
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIVE PARTITIONING:
INVERTING THE PARADIGM OF ACTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Datasets often incorporate various functional patterns related to different aspects
or regimes, which are typically not equally present throughout the dataset. We pro-
pose a novel, general-purpose partitioning algorithm that utilizes competition be-
tween models to detect and separate these functional patterns. This competition is
induced by multiple models iteratively submitting their predictions for the dataset,
with the best prediction for each data point being rewarded with training on that
data point. This reward mechanism amplifies each model’s strengths and encour-
ages specialization in different patterns. The specializations can then be translated
into a partitioning scheme. The amplification of each model’s strengths inverts
the active learning paradigm: while active learning typically focuses the training
of models on their weaknesses to minimize the number of required training data
points, our concept reinforces the strengths of each model, thus specializing them.
We validate our concept – called active partitioning – with various datasets with
clearly distinct functional patterns, such as mechanical stress and strain data in a
porous structure. The active partitioning algorithm produces valuable insights into
the datasets’ structure, which can serve various further applications. As a demon-
stration of one exemplary usage, we set up modular models consisting of multiple
expert models, each learning a single partition, and compare their performance
on more than twenty popular regression problems with single models learning all
partitions simultaneously. Our results show significant improvements, with up to
54% loss reduction, confirming our partitioning algorithm’s utility.

1 INTRODUCTION

Datasets can include multiple sections that adhere to distinct regimes. For instance, in stress-strain
tests of materials, the initial phase exhibits elastic behavior, which is reversible. However, if the
material is stretched further, it enters a phase of plastic behavior, resulting in permanent changes.
Similarly, self-driving cars face unique challenges when navigating construction zones, which may
be specific to certain regions of the parameter space, just as the challenges on highways or country
roads. This mixture of different functional patterns within datasets affects how difficult they are
for models to learn. Typically, the more diverse the functional patterns within a dataset, the more
challenging it is for a model to achieve high accuracy. We present a novel partitioning algorithm
aiming to detect such different functional patterns and separate them from one another whenever
possible.

The development of algorithms for partitioning datasets has a long history. MacQueen introduced
the renowned k-means algorithm in 1967 (Macqueen, 1967). However, most approaches define an
arbitrary similarity measure for grouping data points. In k-means, spatial proximity is interpreted
as the similarity of data points. In contrast, we allow those models that are supposed to learn the
dataset to determine which data points they can coherently learn. We believe that for effective dataset
partitioning, it is crucial to consider the models themselves. As Jacobs (1990) stated, “the optimal
allocation of experts to subtasks depends not only on the nature of the task but also on that of the
learner”.

Our new algorithm is based on the competition between multiple models. These models are itera-
tively trained using the data points for which they have made the best predictions, thereby emphasiz-
ing each model’s strengths and inducing model specialization. The models being trained specifically

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

on their strengths, rather than their weaknesses, inverts the traditional active learning strategy, lead-
ing us to term this approach active partitioning. The resulting data point distribution to different
models is translated into partitions representing different regimes or patterns. Technically, the out-
come of this algorithm is the boundaries between these partitions, stored in a support vector machine
(SVM).

There are several ways to utilize the resulting partitioning. One notable application is to learn each
partition with a separate model and then combine these expert models into a modular model, allow-
ing each expert model to focus on a specific pattern rather than handling all patterns simultaneously.
Our experiments demonstrated that such a modular model, based on the results of the partitioning
algorithm, significantly outperformed a single model on several exemplary datasets.

2 RELATED WORK

2.1 PARTITIONING

Extensive literature surveys on clustering, including partitioning as a special form, can be found in
Jain (2010), Du (2010), Aggarwal & Reddy (2013), and Ezugwu et al. (2021). According to Jain
(2010), clustering is about identifying groups within datasets such that “the similarities between
objects in the same group are high while the similarities between objects in different groups are
low.” There are four major categories of clustering algorithms: hierarchical algorithms, partitional
algorithms, density-based algorithms, and heuristic algorithms. This paper focuses on partitional
algorithms, which dynamically assign data points to clusters in either a hard or soft manner. In hard
partitional clustering, each data point is assigned to exactly one cluster, whereas in soft partitional
clustering, each data point can belong to multiple clusters.

K-means is the most well-known partitional clustering algorithm. In each iteration, each data point
is assigned to the nearest centroid, after which each centroid takes over the main position of all its
data points (Macqueen, 1967). To address weaknesses such as the need to specify the number of
clusters in advance or the convergence to a local minimum, the algorithm can be run multiple times
with different numbers of clusters and random initializations. A prominent extension of k-means
is fuzzy c-means, which allows for soft partitional clustering (Dunn, 1974). A recent extension is
game-based k-means, which increases competition between centroids for samples (Rezaee et al.,
2021).

