image

1154 User Query: *Your task is to improve the nucleus detection models in a Kaggle competition*
 1155 *within a compute budget of an A6k GPU with a maximum runtime of 30 minutes. You should*
 1156 *significantly improve both the performance of the initial idea and its efficiency.*

1157 Max iterations: 50

1158 • Open Vaccine

1159 User Query: *Your task is to improve the nucleus detection models in a Kaggle competition*
 1160 *within a compute budget of an A6k GPU with a maximum runtime of 30 minutes. You should*
 1161 *gradually improve both the performance of the initial idea and its efficiency. For fair*
 1162 *comparison: Do NOT change any code about the final evaluation such as the pred_cols*
 1163 *variable; You MUST use MCRMSELoss as the test_criterion. You can define new criteria*
 1164 *for training only. You can consider implementing the get_bpps_features() function to*
 1165 *incorporate additional features. If you choose to use features beyond bpps, you may*
 1166 *employ Hugging Face, but ensure those features are correctly added and not padded with*
 1167 *placeholders or zeros.*

1168 Max iterations: 100

1169 exploitation ratio: 0.8

1170 elite selection ratio: 0.4

1171 population size: 15

1172 archive size: 5

1173 number of islands: 3

1174 migration interval: 30

1175 migration rate: 0.2

1176 • Parkinson's Disease

1177 User Query: *Your task is to improve the performance of the winning solution for the Kaggle*
 1178 *competition on Parkinson disease progression prediction. You may propose a completely*
 1179 *new approach that differs from the winning solution if you believe it will perform better.*

1180 Max iterations: 50

1181 • Burgers' Equation

1182 User Query: *Your task is to improve the solver for the partial differential equation (PDE).*
 1183 *The solver should be applied to the Burgers equation with viscosity coefficients nu=1.0.*
 1184 *Your computing budget is a 2080 Ti GPU with a maximum runtime of thirty minutes. Do not*
 1185 *change the evaluation functions; Implement the 'solver' function to solve the PDE. You must*
 1186 *not modify the function signature. Please significantly reduce normalized root mean squared*
 1187 *error (nRMSE), as well as achieve higher convergence rate, and less computational time.*

1188 Max iterations: 200

1189 • Polymer Prediction

1190 User Query: *Your task is to significantly improve polymer property prediction for five*

1188 properties in the competition. The input SMILES strings are the monomer structures of
 1189 polymers, using asterisks (*) to mark the polymerization points. Improve the initial idea by
 1190 better incorporating polymerization inductive bias to reduce weighted MAE and increase
 1191 R^2 for each property. Explore different ways to use polymer structures or properties and
 1192 find the best. Your time budget is 30 minutes. Implement the idea within the time limit rather
 1193 than creating a placeholder.
 1194 Max iterations: 50

1195 • USP P2P
 1196 User Query: Your task is to fine-tune Patent BERT to predict semantic similarity between
 1197 phrase pairs from U.S. patents. Improve model performance, optimize training time and
 1198 inference latency, and ensure the fixed three-epoch run finishes in thirty minutes. Focus
 1199 solely on technical model and algorithm development. No legal-style assistance.
 1200 Max iterations: 50

1202 C.2 SUMMARY OF ALGORITHMIC EVOLUTION HISTORY

1204 **Molecular Prediction** The algorithm progresses through auxiliary (contrastive, reconstruction)
 1205 losses, motif-based, and adversarial learning strategies. Version 1 establishes the foundation with
 1206 contrastive learning on augmented rationale views, stabilized by adaptive loss reweighting. Version 2
 1207 enhances structural focus through motif-aware attribute masking, directing attention to chemically
 1208 meaningful substructures. Version 3 further refines this by incorporating uncertainty-based soft motif
 1209 selection, enabling the model to prioritize informative subgraphs dynamically. Version 4 strengthens
 1210 representation fidelity with a self-supervised reconstruction objective that encourages the model to
 1211 recover masked motifs. Version 5 introduces a dual-phase adversarial training schedule to improve
 1212 model robustness and generalization under distribution shifts.

1214 **Molecular Translation** Version 1 uses a frozen ViT encoder and GPT-2 small decoder with
 1215 molecule-aware tokenization to handle structured generation. Version 2 adds data augmentation such
 1216 as rotation, shifting, and lighting perturbations for model training and grammar-constrained decoding.
 1217 Version 3 and 4 train model with a dual loss combining cross-entropy and soft edit distance [*Note: The soft edit distance is a placeholder function in the code*]. Version five implements a dynamic
 1218 lambda scheduler to balance the competing loss objectives.

