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I. INTRODUCTION

Synchronizing systems are the essence of the coupled
oscillators field and have been studied extensively throughout
the past half century in the context of mathematics[1],
physics, biology [2], and robotics [3]. The coupled oscillators
field has shown through extensive studies that a system of
distributed agents can achieve synchrony even when there is
sparse coupling between constituents. The coupled oscillators
field has also demonstrated that oscillations are universal
throughout natural and artificial systems. In the context of
collectives, coupled oscillations can be exploited to enable
large numbers of agents to produce interesting self-organized
behaviors [4]; popular examples in nature include flashing
fireflies [5], firing neurons [6], and clapping audiences [7].
Although many researchers have investigated the emergent
temporal self-organization that occurs in static arrays of cou-
pled oscillators, little is known about the dynamics of mobile
oscillators and their emergent self-organization. Studying this
further could enable us to create versatile robot swarms
capable of switching between diverse formations; this would
be especially important in the area of microrobotics, where
there is almost no onboard sensing and computation because
of the inherent size limitation, and therefore little information
can be shared with other agents.

The swarming oscillators, or swarmalators, field formally
began in 2017 by O’Keeffe et al. [8]; a swarming model
was introduced in which mobile agents’ motion is a function
of their phase interactions, and their phase interactions are
also a function of their motion relative to each other. Since
then, researchers have investigated the swarmalators further
when there is local coupling [9], thermal noise [10], confined
motion on a ring [11], and external force perturbations [12];
a robotic demonstration of the key behaviors from the
original swarmalator model has also demonstrated that these
behaviors translate from the simulated predictions to a phys-
ical system [13]. More recently, Ceron et al. introduced
a new and more general form of the swarmalator model
and demonstrated a multitude of new swarming behaviors
that mimicked the natural and artificial swarming systems’
behaviors [14]. Through this work it became evident that the
swarmalators could be used to replicate and characterize the
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swarming behaviors of many different types of systems in-
cluding spermatozoa [15], social amoebae [16], and magnetic
microrobot (micron scale) swarms [17]. The swarmalator
model is powerful and could enable us to not only better
study and characterize the behaviors of diverse swarming
systems but also design more advanced microrobots that
exploit various types of physical pairwise interactions to
enable diverse collective behaviors. Indeed, Ref. [18] demon-
strates that the swarmalator model can be used to design
and characterize the self-organizing behavior of magnetic
microrobot collectives heterogeneous by size. In these mi-
crorobot swarms, there is no room for onboard computation;
instead, all collective behaviors result from the local physical
pairwise interactions between constituents; the swarmalator
model abstracts away the physical interactions and repro-
duces the microrobots’ self-organizing behavior. As we look
towards the future of the swarmalators field and its extended
potential applications in the microrobotics field, we must
study in more detail the emergent self-organization when
there is non-identical coupling throughout the collective.
Throughout most swarmalator studies, the pairwise coupling
remains constant across the collective which means collective
behaviors may be tuned through this global parameter. In the
context of microrobotics, however, it would be more useful to
study systems in which there is non-identical coupling across
the collective. Heterogeneous microrobot collective systems
are being developed so that non-homogeneous ensembles
exploit asymmetric pairwise interactions to enable various
behaviors including self-organization, collective morphology
reconfiguration, and object manipulation which would not
be possible with a homogeneous microrobot collective. In
these microrobot collective systems the coupling is agent-
specific; distributed coupling would enable us to imitate
this type of agent-specific interaction through a general
framework like the swarmalator model. Distributed coupling
would also usher new self-organization behaviors that enable
the collective to exhibit several types of swarming behaviors
simultaneously.

We introduce the reader to the swarmalator framework
and present exciting preliminary results related to distributed
coupling; however, the full development of this study is a full
research program that will consist of various phases across
many papers and studies. One phase will enable us to refine
distributed coupling swarmalator models so that we can
achieve specific swarming behaviors. The next phase uses
our distributed coupling models to design robot collective
systems that realize the swarming behavior predicted through
the swarmalator model. In the first phase, this work will



Fig. 1: Introduction to swarmalators. (a) Agents’ phase values are
between 0 and 2π and are mapped to a color bar. (b) Agents
spatially attract toward other agents with a similar phase. (c) Agents
inherently oscillate their phase at their natural frequecny ωi and
couple to their neighbor’s phase through the term Ksin(θj − θi).
When K > 0, agents’ phase tend to move towards synchrony (top);
when K < 0, agents’ phases tend to move towards asynchrony
(bottom).

demonstrate a major thrust for the swarmalators field and
will have the potential to impact diverse fields ranging
from swarm robotics, to mobile networking systems, to
characterization of natural swarming phenomena.