In the 1990s, the kohonen network and its specialization, the self-organizing map, were developed.
Both consist of two neural network layers: an input layer and an output layer, known as the kohonen
layer. The prototypes competing for data points are the neurons in the kohonen layer (Kohonen,
1990). Most approaches that utilize competition for partitioning have entities within one model
compete, such as the centroids in k-means or the last-layer neurons in the kohonen network. To
our knowledge, Müller et al. are the only exception, aiming to segment temporally ordered data
by identifying switching dynamics. They defined an error function and an assumption of the error
distribution to trigger competition between neural networks for data points (Müller et al., 1995).
Chang et al. extended this framework to use support vector machines instead of neural networks
(Chang et al., 2004).

A completely different approach for localizing and specializing experts is the iterative splitting of
datasets and models, as suggested by Gordon & Crouson (2008). Zhang and Liu combine model
splitting and competition in what they call the “one-prototype-take-one-cluster” (OPTOC) paradigm
(Zhang & Liu, 2002). New models are created if the accuracy is not yet satisfactory, and these
models then compete for data points, which later defines the localization of the experts. Wu et al.
adapted this paradigm for clustering gene expression data (Wu et al., 2004).

The novelty of our research lies in the development of a flexible partitioning method through the
competition of entire models. To the best of our knowledge, no general-purpose partitioning al-
gorithm has previously employed competition between entire models. Although the simultaneous
training of experts and a gate involves model competition, it has not been used to create a partition-
ing (Jacobs et al., 1991). Müller et al. utilized competition for data segmentation, relying on the
switching dynamics of temporally ordered data (Müller et al., 1995). In contrast, our approach is
not constrained by any specific origin or order of data.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 COMBINING MODELS

To demonstrate the effectiveness of our algorithm, we will compare a modular model based on
our partitioning approach with a single model. Therefore, we will also review related work on
combining multiple models. Comprehensive overviews of model combination techniques can be
found in Sharkey (1996), Masoudnia & Ebrahimpour (2014), and Dong et al. (2020). Multiple
models can either be fused to an ensemble, meaning that they are trained at least partially on the
same data and that their predictions are combined by a weighted average, or they can form a modular
model, meaning that they are trained on different parts of the dataset and for each prediction only
one responsible model is selected. An approach representing a compromise between these two poles
is the mixture of experts system, which consists of expert models and an additional gating model
mediating the experts, all of which are trained simultaneously. The design of the error function that
is minimized is crucial for the extent of localization or specialization of the experts and therefore
for the quality and generalization of the overall predictions. Typically, neural networks are selected
as models in the mixture of experts system (Jacobs et al., 1991)(Avnimelech & Intrator, 1999). An
obvious advantage of a mixture of experts system compared to a single model is the significantly
increased capacity to learn large or complex datasets. Shazeer et al. recently combined thousands
of neural networks into a sparsely-gated mixture of experts system (Shazeer et al., 2017). Since the
gating network only activates a few expert networks per sample, they achieved a dramatic increase in
model capacity while even decreasing the computational cost compared to state-of-the-art models.

3 PRESENTATION OF THE ALGORITHM

Figure 1: flow chart of the partitioning algorithm: each
data pointed is assigned to the model that submitted the
best prediction. All models are trained with the data
points in their partition for one epoch. This process is
iterated.

The objective of our approach is to detect
functional patterns in datasets and sepa-
rate them in case they appear separable.
To achieve this, we propose competition
among multiple models. We intention-
ally refer to models in a general sense, as
our approach is not limited by the type
of model used. However, for simplicity,
one might consider simple feedforward
networks as an example. The models
compete for data points, which requires
them to specialize in certain functional
patterns of the dataset. This specializa-
tion can be translated into a partitioning
of the dataset.

We assume that the input features and the
output labels of the dataset are known.
However, we assume that both the num-
ber of partitions and the location of their
boundaries are unknown.

The algorithm operates as follows: for
each data point in the dataset, all mod-
els submit their predictions. The model
whose prediction is closest to the true
value wins the data point. As a reward
for providing the best prediction, the win-
ning model is allowed to train on this data
point for one epoch. Algorithm 1 de-
scribes all the steps mentioned. A corre-
sponding flowchart is shown in Figure 1.