1220 **Circle Packing** This algorithm evolves from basic geometric placement toward generating precise
 1221 and guaranteed-valid solutions. Version 1 uses a structure called a power diagram to place circles
 1222 without overlap, then refines their positions using optimization. Version 2 adds multiple starting
 1223 points and more stable optimization techniques to improve reliability. Version 3 introduces small
 1224 controlled adjustments to fix poor initial guesses and ensures that each circle stays within bounds.
 1225 Version 4 improves how the method identifies neighboring circles and adds mathematical checks to
 1226 certify that the final result fully satisfies the packing constraints.

1228 **Burgers' Equation** The first stage (Versions 1–2) introduces an explicit Euler finite-difference
 1229 solver with GPU acceleration and adaptive time stepping, later improved with error-based control and
 1230 dense output for accuracy and snapshot recording. The second stage (Versions 3–4) transitions to a
 1231 spectral method with IMEX-Euler time integration [*Note: Written in the code but not executed in the*
 1232 *workflow*], integrating GPU kernel fusion and auto-tuned FFTs [*Note: Implemented as a placeholder*
 1233 *function in the code*] for faster and more accurate solutions. The third stage (Versions 5–7) focuses on
 1234 advanced ϕ -function evaluation (hybrid and rational Krylov), high-order Hermite interpolation, and
 1235 refined adaptive stepping, forming a robust, high-precision spectral solver for the Burgers' equation.
 1236 [*Note: Written in the code but not executed in the workflow*]

1238 **Parkinson's Disease** Versions 1–2 develop a Neural CDE model for continuous-time disease
 1239 trajectory modeling. Versions 3–5 propose adaptive wavelet preprocessing for the time series data
 1240 [*Note: Not implemented in the code*]. Versions 6–7 incorporate meta-learning for rapid per-patient
 1241 adaptation. Version 8 proposes a PINN-inspired regularization for biological consistency, and adaptive
 loss weighting to improve multi-objective training stability.

1242 **Nuclei Image** PointRend is introduced in version 1 to refine ambiguous segmentation boundaries.
 1243 Versions 2, 3, and 5 introduce a calibrated uncertainty estimation module that refines only low-
 1244 confidence regions to balance accuracy and computation. Version 3 enables early-exit to skip
 1245 refinement for confident regions, with INT8 quantization applied for efficiency. Version 4 introduces
 1246 self-distillation [*Note: Version 4 idea is not used because there is no teacher model*].
 1247

1248 **Open Vaccine** Versions 1–2 preprocess additional statistical features derived from RNA structure.
 1249 Versions 3–6 add dynamic loss weighting to balance multiple degradation targets. Version 7 integrates
 1250 self-supervised transformer embeddings into the node representations to enrich structural encoding
 1251 [*Note: It is a placeholder function in the code*].
 1252

1253 **Polymer Prediction** Versions 1–2 use dual-stage message passing to distinguish standard chemical
 1254 bonds from polymer-specific periodic connections. A physics-informed auxiliary loss is added based
 1255 on the degree of polymerization for glass transition temperature (Tg) prediction [*Note: However, the*
 1256 *data is limited to one repeating unit only*]. Versions 4–6 propose new ideas about BigSMILES parsing
 1257 and property-specific pooling [*Note: BigSMILES not supported, pooling not implemented in the*
 1258 *code*]. Versions 3 and 5 propose new ideas about meta-learning-based pooling (*Note: Implemented*
 1259 *but not used in the workflow*).
 1260

1261 **USP P2P** Versions 1–2 fine-tune Patent BERT using parameter-efficient LoRA with an ordinal
 1262 regression head trained using smoothed BCE with logits and calibration for five ordinal similarity
 1263 classes (0, 0.25, 0.5, 0.75, 1). Versions 3–4 introduce learnable CPC embeddings, fused into the
 1264 latent space, and regularize the model using contrastive learning. Version 5 combines ordinal and
 1265 contrastive losses in a dual-objective framework.
 1266