II. THE ORIGINAL MODEL

We first introduce the original swarmalator model since
this is the basis off which most of the swarmalator field has
investigated the dynamics of the swarmalator framework, and
it is the base off which we introduce distributed coupling.

ẋi =
1

N

N∑
j ̸=i

[
xj − xi
|xj − xi|

(
A+ J cos

(
θj − θi

))
−B

xj − xi
|xj − xi|2

]
(1)

θ̇i = ωi +
K

N

N∑
j ̸=i

sin
(
θj − θi

)
|xj − xi|

(2)

Here, N agents follow an equation of motion (Eq. 1) that
is a function of an agent i’s position (xi) and phase (θi),
and its pairwise interaction with other agents’ (j) position
(xj) and phase (θj). All agents have a phase between 0
and 2π and are initialized with random phases and positions
within a box of side length 2. As shown in Fig. 1a, agents’
phases are represented by a color according to the colorbar.
Global spatial attraction is enabled through the unit vector
portion of the model and scaled by the coefficient A; spatial
repulsion is enabled by a power law model and is scaled by
the coefficient B; both coefficients hold a value of 1. The
spatial-phase coupling parameter J holds a value between
-1 and 1; it determines how much agents will move towards
other agents with similar phases. As shown in Fig. 1b,
when J > 0, agents with similar phases will aggregate,
and when J < 0, like-phased agents will repel each other.
J has held a constant value for all agents throughout all
previous swarmalator studies; however, here we introduce a
distributed spatial-phase coupling and define it more clearly
in the following section.

Swarmalators also demonstrate temporal self-organization

Fig. 2: (a-e) Collective behaviors of the original swarmalator model.
(a) Synchronized cluster (K = 1, J = 1). (b) Asynchronous cluster
(K = 0, J = −1). (c) Static phase wave (K = 0, J = 1). (d)
Splintered phase wave (K = −0.05, J = 1). (e) Active phase
wave (K = −0.4, J = 1). (f-j) Collective behaviors of the new
swarmalator model. (f) Heat map of the S order in K - J parameter
space. (g) Heat map of phase coherence (Z).

through their phase coupling interactions as dictated by the
distance-dependent Kuramoto model in Eq. 2. Here, ωi is
the natural frquency of each agent i; it is the inherent rate
at which an agent cycles its internal phase. The coupling
parameter K dictates how much agents will adjust their
oscillating phase to each other. As shown in Fig. 1c, agents’
phases can be mapped to a unit circle; when K > 0, agents
move towards phase synchrony, and when K < 0, agents
move towards phase asynchrony. K is also a global coupling
parameter throughout most swarmalator studies; however,
here we demonstrate how the collective can split into sev-
eral subgroups with distinct behaviors when K becomes a
distributed coupling parameter.

We briefly summarize in Figs. 2a-e the collective behaviors
when K and J are global coupling parameters; for clarity
in this introductory paper, ωi = 0 for all agents. High K
and J values enable the collective to aggregate into a phase-
synchronized circular cluster, and low K and J enable the
circular cluster to increase in radius and move towards phase
asynchrony. When K = 0 and J = 1, agents do not affect
each others’ cycles but they move towards agents with a low
phase difference (i.e. a low value for cos(θj−θi)); since there
is a uniform distribution of phases between 0 and 2π, the
collective creates an annulus formation, termed a phase wave.
If J = 1 but K is slightly less than 0 (K = −0.05), agents
anti-phase couple slightly such that they form tight clusters
in petal-like formations, this collective state is termed the
splintered phase wave. When K is lower (K = −0.4),
the collective enters an active phase wave state in which
all agents move around the collective centroid; this happens
because agents anti-phase couple yet are spatially attracted to
other agents with similar phases. These are the five general
collective behaviors that result from the original swarmalator
model.