This process — models submitting predictions, ranking the predictions, and training the models on
the data points for which they provided the best predictions — is iterated. One iteration we call
an epoch of the algorithm. As the models specialize, we expect the assignments of data points to
models to stabilize: a specialized expert will usually submit the best predictions for its domain. After

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: exemplary partitioning. Figure 2a presents the self-designed test dataset, while Figure 2b
displays an exemplary partitioning result. Figure 2c illustrates the partitioning process, transitioning
from networks with initial random predictions to the orange, red, and green networks each capturing
distinct patterns. The process involves adding and removing networks as patterns are identified or
networks deemed redundant.

(a) Anomaly-crest function (b) Exemplary partitioning result

(c) Exemplary partitioning process with the network number evolution over 1000 iterations (epochs)

Algorithm 1 Partitioning: best predictions are rewarded with training.

procedure MAIN
for each epoch do

for each model do
Submit predictions for all data points.

end for
for each datapoint do

Rank models according to their predictions.
end for
for each model do

Train for one epoch with all won data points.
end for

end for
end procedure

a predefined number of epochs, the assignments of data points to models are considered final. Each
model’s won data points translate to a separate partition of the dataset. The hyperplanes between the
partitions are stored in an SVM, making the partitioning technically available for other applications.
Snapshots of the application of the algorithm to a two-dimensional function that we designed as
a test dataset are shown in Figure 2. The transition from random predictions at the beginning to
specialized experts at the end is clearly visible. The assignments of data points to the specialized
experts are translated into the final partitioning.

Since the number of partitions is usually unknown beforehand, the partitioning algorithm includes
an adding and a dropping mechanism to dynamically adapt the number of competing models to the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: adding a new network (red network 12) to the competition. Regularly, a new network is
trained using the data points with the poorest predictions at that time. If the new network improves
the overall loss, it is added to the competition. Here, the red network 12 is the first to capture the
sinusoidal pattern.

Figure 4: dropping a network (red network 12) from the competition as it appears redundant, failing
to capture any patterns uniquely. Regularly, for each model, we check how much the overall loss
would increase if the network were removed. If the increase is small, the corresponding network is
considered redundant and is discarded. Here, the red network’s predictions were too similar to the
purple network’s predictions.

dataset. To evaluate whether a new model should be added to the competition, we regularly identify
the data points with the poorest predictions in the dataset and train a new model on these points. The
new model is added to the competition in case that improves the overall loss. Figure 3 demonstrates
the addition of a model that successfully captures a significant portion of the sinusoidal section of
a test function, which had previously been unlearned. For more details, see the pseudo-code of the
adding mechanism in Algorithm 2 in the Appendix A.2. Conversely, redundant models that do not
uniquely capture their own pattern should be eliminated. Such redundancy is indicated by models
not winning any data points or by their predictions significantly overlapping with those of other
models. The degree of redundancy is assessed by the increase in overall loss if the model were
deleted. This factor is regularly checked, and all highly redundant models are removed. Figure 4
demonstrates the removal of the red model, as it only captures data points similarly well as the purple
model. Algorithm 3 in the Appendix A.2 provides the corresponding pseudo-code. The adding and
dropping mechanism are designed to balance each other. Figure 2 shows exemplary how the number
of competing models is adapted to the dataset from initially ten to finally three. This process involves
both adding new models to capture previously unlearned patterns and removing redundant ones.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A significant asset of our partitioning algorithm is its ability to extend to a pattern-adaptive model
type, architecture, and hyperparameter search without incurring additional costs. So far, competing
models have been considered similar in terms of their type, architecture, and hyperparameter set-
tings. However, all three can be randomly varied among the models, as it is reasonable to assume
that different patterns may require, for example, wider neural networks or smaller learning rates.
Consequently, the algorithm’s output can not only be a partitioning but also an optimal configura-
tion of model type, architecture, and hyperparameters for each partition.

4 APPLICATIONS

4.1 MODULAR MODEL

Figure 5: flow chart of the modular model: each parti-
tion is learned by a separate expert model. For each data
point, the SVM as a result of the partitioning algorithm
decides which expert to train or to test. This way, the
experts are combined to a modular model.

Applying the partitioning algorithm to
datasets reveals interesting and valuable
insights about the dataset’s structure, as
illustrated in Figure 2. Additionally,
the partitioning can be utilized for vari-
ous other purposes, such as learning the
dataset using a divide-and-conquer ap-
proach. Traditionally, the entire dataset
is used to train and optimize a single
model. However, if the partitioning algo-
rithm detects distinct functional patterns,
it may be beneficial to have multiple ex-
pert models, each learning only one pat-
tern, instead of pressing all patterns into
a single model. Therefore, multiple ex-
pert models that each learn one partition
are combined into a modular model. The
SVM, which incorporates the boundaries
between the partitions, serves as a switch
between the experts. For each data point,
the SVM decides which partition it be-
longs to and, consequently, which ex-
pert model to train or test. The struc-
ture of the modular model is illustrated
with a flowchart in Figure 5. With this
approach, we believe that we can reduce
model complexity and increase model ac-
curacy for datasets that are structured by
multiple distinct functional patterns with
little overlap.