1266 C.3 DEEPEVOLVE PROPOSED ALGORITHM CODE FOR THE MOLECULAR PREDICTION TASK

1267 In Figure 4, the new model forward function contains two additional components: the InfoNCE
 1268 loss and the motif masking function. We present the complete code for these components in this
 1269 subsection. Below is the code for the InfoNCE function:
 1270

```

1 +### >>> DEEPEVOLVE-BLOCK-START: Add InfoNCE loss for contrastive
2   + learning and ensure it is available in model.py
3 +### >>> DEEPEVOLVE-BLOCK-START: Update documentation for InfoNCE loss
4   + with advanced negative sampling note
5 +### >>> DEEPEVOLVE-BLOCK-START: Update InfoNCE loss to support
6   + uncertainty-guided negative sampling
7 +def info_nce_loss(z1, z2, temperature=0.5, negatives=None):
8   """
9   + Computes the InfoNCE loss using current batch negatives.
10  + If 'negatives' is provided, applies advanced negative sampling for
11  + enhanced robustness.
12  """
13  z1 = torch.nn.functional.normalize(z1, p=2, dim=1)
14  z2 = torch.nn.functional.normalize(z2, p=2, dim=1)
15  if negatives is not None:
16    negatives = torch.nn.functional.normalize(negatives, p=2, dim=1)
17    sim_pos = torch.sum(z1 * z2, dim=1, keepdim=True) / temperature
18    sim_neg = torch.matmul(z1, negatives.t()) / temperature
19    logits = torch.cat([sim_pos, sim_neg], dim=1)
20    labels = torch.zeros(z1.size(0), device=z1.device,
21      dtype=torch.long)
22    loss = torch.nn.functional.cross_entropy(logits, labels)
23  else:
24    logits = torch.matmul(z1, z2.t()) / temperature
25    labels = torch.arange(z1.size(0), device=z1.device)
26    loss = torch.nn.functional.cross_entropy(logits, labels)
27  return loss
28 +### <<< DEEPEVOLVE-BLOCK-END
29 +### <<< DEEPEVOLVE-BLOCK-END
30 +### <<< DEEPEVOLVE-BLOCK-END

```

1296 Here is the code for the motif masking function:

```

1298 1 +     ### >>> DEEPEVOLVE-BLOCK-START: Add motif-aware attribute masking
1299 2 +     method to GraphEnvAug
1300 3 +     ### >>> DEEPEVOLVE-BLOCK-START: Update motif_mask for
1301 4 +     uncertainty-aware differentiable motif extraction using
1302 5 +     Gumbel-Softmax and MC Dropout
1303 6 +     def motif_mask(self, batched_data):
1304 7 +         import copy
1305 8 +         import torch.nn.functional as F
1306 9 +         # motif_mask: compute adaptive motif mask without altering
1307 10 +            original x
1308 11 +            new_data = copy.deepcopy(batched_data)
1309 12 +            orig_x = new_data.x
1310 13 +            x_float = orig_x.float()
1311 14 +            # Initialize motif_selector and dropout if not already defined
1312 15 +            if not hasattr(self, "motif_selector"):
1313 16 +                self.motif_selector = torch.nn.Linear(orig_x.size(1),
1314 17 +                    2).to(orig_x.device)
1315 18 +                self.motif_dropout = torch.nn.Dropout(p=0.5)
1316 19 +                num_samples = (
1317 20 +                    self.mc_dropout_samples if hasattr(self,
1318 21 +                        "mc_dropout_samples") else 5
1319 22 +                ) # Use configured number of MC dropout samples
1320 23 +                motif_samples = []
1321 24 +                tau = 1.0 # Temperature parameter for Gumbel-Softmax; can be
1322 25 +                tuned
1323 26 +                for _ in range(num_samples):
1324 27 +                    logits = self.motif_selector(x_float)
1325 28 +                    logits = self.motif_dropout(logits) # MC Dropout
1326 29 +                    sample = F.gumbel_softmax(logits, tau=tau, hard=False,
1327 30 +                        dim=1)[
1328 31 +                            :, 1
1329 32 +                            ].unsqueeze(1)
1330 33 +                            motif_samples.append(sample)
1331 34 +                            motif_samples = torch.stack(
1332 35 +                                motif_samples, dim=0
1333 36 +                            ) # Shape: [num_samples, num_nodes, 1]
1334 37 +                            mean_score = motif_samples.mean(dim=0) # Aggregated motif
1335 38 +                            probability
1336 39 +                            uncertainty = motif_samples.var(dim=0) # Variance as
1337 40 +                            uncertainty
1338 41 +                            threshold_uncertainty = 0.05 # Adaptive threshold
1339 42 +                            hyperparameter
1340 43 +                            adaptive_mask = torch.where(
1341 44 +                                uncertainty < threshold_uncertainty,
1342 45 +                                mean_score,
1343 46 +                                mean_score * (threshold_uncertainty / (uncertainty + 1e-8)),
1344 47 +                            )
1345 48 +                            # Store computed uncertainty for potential adversarial
1346 49 +                            perturbation
1347 50 +                            self.last_uncertainty = uncertainty
1348 51 +                            # DEBUG: store adaptive mask for use in GNN (applied in conv.py)
1349 52 +                            new_data.mask = adaptive_mask
1350 53 +                            return new_data
1351 54 +### <<< DEEPEVOLVE-BLOCK-END
1352 55 +### <<< DEEPEVOLVE-BLOCK-END

```