We can characterize the transition between these various
behaviors through two order parameters that measure phase
coherence (Z) and circumferential spatial-phase correlation



(S), shown in Eqs. 3 and 4; both order parameters have a
value between 0 and 1.
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Z measures how close the agents’ phases are to each other
and S measures how well the collective is organized by phase
around its centroid. Z and S are mapped across the K - J
parameter space in Figs. 2f and g. The heat maps help us map
out the general behaviors that occur when the collective ex-
periences these various global coupling parameters. We can
also see distinct collective behavior transitions within these
heat maps as the order parameters transition from low to high
values. We present these order parameters to showcase how
we can quantitatively and qualitatively distinguish between
different collective behaviors exhibiting spatial and temporal
self-organization.

III. DISTRIBUTED COUPLING

Since this is the beginning of a set of studies that will
explore how various forms of distributed coupling affect the
swarmalators’ behaviors, we will simply summarize some
of the forms of distributed coupling that could potentially
exhibit the most interesting results.

We can define K and J as Kij and Jij , respectively. This
means each pair of agents has a distinct coupling coefficient
that determines how much they will phase couple to each
other and how much they will spatially attract to each other
as a function of their phase interactions. Looking toward
the future studies of this research program, we can consider
various possibilities for studying the self-organization behav-
iors when there is distributed coupling. We can model the
original swarmalator as distributed coupling by having all
agents be coupled to all other agents (Fig. 3a). We may
consider systems in which all agents couple to a single
agent or a very small number of agents (Fig. 3b). This
will yield very interesting results since it will enable us to
study how the collective behaves when there is a ’leader’
agent influencing all other agents; we can study how the
collective’s self-organized behaviors change as the number
of ’leader’ agents increases. This is portrayed in Fig. 3c;
the whole collective is connected to a subset of the group.
Fig. 3d shows an unconnected graph architecture, where the
half of the swarmalators would interact with only half of the
swarmalators, and they would remain in two separate groups.
This may be useful for robot swarms that need to separate
into some number of groups and exhibit different formations
within each group; however, each of the formations would
be the same as in the original swarmalator model since each
group is essentially its own segregated collective. A slightly
more interesting twist to these self-organized behaviors might
come from a graph architecture similar to what is shown in
Fig. 3e. Here, there are also two main groups, but a single

Fig. 3: Some of the potentially most interesting forms of distributed
coupling for the swarmalator framework. (a) All agents coupled
with all other agents; this is the baseline and what is already shown
through the original swarmalator model. (b) All agents coupled to a
single agent. (c) A subset of the collective coupled to another subset
of the collective. (d) A disconnected graph in which the collective is
segregated into separate coupling groups. (e) The same scenario as
what is shown in (d), but with a single or small number of coupling
connections that make it a connected graph. (f) Each agent couples
to a subset of the collective.

connection or a few connections can enable the two groups
to affect each others’ behaviors.

Fig. 3f shows a graph architecture in which each agent
is affected by two other agents. In a scaled up graph
architecture we could study the self-organization behavior of
the collective as the number of agents that each agent couples
to increases. This type of distributed coupling architecture
would enable us to study how many other agents each
agent needs to be connected to for specific formations to
exist in the collective. Within this research program, there
are a multitude of graph coupling architectures that we
may consider in future studies including random distributed
coupling, time-varying distributed coupling, and directed
distributed coupling. The time-varying distributed coupling
could be used to evolve from one architecture to another;
two immediately interesting directions of study would be to
(1) apriori program the evolution of the coupling architecture
and (2) evolve from one architecture to another as a function
of the collective system’s state. The directed coupling would
enable agent i to exert a coupling interaction on agent j that
is not necessarily the same as the coupling from agent j to
agent i; this would enable asymmetric pairwise spatial-phase
interactions. A directed graph architecture would enable the
collective to exhibit entirely new behaviors than what is
exhibited in the undirected graph architectures. Each of these
additional distributed coupling architectures could enable us
to explore fundamental and application-level concepts of
self-organizing swarming systems that could enable robot
swarms to have greater control over their shape formations
without necessarily having to communicate information to
the entire group.