To evaluate this approach, we compared
the performance of a single model trained on the entire dataset with that of a modular model com-
prising multiple expert models. We speak of models in general, as the type of model can be varied.
In our experiments, we used feedforward neural networks. To ensure a fair comparison, we allowed
the single model to have as many trainable parameters (weights and biases) as the combined total
of all experts in the modular model. We conducted a hyperparameter optimization for each expert,
searching for the optimal number of layers, neurons per layer, and learning rate within reasonable
constraints (see Table 2 in Section A.2). Separately, we performed a hyperparameter optimization for
the single model, allowing it to use as many trainable parameters as all the experts combined. Each
hyperparameter optimization involved training the model 100 times with randomly varied hyperpa-
rameters and selecting the best result. This process ensured that any advantages or disadvantages
were not due to unfitting parameters or outliers. To estimate the stability of both approaches, we
repeated each run—partitioning the dataset, training the modular model including hyperparameter
optimization, and training the single model including hyperparameter optimization—ten times.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: datasets to test the partitioning algorithm, illustrated with exemplary partitioning results.

(a) Self-designed wave-climb function with three
patterns identified by the algorithm
(grey, green, blue).

(b) Porous structure’s stress-strain dataset generously
provided by Ambekar et al. (2021) with three patterns
identified by the algorithm (red, green, orange).

4.2 DATASETS

We designed two-dimensional, section-wise defined functions to serve as test datasets for validating
the effectiveness of our approach and its implementation. The anomaly-crest function is illustrated in
Figure 2a, and the wave-climb function is depicted in Figure 6a. Due to their section-wise definition,
these functions exhibit different local functional patterns, akin to several engineering problems.
One such example is modeling the stress-strain curves of materials with porous structures. These
materials offer an excellent balance between weight and strength, but their stress-strain curves are
typically challenging to model due to the presence of diverse functional patterns. An exemplary
stress-strain curve for such a material is shown in Figure 6b. The data for this porous structure’s
stress-strain curve were generously provided by Ambekar et al., who collected them (Ambekar et al.,
2021). We have observed a high robustness of our partitioning approach to variations in the models’
random initializations. Figures 2 and 6 illustrate typical results.

In addition to the two-dimensional datasets, we evaluated our method using popular higher-
dimensional real-world datasets from the UCI Machine Learning Repository (Kelly et al., 2024).
Our tests focused exclusively on regression problems, though our approach can be readily extended
to classification problems. Acknowledging that our assumption of distinct and separable characteris-
tics may not apply to all datasets, we tested 22 additional datasets to assess the frequency and extent
to which the modular model, based on the partitioning algorithm, outperforms a single model (Imran
et al., 2020) (Cortez et al., 2009) (Nash et al., 1995) (Palechor & la Hoz Manotas, 2019) (Schlimmer,
1987) (Cortez & Morais, 2008) (Feldmesser, 1987) (Yeh, 2018) (E & Cho, 2020) (Tsanas & Xifara,
2012) (Yeh, 2007) (Tfekci & Kaya, 2014) (Cortez, 2014) (Quinlan, 1993) (Matzka, 2020) (Wolberg
et al., 1995) (Fernandes et al., 2015) (Janosi et al., 1988) (Tsanas & Little, 2009) (Tsanas & Little,
2009) (Chen, 2017) (Moro et al., 2016) (Hamidieh, 2018).

4.3 RESULTS

Figure 7 presents histograms comparing the test losses of the modular and single models. For this
illustration, we selected those 6 out of the 25 datasets for which the modular model achieved a
significant advantage over the single model. Each histogram shows the losses from ten runs of both
models on each dataset. The x-axis represents the test loss, while the y-axis indicates the number of
runs achieving each respective test loss. Higher bars on the left side of the histogram indicate better
performance.

The modular model, utilizing the partitioning algorithm, significantly outperforms the single model
by orders of magnitude for the two test functions (see Figs. 7a and 7b), demonstrating the concept’s
validity. For the porous structure’s stress-strain data, which inspired the design of the test functions,
the modular model achieved a 54% reduction in loss compared to the single model (see Fig. 7c).
Additionally, the modular model could significantly outperform the single model for three other real-
world datasets: for the energy efficiency dataset, the modular model achieved a 53% improvement

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: histograms illustrating the test losses of single and modular model for ten runs with each
of the six selected datasets. The higher the bars on the left side, the better the performance.

(a) Anomaly-wave function (b) Wave-climb function (c) Stress-strain curve

(d) Automobile insurance risk (e) Energy efficiency (f) Students’ grades

in mean loss over ten runs (see Fig. 7e). For the automobile dataset, the improvement was 14% (see
Fig. 7d), and for the dataset on students learning portuguese, the improvement was 8% (see Fig. 7f).

Table 1 provides a brief characterization of each of the six datasets, detailing the number of features,
labels, and data points. A more detailed analysis of the modular model’s performance compared to
the single model can be found in Section A.1.

Table 1: selected dataset characteristics for sparse and non-sparse datasets

Features Labels Data points

Anomaly-crest function 1 1 10,000
Wave-climb function 1 1 10,000
Porous structure’s stress-strain curve 1 1 4,065
Automobile insurance risk 59 1 159
Energy efficiency 8 2 768
Students’ portuguese grades 56 1 649

5 DISCUSSION

As introduced in Section 3, the partitioning algorithm is based on the competition between mul-
tiple models: iteratively, each model is trained on the data points for which it provided the best
predictions. This approach inverts typical active learning strategies, which usually focus on train-
ing models on their weaknesses to enhance generalization. Instead, we emphasize the strengths of
each model to induce specialization. We consider our concept to be the first in a new category of
partitioning approaches: active partitioning approaches, which invert the traditional active learning
paradigm.

The application of our active partitioning algorithm to the anomaly-crest function (see Fig. 2)
demonstrates that the competition between multiple models is generally effective for developing
specialized experts and separating different functional patterns. The primary value of this partition-
ing lies in its ability to detect these distinct patterns and provide insights into the dataset’s structure.
For the anomaly-crest function, the four identified sections clearly differ in their functional charac-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

teristics (see Fig. 2). In the case of the wave-climb function, the algorithm successfully separates
the two sinusoidal sections with different frequencies and amplitudes, as well as a final u-shaped
section, which seems reasonable (see Fig. 6a). For the porous structure’s stress-strain dataset, it
is noteworthy that the first hook is identified as a distinct pattern. Subsequently, all sections with
concave curvature are captured by the green model, while all sections with convex curvature are
captured by the orange model. This partitioning was surprising, but it appears that the models find it
easier to learn either concave or convex curvatures exclusively (see Fig. 6b). The models themselves
detecting which functional patterns can be learned well coherently was exactly what we were aiming
for.

There are several ways to utilize the partitioning, and we found it important to also illustrate a
path that leads to measurable improvements by leveraging our partitioning results. In Section 4.1,
we introduced modular models that combine multiple experts. Our hypothesis is that for datasets
with separable patterns, it may be advantageous to have multiple experts, each focusing on a single
pattern, rather than a single model handling all patterns. As expected, the modular model was not
superior for all datasets. We believe this is because if a dataset exhibits only one coherent pattern or
if multiple patterns highly overlap, it is more beneficial for a single model to access all data points
rather than splitting them. However, among the 25 datasets we tested, we identified six datasets that
could be learned more precisely with the modular model utilizing our partitioning results. For the
porous structure’s stress-strain dataset and the energy efficiency dataset, the modular model even
achieved a loss reduction of more than 50% (see Fig. 7).

In Section A.1, we describe a detailed analysis of the factors contributing to the performance of
the modular model. Our findings reveal a correlation between the number of patterns identified by
the partitioning algorithm and the modular model’s performance: the more distinct patterns in the
dataset, the better the modular model performs relative to the single model. This aligns with our
expectation that not all datasets are suitable for our approach. The partitioning algorithm should
primarily be applied to datasets that are expected to exhibit predominant patterns with minimal
overlap. The clearer the patterns, the more effective the modular model is expected to be.

Additionally, we examined the impact of our pattern-adaptive hyperparameter search, which opti-
mizes the hyperparameter settings for each pattern. We discovered that tailoring the learning rates
to each partition enhances the modular model’s performance. However, our results indicate that ad-
justing the numbers of layers and neurons per layer for each pattern does not provide any significant
advantage.

Finally, we aimed to verify that the partitioning algorithm identifies substantial patterns rather than
merely separating small and challenging snippets. Our results confirm that the more homogeneous
the partition proportions, the more successful the modular model tends to be.