IV. PRELIMINARY RESULTS

Our preliminary results overview the diverse self-
organized behaviors that happen when the distributed cou-
pling architecture mimics some of the architectures outlined
in Fig. 3. The first two rows of Fig. 4 demonstrate that the
collective can exhibit two states when the collective has a
distributed coupling architecture in which each couples to
about half of the collective. In these distributed coupling
architectures it is very simple to partition the group and quan-
tify phase coherence and spatial-phase correlation parameters
like Z and S. Detailed studies of some of these behaviors will
enable us to learn how we can control the position of specific
parts of the group with respect to other parts of the group
through distributed coupling architecture. More specifically,
we will be able to determine how coupling architectures
similar to the ones depicted in Figs. 3c and d will enable
a synchronized cluster to form in the center of the collective
while being encapsulated by an asynchronous cluster, as
shown in Fig. 4a. We will also learn if the distributed
coupling architecture can be flipped so that the asynchronous
cluster forms in the center and the synchronized cluster
encapsulates it. In these cases it is also immediately evident
that the behaviors from the original swarmalator model
transfer over even when agents do not couple to all other
agents in the collective.

Rows 3 and 4 of Fig. 4 demonstrate the behavior when
each agent connects to a specific number of agents; this
is similar to the architecture depicted in Fig. 3f. Through
these formations, we observe similarities with self-organized
behaviors realized through the original swarmalator model;
however, several behaviors are not present at once as was the
case in rows 1 and 2. As we increase the number coupling
connections for each agent, the collective transitions from a
disordered state to a more ordered state. It is interesting that
in collectives of 200 swarmalators, when agents just have
50 coupling connections, the group is already able to create
a formation close to one of the self-organized behaviors
present in the original swarmalator model. Our future studies
will investigate if this behavior is stable and what the lower
limit of coupling connections per agent may be when the
collective is of a given size. It is not clear yet if this is a
snap transition from a disordered cluster to one of the self-
organized behaviors or if we can quantify the amount of
order as the number of coupling connections is increased.

V. DISCUSSION

We introduce the notion of distributed coupling in the
swarmalator system. Our preliminary results show interesting
formations that demonstrate the collective can reach several
steady states when it begins with its agents having random
positions and phases. Throughout these preliminary results,
the distributed couplings are kept constant; however, control-
lable distributed coupling between agents would enable us to
control various parameters in a self-organizing system, such
as the distance between nearby agents, their phase-locking
behavior, and the motion of the entire group. Nonetheless, the
diverse behaviors shown in Fig. 4 demonstrate the wide range

Fig. 4: Diverse behavior enabled by various distributed coupling
architectures. (a-c) Self-organization when the distributed coupling
is similar to the graph architecture depicted in Fig. 3c. (d-f) Self-
organization when the collective is split into two groups like the
graph architecture depicted in Fig 3d. (g-l) Self-organization when
the distributed coupling is similar to the graph architecture depicted
in Fig. 3f. (g-i) Kij = 0, Jij = 1; number of agents each agent is
coupling to is 1 (g), 20 (h), 50 (i). (j-l) Kij = 1, Jij = 1; number
of agents each agent is coupling to is 10 (j), 20 (k), and 50 (l).
of possibilities in studying self-organizing swarmalators in
the context of networked systems. We are expanding on our
preliminary results by: (1) characterizing the systems’ global
and local spatial and temporal self-organization through
Z, S, and other order parameters for specific distributed
coupling architectures; (2) studying whether any of the self-
organized states can be proved to be stable; (3) developing a
robotic implementation to reproduce some of the swarmala-
tor behaviors with > 10 robots. We are using the Sphero Bots
to study how the distributed coupling architecture translates
to a physical system. Within this phase of the research pro-
gram we are also demonstrating how the individual dynamics
of the robotic agents affects the final self-organization.

We hope the introduction of this line of studies on dis-
tributed coupling in swarmalators will excite many swarm
robotocists to investigate how distribute coupling can be
used in the context of this swarming framework and other
frameworks. This line of research has the potential to enable
large developments in the field of microrobot swarms and any
other kind of self-organizing robot collective system in which
each agent is capable of transmitting very little information
to other agents.
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