There are numerous potential applications, many of which we may not have yet considered. One
application we plan to explore is using the partitioning algorithm for active learning. In the context
of expensive data points, the following data collection loop could be advantageous: first, collect a
batch of data points; then, apply the partitioning algorithm; and finally, train each partition with
a separate model, akin to the modular model approach. Instead of immediately combining their
predictions, we could assess each expert’s performance and adjust the collection of new data points
accordingly. Partitions that are more challenging to learn should receive more data points, while
easier partitions should receive fewer. This approach could lead to a more efficient use of the data
point budget. The process can be repeated iteratively. For instance, with a budget of 500 data points,
we could run this process 10 times, each time distributing 50 data points according to the difficulty
of the experts in learning their partitions in the last iteration.

6 CONCLUSION

In this paper, we introduced a novel active partitioning algorithm. To the best of our knowledge, this
algorithm is unique in its use of competition between models to generate a general-purpose parti-
tioning scheme, without constraints on the dataset’s origin or order. The partitioning is achieved by
having multiple models iteratively submit their predictions for all points in the dataset and being re-
warded for the best predictions with training on the corresponding data points. This process induces
specialization in the models, which is then translated into a partitioning. Focusing the training on

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

each model’s strengths practically inverts the active learning paradigm of focusing the training on a
model’s weaknesses, leading us to call our concept an active partitioning algorithm.

We demonstrated that our algorithm is both widely applicable and useful. Its wide applicability
was shown by valuable results across datasets of varying dimensionalities, sparsities, and contexts –
from student education to engineering stress-strain tests. The utility of our algorithm was illustrated
in two primary ways: first, the partitioning inherently provides insights into the dataset’s structure.
For instance, three distinct patterns were detected in the porous structure’s stress-strain dataset: an
initial hook, convex, and concave parts. Second, certain datasets can be learned more accurately with
a modular model based on the active partitioning algorithm than with a single model. If a model’s
accuracy in learning a dataset is unsatisfactory and the dataset is likely structured along predominant
patterns with little overlap, we recommend applying our pipeline of the active partitioning algorithm
and modular model. Particularly in the context of expensive data points, improving the model on
this path without adding more data points can be financially beneficial. In the future, we will explore
a third application: adapting data collection strategies based on the active partitioning algorithm.

7 REPRODUCIBILITY

We have ensured that all presented results are easily reproducible. The partitioning algorithm is
detailed with a flow chart (see Fig. 1) and pseudo-code (see Alg. 1) in Section 3. This section also
describes the adding and dropping mechanisms, with their pseudo-code provided in the appendix
in Section A.2 (see Alg. 2 and Alg. 3). The modular model is thoroughly explained in Section 4.1,
including a flow chart (see Fig. 5). Table 2 in the appendix in Section A.2 lists all significant param-
eters used in the experiments with the partitioning algorithm and the single and modular model. All
datasets used are properly cited in Section 4.2. The code is submitted as supplementary material.

REFERENCES

Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and Applications. CRC
Press. Taylor & Francis Group, 2013.

Rushikesh S Ambekar, Ipsita Mohanty, Sharan Kishore, Rakesh Das, Varinder Pal, Brijesh Kush-
waha, Ajit K Roy, Sujoy Kumar Kar, and Chandra S Tiwary. Atomic scale structure inspired
3d-printed porous structures with tunable mechanical response. Advanced Engineering Materi-
als, 23(7):2001428, 2021.

Ran Avnimelech and Nathan Intrator. Boosted mixture of experts: An ensemble learning scheme.
Neural computation, 11(2):483–497, 1999.

Ming-Wei Chang, Chih-Jen Lin, and RC-H Weng. Analysis of switching dynamics with competing
support vector machines. IEEE Transactions on Neural Networks, 15(3):720–727, 2004.

Song Chen. Beijing PM2.5. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5JS49.

Paulo Cortez. Student Performance. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5TG7T.

Paulo Cortez and Anbal Morais. Forest Fires. UCI Machine Learning Repository, 2008. DOI:
https://doi.org/10.24432/C5D88D.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241–258, 2020.

K.-L. Du. Clustering: A neural network approach. Neural Networks, 23(1):89–107, 2010. ISSN
0893-6080. doi: https://doi.org/10.1016/j.neunet.2009.08.007.

Joseph C Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics, 4(1):
95–104, 1974.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sathishkumar V E and Yongyun Cho. Seoul Bike Sharing Demand. UCI Machine Learning Repos-
itory, 2020. DOI: https://doi.org/10.24432/C5F62R.

Absalom E Ezugwu, Amit K Shukla, Moyinoluwa B Agbaje, Olaide N Oyelade, Adán José-Garcı́a,
and Jeffery O Agushaka. Automatic clustering algorithms: a systematic review and bibliometric
analysis of relevant literature. Neural Computing and Applications, 33:6247–6306, 2021.

Jacob Feldmesser. Computer Hardware. UCI Machine Learning Repository, 1987. DOI:
https://doi.org/10.24432/C5830D.

Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity.
UCI Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5NS3V.

V Scott Gordon and Jeb Crouson. Self-splitting modular neural network-domain partitioning at
boundaries of trained regions. In 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), pp. 1085–1091. IEEE, 2008.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C53P47.

Abdullah Al Imran, Md Shamsur Rahim, and Tanvir Ahmed. Productivity Prediction of Garment
Employees. UCI Machine Learning Repository, 2020. DOI: https://doi.org/10.24432/C51S6D.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Robert Alan Jacobs. Task decomposition through competition in a modular connectionist architec-
ture. University of Massachusetts Amherst, 1990.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651–
666, 2010. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2009.09.011.

Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano. Heart Disease. UCI
Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. Uci machine learning repository, 2024.
URL https://archive.ics.uci.edu.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

J Macqueen. Some methods for classification and analysis of multivariate observations. University
of California Press, 1967.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

Stephan Matzka. AI4I 2020 Predictive Maintenance Dataset. UCI Machine Learning Repository,
2020. DOI: https://doi.org/10.24432/C5HS5C.

Srgio Moro, Paulo Rita, and Bernardo Vala. Facebook Metrics. UCI Machine Learning Repository,
2016. DOI: https://doi.org/10.24432/C5QK55.

Klaus-Robert Müller, Jens Kohlmorgen, and Klaus Pawelzik. Analysis of switching dynamics with
competing neural networks. IEICE transactions on fundamentals of electronics, communications
and computer sciences, 78(10):1306–1315, 1995.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C55C7W.

Fabio Mendoza Palechor and Alexis De la Hoz Manotas. Estimation of Obesity Levels Based
On Eating Habits and Physical Condition . UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5H31Z.

R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

11

https://archive.ics.uci.edu


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mustafa Jahangoshai Rezaee, Milad Eshkevari, Morteza Saberi, and Omar Hussain. Gbk-means
clustering algorithm: An improvement to the k-means algorithm based on the bargaining game.
Knowledge-Based Systems, 213:106672, 2021.

Jeffrey Schlimmer. Automobile. UCI Machine Learning Repository, 1987. DOI:
https://doi.org/10.24432/C5B01C.

Amanda Sharkey. On combining artificial neural nets. Connect. Sci., 8:299–314, 12 1996. doi:
10.1080/095400996116785.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Pnar Tfekci and Heysem Kaya. Combined Cycle Power Plant. UCI Machine Learning Repository,
2014. DOI: https://doi.org/10.24432/C5002N.

Athanasios Tsanas and Max Little. Parkinsons Telemonitoring. UCI Machine Learning Repository,
2009. DOI: https://doi.org/10.24432/C5ZS3N.

Athanasios Tsanas and Angeliki Xifara. Energy Efficiency. UCI Machine Learning Repository,
2012. DOI: https://doi.org/10.24432/C51307.

William Wolberg, W. Street, and Olvi Mangasarian. Breast Cancer Wisconsin (Prognostic). UCI
Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5GK50.

Shuanhu Wu, AW-C Liew, Hong Yan, and Mengsu Yang. Cluster analysis of gene expression data
based on self-splitting and merging competitive learning. IEEE transactions on information tech-
nology in biomedicine, 8(1):5–15, 2004.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007. DOI:
https://doi.org/10.24432/C5PK67.

I-Cheng Yeh. Real Estate Valuation. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C5J30W.

Ya-Jun Zhang and Zhi-Qiang Liu. Self-splitting competitive learning: A new on-line clustering
paradigm. IEEE Transactions on Neural Networks, 13(2):369–380, 2002.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ANALYSIS OF MODULAR MODEL PERFORMANCE

We observed that, for several datasets, the modular model utilizing the partitioning algorithm sig-
nificantly outperformed the single model. To analyze these observations in more detail, we created
the plots shown in Figure 8. We compared the performance of the modular and single models across
ten test runs for each of the 25 datasets. The datasets with final losses displayed in the histograms in
Figure 7 are marked with unique colors for identification, while all other datasets are illustrated in
orange.

Figure 8: evaluation of the influence of multiple characteristics of the modular model on the perfor-
mance of the modular model compared to the single model across all tested datasets.

(a) Number of experts (b) Learning rates’ variance

(c) Parameter numbers’ variance (d) Partition proportions’ variance

For each dataset, we computed the mean test loss of the single model over the ten test runs. We then
compared the test losses of the modular model against this benchmark. For example, if the single
models achieved an average loss of 100 and the modular model achieved a loss of 80, we recorded a
performance value of 20%. Conversely, if the modular model achieved a loss of 120, we recorded a
performance value of -20%. These performance measures were plotted against potentially influential
parameters: the number of experts, the variance in the experts’ learning rates, the variance in the
experts’ parameter counts, and the variance in the partition proportions.

Firstly, we observed that the performance of the modular model compared to the single model im-
proves with an increasing number of experts (see Fig. 8a). Since the number of experts in the
modular model corresponds to the number of patterns the partitioning algorithm has separated, this
insight is more about the datasets that work well with this approach than about the modular model
itself. The more separate patterns are found within one dataset, the better the modular model can
be expected to work. Given our initial expectation that not all datasets would contain separable

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

patterns, this finding is not surprising. The more clearly a dataset is structured around separable
patterns, the more effective our approach appears to be.

The modular model allows for the adjustment of hyperparameters locally for each expert, unlike
the single model with a global uniform hyperparameter setting. In our experiments, we varied only
the learning rate, the number of layers, and the number of neurons per layer. For this analysis, we
combined the number of layers and the number of neurons per layer into a single metric: the number
of trainable parameters. We evaluated the impact of locally adapting the hyperparameter settings to
each pattern. The more the hyperparameter settings are tailored to each pattern, and the more they
differ from a constant setting for the entire dataset, the greater their variance among all experts in a
single run. Consequently, we plotted the performance of the modular model compared to the single
model versus the variance in experts’ learning rates (see Fig. 8b) and the variance in experts’ train-
able parameters (see Fig. 8c). We observed a moderate correlation between the modular model’s
performance and the adaptation of learning rates, but no correlation with the adaptation of trainable
parameters. Notably, also with small variances in learning rates, modular models outperformed sin-
gle models. We conclude that locally adapting learning rates to each pattern is moderately beneficial,
whereas adjusting the number of layers and neurons per layer does not appear to have a significant
impact.

Finally, we plotted the performance of the modular model compared to the single model against the
variance in partition proportions for each run (see Fig. 8d). Our aim was to verify that the algorithm
identifies significant patterns rather than just isolating small, difficult segments. Our findings confirm
this hypothesis, indicating that the more uniform the partition proportions, the more effective the
modular model becomes.

A.2 DETAILS ON PARTITIONING ALGORITHM AND MODULAR MODEL

For those interested in understanding the partitioning algorithm in full detail, this section provides
the pseudo-code for the adding (see Alg. 2) and dropping (see Alg. 3) mechanism of the partitioning
algorithm. Additionally, Table 2 lists all significant hyperparameter settings for both the partitioning
algorithm and the modular model.

Algorithm 2 Adding: train new model with badly predicted data points.

procedure ADDMODEL
allLosses←Losses of best prediction for each data point

lossBound = mean(allLosses) + std(allLosses)
dataPoints←Data points with loss above lossBound

oldLoss←Mean loss of dataPoints
newModel = new Model()
newModel.train(dataPoints)
newLoss = newModel.getLoss()

if newLoss < oldLoss then
add(newModel)

end if
end procedure

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Dropping: drop highly redundant models.

procedure DROPMODELS
for each dataPoint do lossWithAllModels += lossOfBestModel
end for
for each model do

for each dataPoint do
if model == bestModel then

lossWithoutModel += lossOfNextBestModel
else

lossWithoutModel += lossOfBestModel
end if

end for
replacability = lossWithoutModel/lossWithAllModels
// 10% greater loss without model→ replacability = 1.1
if replacability < droppingReplacability then

drop(model)
end if

end for
end procedure

Table 2: hyperparameter settings of the partitioning algorithm and the single and modular model
during the experiments.

Optimizer Adam
Activation function tanh
Epochs partitioning algorithm 1,000
Epochs modular model 500
Scaled feature range [-1,1]
Batch size 16
Partitioning: initial model number 10
Partitioning: adding check every epoch
Partitioning: dropping check every epoch
Partitioning: dropping threshold 1.8
Hyperparameter search runs 100
Minimal layer number 2
Maximal layer number 6
Minimal neuron number per layer 4
Maximal neuron number per layer 10
Minimal learning rate 0.0001
Maximal learning rate 0.005

15


	Introduction
	Related work
	Partitioning
	Combining models

	Presentation of the algorithm
	Applications
	Modular model
	Datasets
	Results

	Discussion
	Conclusion
	Reproducibility
	Appendix
	Analysis of modular model performance
	Details on partitioning algorithm and modular model


